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Abstract

In this paper, we prove the existence of solutions for a class of viscoelastic dynamic systems
on time-dependent cracked domains, with possibly degenerate viscosity coefficients. Under
stronger regularity assumptions, we also show a uniqueness result. Finally, we exhibit an
example where the energy-dissipation balance is not satisfied, showing there is an additional
dissipation due to the crack growth.
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1 Introduction

In the theory of dynamic fracture, the deformation of an elastic material evolves according
to the elastodynamics system, while the evolution of the crack follows Griffith’s dynamic
criterion, see [13]. This principle, originally formulated in [11] for the quasi-static setting,
states that there is an exact balance between the energy released during the evolution and the
energy used to increase the crack, which is postulated to be proportional to the area increment
of the crack itself.
For an antiplane displacement, the elastodynamics system leads to the following wave
equation
i(t,x) — Au(t,x) = f(t,x) te[0,T], x € Q\I', (1.1)

with some prescribed boundary and initial conditions. Here, 2 C R? is an open bounded
set with Lipschitz boundary, which represents the cross section of the material, the closed
set I'; C 2 models the crack at time 7 in the reference configuration, u(t): Q\I'; — R is
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the antiplane displacement, and f is a forcing term. In this case, Griffith’s dynamic criterion
reads
E(t) + ! (I't\I'g) = £(0) + work of external forces,

where £(¢) is the total energy at time ¢, given by the sum of kinetic and elastic energy, and
H4=1 is the (d — 1)-dimensional Hausdorff measure.

From the mathematical point of view, the first step to study the evolution of the fracture is
to solve the wave equation (1.1) when the evolution of the crack is assigned, see, for example,
[2,3,7,14,18] (we refer also to [6,10,16] for the case of a one-dimensional model). When we
want to take into account the viscoelastic properties of the material, Kelvin—Voigt’s model is
the most common one. If no crack is present, this leads to the damped wave equation

i(t,x) — Au(t,x) — Au(t,x) = f(t,x) (t,x) €(0,T) x Q. (1.2)

As it is well known, the solutions to (1.2) satisfy the energy-dissipation balance

t
E(t) + / / |VL'L|2 dx ds = £(0) + work of external forces. (1.3)
0 JQ

When we consider a crack in a viscoelastic material, Griffith’s dynamic criterion becomes

t
&) + M N\Y) + / / |Vit|? dx ds = £(0) + work of external forces. (1.4)
0 Jo\r,

For a prescribed crack evolution, this model was already considered by Dal Maso and
Larsen [3] in the antiplane case and more in general by Tasso [18] for the vector-valued
case. As proved in the quoted papers, the solutions to (1.2) on a domain with a prescribed
time-dependent crack, i.e., with Q2 replaced by Q\I';, satisfy (1.3) for every time. This equal-
ity implies that (1.4) cannot be satisfied unless I’y = TI'g for every ¢. This phenomenon
was already well known in mechanics as the viscoelastic paradox, see, for instance, [17,
Chapter 7].

To overcome this problem, we modify Kelvin—Voigt’s model by considering a possibly
degenerate viscosity term depending on ¢ and x. More precisely, we study the following
equation

i(t, x) — Au(t,x) — diV(\Ifz(t, x)Vu(t,x)) = f(t,x) tel0,T], x e Q\I';. (1.5)

On the function ¥ : (0, T) x Q2 — R, we only require some regularity assumptions (see (2.7));
a particularly interesting case is when W assumes the value zero on some points of €2, which
means that the material has no longer viscoelastic properties in such a zone.

The main result of this paper is Theorem 3.1, in which we show the existence of a weak
solution to (1.5). This is done in the more general case of linear elasticity, that is, when the
displacement is vector-valued and the elastic energy depends only on the symmetric part
of its gradient. To this aim, we first perform a time discretization in the same spirit of [3],
and then we pass to the limit as the time step goes to zero by relying on energy estimates;
as a byproduct, we obtain the energy-dissipation inequality (4.4). By using the change of
variables method implemented in [7,14], we also prove a uniqueness result, but only in
dimension d = 2 and when W (¢) vanishes on a neighborhood of the tip of T';.

We complete our work by providing an example in d = 2 of a weak solution to (1.5) for
which the fracture can grow while balancing the energy. More precisely, when the cracks I';
move with constant speed along the x1-axis and W (#) is zero in a neighborhood of the crack
tip, we construct a function u# which solves (1.5) and satisfies
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t
() + / / |WVi|? dx ds + H' (I';)\To) = £(0) + work of external forces.  (1.6)
0 Ja\r

Notice that this is the natural extension of Griffith’s dynamic criterion (1.4) to this setting.

The paper is organized as follows. In Sect. 2, we fix the notation adopted throughout
the paper, we list the standard assumptions on the family of cracks {I';};¢[0,7] and on the
function W, and we specify the notion of weak solution to problem (1.5). In Sect. 3, we state
our main existence result (Theorem 3.1) and we implement the time discretization method.
We conclude the proof of Theorem 3.1 in Sect. 4, where we show the validity of the initial
conditions and the energy-dissipation inequality (4.4). Section 5 deals with uniqueness: under
stronger regularity assumptions on the cracks sets, in Theorem 5.5 we prove the uniqueness
of a weak solution, but only when the space dimension is d = 2. To this aim, we assume
also that the function W is zero in a neighborhood of the crack tip. We conclude with Sect. 6,
where in dimension d = 2, we show an example of a moving crack that satisfies Griffith’s
dynamic energy-dissipation balance (1.6).

2 Notation and preliminary results

The space of m x d matrices with real entries is denoted by R"*?; in case m = d, the
subspace of symmetric matrices is denoted by ngxlf. Given two vectors vy, vo € R?, their
Euclidean scalar product is denoted by v; - v2 € R and their tensor product is denoted by
V] @y € R weuse vy O vy € Rfyff to denote the symmetric part of v; ® vo, namely
v QU = %(m ®va+ v @ vy). Given A € R"*¢ we use A7 to denote its transpose; we
use Aj - A2 € R to denote the Euclidean scalar product of two matrices Ay, Ay € Rdxd,

The partial derivatives with respect to the variable x; are denoted by 9;. Given a function
f: R4 — R™, we denote its Jacobian matrix by V f, whose components are (Vij:=0;fi,
i=1,...,m,j =1,...,d. For atensor field F: R — R"*? by divF, we mean the
divergence of F with respect to rows, namely (divF); := Zj?:] 0jFjj,fori =1,...,m.

The d-dimensional Lebesgue measure is denoted by £¢ and the (d — 1)-dimensional
Hausdorff measure by H¢~!. We adopted standard notations for Lebesgue and Sobolev
spaces on open subsets of R?; given an open set 2 € R?, we use ||-||oo to denote the norm
of L*°(2; R™). The boundary values of a Sobolev function are always intended in the sense
of traces. Given an open bounded set 2 with Lipschitz boundary, we denote by v the outer
unit normal vector to 9€2, which is defined H?~!-a.e. on the boundary.

Given a Banach space X, its norm is denoted by || - ||x; if X is an Hilbert space, we
use (-, -)x to denote its scalar product. The dual space of X is denoted by X’, and we use
(-, -)x’ to denote the duality product between X’ and X. Given two Banach spaces X and
X, the space of linear and continuous maps from X to X» is denoted by £ (X1; X»); given
A e Z(Xy; X2) and u € Xy, we write Au € X» to denote the image of u under A.

