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Abstract
TheYakubovichFrequencyTheorem, in its periodic version and in its general nonautonomous
extension, establishes conditions which are equivalent to the global solvability of a mini-
mization problem of infinite horizon type, given by the integral in the positive half-line of a
quadratic functional subject to a control system. It also provides the unique minimizing pair
“solution, control” and the value of the minimum. In this paper, we establish less restrictive
conditions under which the problem is partially solvable, characterize the set of initial data
for which the minimum exists, and obtain its value as well a minimizing pair. The occurrence
of exponential dichotomy and the null character of the rotation number for a nonautonomous
linear Hamiltonian system defined from the minimization problem are fundamental in the
analysis.

Keywords Infinite-horizon control problem · Frequency Theorem · Nonautonomous
dynamical systems · Exponential dichotomy · Rotation number

Mathematics Subject Classification 37B55 · 49N10 · 34F05

Partly supported by Ministerio de Economía y Competitividad/FEDER under project MTM2015-66330-P,
by Ministerio de Ciencia, Innovación y Universidades under project RTI2018-096523-B-I00, by European
Commission under project H2020-MSCA-ITN-2014, and by INDAM—GNAMPA Project 2018.

B Carmen Núñez
carnun@wmatem.eis.uva.es

Roberta Fabbri
roberta.fabbri@unifi.it

1 Dipartimento di Matematica e Informatica ‘Ulisse Dini’, Università degli Studi di Firenze, Via
Santa Marta 3, 50139 Firenze, Italy

2 Departamento de Matemática Aplicada, Universidad de Valladolid, Paseo del Cauce 59, 47011
Valladolid, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10231-019-00939-5&domain=pdf
http://orcid.org/0000-0002-4344-6956


1714 R. Fabbri, C. Núñez

1 Introduction andmain result

Let us consider the control problem

x′ = A0(t) x + B0(t)u (1.1)

for x ∈ R
n and u ∈ R

m , the quadratic form (or supply rate)

Q(t, x,u) := 1

2
(〈 x,G0(t) x 〉 + 2 〈 x, g0(t)u 〉 + 〈u, R0(t)u 〉) , (1.2)

and a point x0 ∈ R
n . We represent by Px0 the set of pairs (x,u) : [0,∞) → R

n × R
m of

measurable functions satisfying (1.1)withx(0) = x0, and consider the problemofminimizing
the quadratic functional

Ix0 : Px0 → R ∪ {±∞}, (x,u) 	→
∫ ∞

0
Q(t, x(t),u(t)) dt . (1.3)

The functions A0, B0, G0, g0, and R0 are assumed to be bounded and uniformly contin-
uous on R, with values in the sets of real matrices of the appropriate dimensions; G0 and
R0 are symmetric, with R0(t) ≥ ρ Im for a common ρ > 0 and all t ∈ R; and 〈 ·, · 〉
represents the Euclidean inner product in R

n or R
m . A pair (x,u) ∈ Px0 is admissible

for Ix0 if (x,u) ∈ L2([0,∞), R
n) × L2([0,∞, R

m). That is, u : [0,∞) → R
m belongs to

L2([0,∞), R
m), x : [0,∞) → R

n solves (1.1) for this control with x(0) = x0, and x belongs
to L2([0,∞), R

n). In particular, Ix0(x,u) ∈ R if the pair (x,u) is admissible.
The questions we will consider are classical in control theory: the existence of admissible

pairs and, if so, the possibility of minimizing the functional Ix0(x,u) evaluated on the set
of these pairs. The existence of a finite minimum is not a trivial question even if admissible
pairs exist: since no assumption is made on the sign of Q, the infimum can be −∞.

This infinite horizon problem was considered for T -periodic coefficients A0, B0, G0, g0
and R0 by Yakubovich in [26,27], where he explains the origin of the problem and summa-
rizes the results previously known, providing numerous references. Under the hypothesis of
existence of at least an admissible pair for any x0 ∈ R

n , it is proved in [26,27] the equivalence
between the solvability of the minimization problem for any x0 ∈ R

n and other seven con-
ditions which are formulated in terms of the properties of a 2n-dimensional periodic linear
Hamiltonian system which is provided by the coefficients of the minimization problem:

[
x
y

]′
= H0(t)

[
x
y

]
(1.4)

with

H0 :=
[
A0 − B0 R

−1
0 gT0 B0 R

−1
0 BT

0

G0 − g0 R
−1
0 gT0 −AT

0 + g0 R
−1
0 BT

0

]
.

Among all these equivalences, one of the most meaningful reads as follows: there exists a
unique admissible pair providing the minimum value for Ix0 for any x0 ∈ R

n if and only, in
Yakubovich’s words, the frequency condition and the nonoscillation condition are satisfied.
That is, if (1.4) admits exponential dichotomy on R and, in addition, the Lagrange plane l+

composed by those initial data

[
x0
y0

]
giving rise to a solution bounded at +∞ admits a basis

whose vectors are the columns of a matrix

[
In
M+

]
. Here, In is the identity n × n matrix,
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On the solvability of the Yakubovich linear-quadratic infinite… 1715

and M+ turns out to be a symmetric matrix (since l+ is a Lagrange plane). In addition, the

minimizing pair (̃x, ũ) can be obtained from the solution

[
x̃(t)
ỹ(t)

]
of (1.4) with initial data

[
x0

M+x0

]
via the feedback rule

ũ(t) = R−1
0 (t) BT

0 (t) ỹ(t) − R−1
0 (t) gT0 (t) x̃(t), (1.5)

and the value of the minimum is Ix0 (̃x, ũ) = −(1/2) xT0 M
+x0.

In this paper we go deeper in the analysis of these problems: we will establish conditions
including the existence of exponential dichotomy under which it is possible to characterize
the set of those x0 ∈ R

n for which there exist admissible pairs, in terms of a relation between
x0 and l+; we will check that for x0 in this set, the minimum is finite; and we will determine
the value of the minimum as well as an admissible pair on which it is attained.

But we will not limit ourselves to the periodic case. Yakubovich Frequency Theorem was
later extended to the general nonautonomous case of bounded and uniformly continuous
coefficients: in Fabbri et al. [4], six equivalences where proved in the case of recurrent coef-
ficients; in Johnson and Núñez [12], the theorem was proved in the general (non-necessarily
recurrent) case; and in Chapter 7 of Johnson et al. [14] the list of eight equivalences was
completed, adding two more ones related to the rotation number. When dealing with this
general case, the problem is analyzed by including it in a family of problems of the same
type, bymeans of the so-called hull orBebutov construction, whichwewill recall in Sect. 2.1.
This procedure provides the following families of control systems and functionals:

x′ = A(ω·t) x + B(ω·t)u, (1.6)

Qω(t, x,u) := 1

2
(〈 x,G(ω·t) x 〉 + 2〈 x, g(ω·t)u 〉 + 〈u, R(ω·t)u 〉) , (1.7)

Ix0,ω : Px0,ω → R ∪ {±∞}, (x,u) 	→
∫ ∞

0
Qω(t, x(t),u(t)) dt (1.8)

for ω ∈ Ω and x0 ∈ R
n . Here, Ω is a compact metric space admitting a continuous flow

σ : R × Ω → Ω, (t, ω) 	→ σ(t, ω) =: ω·t ; A, B, G, g, and R are bounded and uniformly
continuous matrix-valued functions on Ω; G and R are symmetric with R > 0 (which
ensures that R is positively bounded from below, since Ω is compact); and Px0,ω is the set
of measurable pairs (x,u) : [0,∞) → R

n × R
m solving (1.6) for ω with x(0) = x0. The

admissible pairs are defined for each ω ∈ Ω and x0 ∈ R
n as for single problem (1.1), and

their existence is guaranteed by the following hypothesis (see, e.g., Proposition 7.4 of [14]):

H There exists a continuous m × n matrix-valued function K0 : Ω → Mm×n(R) such that
the family of linear systems

x′ = (A(ω·t) + B(ω·t) K0(ω·t)) x, ω ∈ Ω,

is of Hurwitz type at +∞.

The definition of the Hurwitz character of the family, related to the concept of exponential
dichotomy, is given in Sect. 2. Under this condition, the equivalences are formulated in [4]
in terms of the properties of the family of linear Hamiltonian systems

[
x
y

]′
= H(ω·t)

[
x
y

]
, ω ∈ Ω (1.9)
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1716 R. Fabbri, C. Núñez

given by

H :=
[
A − B R−1gT B R−1BT

G − g R−1gT −AT + g R−1BT

]
. (1.10)

We will use the notation (1.9)ω to refer to the system of the family corresponding to the
element ω of Ω , and we will make the same with the remaining equations defined along
the orbits of Ω . The results of [4,12] show, in particular, the equivalence of the following
situations if H holds:

(1) The family of linear Hamiltonian systems (1.9) admits an exponential dichotomy overΩ ,
and the (symmetric) Weyl matrix-valued function M+ globally exists; that is, each one
of the systems of the family admits an exponential dichotomy on R and for any ω ∈ Ω

the Lagrange plane l+(ω) of the solutions bounded at +∞ admits as basis the column

vectors of a matrix

[
In

M+(ω)

]
(see Sect. 2).