Given an open interval (a, b) € R, L?(a, b; X) is the space of L? functions from (a, b)
to X. Givenu € L?(a, b; X), we denote by 1z € D’ (a, b; X) its distributional derivative. The
set of continuous functions from [a, b] to X is denoted by CY%a, b); X). Given a reflexive
Banach space X, Cg ([a, b]; X) is the set of weakly continuous functions from [a, b] to X,
namely, it is the collection of maps u: [a, b] — X such that r — (x’, u(t)) x is continuous
from [a, b] to R for every x" € X',

Let T be a positive real number and let @ C R? be an open bounded set with Lipschitz
boundary. Let 9p €2 be a (possibly empty) Borel subset of 9<2 and let dy 2 be its complement.
We assume the following hypotheses on the geometry of the cracks:
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(E1) T c Qisaclosed set with £4(I") = 0 and H¢~ /(T N aQ2) = 0;

(E2) forevery x € I', there exists an open neighborhood U of x in R such that (U N O\
is the union of two disjoint open sets U™ and U~ with Lipschitz boundary;

(E3) {T't}s¢f0,7] is a family of closed subsets of I" satisfying I'y C I'; for0 <s <t <T.

Thanks to (E1)-(E3), the space L? (Q\T';; R™) coincides with L2(Q; R™) for everyt € [0, T]
and m € N. In particular, we can extend a function u € LZ(Q\F,; R™) to a function in
L2(2; R™) by setting # = 0 on I';. Moreover, the trace of u € H! (\I") is well defined on
02. Indeed, we may find a finite number of open sets with Lipschitz boundary U; C Q\T,
j=1,...m,suchthat 0Q\(I' N 9dQ) C U;”ZIBUj. Since HY~1(I' N 3§2) = 0, there exists a
constant C > 0, depending only on 2 and I, such that

||u||L2(ag) < C”””H‘(Q\F) for every u € HI(Q\F, Rd) (21)

Similarly, we can find a finite number of open sets U; C Q\I', j = 1, ...m, with Lipschitz
boundary, such that Q\I' = U;”zl U;. By using second Korn’s inequality in each U; (see,
e.g., [15, Theorem 2.4]) and taking the sum over j, we can find a constant Cg, depending
only on  and I', such that

2 2 2
”VMHLZ(Q;Rdxd) =< CK (””t”LZ(Q;Rd) + ||Eu||L2(Q;Rfy>;‘§i)> (22)

for every u € H! (Q\I'; ]Rd), where Eu is the symmetric part of Vu, i.e., Eu := %(Vu +
vuTl).
For every ¢ € [0, T], we define

V= {u € L*(Q\I';; RY) : Eu € L2(Q\I'y; REX4)).

sym

Notice that in the definition of V;, we are considering only the distributional gradient of u in
Q\I'; and not the one in 2. The set V; is a Hilbert space with respect to the following norm:

1
lully, :== (lull3; + | Eull3)? forevery u € V.

To simplify our exposition, we set H := L2(S; R™) and Hy := L?(On S R™); for every
m € N, we always identify the dual of H by H itselfand L>(0, T; L*>($2; R™)) by L2((0, T) x
Q; R™),

Thanks to (2.2), the space V; coincides with the usual Sobolev space H L(Q\TI';; RY).
Therefore, by (2.1), it makes sense to consider for every ¢ € [0, T] the set

VP i={ueV, :u=00ndpQ},

which is a Hilbert space with respect to |-||y,. Moreover, by combining (2.2) with (2.1), we
derive also the existence of a constant C; > 0 such that

lullgy < Cirllully, foreveryu e Vr. 2.3)
LetC,B: Q - & (Rff;;f; Rfyf]fl) be two fourth-order tensors satisfying
Cijhk! Bijnk € L°(Q) foreveryi,j, h,k=1,...,d, 2.4)
Cx)ny -m =mn1-C(x)ny forae. x € Q2 and for every ny, m € ]R‘Slym,
B(x)nt - m =n1 - B(x)ny fora.e. x € Q and for every ny, n2 € RY 2.5)

sym>

C)n-n=rn? B@n-n=in)® forae x € Qandforevery n € R4 (2.6)

sym
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for two positive constants A1, A» independent of x. Consider a function ¥: (0, T) x 2 — R
satisfying
W e L0, T) x Q), VW elL®(0,T)x Q; RY). 2.7

Given f € L%(0,T; H), w € H*(0,T; H) N H'(0, T; Vo), g € H'(0, T; Hy), u® € V
with u® — w(0) € VOD ,and u' € H, we want to find a solution to the viscoelastic dynamic
system

ii(1) — div(CEu(r)) — div(¥2(1)BEi(1)) = f(r) in Q\I';, 1 € (0, T), (2.8)

satisfying the following boundary and initial conditions

u(t) = w(r) ondpQ, 1 € (0,7T), (2.9)
(CEu(t) + W2()BEu(1))v = g(r) ondy,t e (0,T), (2.10)
(CEu(t) + V2(OBEu(t))v=0  only,, 1€(0,7), (2.11)
u(©0) =u®, @) =u'. (2.12)

As usual, the Neumann boundary conditions are only formal, and their meaning will be
specified in Definition 2.4.

Throughout the paper, we always assume that the family {I";};¢[0,7] satisfies (E1)—(E3),
aswellas C, B, ¥, f, w, g, u9, and u! the previous hypotheses. Let us define the following
functional spaces:

V:i={pe L2(0, T;Vr):¢€ L2(0, T, H), (t) € V, forae.t € (0,T)},

VP i={peV:pt) e VP forae. 1 € (0, T)},

W:={ueV:Vue LZ(O, T;Vy), V(t)u(t) € V, forae. t € (0,T)}.
Remark 2.1 In the classical viscoelastic case, namely when W is identically equal to 1, the
solution u to system (2.8) has derivative u(¢) € V; fora.e.t € (0, T) with Eut € L%(0,T; H).

For a generic W, we expect to have W Eu € LQ(O, T; H). Therefore, VV is the natural setting
when looking for a solution to (2.8). Indeed, from a distributional point of view, we have

W) Ei(r) = E(V()iu(t)) — V(1) i) inD (Q2\Iy; RE%Y) forae. 1 € (0, T),

sym

and E(Wn), V¥ O u € L2(O, T; H) if u € VW, thanks to (2.7).

Remark 2.2 The set W coincides with the space of functions u € H 1(0, T; H) such that
u(t) € Vyand W(t)u(t) € V; forae. t € (0, T), and satisfying

T
/O lu@I}, + 1% @)}, df < co. 2.13)

This is a consequence of the strong measurability of the maps ¢ +— u(¢) and ¢ — W (¢)u(t)
from (0, T') into Vr, which gives that (2.13) is well defined and u, Vi € L%(0,T; Vr).
To prove the strong measurability of these two maps, it is enough to observe that Vr is a
separable Hilbert space and that the maps 7 +— u(¢) and ¢ — W (¢)u(r) from (0, T) into Vr
are weakly measurable. Indeed, for every ¢ € C2°(Q2\I'7), the maps

t— Eu(t, x)p(x)dx = —/ u(t,x) © Vo(x)dx,
\l'7 Q\I'y

t— EM (@, x)u(t,x))ex)dx = —/ W(t, x)u(t,x) © Vo(x)dx
Q\I'r Q\I'r
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are measurable from (0, 7) into R, and C°(Q2\I'7) is dense in L3(Q).
Lemma 2.3 The spaces V and VV are Hilbert spaces with respect to the following norms:

. 1
lollv == 1@l120 72y, + 1917200 7.41))° for every g €V,

. 1
I3y = ey + 1Wil 32 7.y, )2 for everyu e W.
Moreover, VP is a closed subspace of V.