(2) The minimization problem is solvable for each ω ∈ Ω and x0 ∈ R
n .

In addition, in this case the minimizing pair (̃xω, ũω) comes from the solution

[
x̃ω(t)
ỹω(t)

]
of

(1.9)ω with initial data

[
x0

M+(ω) x0

]
via the feedback rule

ũω(t) = R−1(ω·t) BT(ω·t) ỹω(t) − R−1(ω·t) gT(ω·t) x̃ω(t), (1.11)

and the value of theminimum is Ix0,ω(̃xω, ũω) = − (1/2) xT0 M
+(ω) x0. And, in fact, H holds

when there is exponential dichotomy and M+ globally exists. (We point out that rule (1.11)ω
provides a pair “state, control” solving (1.6)ω whenever we have a solution of (1.9)ω.)

Among the remaining equivalences, we want to call attention to another one, formulated
in terms of the rotation number of family (1.9), and which holds when Ω admits an ergodic
measure m with total support. If so, and always under hypothesis H, the previous situation is
equivalent to

(3) the rotation number of family (1.9) for m is zero.

Now, we will formulate our main result. It is fundamental to note that hypothesis H is not
in force: otherwise, the assumptions of the theorem would imply the global solvability of the
family of minimization problems. Recall that we have represented by l+(ω) the Lagrange
plane of the solutions bounded at+∞ in the case of exponential dichotomy overΩ of family
(1.9). And recall also that the conditions assumed on A, B,G, g and R (described after (1.8))
are in force.

Theorem 1.1 Let us assume that Ω is minimal, that there exists ω0 ∈ Ω such that the n ×m
matrix B(ω0) has full rank, that the family of systems (1.9) admits exponential dichotomy
overΩ , and that there exists a σ -ergodic measure onΩ for which the corresponding rotation
number is zero. Let l+(ω) be the Lagrange plane of the solutions of (1.6)ω bounded at +∞.
And let us fix ω ∈ Ω and x0 ∈ R

n. Then,

(i) there exist admissible pairs (x,u) for the functional Ix0,ω given by (1.8)ω if and only if

there exists y0 ∈ R
n such that

[
x0
y0

]
∈ l+(ω).

(ii) In this case, the infimum of Ix0,ω is finite. In addition, if the columns of the 2n×n matrix[
Lω,1

Lω,2

]
are a basis of l+(ω) and

[
x0
y0

]
=

[
Lω,1 c
Lω,2 c

]
for a vector c ∈ R

n, then the
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On the solvability of the Yakubovich linear-quadratic infinite… 1717

infimum is given by −(1/2) cTLT
ω,2 Lω,1 c, and a minimizing pair (̃xω, ũω) ∈ Px0,ω is

obtained from the solution

[
x̃ω(t)
ỹω(t)

]
of (1.9)ω with initial data

[
x0
y0

]
via the feedback

rule (1.11)ω.
(iii) If the situation in (i) does not hold, then Ix0(x,u) = ∞ for any pair (x,u) ∈ Px0,ω.

Section 2 contains the notions and basic properties required to fully understand the
hypotheses and statements of Theorem 1.1, whose proof is given in Sect. 3. In that sec-
tion, we will also analyze the hypotheses; we will explain how these hypotheses can be
formulated for the initial problem, for which we give a less general version of the main
theorem; and we will show autonomous and nonautonomous scenarios in which admissible
pairs do not always exist.

2 Preliminaries

All the contents of this preliminary section can be found in Johnson et al. [14], together with
a quite exhaustive list of references for the origin of the results here summarized.

Let us fix some notation. The set of d × m matrices with entries in the real line R is
represented by Md×m(R). As usual, Rd := Md×1(R), and AT is the transpose of the matrix
A. The subset Sd(R) ⊂ Md×d(R) is composed by the symmetric matrices. The expressions
M > 0, M ≥ 0, M < 0, and M ≤ 0 for M ∈ Sd(R)mean that M is positive definite, positive
semidefinite, negative definite, and negative semidefinite, respectively. If M : Ω → Sd(R)

is a map, M > 0 means that M(ω) > 0 for all the elements ω ∈ Ω , and M < 0, M ≥ 0,
and M ≤ 0 have the analogous meaning. It is also obvious what M1 > M2, M1 ≥ M2,
M1 < M2, and M1 ≤ M2 mean. We represent by Id and 0d the identity and zero d × d
matrices, by 0 the null vector of R

d for all d , and by ‖·‖ the Euclidean norm in R
d .

A realLagrangeplane is ann-dimensional linear subspaceofR2n such that [xT1 yT1 ] J
[
x2
y2

]

= 0 for any pair of its elements

[
x1
y1

]
and

[
x2
y2

]
, where J :=

[
0n −In
In 0n

]
. A Lagrange plane

l is represented by

[
L1

L2

]
(which we represent as l ≡

[
L1

L2

]
) if the column vectors of the

matrix form a basis of the n-dimensional linear space l. In this case, LT
2 L1 = LT

1 L2. Note

that it can be also represented by

[
In
M

]
if and only if det L1 �= 0, in which case the matrix

M = L2L
−1
1 is symmetric.

The next concepts and properties are basic in topological dynamics and measure theory.
A (real and continuous) global flow on a complete metric space Ω is a continuous map
σ : R × Ω → Ω, (t, ω) 	→ σ(t, ω) such that σ0 = Id and σs+t = σt ◦ σs for each s, t ∈ R,
where σt (ω) = σ(t, ω). The σ -orbit of a point ω ∈ Ω is the set {σt (ω) | t ∈ R}. A subset
Ω1 ⊂ Ω is σ -invariant if σt (Ω1) = Ω1 for every t ∈ R. A σ -invariant subset Ω1 ⊂ Ω is
minimal if it is compact and does not contain properly any other compact σ -invariant set.
And the continuous flow (Ω, σ) is minimal if Ω itself is minimal.

Let m be a normalized Borel measure on Ω , i.e., a finite regular measure defined on the
Borel subsets of Ω and with m(Ω) = 1. The measure m is σ -invariant if m(σt (Ω1)) =
m(Ω1) for every Borel subset Ω1 ⊂ Ω and every t ∈ R. A σ -invariant measure m is σ -
ergodic ifm(Ω1) = 0 orm(Ω1) = 1 for every σ -invariant subsetΩ1 ⊂ Ω . A real continuous
flow (Ω, σ) admits at least an ergodic measure whenever Ω is compact. And the topological
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1718 R. Fabbri, C. Núñez

support ofm, Suppm, is the complement of the largest open set O ⊂ Ω for whichm(O) = 0.
We say that m has total support if its topological support is Ω . If Ω is minimal, then any
σ -ergodic measure has total support.

In the rest of the paper, (Ω, σ) will be a minimal continuous global flow on a compact
metric space, andwewill denoteω·t := σ(t, ω).Wewill workwith families of linear systems
of type (1.9) depending on continuous matrix-valued functions A, B,G, g and R with the
properties defined in the Introduction. Since H : Ω → sp(n, R), where

sp(n, R) := {H ∈ M2n×2n(R) | HT J + J H = 02n}

for J =
[
0n −In
In 0n

]
, the systems of the family are said to be Hamiltonian. Let UH(t, ω)

denote the fundamental matrix solution of system (1.9)ω with U (0, ω) = I2n . The family
(1.9) induces a real continuous global flow on the linear bundle Ω × R

2n ,

τH : R × Ω × R
2n → Ω × R

2n,

(
t, ω,

[
x
y

])
	→

(
ω·t,UH(t, ω)

[
x
y

])
. (2.1)

An equivalent assertion can be done for any family of linear systems

w′ = S(ω·t)w, ω ∈ Ω (2.2)

forw ∈ R
d if S : Ω → Md×d(R) is continuous.We represent the corresponding fundamental

matrix solution as US : R × Ω → Md×d(R), and the flow that it provides as τS : R × Ω ×
R
d → Ω × R

d .
In the rest of this section, we recall some basic concepts and some associated properties

related to families of forms (2.2) and (1.9). Some of them are directly related to the statements
of ourmain result (as in the case of the exponential dichotomy and the rotation number), while
other ones are used as tools in its proof (as it happens with the uniform weak disconjugacy
property).