Proof 1t is clear that ||-||y> and |-|lyy are norms on V and VV induced by scalar products. We
just have to check the completeness of such spaces with respect to these norms.

Let {ox}x C V be a Cauchy sequence. Then, {¢i}x and {¢}r are Cauchy sequences,
respectively, in L2(O, T; Vr) and LZ(O, T; H), which are complete Hilbert spaces. Thus,
there exists ¢ € L2(0, T; Vr) with S L2(0, T; H) such that Yk — @ in L0, T: Vr)
and ¢y — ¢ in L*(0, T; H). In particular, there exists a subsequence {ok;}; such that
@r; (1) — (1) in Vp forae.t € (0,T). Since @i, (1) € Vi for a.e. t € (0, T), we deduce
that ¢(t) € V; fora.e. t € (0, T). Hence, ¢ € V and ¢ — ¢ in V. With a similar argument,
we can prove that VP C V is a closed subspace.

Let us now consider a Cauchy sequence {uy}r C V. We have that {uy }; and {Wii}; are
Cauchy sequences, respectively, in V and L2(0, T'; V), which are complete Hilbert spaces.
Thus, there exist two functions u € V and z € L2(0, T; Vr) such that uy — u in V and
Wiy — zin L*(0, T; Vr). Since ity — 2 in L?(0, T; H) and ¥ € L>®((0, T) x Q), we
also have that Wit — Wi in L?(0, T; H), which gives that z = Wi. Finally, let us prove
that W (r)u(t) € V; forae.t € (0, T). By the fact that Wity — Wi in L%(0, T; V), there
exists a subsequence {\IJL'tkj}j such that \IJ(t)lej (t) - Y()u(t) in Vg forae.t € (0, 7).
Since \Il(t)ukj (t) € Vy fora.e. t € (0, T), we deduce that ¥ (¢t)u(t) € V; fora.e.t € (0, T).
Hence, u € W and uy — uin W. O

We are now in position to define a weak solution to (2.8)—(2.11).

Definition 2.4 (Weak solution) We say that u € W is a weak solution to system (2.8) with
boundary conditions (2.9)-(2.11) ifu —w € VP and

T T T
—/0 (b't(t),</')(t))Hdt+/0 (CEM(I),E</)(I))Hdt+/O BEW(0)u(t)), W) Ee(1)) g dt

T T T
—/0 BVY@) ©u@®), VO Ep(t) dt:/o (f@®), o) u dl+/0 (8@), o)) gy dt

(2.14)
for every ¢ € VP such that ¢(0) = ¢(T) = 0.

Notice that the Neumann boundary conditions (2.10) and (2.11) can be obtained from (2.14),
by using integration by parts in space, only when u(¢) and I'; are sufficiently regular.

Remark 2.5 1f i is regular enough (for example, i € L2(0, T; Vr) with i(r) € V, for a.e.
t € (0,7T)), then we have VEu© = E(Wu) — VW © u. Therefore, (2.14) is coherent with the

strong formulation (2.8). In particular, for a function u € W, we can define

VE( = E(Wit) — VW Ou € L*(0,T; H), (2.15)
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so that Eq. (2.14) can be rephrased as
T T T
— [ punndr+ [ ©Eut, Beornar+ [ @Yo Ei0, 0P i

T T
:/o (f(t),tp(t))Hdt-Ir/O (&), () my dr

for every ¢ € VP such that ¢(0) = ¢(T) = 0.

Definition 2.6 (Initial conditions) We say that u € WV satisfies the initial conditions (2.12) if

lim 1/h(||u(z)—u°||2v + lla(r) — u'|3) de = 0. (2.16)
h—0t h 0 !

3 Existence

We now state our main existence result, whose proof will be given at the end of Sect. 4.

Theorem 3.1 There exists a weak solution u € W to (2.8)—(2.11) satisfying the initial con-
ditions u(0) = u® and t(0) = u' in the sense of (2.16). Moreover u € Cy([0, T1; V1),
i€ Cy(0, T H)NH'(0,T; (V)), and

lim u(t) =u®in Vy, lim a(t) =u' in H.
t—0t t—0t

To prove the existence of a weak solution to (2.8)—(2.11), we use a time discretization
scheme in the same spirit of [3]. Let us fix n € N and set

, Uy =Uuo, U, =U —r,,ul.

T -
0 = —. u0 =0 1.0
n

We define

Vnk = Vk%, g,’j = gkty), wk = w(kt,) fork=0,...,n,

n

1 kty, 1 kty, gk _ gkfl
k== f(s)ds, wk.= —f W(s)ds, 8gk:=2—C2"_ fork=1,...,n,

Tn J(k—1)z, Tn J(k—1)1, Tn
k k—1 k k—1
3 wy —w Swy — Sw
sw? = w(0), swki=-—1 sIyb=— T fork=1,...,n
Tn Tn
Foreveryk =1,...,n,let uﬁ e Vr, with u’,‘, — wﬁ € V,{‘, be the solution to

(8%uk, vy + (CEul, Evyy + BYEESut, WEEV) y = (fF, v)u + (85, v)m, 3.1
forevery v € V,{‘ , where

Kk _ k-1
Suf =1 " fork=0,...,n,

k k—1
82 k P 8”” - 5”}1
un -
Tn Tn

fork=1,...,n.

The existence of a unique solution ufl to (3.1) is an easy application of Lax—Milgram’s
theorem.

Remark 3.2 Since Suk € V_1y,, then WXESUK = E(Wkuk) — VWK © uk, so that the
discrete equation (3.1) is coherent with the weak formulation given in (2.14).
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In the next lemma, we show a uniform estimate for the family {uﬁ}zzl with respect to
n € N that will be used later to pass to the limit in the discrete equation (3.1).

Lemma 3.3 There exists a constant C > 0, independent of n € N, such that
max_ ||8u o+ max. | Eul || +Zr,,||\ll Esul | < C. (3.2)
i=1
Proof We fix n € N. To simplify the notation, we set
a(u,v) := (CEu, Ev)y, bf(u,v) := BY*Eu, W*Ev)y foreveryu,v e Vr.
By taking as test function v = 1, (814 - Sw 1) € Vk in (3.1),fork =1, ..., n, we obtain
I8ul 17, — Gub ", Suf)p + aGul, ul) — a@ul, uf ™) + 1,bf (Sul, 6uﬁ> =1,L},
where
LK = (fF, suk —swky g 4(g%, sub —suwh) my +(8%uk, swby g +a@h, swh)+bksuk, swk).