We begin with the exponential dichotomy of a family of linear systems over Ω , which is
one of the main hypotheses of our main theorem.

Definition 2.1 The family (2.2) has exponential dichotomy over Ω if there exist constants
η ≥ 1 and β > 0 and a splitting Ω × R

d = L+ ⊕ L− of the bundle into the Whitney sum
of two closed subbundles such that

– L+ and L− are invariant under the flow τS induced by (2.2) on Ω ×R
d ; that is, if (ω,w)

belongs to L+ (or to L−), so does (ω·t,US(t, ω)w) for all t ∈ R and ω ∈ Ω .
– ‖US(t, ω)w‖ ≤ η e−βt ‖w‖ for every t ≥ 0 and (ω,w) ∈ L+.
– ‖US(t, ω)w‖ ≤ η eβt ‖w‖ for every t ≤ 0 and (ω,w) ∈ L−.

In the case that L+ = R
d , family (2.2) is of Hurwitz type at +∞.

In general, we will omit the words “over Ω” when the family (2.2) has exponential
dichotomy, since no confusion arises. Let us summarize in the next list of remarks somewell-
known fundamental properties satisfied by a family of linear systems which has exponential
dichotomy.

Remarks 2.2 1. IfΩ is minimal (as we assume in Theorem 1.1), the exponential dichotomy
of the family (2.2) over Ω is equivalent to the exponential dichotomy on R of anyone
of its systems (see, e.g., [2] for the definition of this classical concept). This property
is proved in [18, Theorem 2 and Section 3]. In addition, the exponential dichotomy of
the family is equivalent to the unboundedness of any nontrivial solution of anyone of the
systems, as proved in Theorem 10.2 of [20].
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On the solvability of the Yakubovich linear-quadratic infinite… 1719

2. Suppose that the family (2.2) has exponential dichotomy. There exists δ > 0 such that if
T : Ω → Md×d(R) is a continuous map and maxω∈Ω ‖S(ω) − T (ω)‖ < δ (where ‖·‖
is representing the Euclidean operator norm), then the family w′ = T (ω·t)w, ω ∈ Ω

has exponential dichotomy. This well-known property of robustness is a consequence of
the Sacker and Sell Spectral Theorem (Theorem 6 of [19]).

3. Assume that the family of linear systems is of Hamiltonian type, as in the case of (1.9),
and that it has exponential dichotomy. Then, the sections

l±(ω) :=
{[

x
y

]
∈ R

2n
∣∣∣∣

(
ω,

[
x
y

])
∈ L±

}
(2.3)

are real Lagrange planes. In addition,

l±(ω) =
{
z ∈ R

2n | lim
t→±∞

∥∥∥∥UH(t, ω)

[
x
y

]∥∥∥∥ = 0
}

=
{
z ∈ R

2n | sup
±t∈[0,∞)

∥∥∥∥UH(t, ω)

[
x
y

]∥∥∥∥ < ∞
}

.

These properties are proved, for example, in Section 1.4 of [14].
4. Also in the Hamiltonian case, assume that for all ω ∈ Ω the Lagrange plane l+(ω)

can be represented by the matrix

[
In

M+(ω)

]
. Or, equivalently, that for all ω ∈ Ω the

Lagrange plane l+(ω) can be represented by a matrix

[
L+

ω,1
L+

ω,2

]
with det L+

ω,1 �= 0 (so

that M+(ω) = Lω,2 L
−1
ω,1). In this case, M

+ : Ω → Sn(R) is a continuous matrix-valued
function, and it is known as one of the Weyl functions for (1.9). In this situation, we say
that the Weyl function M+ globally exists. (The other Weyl function is M−, associated
with the subbundle L−, and it satisfies the same properties if it exists.)

The other fundamental hypothesis of our main theorem refers to the value of the rotation
number for the family (1.9), whose definitionwe recall now. This object depends on a givenσ -
ergodic measure on Ω . Among the many equivalent definitions for this quantity, we give one
which extends that which is possibly the best known in dimension 2 (see [7,9]). We write as

UH(t, ω) =
[
U1(t, ω) U3(t, ω)

U2(t, ω) U4(t, ω)

]
the matrix-valued solution of (1.9) with UH(0, ω) = I2n .

And arg : C → R is the continuous branch of the argument of a complex number for which
arg 1 = 0.

Definition 2.3 Let m be a σ -ergodic measure on Ω . The rotation number α(m) of the family
of linear Hamiltonian systems (1.9) with respect to m is the value of

lim
t→∞

1

t
arg det(U1(t, ω) − iU2(t, ω))

for m-a.a. ω ∈ Ω .

It is proved in [17] that the limits exist and take the same finite value for m-a.a. ω ∈ Ω .
The analysis of α(m) made in [17] is completed in [3] and in Chapter 2 of [14], where the
interested reader may find many other equivalent definitions and an exhaustive description
of the properties of the rotation number.

Now, we introduce the concept of uniform weak disconjugacy.
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1720 R. Fabbri, C. Núñez

Definition 2.4 The family of linear Hamiltonian systems (1.9) is uniformly weakly discon-
jugate on [0,∞) if there exists t0 ≥ 0 independent of ω such that for every nonzero solution

z(t, ω) =
[
z1(t, ω)

z2(t, ω)

]
of the systems corresponding to ω with z1(0, ω) = 0, there holds

z1(t, ω) �= 0 for all t > t0.

In the next remarks, some results proved in [5,11] and in Chapter 5 of [14] are summarized.
Note that the fact that the submatrix B R−1BT of H [see (1.10)] is positive semidefinite is
fundamental in what follows.

Remarks 2.5 1. If the family (1.9) is uniformly weakly disconjugate, then there exist uni-

form principal solutions at ±∞,

[
L±
1 (t, ω)

L±
2 (t, ω)

]
(see Theorem 5.2 of [11] or Theorem 5.26

of [14]). They are real 2n × n matrix-valued solutions of (1.9) satisfying the follow-
ing properties: for all t ∈ R and ω ∈ Ω , the matrices L±

1 (t, ω) are nonsingular and[
L±
1 (t, ω)

L±
2 (t, ω)

]
represent Lagrange planes; and for all ω ∈ Ω ,

lim±t→∞

(∫ t

0
(L±

1 )−1(s, ω) H3(ω·s) ((L±
1 )T)−1(s, ω) ds

)−1

= 0n .

In addition, if the matrix-valued functions

[
L±
1 (t, ω)

L±
2 (t, ω)

]
are uniform principal solutions

at ±∞, then the real matrix-valued functions N± : Ω → Sn(R), ω 	→ N±(ω) :=
L±
2 (0, ω) (L±

1 (0, ω))−1 are unique. The functions N± are called principal functions of
(1.9).
The interested reader can find in Chapter 5 of [14] a careful description of the uniform
principal solutions and the principal functions for families of linear Hamiltonian systems
of type (1.9). A more general theory concerning principal solutions for less restrictive
assumptions is developed in [23,24] and references therein.And a recent in-depth analysis
of the corresponding Riccati equations (which the principal functions solve) can be found
in [22].

2. According to Theorem 5.2 of [11] or to Theorem 5.17 of [14], the uniform weak discon-
jugacy of the family (1.9) ensures the validity of the condition

D2 For all ω ∈ Ω and for any nonzero solution

[
x(t, ω)

y(t, ω)

]
of system (1.9)ω with

x(0, ω) = 0, the vector x(t, ω) does not vanish identically on [0,∞). It also ensures
that the rotation number α(m) with respect to any ergodic measure m on Ω vanishes:
see Theorem 2 of [5] or Theorem 5.67 of [14]. Conversely, if there exists a σ -ergodic
measure on Ω with total support (which is always the case if Ω is minimal) for which
the rotation number is zero and D2 holds, then the family (1.9) is uniformly weakly
disconjugate. This assertion follows from Theorems 5.67 and 5.17 of [14].

2.1 The hull construction

Let us complete Sect. 2 by explaining briefly how we obtain the family of problems given
by (1.6), (1.7) and (1.8) from the initial one, given by (1.1), (1.2) and (1.3).

Let us denote C0 := (A0, B0,G0, g0, R0), so that

C0 : R → Mn×n(R) × Mn×m(R) × Mn×n(R) × Mn×m(R) × Mm×m(R), (2.4)
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and define Ω as its hull, that is, the closure with respect to the compact-open topology of R

of the set {Cs | s ∈ R}, where Cs(t) := C0(t + s). It turns out that Ω is a compact metric
space and that the time translation map

σ : R × Ω → Ω, (t, ω) 	→ ω·t,
where (ω·t)(s) = ω(t + s), defines a continuous flow on Ω . The proofs of these assertions
can be found in Sell [21].

Note that any element ω ∈ Ω can be written as ω = (ω1, ω2, ω3, ω4, ω5), and that
ω·t = (ω1·t, ω2·t, ω3·t, ω4·t, ω5·t) with (ωi ·t)(s) = ωi (t + s) for i = 1, . . . , 5. We define

A : Ω → Mn×n(R), (ω1, ω2, ω3, ω4, ω5) 	→ ω1(0),

and proceed in a similar way to define B : Ω → Mn×m(R), G : Ω → Mn×n(R), g : Ω →
Mn×m(R), and R : Ω → Mn×n(R). It is obvious that A, B,G, g and R are continuous
maps on Ω . In addition, if ω̃ = C0 ∈ Ω , then A(ω̃·t) = (ω̃1·t)(0) = ω̃1(t) = A0(t), and
analogous equalities hold for B,G, g and R. This means that the family of problems given
by (1.1), (1.2) and (1.3) for ω ∈ Ω includes the initial one, which corresponds to the element
C0 of Ω . Note that G and R are symmetric, and that R > 0.

Additional recurrence properties onC0 ensure that the flow onΩ is minimal, which is one
of the hypotheses of Theorem 1.1. This is, for instance, the case when C0 is almost periodic
or almost automorphic (see, e.g., [6,25] for the definitions). Note that in the minimal case,
Ω is the hull of any of its elements.

3 Proof of Theorem 1.1

Let (Ω, σ) be a real continuous global flow on a compact metric space, and let us denote
ω·t := σ(t, ω). We consider the family of control systems (1.6) and functionals (1.8) under
the conditions on the coefficients A, B,G, g and R described in the Introduction (which are
guaranteed under the initial conditions on A0, B0,G0, g0 and R0, as explained in Sect. 2.1),
and consider the minimization problem there explained. We also consider the family of
linear Hamiltonian systems defined by (1.9) and (1.10). During this whole section, we will
be working under the hypotheses of Theorem 1.1, namely

Hypotheses 3.1 Ω is minimal, there exists ω0 ∈ Ω such that the n × m matrix B(ω0) has
full rank, the family of linear Hamiltonian systems (1.9) has exponential dichotomy over Ω ,
and there exists a σ -ergodic measure m on Ω for which the rotation number α(m) is zero.

We will analyze later on the scope of these hypotheses. Let us begin with a result which
includes the assertions of Theorem 1.1 in the simplest situation, that of m ≥ n. This result
will play a fundamental role in the general proof.

Theorem 3.2 Assume that Hypotheses 3.1 hold and that m ≥ n. Then,

(i) The family (1.9) is uniformly weakly disconjugate.
(ii) The Weyl functions M± : Ω → Sn(R) associated with the exponential dichotomy of

the family (1.9) globally exist, and they agree with the principal functions N±.
(iii) There exist admissible pairs for the functional Ix0,ω given by (1.8)ω for all (x0, ω) ∈

R
n × Ω , and the corresponding minimization problem is solvable. In addition, the

(unique) minimizing pair (̃xω(t), ũω(t)) ∈ Px0,ω comes from the solution

[
x̃ω(t)
ỹω(t)

]
of
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(1.9)ω with initial data

[
x0

M+(ω) x0

]
via the feedback rule (1.11)ω, and the value of

the minimum is Ix0,ω(̃xω, ũω) = −(1/2) xT0 M
+(ω) x0.

Proof LetUA(t, ω0) be the fundamental matrix solution of x′ = A(ω0·t) xwithUA(0, ω0) =
In . Since the rank of the n ×m matrix B(ω0) is n (as one of the Hypotheses 3.1 guarantees),
the n × n matrix B(ω0) BT(ω0) is not singular. Hence,∫ ∞

0
U−1

A (t, ω0) B(ω0·t) BT(ω0·t) (U−1
A )T(t, ω0) dt > 0,

which ensures that the system (1.6)ω0 is null controllable (see [1, Theorem 7.2.2]). That is,
for any x0 ∈ R

n there exists a time t0 = t0(x0, ω) and an integrable control u : [0, t0] → R
n

such that the solution of the corresponding system with x(0) = x0 satisfies x(t0) = 0, which
means that any x0 can be steered to 0 in finite time by an integrable control u.

According to the results of [10] (see also Theorem 6.4 of [14]), the minimality of Ω and
the previous property ensure the uniform null controllability of the family (1.6); that is, all the
systems are null controllable and there is a common time t0(x0, ω) for all (x0, ω) ∈ R

n ×Ω .
As explained in Remark 6.8.1 of [14], this uniform null controllability holds if and only if the
family (1.9) satisfies condition D2. On the other hand, Hypotheses 3.1 ensure the existence
of an ergodic measure m for which the rotation number vanishes; and, as said in Sect. 2,
the minimality of the set Ω ensures that m has total support. In this situation, according
to Remark 2.5.2, the family (1.9) is uniformly weakly disconjugate, which proves (i). The
simultaneous occurrence of uniform weak disconjugacy and exponential dichotomy ensures
(ii): Theorem 5.58 of [14] proves the global existence of theWeyl functionsM±, which agree
with the principal functions (see Remark 2.5.1). Finally, as recalled in the Introduction, and
according to Theorem 4.3 of [4] (see also Remark 7.7 and Theorem 7.10 of [14]), the presence
of exponential dichotomy and the global existence of M+ ensure the assertions in (iii). ��
Remark 3.3 Note that in the situation of the previous theorem, the global existence of M+

ensures that if l+(ω) ≡
[
Lω,1

Lω,2

]
, then M+(ω) = Lω,2 (Lω,1)

−1 and that, for every x0 ∈
R
n there exists a unique c ∈ R

n such that x0 = Lω,1 c, and hence, a unique y0 such

that

[
x0
y0

]
∈ l+(ω), being y0 = Lω,2 c = M+(ω) x0, Note also that xT0 M

+(ω) x0 =
cTLT

ω,1Lω,2 (Lω,1)
−1Lω,1 c = cTLT

ω,1Lω,2 c = cTLT
ω,2Lω,1 c. These are the reasons for

which we asserted that Theorem 3.2 proves Theorem 1.1 if m ≥ n: under its hypotheses,
every functional Ix0,ω can be minimized.

The next technical lemmawill also be used in the Proof of Theorem1.1.Note thatHypothe-
ses 3.1 are not required.

Lemma 3.4 Let us fixω ∈ Ω , and let

[
L1(t)
L2(t)

]
be a 2n×n solution of the linear Hamiltonian

system (1.9)ω. Let us also fix c ∈ R
n and define

x(t) := L1(t) c, y(t) := L2(t) c,

u(t) := R−1(ω·t) BT(ω·t) y(t) − R−1(ω·t) gT(ω·t) x(t),
V (t) := yT(t) x(t),

and Q by (1.7). Then,

d

dt
V (t) = 2Qω(t, x(t),u(t)).
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Proof It follows from the definitions in the statement that

u(t) = (
R−1(ω·t) BT(ω·t) L2(t) − R−1(ω·t) gT(ω·t) L1(t)

)
c,

V (t) = cTLT
2 (t) L1(t) c.

A straightforward and simple computation shows that

d

dt
V (t) = cT

(
LT
1 (t)G(ω·t) L1(t) − LT

1 (t) g(ω·t) R−1(ω·t) gT(ω·t) L1(t)

+ L2(t) B(ω·t) R−1(ω·t) BT(ω·t) LT
2 (t)

)
c.

And a longer computation shows that Qω evaluated at (t, x(t),u(t)), namely

2Qω

(
t, L1(t) c,

(
R−1(ω·t) BT(ω·t) L2(t) − R−1(ω·t) gT(ω·t) L1(t)

)
c
)
,

takes the same value. ��
Proof of Theorem 1.1 Note that we can assume that m < n, since otherwise Theorem 3.2
proves all the assertions (see also Remark 3.3). We first prove the result in a particular case,
from where the general one will follow easily.

Particular case. Let us first assume that B(ω0) =
[
B1(ω0)

B2(ω0)

]
, where B1(ω0) is an

m × m nonsingular matrix. We define the n × n matrix-valued functions

Bε :=
[
B1 0
B2 ε In−m

]
, Rε :=

[
R 0
0 ε In−m

]
, and gε := [

g 0
]

for ε > 0, where 0 stands for the null matrix of the suitable dimension whenever it appears.
Let us consider the families of control problems and functionals given by

x′ = A(ω·t) x + Bε(ω·t) v, (3.1)

Qε
ω(t, x, v) := 1

2
(〈 x,G(ω·t) x 〉 + 2〈 x, gε(ω·t)u 〉 + 〈 v, Rε(ω·t) v 〉) , (3.2)

Iε
x0,ω : Pε

x0,ω → R ∪ {±∞}, (x, v) 	→
∫ ∞

0
Qε

ω(t, x(t), v(t)) dt, (3.3)

where Pε
x0,ω is the set of measurable pairs (x, v) : [0,∞) → R

n × R
n solving (3.1)ω with

x(0) = x0. Note that both the state x and the control v are now n-dimensional.
The associated family of linear Hamiltonian systems,

[
x
y

]′
= Hε(ω·t)

[
x
y

]
, ω ∈ Ω, (3.4)

is given by

Hε :=
[
A − Bε R−1

ε gTε Bε R−1
ε BT

ε

G − gε R−1
ε gTε −AT

0 + gε R−1
ε BT

ε

]
=

[
A − B R−1gT Bε R−1

ε BT
ε

G − g R−1gT −AT
0 + g R−1BT

]
.