Thanks to the following identities

_ 1 1 _ 72
I8uk 1%, — Guk=, subyy = Enauﬁ 1% — Euauﬁ i3+ —"||82u"||%,,

_ 1 1
uﬁ 1):§a(uﬁ,uﬁ)—2a(uk 1, k= 1)—i— a(8u SMﬁ),

and by omitting the terms with 72, which are non-negative, we derive

k k k
a(u,, u,) — a(u,,

1 1 1 1
§||5u’; 1% — Enauﬁ—‘n%, + Ea(u’;, uky — 5a(u’;;l, uk=Yy o, bk (Suk, sub) < ¢, Lk,

We fix i € {1,...,n} and sum over k = 1, ..., to obtain the following discrete energy
inequality
I ‘ 1 o i i
§||8u§1||%_1 + Saly, u) + D bl ul, suf) < S+ ) Lk, (3.3)
k=1 k=1

where & = %llu1 ||%1 + %((CEuO, Eu®)y. Let us now estimate the right-hand side in (3.3)
from above. By (2.3) and (2.4), we have

i
D Sy, Sul — Swi

k=1

1 .
<122 + 5100 20rm + 5 D mllduslE, (G4
k=1

[le] ICllos 5
Z r,,a(un, = 700” ”L2(0 T:Vo) TOO Z Tn”Eu}]’CL ”%la (35)
k=1
' k k 1 2 t2r s 2
E r,,(g,l, 8wn)HN = Eng”Lz(O.T;HN) + 7”1'0”1‘2(077';‘/0)- (36)

For the other term involving gfl, we perform the following discrete integration by parts

i i
D Tk, Su) iy = (& ul) iy — (2000, M) my = YT Ggh, uf Dy B

k=1
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Hence, for every € € (0, 1), by using (2.3) and Young’s inequality, we get

i
€ 1
> g Sy | < 5 Ny + 51810,y + 18O 1y

k=1
i
+ ) walldghllay luk~" 17, (3.8)
k=1
ECt2r i2 szr : k2
<Cet — ||u,,||VT+7];rn||uanT,

where C¢ is a positive constant depending on €. Thanks to Jensen’s inequality, we can write

2
! 1
My 13, < WEw I3+ | Nuoller + Y walldunlle | < 1Eub 1 +206°l7 +27 > wallsusliF;
j=1 j=1
so that (3.8) can be further estimated as
! eC? : i ;
D (& dup)ny | < Cot —1 | 1w, Iy + 20l +2T Y allbuslly
k=1 j=1
C2 i k )
+ 5 2 | I + 20613 +2T 3 wlldunly, | G
k=1 j=1

eC
2

2 i
< Cot SNER NG +C Y w (NSull, + 1B ).

k=1
for some positive constants C. and C, with C, depending on €. Similarly to (3.7), we can say
i i
> @uy. swha = Guy, Swh) g — Gu), SwhHy — Y taGuy L Swhp,  (3.10)
k=1 k=1
from which we deduce that for every € > 0

i
< 18wl llwh e + I e b Ol + Y talldus "l a18%wk 1
k=1

i
D @y, dwpy
k=1

1 P | : 1 k=12
< oo 18wy 7 + S 18wy 15, + llu ||H||w<0)||H+§kern||8un 1%

1< - e 1<
+ 5 D w8l < Ce+ Sl + 5 D mlldugly.

k=1 k=1
(3.11)
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where C. is a positive constant depending on €. We estimate from above the last term in the
right-hand side of (3.3) in the following way

i i
1 1
D Taby Suf, Swh) <Yy (b (Sul. Sul)) 7 (bl (Swf. swp))?

k=l k=l (3.12)

L ks k sk y ] 2 .
=3 ;rnbn(auw ) + 5 Bl IW 12 191 20,71y
By considering (3.3)—(3.12) and using (2.6), we obtain

1—¢ b2 M €Ch IS
) Wl + =B + 5 Y by (S buy)
k=1

i
< Cet O3 (I3 + 1 EI3,)
k=1

for two positive constants é‘e and C , with é‘e depending on €. We choose € < % min [ 1, ’\5
tr

|

Iy (I 1 o i
J 18+ B} 1% + 5 Y mabf Gul duf) < €1+ Co Y o (I8 + NEwf ;)
k=1 k=1

to derive the following estimate

(3.13)

where C and C; are two positive constants depending only on u°, u', f, g, and w. Thanks to
adiscrete version of Gronwall’s lemma (see, e.g., [1, Lemma 3.2.4]), we deduce the existence
of a constant C3 > 0, independent of i and n, such that

6u! |l + | Eul|lg < C3 foreveryi =1,...,n and for every n € N.

By combining this last estimate with (3.13) and (2.6), we finally get (3.2) and we conclude.
[m}

‘We now want to pass to the limit into the discrete equation (3.1) to obtain a weak solution
to (2.8)—(2.11). We start by defining the following approximating sequences of our limit
solution

un (1) i= uk 4 (= kr)Suk, i, (1) i= 8uk + (t —kt)8%uk 1 e[tk — Dkt k=1,...,n,

wr @) == uk, it @) = sut te(tk—Dtktl, k=1,...,n,
wy (1) = ukl, i, (1) := Suk™1 teltk—Dty kty), k=1,...,n.
Notice that u, € HY(0, T; H) with i, (1) = Suﬁ = IZ,J[(I) fort € ((k — 1)1y, kt,) and
k=1,...,n.Letus approximate WV and w by

wh) = vk, wh () == wk te k=1t ktl, k=1,....n,

n
Wo(1) = Wkl w, (1) == wk! telk =Dt k), k=1,...,n.

Lemma 3.4 There exists a functionu € W, withu —w € VP such that, up to a not relabeled
subsequence

H'(0,T;H) L%(0,T;Vr) -4 L20,7T:H)
U, ——— u, ,jf N /B uf —_—u, (3.14)
n—0o0 n—00 n—oo
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L2(0,T; H . . L0, T:H .
vut ot ZOT Gy o BvEar) 0T powa, (3.15)
n n n—00 non n—00

Proof Thanks to Lemma 3.3, the sequences {u,}, C HY0, T; H)NL>(0, T: Vp), {u,ﬂf}n C
L*(0, T; Vr), and {IZ,ﬂf}” C L®(0, T; H) are uniformly bounded. By Banach—Alaoglu’s
theorem, there exist u € H 1(0, T;H)andv € LZ(O, T; Vr) such that, up to a not relabeled
subsequence

L2(0,7;V7) . L2O0T:H) . LX0.T:Vr)
— U, Up —————Uu, u, ————0
n—o00 n—oo n—o0

Since there exists a constant C > 0 such that

lun — wl | o0, 1) < CTa — 0,

we can conclude that u = v. Moreover, given that u, (1) = u'*‘(t — 1) fort € (7,, T),
A (t) = uy(r) forae.t € (O, T),and i, (1) = 4,7 (t — ‘[n) for t € (t,, T), we deduce

_ LY0,T:Vr) ~4 L*0.T;H)
u, —————Uu, u, ——— U.
n—00 n—o00

By (3.2), we derive that the sequences {E (W7 ii;")}, C L*(0, T; H) and (VY] O}, C
LZ(O, T; H) are uniformly bounded. Indeed, there exists a constant C > 0 independent of n
such that

kty,

n
IV @i 17207 Z/k . IVWE © suf |7 dt < VW2, wllsully < €
n k=1

n
NES G320,y = Z/k ||E<w,’:suﬁ>||gdz:ZruwﬁEauﬁww,i‘@auﬁlﬁ,
-1, —

gzzrnn\p ESu ||H+2Zrn||vwk@5u,,||i, <C.
= k=1

Therefore, there exist wi, wy € LZ(O, T; H) such that, up to a further not relabeled subse-
quence

L2(0,T;H) L2(0,T;H)
VlIJ+ Ou + —_— wy, E(\IJJr +) —_— wy.
n—00 n—oo

We want to identify the limit functions w; and w;. Consider ¢ € L2(O T; H), then
1 T
f VU oal, pypdt = f/ @), V¥ H g dt + ~ / (i, T Vg dt

:f (@5, ¥V W )y dt,

L*(0.T:H) L*(0,T;H .
where @Y™ := 219" Since ii i ————> i and VMV LOnH, PYMVY by domi-
2 n—0o0 n n—0o0

nated convergence theorem, we obtain

T
/ (V\IJ+ u, , T o) de — / (i, VW) g dr = / (V¥ O u, p)y dr,
0 0

and so w; = VW O . Moreover, for ¢ € L2(0, T; H), we have

T T T T
f(\yn*a;,qb)ﬂdt:/ (a;,¢qf,j),,dt—>/ (12,\II¢)Hdt:/ (Wi, )y dt,
0 0 n—00 0 0
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. L2(0.T;H)
iand VF¢p ————
n—o0

L*(O0.T:H) _ . . -
———— Wy, from which E (¥} ii;})
n—00 n—

that gives wy = E(Wu). In particular, we have Wi € L0, T: Vr). By arguing in a similar
way, we also obtain

thanks to i,

L2(0,T; H) . .
_— V¢, again implied by dominated conver-
n o0

D'(0,T;H)
_

gence theorem. Therefore, W;F it E(Wu),
oo

_ ._ L*0.T:H) . _._. LX0T1:H) )

Let us check that # € W. To this aim, let us consider the following set
F:={veL?0,T;Vr):v(t) €V, forae.t € (0,T)} C L*(0,T; Vr).

We have that F is a (strong) closed convex subset of LZ(O, T; Vr), and so by Hahn—-Banach’s
theorem, the set F' is weakly closed. Notice that {u; },, {¥, i, }, C F, indeed

wy (1) = uk™' € Vg, C Vi fort € [(k — Doy, kty), k=1,...,n,
Wi, (1) = Y lsuk = e Ve, SV fort € [k — D1y, kty). k=1,...,n.

. _ L*0.T:Vr) _._ L*orvp) . . .
Since u,, ———— u and ¥, i, —— Wu, we conclude that u, Vi € F. Finally, to
n—00 n—0o0

show that u — w € V2, we observe
u, () —wy () =uk™' —wk e vl VP fort e [(k— Dy kty) k=1,...,n.

Therefore, {u, w,}, C {v € L*(0,T;Vr) : v(t) € VP forae t € (0,T)}, which
is a (strong) closed convex subset of L%(0, T; V), and so it is weakly closed. Since
L%(0.T;Vr) L2(0,T;Vy)

u; ——— uand w;, ————> w, we get that u(t) — w(t) € V,° forae.t € (0, T),
n—00 n—oo
which implies u — w € VP. o

We now use Lemma 3.4 to pass to the limit in the discrete equation (3.1).
Lemma 3.5 The limit function u € W of Lemma 3.4 is a weak solution to (2.8)—(2.11).

Proof We only need to prove that u € W satisfies (2.14). We fixn € N, ¢ € CC1 O, T;Vr)
such that ¢(¢) € V,D for every t € (0, T'), and we consider

k_ k=1
ga',f =g(kt,) fork=0,...,n, 8(/),1; = % fork=1,...,n,
n
and the approximating sequences
o (1) = ¢k, @ (1) == 8k te (k=D k], k=1,...,n.
If we use r,lgoif € V,f( as test function in (3.1), after summing over k = 1, ..., n, we get

n n n
D @Pul. o+ (CEuf, Egfn + Y ta(BYSESul, WEEQ))
k=1 k=1 k=1

n n
=Y nlff e+ gk oy

k=1 k=1

(3.16)
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By these identities

n n T
D @uy o == T ul el = —/ (i, (1), ¢ (D)) dt,
0
k=1 k=1

from (3.16), we deduce

T T T
- / (il » @ V1 dr + f (CEw,, Eg,)p dt — / BV, 0, Eg )y di
0 0 0 (3.17)

T T T
+ fo BEW, i), Eg )y dt = /0 (fF o mdr + /0 (& o )y dt.

Thanks to (3.14), (3.15), and the following convergences

4+ L*0.T;Vrp) -+ L*O.T;H) . 4+ L*O0.T;H) 4+ L*O0.T;Hy)
n QD, (pn q)’ n fa n > )
n— 00 n—00 n—00

we can pass to the limit in (3.17), and we get that the function u € WV satisfies (2.14) for
every ¢ € C1(0, T; Vr) such that p(r) € V,” forevery t € (0, T). Finally, by using a density
argument (see [8, Remark 2.9]), we conclude that # € WV is a weak solution to (2.8)—(2.11).

]

4 Initial conditions and energy-dissipation inequality

To complete our existence result, it remains to prove that the function u € W given by
Lemma 3.5 satisfies the initial conditions (2.12) in the sense of (2.16). Let us start by showing
that the second distributional derivative ii belongs to L0, T; (VOD )). If we consider the
discrete equation (3.1), for every v € VOD - V,{‘, with |[v]ly, < I, we have

182k, V)| < ICHoo I Eub Il + IBlloo ¥ oo VX ESub Il i + 1 £X N 11 + Corllgh Ny -

Therefore, taking the supremum over v € VOD with [|v]ly, < 1, we obtain the existence of a
positive constant C such that

162,117

voy = CUEWIG + 1y By 15, + 11+ g l7y)-

If we multiply this inequality by 7, and we sumover k = 1, ..., n, we get
n
2 k)2
DBRA LA
k=1

n n
<C (Z wll Euy 3 + ) tall Wy ESugll + 11720 7.1y + ||g||iz(0,T;HN)> RNCEY
k=1 k=1

Thanks to (4.1) and Lemma 3.3, we conclude that > f_, t,,||82ufl ”?v”)’ < C for every
0

n € N for a positive constant C independent on n € N. In particular, the sequence {itn}, C
H'Y(0,T; (VOD)’) is uniformly bounded (notice that i, () = 82uf§ fort € ((k — D1y, k1)
and k = 1, ..., n). Hence, up to extract a further (not relabeled) subsequence from the one
of Lemma 3.4, we get

_ HYO.T:(VPY)

Uy —— w3, 4.2)

n—oo
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and by using the following estimate
~ ~4 ~ jod
lan — u, ”LZ(O,T;(VOD)’) =< fn”un”LZ((),T;(VOD)/) <Cr, n~>oo) 0

we conclude that w3 = u.
Let us recall the following result, whose proof can be found, for example, in [9].

Lemma 4.1 Let X, Y be two reflexive Banach spaces such that X — Y continuously. Then
L0, T; X) N Cy (10, T; ¥) = Cp ([0, TT; X).

Since H(0, T; (VOD)’) — 9o, 171, (VOD)’), by using Lemmas 3.4 and 4.1, we get that
our weak solution u € W satisfies

ueCY(0,T]; Vr), 1ieCy(0,T]; H), iieL*0,T; (V).
By (3.14) and (4.2), we hence obtain

H vy
uy, (1) —= u(t), () #\ u(t) foreveryt € [0, T], 4.3)

so that #(0) = u° and #(0) = u?, since u,,(0) = u° and i, (0) = u'.
To prove that

1 ,
hli‘?+ﬁ/() (lee(r) = w1, + a0 = u'17;) dr =0,

we will actually show
lim u(t) =u’in Vp, lim a(r) =u'in H.
t—0t t—0t

This is a consequence of the following energy-dissipation inequality which holds for the
weak solution # € W of Lemma 3.5. Let us define the total energy as

1 1
E(t) = 5||u(r)||§, + 5((CEM(t), Eu(t))y t€[0,T].

Notice that the total energy £(¢) is well defined for every ¢t € [0, T'] sinceu € C 8) ([0, T1; V)
and it € CY ([0, T1; H), and that £(0) = L [lu' |12, + L (CEu®, Eu®)p.