The unique submatrix depending on ε is

Bε R
−1
ε BT

ε = B R−1BT + ε

[
0m 0
0 In−m

]
. (3.5)

Therefore, (3.4) agrees with (1.9) for ε = 0, and hence according to Hypotheses (3.1) it has
exponential dichotomy over Ω . The robustness of this property (see Remark 2.2.2) ensures
the exponential dichotomy for family (3.4) if ε ∈ [0, ε0] for ε0 > 0 small enough.
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Let m be the σ -ergodic measure in Ω appearing in Hypotheses 3.1, and represent by
αε(m) the corresponding rotation number of family (3.4), so that α0(m) = 0. According
to Theorem 5.2 of [3] (see also Theorem 2.28 of [14]), the exponential dichotomy forces
αε(m) to take values in a discrete group if ε ∈ [0, ε0]. On the other hand, Theorem 4.3 of [3]
(or Theorem 2.25 of [14]) ensures that αε(m) varies continuously with respect to ε. Since
α0(m) = 0, we conclude that αε(m) = 0 for ε ∈ [0, ε0].

Since Bε(ω0) is nonsingular for any ε > 0, the problems for ε ∈ (0, ε0] fulfill the
corresponding Hypotheses 3.1. Hence, Theorem 3.2 ensures the uniform weak disconjugacy
of the families (3.4), the global existence of the Weyl function M+

ε : Ω → Sn(R) associated
with (3.4), and the solvability of the minimization problems for Iε

x0,ω subject to (3.1). In
addition, given ω ∈ Ω and x0 ∈ R

n , the pair (̃xε
ω(t), ṽε

ω(t)) minimizing Iε
x0,ω comes from

the solution

[
x̃ε
ω(t)

ỹε
ω(t)

]
of (1.9)εω with initial data

[
x0

M+
ε (ω) x0

]
via the analogous of feedback

rule (1.11)ω, and the value of the minimum is

Iε
x0,ω(̃xε

ω, ṽε
ω) = −1

2
xT0 M

+
ε (ω) x0. (3.6)

For further purposes, we point out that if v : R → R
n is written as v(t) =

[
u(t)
v2(t)

]
with

u : R → R
m , then

2Qε
ω(t, x(t), v(t)) = 2Qω(t, x(t),u(t)) + ε |v2(t)|2, (3.7)

as easily deduced from the respective definitions (1.7)ω and (3.2)ω of Qω and Qε
ω.

It follows from (3.5) that Hε satisfies the condition ofmonotonicity required byProposition
5.51 of [14]. This result combined with Theorem 3.2(ii) ensures a monotone behavior of
the Weyl functions. In particular, M+

ε2
≤ M+

ε1
if ε0 > ε1 > ε2 > 0. Therefore, we can

apply Theorem 1 of [16], which establishes two alternatives for the limiting behavior of
xT0 M

+
ε (ω) x0 as ε → 0+, which depend of the pair (x0, ω) ∈ R

n × Ω :

(a) limε→0+ xT0 M
+
ε (ω) x0 belongs toR if and only if there exists y0 ∈ R

n such that

[
x0
y0

]
∈

l+(ω). In this case, if l+(ω) ≡
[
Lω,1

Lω,2

]
and

[
x0
y0

]
=

[
Lω,1 c
Lω,2 c

]
for a vector c ∈ R

n ,

then limε→0+ xT0 M
+
ε (ω) x0 = cTLT

ω,2 Lω,1 c.
(b) limε→0+ xT0 M

+
ε (ω) x0 = −∞ otherwise.

We will prove that

1. if the pair (x0, ω) is in case (a), then there exist admissible pairs for Ix0,ω, and all the
assertions in Theorem 1.1(ii) are true.

2. If the pair (x0, ω) is in case (b), then Ix0,ω(x,u) = ∞ for all (x,u) ∈ Px0,ω, so that
there are no admissible pairs.

These two facts will complete the proof in the particular case we have started with.
Let us assume that (x0, ω) is in the situation (a), and take c ∈ R

n as there. We define[
L1(t)
L2(t)

]
as the 2n × n matrix-valued solution of (1.9) with

[
L1(0)
L2(0)

]
=

[
Lω,1

Lω,2

]
.
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We also define

x̃ω(t) := L1(t) c, ỹω(t) := L2(t) c,

ũω(t) := R−1(ω·t) BT(ω·t) ỹω(t) − R−1(ω·t) gT(ω·t) x̃ω(t),

V (t) := ỹTω(t) x̃ω(t).

Note that the pair (̃xω, ũω) belongs to Px0,ω and is that of Theorem 1.1(ii). It follows from

Definition 2.1, from the fact that

[
x̃ω(0)
ỹω(0)

]
=

[
x0
y0

]
∈ l+(ω), and from the definition of ũω

that (̃xω, ũω) ∈ L2(R+, R
n) × L2(R+, R

m); thus, (̃xω, ũω) is an admissible pair for Ix0,ω.
Lemma 3.4 yields

Ix0,ω(̃xω, ũω) = 1

2

(
lim
t→∞ ỹTω(t) x̃ω(t) − ỹTω(0) x̃ω(0)

)
= −1

2
cTLT

ω,2 Lω,1 c.

Here, we use that limt→∞
[
x̃ω(t)
ỹω(t)

]
=

[
0
0

]
, which also follows from

[
x0
y0

]
∈ l+(ω).

Our next step is proving that Ix0,ω(x̄, ū) ≥ −(1/2) cTLT
ω,2 Lω,1 c for any other admissible

pair (x̄, ū). Given such a pair, we define v̄ : R → R
n by v̄(t) =

[
ū(t)
0

]
. Since B(ω·t) ū(t) =

Bε(ω·t) v̄(t), the pair (x̄, v̄) is admissible for Iε
x0,ω for all ε > 0. It follows from (3.7) and

(3.6) that

Ix0,ω(x̄, ū) = Iε
x0,ω(x̄, v̄) ≥ Iε

x0,ω(̃xω, ṽω) = −1

2
xT0 M

+
ε (ω) x0, (3.8)

so that the assertion follows from the information provided by (a) by taking limit as ε → 0+.
This completes the proof of 1.

In order to check 2, we assume that the pair (x0, ω) is in case (b) and assume for contra-
diction that there exists an admissible pair (x̄, ū) for Ix0,ω. Repeating the previous procedure,
we obtain (3.8). Taking limit as ε → 0+ and using the information provided by (b), we con-
clude that Ix0,ω(x̄, ū) = ∞, which precludes the admissibility of the pair. This completes
the proofs of point 2 and of the initial case.

General case. Basic results on linear algebra provide an orthogonal n×nmatrix-valued

function P such that P B(ω0) =
[
B1(ω0)

B2(ω2)

]
for an m × m nonsingular matrix B1(ω0). Let

us define

Ã(ω) := P A(ω) PT,

B̃(ω) := P B(ω),

G̃(ω) := P G(ω) PT,

g̃(ω) := P g(ω),

and consider the families of control systems and functionals

z′ = Ã(ω·t) z + B̃(ω·t)u, (3.9)

Q̃ω(t, z,u) := 1

2

(〈 z, G̃(ω·t) z 〉 + 2〈 z, g̃(ω·t)u 〉 + 〈u, R(ω·t)u 〉) , (3.10)

Ĩz0,ω(z,u) :=
∫ ∞

0
Q̃ω(t, z(t),u(t)) dt, (3.11)
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obtained from the initial ones by means of the change in variables z(t) = P x(t). The
corresponding family of linear Hamiltonian systems is

[
z
w

]′
= H̃(ω·t)

[
z
w

]
, ω ∈ Ω (3.12)

with

H̃ :=
[
Ã − B̃ R−1 g̃T B̃ R−1 B̃T

G̃ − g̃ R−1 g̃T − ÃT + g̃ R−1 B̃T

]
.

A straightforward computation shows that (3.12) comes from (1.9) by means of the change
of variables [

z
w

]
=

[
P 0n
0n P

] [
x
y

]
.