Theorem 4.2 The weak solution u € W to (2.8)—(2.11), given by Lemma 3.5, satisfies for
everyt € [0, T] the following energy-dissipation inequality

t
E(I)—i—f BYEu, VEu)y ds < £(0) + Wiot (1), 4.4
0

where W Eu is the function defined in (2.15) and Wio(t) is the total work on the solution u
at time t € [0, T, which is given by

t
Wiot(t) = = / [(f,it — W)y + (CEu, Ew)g + BYEu, VEW)y] ds
0

t
—/0 [Gi )i + (6 — )y 1ds + G (1), () (4.5)

+ (g(0), u(t) — wt)py — @', w(©0) g — (g(0), u® — w(0)) sy
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Remark 4.3 From the classical point of view, the total work on the solution # attime ¢ € [0, T']
is given by
Wiot (1) := Wioad (1) + Wbdry (@), (4.6)

where Wjpaq (?) is the work on the solution u at time ¢ € [0, 7'] due to the loading term, which
is defined as

t
Wioad (1) ::/o (f($), u(s))n ds,

and Whary (t) is the work on the solution u at time ¢ € [0, T'] due to the varying boundary
conditions, which one expects to be equal to

t t
Whdry (1) := /0 (8(s), () my ds +f0 ((CEu(s) + W()BEi(s))v, ib(s)) a1 ds,

being Hp = L2(8 D2; ]Rd). Unfortunately, Whqry (¢) is not well defined under our assump-
tions on u. Notice that when W = 1 on a neighborhood U of the closure of dy €2, then every
weak solution u to (2.8)—(2.11) satisfies u € H'(0, T; H'((2 N U)\I'; RY)), which gives
thatu € HY(0, T; Hy) by our assumptions on I". Hence, the first term of Whqry () makes
sense and satisfies

/o (8(s), () my ds = (8(1), u(®)) Hy — (8(0), u(0)) Hy —/0 (&(s), u($)) gy ds.

The term involving the Dirichlet datum w is more difficult to handle since the trace of
(CEu + W?BE@)v on p< is not well defined even when W = 1 on a neighborhood of the
closure of dp2. If we assume that u € H1(0, T; H2(Q\I; RY)) N H2(0, T; L2(Q; RY))
and that I" is a smooth manifold, then we can integrate by part Eq. (2.14) to deduce that u
satisfies (2.8). In this case, (CEu + W?BEu)v € L>(0, T; Hp) and by using (2.8), together
with the divergence theorem and the integration by parts formula, we deduce

/O (CEu(s) + W (s)BEi(s))v, W(s) ay, ds
= /Ot [(div(CEu(s) + W*(5)BEii(s)), i () + (CEu(s), E(s))n] ds
fo t [(+ W2 ()BEi(s), Ew () — (8(s), (s)) ] ds
= /0 LGi(6). () — (F(5). (5D + (CEu(s), Evb(s)) ] ds
/0 (W2 (0)BE(s). Eib(s)n — (2. W (5)) by Jds
= fo (CEu(s), Edb(s) i + BY$)Eils), Ws) () — ((5), ib(s) ] ds

t
+/0 [(&(), wS)my — @(s), () p]ds — (g(t), w(t) gy + @), w(1) g

+ (g(0), w(O) gy — (', W(0)) .

Hence, the definition of total work given in (4.5) is coherent with the classical one (4.6). Notice
that if u is the solution to (2.8)—(2.11) given by Lemma 3.5, then (4.5) is well defined for
every ¢ € [0, T], since g € C°([0, T; Hy), w € C°([0, T]; H), u € CO([0, T1; Vr), and
ie Cg([O, T1; H). In particular, the function > W () from [0, T'] to R is continuous.
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Proof Fixed t € (0, T], for every n € N, there exists a unique j € {l,...,n} such that
t € ((j — D1y, jtu]. After setting t,, := jt,, we can rewrite (3.3) as

1 . 1 In . .
SNET O + 5 CEw ), Euf 0)n + / B Eit, W Eit) g ds < £0) + WF (),
0

4.7
where
Wy (1) = f (S5 iy — 0, + (CEw), Ew)p + BY, Eiy, ¥, Ed, )y ]ds
th
+/ (b w + (g @ — i) py ] ds
0
Thanks to (3.2), we have
lun(6) = Ol =t + ¢ = jra)dus = wpll < wllduzll < Cta —— 0,
ion (6 = &5 (), = 18 + (¢ = jon)s*us = Suplfy o, < 21820, < Cto ~—> 0.
The last convergences and (4.3) imply
H Py
() —— u(), @) —— (),
n—o00 n—o00
and since IIM,T(I)IIVT + IIIZ,J{(t)IIH < C forevery n € N, we get
V H
wh(t) —— u(r), @l () — a(@). (4.8)
n—o0 n—00

By the lower semicontinuity properties of v — ||v||§, and v > (CEv, Ev)py, we conclude

i@ < lim inf it ()1, 4.9)
(CEu(t), Eu(t))py < 13113@(@1214;(;), Eul(t)n. (4.10)

Thanks to Lemma 3.4 and (2.15), we obtain

L*(0,T;H . . .
UIELr = E(V i) —vu i ouh OB pwiy - v 00 = WEL,
n—oo

so that

t t
/0 (BYEi, VEi)y ds < 1inrgio%f/0 BY,FEa, WIEd )y ds

tn
< liminf/ BY,FEia}, W, Ei) )y ds, (4.11)
0

n—o0

since t <1, and v fot (Bv, v) g ds is a non-negative quadratic form on L2%(0,T; H). Let
us study the right-hand side of (4.7). Given that we have

L2(0,T: H) . ., LornH .
X001 f — = xonfs iy — W,y ————> i — W,
n— n—o0
we can deduce
In
/ f:, ﬁ+—w+)Hds—>/(f i — )y ds. (4.12)
0
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In a similar way, we can prove

tn t
/ (CEu), Ew, )y ds —— / (CEu, Ew)py ds, (4.13)
0 n—0o0 O
tn t
/ BY, Ei}, W, ED ) yds —— | BYEL, VEW)y ds, (4.14)
0 n—o0 O
since the following convergences hold
-4 L*0,T;H) . L2(0,T; H)
X[O,z”]Ew,T — xo.nEw, (CEu,T —— CEu,
n—oo n—o00o
-4 L20.T:H . .4 L*0.T:H .
X[O,tn]\I’;rEw;lL % xo0,nVYEw, \D:Eu; g VEn.
n—oo n—oo

It remains to study the behavior as n — oo of the terms
[Cnapues | (gt — )y s
Thanks to formula (3.10), we have
[ o 505 = 0. w0 = o0y — [ s
By arguing as before, we hence deduce
/Ot" G, ;)1 ds —— (@), () = (' DOy - /Ot(u, inds, (415

thanks to (4.8) and by these convergences

. LX0.T:H) . ._ LX0T:H)
X[0,6,]Wn ————— X[0,/|W, U, ————— U,
n—oo n—00

w(jty) —w((j — D7)
Tn

iy (1) — (@)l = H w(t)

_ H][m (ib(s) — (1)) ds
A

J=Dn

H

jrn
5][ lir(s) — (@) g7 ds —— 0,
(j—Dm n—00

Notice that in the last convergence, we used the continuity of w from [0, T'] in H. Similarly,
we have

(gF.af — W)y ds = (g7 (1), uf 1) — w, )y — (800), u® — w(0) gy

tn
—/ (8n>u, —w, )y ds
0

In

@&y — )y ds —— (2(1), (D) = w(®) iy = (3(0), u® = w(O)
t
—/ (&, u —w)y, ds (4.16)
0
thanks to (4.8), the continuity of s — g(s) in Hy, and the fact that
L?(0,T;Hy) . _ _ L*0.T;Hy)
X[0,1,18n P > X[0,118» U, w, W‘ u—w.
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By combining (4.9)—(4.16), we deduce the validity of the energy-dissipation inequality (4.4)
for every ¢t € (0, T]. Finally, for t = 0, the inequality trivially holds since #(0) = u° and
w(0) = ul. o

We now are in position to prove the validity of the initial conditions.
Lemma 4.4 The weak solution u € W to (2.8)—(2.11) of Lemma 3.5 satisfies
Jim u() = u’ in Vr, Jim (1) = u'in H. (4.17)
In particular, u satisfies the initial conditions (2.12) in the sense of (2.16).

Proof By sending t — OV into the energy-dissipation inequality (4.4) and using that the
functions u € Cg([O, T]; Vr)andu € CSJ([O, T1; H), we deduce
£(0) <liminf £(r) <limsup £(¢) < £(0),
t—0F —0t
since the right-hand side of (4.4) is continuous in ¢, u(0) = u%, and #(0) = u!. Therefore,
there exists lim,_, g+ £(r) = £(0). By using the lower semicontinuity of ¢ > ||u(t) ||%1 and
t = (CEu(t), Eu(t))y, we derive

lim [l&(0)[17; = llu' 77, lim (CEu(t), Eu(t))p = (CEu’, Eu®) .
t—0t t—0t

Finally, since we have

. H 1 H 0
u(t) —u, Eu(lt) —— Eu,
t—0t t—0t
we deduce (4.17). In particular, the functions u: [0, T] — V7 and &: [0, T] — H are

continuous at = 0, which implies (2.16). ]
We can finally prove Theorem 3.1.
Proof of Theorem 3.1 1t is enough to combine Lemmas 3.5 and 4.4. O

Remark 4.5 We have proved Theorem 3.1 for the d-dimensional linear elastic case, namely
when the displacement u is a vector-valued function. The same result is true with identi-
cal proofs in the antiplane case, that is, when the displacement u is a scalar function and
satisfies (1.5).

5 Uniqueness

In this section, we investigate the uniqueness properties of system (2.8) with boundary and
initial conditions (2.9)—(2.12). To this aim, we need to assume stronger regularity assumptions
on the crack sets {I'; };¢[0,7] and on the function W. Moreover, we have to restrict our problem
to the dimensional case d = 2, since in our proof, we need to construct a suitable family of
diffeomorphisms which maps the time-dependent crack I'; into a fixed set, and this can be
explicitly done only for d = 2 (see [7, Example 2.14]).

We proceed in two steps; first, in Lemma 5.2, we prove a uniqueness result in every
dimension d, but when the cracks are not increasing, thatis, I'r = I'g. Next, in Theorem 5.5,
we combine Lemma 5.2 with the finite speed of propagation theorem of [5] and the uniqueness
result of [8] to derive the uniqueness of a weak solution to (2.8)—(2.12) in the case d = 2.

Let us start with the following lemma, whose proof is similar to that one of
[8, Proposition 2.10].
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Lemma5.1 Let u € W be a weak solution to (2.8)—(2.11) satisfying the initial condition
1(0) = 0 in the following sense

1 h
lim — 1) |15 = 0.
hwhfo ()17

Then u satisfies
T T T
- /0 @(0). (D) g dr + /0 (CEu(t), Eo(t) di + /0 BY () Eilr), W (D) Eo(D) g dt

T T
= /0 (f@®), @) dr + /0 (8@, o) my dt
forevery ¢ € VP such that ¢(T) = 0, where V Eu is the function defined in (2.15).
Proof We fix ¢ € VP with ¢(T) = 0 and for every € > 0, we define the following function

) = L) 1€l0,€l,
UV 00 tete T

We have that ¢, € VP and ¢, (0) = ¢ (T) = 0, so we can use ¢, as test function in (2.14).
By proceeding as in [8, Proposition 2.10], we obtain

T T
lim f (U@, g () H dt:/ (@), o) p dr,
e—0t Jo 0
T T
lim ((CEu(t),E(pE(t))Hdt:/ (CEu(t), Eo(t)) g dt,
0 0

e—0t

T T
lim / (F O, 9O dt = f (F () () dr.
e—01 Jo 0

It remains to consider the terms involving B and g.
We have

T €
f (IB%\IJ(Z)Eﬂ(t),W(I)Ewe(t))ydt=/ (IB%\If(t)Eﬂ(t),é\lf(t)Erp(t))Hdt
0 0
T
+/ BY()Eu(t), V(t)Ep(t))y dt,

T € T
/0 (&), pe (1)) Hy dt :/o (8@, é@(t))HN dr +/ (&@®), @)y dt,

hence, by the dominated convergence theorem, we get
T T
/ BY () Eu), V(@) Ep())p di o / BY()Eu (), V(@) Ep())p dt,
€ €~ 0

’/6(]133\11(1)&2(1), é‘l—’(t)Ego(t))H dr
0

= II]Ellooll‘lflloo/O IW@OEa® el E@) )| 1 df Py 0,
T T
/ (8@, p(®))y dt m/o (&), p(©)) y dt,

‘ [ ). Sp@)ny de
0 €

€
5/ gl y g (1 &t ——> 0.
0 e—0t

By combining together all the previous convergences, we get the thesis. O
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We now state the uniqueness result in the case of a fixed domain, that is, 't = I'g. We
follow the same ideas of [12], and we need to assume

W e Lip([0, T] x Q), V¥ e L¥((0, T) x Q; RY), (5.1)

while on 'y, we do not require any further hypotheses.
Lemma 5.2 (Uniqueness in a fixed domain) Assume (5.1) and 't = T'g. Then the viscoelastic
dynamic system (2.8) with boundary and initial conditions (2.9)—(2.12) (the latter in the sense

of (2.16)) has a unique weak solution.

Proof Let uy, up € W be two weak solutions to (2.8)—(2.11) with initial conditions (2.12).
The function u := u| — uy satisfies

1 " 2 . 2
Z/o @Iy, + la@7) df —— 0, (5.2)

hence, by Lemma 5.1, it solves

T T T
- / (), § (1) di+ / (CEu(t), Eg(t) di+ f BY () Ei(r), W (1) Ep) g df = 0
0 0 0

(5.3)
for every ¢ € VP such that ¢(T) =0. We fix s € (0, T] and consider the function

= umdr 10, 5],
bs (1) = {0 tels, Tl

Since ¢; € VP and ¢, (T') = 0, we can use it as test function in (5.3) to obtain
5 5 5
—/0 @), u()y dt+/ (CEgs(t), Eos())n dt+/0 BY@)Eu(t), V(t)Eps(t))g dt = 0.
0
In particular, we deduce
1 [5d 2 1 [fd
—— — |Ju(t dr + = — (CEg4(t), E@g(t)) g dt
2f0 oIy d + 2f0 (CEgy 1), Egy )
s
4 / BY () Ei(r), (1) Egy (1) dt =0,
0
which implies
1 1 $ .
EIIM(S)II%, + E(CE%(O), Eps(0) g = /0 BY@)Eu(r), W(t)Eps (1)) p dt, 54
since #(0) = 0 = ¢;(s). From the distributional point of view, the following equality holds
d .
5 (VEW = VEu+ WEi € L*(0,T; H), (5.5)
indeed, for all v € C2°(0, T'; H), we have
T d T
/ (*(\I’(t)Eu(t)), v(t)> dr = —/ (W Eu(t), v(t)y dt
o \dt H 0