It is clear that the family (3.12) has exponential dichotomy over Ω , since the change of

variables is given by a constant matrix, and that

[
P 0n
0n P

] [
Lω,1

Lω,2

]
represents the Lagrange

plane l̃+(ω) of the solutions of (3.12) bounded at +∞ if and only if

[
Lω,1

Lω,2

]
represents

l+(ω). In addition, since the matrix

[
P 0n
0n P

]
is symplectic, it follows from the results of

Section 2 of [17] (see also Section 2.1.1 of [14]) that the rotation number is also preserved:
it is 0 for any σ -ergodic measure. Therefore, the transformed families are in the situation
analyzed in the particular case. It is clear that:

– The pair (x̄, ū) is admissible for Ix0,ω if and only if the pair (z̄, ū) given by z(t) = P x(t)
is admissible for ĨPx0,ω.

– There exists y0 such that
[
x0
y0

]
∈ l+(ω) if and only if there existsw0 such that

[
P x0
w0

]
∈

l̃+(ω): just write w0 = Py0.
– cTLT

ω,2Lω,1 c = cT
(
PLω,2

)T(
P Lω,1

)
c.

– The equality u(t) = R−1(ω·t) BT(ω·t) y(t) − R−1(ω·t) gT(ω·t) x(t) holds if and only
if u(t) = R−1(ω·t) B̃T(ω·t)w(t)− R−1(ω·t) g̃T(ω·t) z(t) for z(t) = P x(t) andw(t) =
P y(t).

It is easy to deduce the statements of Theorem 1.1 from all these properties. The proof is
hence complete. ��

Remark 3.5 Let us represent l+(ω) ≡
[
Lω,1

Lω,2

]
and assume that Lω,1c = Lω,1d for d �= c.

Then, since l+(ω) is a Lagrange plane, cTLT
ω,2Lω,1c = dTLT

ω,2Lω,1d = dTLT
ω,2Lω,1c. We

point out this property to clarify that there is no ambiguity in the assertion of Theorem 1.1
concerning the value of the minimum of Ix0,ω, which of course is unique.

3.1 Coming back to a single problem

Recall that our starting point was the single problem given by (1.1), (1.2) and (1.3), which
we included in the family given by (1.6), (1.7) and (1.8) by means of the hull procedure
explained in Sect. 2.1. The initial problem is one of those of the family: It corresponds to the
point ω̃ = C0 = (A0, B0,G0, g0, R0) of Ω .
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The conclusions of Theorem 1.1 apply to every ω ∈ Ω , so that they also apply to our
initial problem. What about the hypotheses?

– The hullΩ is minimal in the cases of recurrence of the initial coefficients, which includes
(at least) the autonomous, periodic, quasi-periodic, almost periodic and almost automor-
phic cases.

– The hypothesis on B holds if there exists t0 ∈ R such that B0(t0) has full rank.
– In the case of minimality of Ω , the exponential dichotomy of the family (1.9) holds if

and only if the initial Hamiltonian system (1.4) has exponential dichotomy on R: see
Remark 2.2.1.

– And if the base is minimal and uniquely ergodic (which is the case at least if C0 is almost
periodic: see [6]), then the value of the rotation number can be obtained for any one of
the systems of the family, for instance, for the initial one (see Theorem 2.6 of [14]).

Therefore, a less general formulation of our main theorem reads as follows:

Theorem 3.6 Assume that the map C0 given by (2.4) is almost periodic with R0(t) ≥ ρ Im
for a common ρ > 0 and any t ∈ R, that there exists t0 ∈ R such that the n×m matrix B0(t0)
has full rank, that Hamiltonian system (1.4) has exponential dichotomy on R, and that

lim
t→∞

1

t
arg det(U1(t) − iU2(t)) = 0,

where UH =
[
U1 U3

U2 U4

]
is the matrix solution of (1.4) with UH(0) = I2n. Let l+ be the

Lagrange plane of the solutions of (1.4) bounded at +∞, and let us fix x0 ∈ R
n. Then,

(i) there exist admissible pairs (x,u) for the functional Ix0 given by (1.3) if and only if there
exists y0 ∈ R

n such that

[
x0
y0

]
∈ l+.

(ii) In this case, the infimum of Ix0 is finite. In addition, if the columns of the 2n × n matrix[
L1

L2

]
are a basis of l+ and

[
x0
y0

]
=

[
L1 c
L2 c

]
for a vector c ∈ R

n, then the infimum is

given by −(1/2) cTLT
2 L1 c, and a minimizing pair (̃x, ũ) is obtained from the solution[

x̃(t)
ỹ(t)

]
of (1.4) with initial data

[
x0
y0

]
via the feedback rule (1.5).

Note also that the condition of almost periodicity of C0 can be replaced by the less
restrictive one of minimality and ergodic uniqueness of the flow on its hull.

3.2 Examples of non-global solvability

We complete the paper with three examples. With the first one, of autonomous type, we
intend to show a simple scenario, in which every required computation can be done by hand,
and for which the existence of admissible pairs depends on the choice of the initial data. The
second one is a generalization of almost periodic type.

The third example, more complex, shows a situation of non-global solvability for which
the associated linear Hamiltonian system does not have exponential dichotomy, so that one of
the hypotheses of our results is not fulfilled. In fact, the Hamiltonian system of this example
is of nonuniform hyperbolic type. Its aim is showing that the same ideas involved in the
description we have made can be extremely useful in the analysis of other situations.
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Example 3.7 We consider the autonomous control problem and quadratic functional

[
x1
x2

]′
=

[
1 1
0 1

] [
x1
x2

]
+

[
1
0

]
u,

Q
(
t,

[
x1
x2

]
, u

)
:=1

2

(
[ x1 x2 ]

[
2 1
1 1

] [
x1
x2

]
+ 2 [ x1 x2 ]

[
1
1

]
u + u2

)
,

and we pose the problem of minimizing the corresponding functional

Ix0 : Px0 → R ∪ {±∞},
([

x1
x2

]
, u

)
	→

∫ ∞

0
Q

(
t,

[
x1(t)
x2(t)

]
, u(t)

)
dt (3.13)

defined on the set Px0 of the measurable pairs (x, u) satisfying the control system with
x(0) = x0.

Let us check that all the hypotheses of Theorem 3.6 are satisfied. It is obvious that the
map C0 given by the expression (2.4) corresponding to this problem is constant (and hence

almost periodic), and that the rank of B0(t) ≡
[
1
0

]
is 1 for all t ∈ R. It is also easy to check

that the linear Hamiltonian system (1.4) takes the form

⎡
⎢⎢⎣
x1
x2
y1
y2

⎤
⎥⎥⎦

′

= H

⎡
⎢⎢⎣
x1
x2
y1
y2

⎤
⎥⎥⎦ for H :=

⎡
⎢⎢⎣
0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 −1

⎤
⎥⎥⎦ .

Note that this system can be uncoupled to

[
x1
y1

]′
=

[
0 1
1 0

] [
x1
y1

]
and

[
x2
y2

]′
=

[
1 0
0 −1

] [
x2
y2

]
.

It is very simple to check that these two-dimensional systems (of Hamiltonian type) have
exponential dichotomy on R. In addition, the initial data of the solutions bounded at +∞
and −∞ are given for the first one by

[
1

−1

]
and

[
1
1

]
(up to constant multiples) and for the

second one by

[
0
1

]
and

[
1
0

]
. It follows that our four-dimensional Hamiltonian system has

exponential dichotomy on R (see, e.g., Remark 2.2.1), and that the Lagrange planes

l+ ≡

⎡
⎢⎢⎣

1 0
0 0

−1 0
0 1

⎤
⎥⎥⎦ and l− ≡

⎡
⎢⎢⎣
1 0
0 1
1 0
0 0

⎤
⎥⎥⎦

are composed of the initial data of the solutions of the Hamiltonian systemwhich are bounded
as t → +∞ and t → −∞, respectively. It is also easy to compute fundamental matrix
solutions of the two-dimensional systems, and from them

UH(t) = 1

2

⎡
⎢⎢⎣
et + e−t 0 et − e−t 0

0 2 et 0 0
et − e−t 0 et + e−t 0

0 0 0 2 e−t

⎤
⎥⎥⎦ ,
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which is the matrix solution of the Hamiltonian system with UH(0) = I4. It follows from
here that the last hypothesis of Theorem 3.6 holds, since

lim
t→∞

1

t
arg det

1

2

([
et + e−t 0

0 2 et

]
− i

[
et − e−t 0

0 0

])

= lim
t→∞

1

t
arctan

1 − e2t

1 + e2t
= 0.

Theorem 3.6 ensures that there exist admissible pairs if and only if x0 =
[
x1
x2

]
=

[
1 0
0 0

] [
c1
c2

]
for some x =

[
c1
c2

]
∈ R

2. That is, if and only if x2 = 0, in which case we can

take c =
[
x1
c2

]
for any c2 ∈ R. This provides y0 =

[−1 0
0 1

] [
x1
c2

]
=

[−x1
c2

]
. In addition,

also according to Theorem 3.6, the minimum is given by −(1/2)[ x1 c2 ]
[−1 0

0 1

] [
1 0
0 0

]
[
x1
c2

]
= x21/2. Now, we compute

⎡
⎢⎢⎣

x1(t)
x2(t)
y1(t)
y2(t)

⎤
⎥⎥⎦ = UH(t)

⎡
⎢⎢⎣

x1
0

− x1
c2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

x1 e−t

0
− x1 e−t

c2 e−t

⎤
⎥⎥⎦ ,

apply the feedback rule (1.5) in order to obtain the control

ũ(t) = [ 1 0 ]
[ −x1 e−t

c2 e−t

]
− [ 1 1 ]

[
x1 e−t

0

]
= − 2 x1 e

−t ,

and conclude that there is a uniqueminimizing pair (̃x, ũ)with the shape described inTheorem
3.6, given by

x̃(t) =
[
x1 e−t

0

]
, ũ(t) = − 2 x1 e

−t .

Example 3.8 Let f : R → R be an almost periodic function such that
[
x1
y1

]′
=

[
0 1
f (t) 0

] [
x1
y1

]
(3.14)

satisfies two conditions. The first one is the existence of exponential dichotomy on R for
(3.14) combined with the fact that the initial data of the solutions bounded at +∞ and −∞
are multiples of

[
1
m+

]
and

[
1
m−

]
. The second one is that the rotation number (with respect

to the unique ergodic measure which exists in the hull in the almost periodic case) is zero.
As explained in the comments before Theorem 3.6, this fact is equivalent to say that, if

V (t) =
[
V1(t) V3(t)
V2(t) V4(t)

]
is the matrix solution of (3.14) with V (0) = I2, then

lim
t→∞

1

t
arg(V1(t) − iV2(t)) = 0. (3.15)

The function f can be very simple. For instance, f ≡ 1, as in the previous example. But it can
also be extremely complex. For instance, f := f0 + λ for any λ > 0 where f0 is the almost

123



1730 R. Fabbri, C. Núñez

periodic function described by Johnson in [8], giving rise to a non-uniformly hyperbolic
family of Schrödinger equations: as explained in Example 7.37 of [14], the corresponding
system (3.14) has exponential dichotomy (if λ > 0), the initial data of the solutions bounded

at +∞ and −∞ are

[
1
m+

]
and

[
1
m−

]
(up to a multiple), and the solution

[
x1(t)
x2(t)

]
=

V (t)

[
1
m+

]
satisfies x1(t) �= 0 for all t ∈ R, from where we deduce that the rotation number

is zero (use, for instance, Propositions 5.8 and 5.65 of [14]).Wewill refer again to the function
f0 in Example 3.9.
Let h : R → R be any other almost periodic function. Given the control problem and the

quadratic functional

[
x1
x2

]′
=

[
1 h(t)
0 1

] [
x1
x2

]
+

[
1
0

]
u,

Q
(
t,

[
x1
x2

]
, u

)
:= [ x1 x2 ]

[
f (t) + 1 h(t)
h(t) h(t)2

] [
x1
x2

]
+ [ x1 x2 ]

[
1

h(t)

]
u + u2

we pose the problem of minimizing the corresponding functional (3.13). As in the previous
example, we will begin by checking that all the hypotheses of Theorem 3.6 are satisfied. It

is obvious that the map C0 given by (2.4) is almost periodic, and the rank of B0(t) ≡
[
1
0

]

is 1 for all t ∈ R. Now, the Hamiltonian system (1.4) takes the form

⎡
⎢⎢⎣
x1
x2
y1
y2

⎤
⎥⎥⎦

′

=

⎡
⎢⎢⎣

0 0 1 0
0 1 0 0
f (t) 0 0 0
0 0 0 − 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
x1
x2
y1
y2

⎤
⎥⎥⎦ ,

which can be uncoupled to

[
x1
y1

]′
=

[
0 1
f (t) 0

] [
x1
y1

]
and

[
x2
y2

]′
=

[
1 0
0 − 1

] [
x2
y2

]
.

As seen inExample 3.7, the second systemhas also exponential dichotomy, and

[
0
1

]
and

[
1
0

]

are the initial data of the solutions bounded at +∞ and −∞. Hence, our four-dimensional
Hamiltonian system has exponential dichotomy on R, and the Lagrange planes

l+ ≡

⎡
⎢⎢⎣

1 0
0 0
m+ 0
0 1

⎤
⎥⎥⎦ and l− ≡

⎡
⎢⎢⎣

1 0
0 1
m− 0
0 0

⎤
⎥⎥⎦

are composed of the initial data of the solutions of the four-dimensional system which are
bounded as t → +∞ and t → −∞, respectively. In addition, the matrix solution UH(t)
with UH(0) = I4 is given by
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UH(t) =

⎡
⎢⎢⎣
V1(t) 0 V3(t) 0
0 et 0 0

V2(t) 0 V4(t) 0
0 0 0 e−t

⎤
⎥⎥⎦ ,

and, using (3.15), we see that

lim
t→∞

1

t
arg det

([
V1(t) 0
0 et

]
− i

[
V2(t) 0
0 0

])

= lim
t→∞

1

t
arg

(
et (V1(t) − iV2(t))

) = 0.

Therefore, all the hypotheses of Theorem 3.6 are satisfied, as asserted. As in Example 3.7,

we conclude that there exist admissible pairs if and only if x0 =
[
x1
0

]
=

[
1 0
0 0

] [
x1
c2

]
for

any c2 ∈ R, which provides y0 =
[
m+ 0
0 1

] [
x1
c2

]
=

[
m+x1
c2

]
. In this case, the minimum of

the functional is −x21 m
+/2 . And, since

⎡
⎢⎢⎣
V1(t) 0 V3(t) 0
0 et 0 0

V2(t) 0 V4(t) 0
0 0 0 e−t

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x1
0

m+x1
c2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

(V1(t) + V3(t)m+) x1
0

(V2(t) + V4(t)m+) x1
c2 e−t

⎤
⎥⎥⎦ ,

then the feedback rule (1.5) provides the minimizing pair (̃x, ũ), with

x̃(t) =
[

(V1(t) + V3(t)m+) x1
0

]
, ũ(t) = (

V2(t) − V1(t) + (V4(t) − V3(t))m
+)

x1.

Example 3.9 Let f0 be the almost periodic function described in [8], already mentioned in
Example 3.8, and let h0 be any almost periodic function with frequency modulus contained
in that of f0. Our aim is to analyze the minimization problem for the functional

Ix0 : Px0 → R ∪ {±∞},
([

x1
x2

]
, u

)
	→

∫ ∞

0
Q

(
t,

[
x1(t)
x2(t)

]
, u(t)

)
dt,

which is evaluated on the set Px0 of measurable pairs (x, u) solving
[
x1
x2

]′
=

[
1 h0(t)
0 1

] [
x1
x2

]
+

[
1
0

]
u

with x(0) = x0, and which is given by

Q
(
t,

[
x1
x2

]
, u

)
:= [ x1 x2 ]

[
f0(t) + 1 h0(t)
h0(t) h0(t)2

] [
x1
x2

]
+ [ x1 x2 ]

[
1

h0(t)

]
u + u2.

For reasons which will became clear later, we must consider in this case the (common) hull
Ω of f0 and h0, whose construction we explained in Sect. 2.1. This provides the families

[
x1
x2

]′
=

[
1 h(ω·t)
0 1

] [
x1
x2

]
+

[
1
0

]
u,

Qω

(
t,

[
x1
x2

]
, u

)
:= [ x1 x2 ]

[
f (ω·t) + 1 h(ω·t)
h(ω·t) h(ω·t)2

] [
x1
x2

]
+ [ x1 x2 ]

[
1

h(ω·t)
]
u + u2,

Ix0,ω : Px0,ω → R ∪ {±∞},
([

x1
x2

]
, u

)
	→

∫ ∞

0
Qω

(
t,

[
x1(t)
x2(t)

]
, u(t)

)
dt
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for ω ∈ Ω , where Px0,ω is the set of the measurable pairs solving the control problem
corresponding to ω with initial state x0.

The corresponding family (3.12) takes the form

⎡
⎢⎢⎣
x1
x2
y1
y2

⎤
⎥⎥⎦

′

=

⎡
⎢⎢⎣

0 0 1 0
0 1 0 0

f (ω·t) 0 0 0
0 0 0 − 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
x1
x2
y1
y2

⎤
⎥⎥⎦ , (3.16)

which can be uncoupled to

[
x1
y1

]′
=

[
0 1

f (ω·t) 0

] [
x1
y1

]
and

[
x2
y2

]′
=

[
1 0
0 − 1

] [
x2
y2

]
. (3.17)

As said in Example 3.8, it is proved in [8] that the left family of systems in (3.17) does not
have exponential dichotomy over Ω . According to Remark 2.2.1, this assertion is equivalent
to the existence of at least a nontrivial bounded solution for at least one ω ∈ Ω . Clearly,
this bounded solution provides a bounded solution for (3.16)ω, so that the four-dimensional
family does not have exponential dichotomy over Ω . Hence, we cannot apply Theorem 1.1.

Let us now take λ > 0 and consider the new families

[
x1
x2

]′
=

[
1 h(ω·t)
0 1

] [
x1
x2

]
+

[
1 0
0 λ

] [
v1
v2

]
,

Qλ
ω

(
t,

[
x1
x2

]
,

[
v1
v2

])
:= [ x1 x2 ]

[
f (ω·t) + λ + 1 h(ω·t)

h(ω·t) h(ω·t)2
] [

x1
x2

]
+ [ x1 x2 ]

[
1 0

h(t) 0

] [
v1
v2

]

+ [ v1 v2 ]
[
1 0
0 λ

] [
v1
v2

]
,

Iλ
x0,ω : Pλ

x0,ω → R ∪ {±∞},
([

x1
x2

]
,

[
v1
v2

])
	→

∫ ∞

0
Qλ

ω

(
t,

[
x1(t)
x2(t)

]
,

[
v1(t)
v2(t)

])
dt,

with associated family of linear Hamiltonian systems given by

⎡
⎢⎢⎣
x1
x2
y1
y2

⎤
⎥⎥⎦

′

=

⎡
⎢⎢⎣

0 0 1 0
0 1 0 λ

f (ω·t) + λ 0 0 0
0 0 0 − 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
x1
x2
y1
y2

⎤
⎥⎥⎦ . (3.18)

Let us fix λ > 0. Then, the family of systems

[
x1
y1

]′
=

[
0 1

f (ω·t) + λ 0

] [
x1
y1

]
has exponen-

tial dichotomy over Ω , and the Lagrange planes of the solutions which are bounded at ±∞
are represented by

[
1

m±
λ (ω)

]
: see again Example 7.37 of [14]. It is easy to check that also

the family

[
x2
y2

]′
=

[
1 λ

0 − 1

] [
x2
y2

]
has exponential dichotomy, with Lagrange planes of the

solutions bounded at +∞ and −∞ given by

[
1

− 2/λ

]
and

[
1
0

]
, respectively. Therefore,

the family (3.18) has exponential dichotomy, with
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l+λ (ω) ≡

⎡
⎢⎢⎣

1 0
0 1

m+
λ (ω) 0
0 − 2/λ

⎤
⎥⎥⎦ ≡

⎡
⎢⎢⎣

1 0
0 − λ/2

m+
λ (ω) 0
0 1

⎤
⎥⎥⎦ , l−λ (ω) ≡

⎡
⎢⎢⎣

1 0
0 1

m−
λ (ω) 0
0 0

⎤
⎥⎥⎦ .

As in Example 3.8, we can check by direct computation that the rotation number of (3.18)
is zero. In these conditions, Theorem 3.2 ensures the solvability of the problem for Iλ

x0,ω for

all (x0, ω), being the value of the minimum (if x0 =
[
x1
x2

]
)

− 1

2
[ x1 x2 ]

[
m+

λ (ω) 0
0 − 2/λ

] [
x1
x2

]
= −1

2
x21 m

+
λ (ω) + 1

λ
x22 . (3.19)

On the other hand, it follows from Theorem 5.58 and Proposition 5.51 of [14] that, if
0 < λ1 ≤ λ2, then m+

λ2
(ω) ≤ m+

λ1
(ω) ≤ m−

λ1
(ω) ≤ m−

λ2
(ω). Therefore, there exist the

limits n±(ω) := limλ→0+ m±
λ (ω) for all ω ∈ Ω . (As a matter of fact, n± are the principal

functions of the system corresponding to λ = 0, which is uniformly weakly disconjugate:
see for instance Theorem 5.61 of [14].) Moreover, there exists an invariant subset Ω0 � Ω

with full measure (for the unique ergodic measure on the hull) such that, if ω ∈ Ω0, then:

n+(ω) < n−(ω), and the solution of (3.16)ω with initial data

[
x0

n±(ω) x0

]
, which can be

written as

[
x1(t)

n±(ω·t) x1(t)
]
, belongs to L2([0,∞), R

2) and satisfies

lim
t→±∞

[
x1(t)

n±(ω·t) x1(t)
]

=
[
0
0

]
. (3.20)

The proofs of the last assertions follow from the properties of this family of two-dimensional
systems described in [8], and are based on the fact that the functions n+ and n− provide the
Oseledets subbundles associated with the negative and positive Lyapunov exponents of the
family. The interested reader can find in Theorem 6.3(iii) of [15] a detailed proof (formulated
for the quasi-periodic case, but applicable without changes to the almost periodic case), and
in Section 8.7 of [14] an exhaustive description of the construction of an example with similar
behavior.

Let us now observe that the limits as λ → 0+ of l±λ (ω) are the Lagrange planes

l+(ω) ≡

⎡
⎢⎢⎣

1 0
0 0

n+(ω) 0
0 1

⎤
⎥⎥⎦ and l−(ω) ≡

⎡
⎢⎢⎣

1 0
0 1

n−(ω) 0
0 0

⎤
⎥⎥⎦ .

In addition, if ω ∈ Ω0, then the solutions of (3.16)ω with initial data in l±(ω) tend to 0
as t → ±∞, as deduced from (3.20) and from the behavior of the solutions of the right-
hand system of (3.17). We will see that, if ω ∈ Ω0, then the initial states x0 for which the
minimization problem is solvable, as well as the value of the minimum and a minimizing
pair, can be obtained from l+(ω). The analogy with the situation described in Theorem 1.1
will be obvious.

Let us fix ω ∈ Ω0 and x0 =
[
x1
x2

]
∈ R

2, and let
( [

x̄1
x̄2

]
, ū

)
be an admissible pair for

Ix0,ω. It is easy to check that Ix0,ω
( [

x̄1
x̄2

]
, ū

) = Iλ
x0,ω

( [
x̄1
x̄2

]
,

[
ū
0

] )
for any λ > 0, which

combined with (3.19) ensures that
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Ix0,ω
([

x̄1
x̄2

]
, ū

)
≥ −1

2
x21 m

+
λ (ω) + 1

λ
x22 (3.21)

for any λ > 0. By taking limit as λ → 0+, we conclude from the admissibility and from
the existence of the real limit n+(ω) := limλ→0+ m+

λ (ω) that x2 must be 0. And this is

equivalent to ensure that there exists

[
y1
y2

]
∈ R

2 such that

⎡
⎢⎢⎣
x1
x2
y1
y2

⎤
⎥⎥⎦ ∈ l+(ω): we can take

[
y1
y2

]
=

[
n+x1
c2

]
for any c2 ∈ R.

We work from now on with x0 =
[
x1
0

]
. As just said, taking limit as λ → 0+ in (3.21)

yields

Ix0,ω
([

x̄1
x̄2

]
, ū

)
≥ −1

2
x21 n

+(ω)

for any admissible pair. In fact, the right value is the infimum, since it is reached at the

admissible pair

( [
x̃1
0

]
, ũ

)
defined from the solution

⎡
⎢⎢⎣

x̃1(t)
0

n+(ω·t) x̃1(t)
0

⎤
⎥⎥⎦ of (3.16)ω with

initial data

⎡
⎢⎢⎣

x1
0

n+(ω) x1
0

⎤
⎥⎥⎦ via the feedback rule (analogous to (1.11)ω)

ũ(t) = [ 1 0 ]
[
n+(ω·t) x̃1(t)

0

]
− [ 1 1 ]

[
x̃1(t)
0

]
= (n+(ω·t) − 1) x̃1(t).

This assertion follows from Lemma 3.4 (which does not require Hypotheses 3.1) combined
with (3.20).

We finally observe that there is noway to knowwhether the initial problem of this example
corresponds to a point ω ∈ Ω0 (although the probability is 1, as the measure of the set Ω0).
In other words, this procedure does not allow us to provide conditions under which the initial
minimization problem is solvable. This is one more sample of the extreme complexity which
may arise in the nonautonomous dynamics.

Acknowledgements We thank an anonymous referee, whose careful reading and comments have contributed
to improve the presentation of the paper.
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