T
= —/ (E(W(0)u() = V@) ©u@), v()y dt
0
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T
:/o (EQV(Hu(t)) + E(V(0)i(t)), v(t) g dt
T
- / (VI (@) @ u®) + V¥(@) O (), v(r) g dt
0
T T
= / (W(@)Eu(t), v(t))y dt —i—/ (W(@)Eu(t), v(t)) gy dr.
0 0
In particular, W Eu € H! 0,T; H) C CO([O, T1, H), so that by (5.2)
2 1t 2 1t 2
WO Eu(0)y = }}I_IR)E/O W) Eu(t)|lyde < Cgﬂ)ﬁfo lu@)lly,dt =0

which yields W(0) Eu(0) = 0. Thanks to (5.5) and to property Wu € HY(0, T; H), we
deduce

d . .
T BYEu, VE9 )y = BYEu, VEp,)y + BYEu, VE@,)y + BYEu, VEps)

+ BYEu, VEQs)H
=2BYEu, VEp;)y + BYEi, VE) i + (BYEu, VEG) u,

and by integrating on [0, s], we get
/S(IB‘I’(t)Eit(t), V() Eg(1) g dr
0
N d .
=/0 [E(B‘D(I)Eu(t), V(O Eps(t)n — 2BV (@) Eu(r), ‘If(t)E%(t))H] ds

—/0 BY (1) Eps (1), V(1) Egs(1) dt
= BY()Eu(s), W(s)Eps(s)n — BY(O0)Eu(0), ¥(0)Es(0)z]dr

+ /0 ) [2(BW(1>Eu(r), \IJ(t)Eu(t))%,(IB%\iJ(t)E%(r), Lb(z)Ewsu)),%} dr
- /0 B Egy (1), W0 Egy ()

< /O S [(Bw)Eum, (O Eu(®)u + BY (1) Ey (1), LP(r)Ews(z))H] dr
- /0 B Egy0), w(r)Eqbs(t))H] dr

< IBllooll W%, /0 I Eqy (1)I17,dt,

since Egg(s) = 0 = W(0)Eu(0) and E¢y = Eu in (0, s). By combining the previous
inequality with (5.4) and using the coercivity of the tensor C, we derive

A 1 1 1
%IIE%(O)II%J + E”u(s)”%-] < E(CE%(O), Egs(0)n + EIIM(S)H%

5
< ||B||oo||wn%,o/0 I Egs (1)113,dt.
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Let us set £(¢) := f(; u(t)dr, then

IEs O3 = IEES) %, 1 E@s(0)3 = |EE(t) — EE)II3; < 21 EE0|3 + 21 EE() 1%,

from which we deduce
M ) 1 2 ' 2 2
?IIES(S)IIH + EIIM(S)IIH <C | IEED|gxdr + CsIEES)| g, (5.6)
0

where C := 2||B||oo||\il||go. Therefore, if we set sg := 4C, for all s < s9, we obtain

A A s
Z‘nEs(s)n%, < (71 - Cs) IEE()I3 < cfo IEE ()|, dr.

By Gronwall’s lemma, the last inequality implies E£(s) = 0 for all s < s9. Hence, thanks
to (5.6), we get ||u(s)||%1 < 0 for all s < so, which yields u(s) = 0 for all s < s¢. Since s
depends only on C, B, and W, we can repeat this argument starting from sg, and with a finite
number of steps, we obtain # = 0 on [0, T']. O

In order to prove our uniqueness result in the case of a moving crack, we need two auxiliary
results, which are [4, Theorem 6.1] and [8, Theorem 4.3]. For the sake of the readers, we
rewrite below the statements without proof.

The first one ([4, Theorem 6.1]) is a generalization of the well-known result of finite speed
of propagation for the wave equation. Given an open bounded set U C R?, we define by a; U
the Lipschitz part of the boundary 0U, which is the collection of points x € dU for which
there exist an orthogonal coordinate system yi, ..., yg, a neighborhood V of x of the form
A x I, with A open in RI~1 and 1 open interval in R, and a Lipschitz function g: A — 1,
suchthat VN U :={(y1,...,ya) € V : ya < g1, ..., Ya—1)}. Moreover, given a Borel
set S C dy U, we define

Hs(U;RY) :={ue H'(U;RY) : u =0on S}.
Notice that Hg(U; R?) is a Hilbert space, and we denote its dual by Hg ! (U; RY).

Theorem 5.3 (Finite speed of propagation) Let U C R? be an open bounded set and let 3y U
be the Lipschitz part of 0U. Let Sy and Sy be two Borel sets with Sy € S; € 9, U, and let
C: U - LRIxd RIXDY o g fourth-order tensor satisfying (2.4)—(2.6). Let

sym ° “Usym
ue L*0,T; Hg (U RY) N H'(0, T; L*(U: RY)) N H*(0, T; Hg' (U; RY))
be a solution to

(i(), lﬁ)Hgl(U;Rd) + (CEu(), El/f)Lz(U;ngx‘éz) =0 foreveryy € Hsll (U; RY),
1

with initial conditions u(0) = 0 and 11(0) = 0 in the sense 0fL2(U; R?) and Hsjl (U; RY),
respectively. Then
u(t) =0 ae inU; = {x € U : dist(x, $\S0) > 1/|Clloc}
foreveryt € [0, T].
Proof See [4, Theorem 6.1]. O

The second one ([8, Theorem 4.3]) is a uniqueness result for the weak solutions of the
wave equation in a moving domain. Let Hbea separable Hilbert space, and let {V,},e[o 7]
be a family of separable Hilbert spaces with the following properties:
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(i) foreveryt € [0, T], the space Vt is contamed and dense in H with continuous embeddmg,
(ii) foreverys,t € [0, T], withs < ¢, V C V, and the Hilbert space structure on V is the
one induced by V;.

Leta: VT X VT — R be a bilinear symmetric form satisfying the following conditions:
(iii) there exists My such that
< - N ..
la(u, v)| < Mollully, vlly, foreveryu, v e Vr;
(iv) there exists Ao > 0 and vy € R such that
2 2 %
> e A
a(u,u) > Ao||u||VT V0||M||H forevery u € Vr.
Assume that

(U1) forevery ¢t € [0, T], there is a contmuous and linear bijective operator Q; : Vt — Vo,
with continuous inverse R; : VO — V,,

(U2) Qo and Ry are the identity maps on Vo,

(U3) there exists a constant M independent of ¢ such that

|Qrull 5 < Millully foreveryu € V;, |Rully < Millullz foreveryu € Vo,

| Quully, < Millully, foreveryu € Vi. |[Roully, < Millully, foreveryu e Vo.
Since ‘Z is dense in H , (U3) implies that Q; and R, can be extended to continuous linear
operators from H into itself, still denoted by O, and R,. We also require

(U4) for every v € \70, the function ¢ — R;v from [0, T'] into A has a derivative, denoted
by R;v;
(US) there exists n € (0, 1) such that

IR Qrvlly; < ho(1 —mlvll}, forevery v e Vi:
(U6) there exists a constant M» such that
Qv — Osvlly < M2||v||V (t—s) foreveryO <s <t <T andevery v € Vs,
(U7) for very t € [0,T) and for every v € V,, there exists an element of H , denoted by

Q,v, such that
Qr+nv — Qv

i = =Gt
For every ¢ € [0, T'], define
a(t): \70 X \70 — R asa()(u,v) :=a(Ru, Ryv) foru,v e ‘70,
B(t): \70 X \70 — R as B)(u,v) := (R,u, Rtv) foru,v e ‘70,
y(): \70 xH—>R as y()(u,v) := (R,u, R;v) foru € \70 andv e H,
8(1): Hx H—R as8(t)(u,v) :== (R, Ryv) — (u, v) foru, v € H.

We assume that there exists a constant M3 such that

(U8) the maps t > «a(t)(u,v), t — B(t)(u,v), t — y(t)(u,v), and t — §(t)(u, v) are
Lipschitz continuous and for a.e. t € (0, T'), their derivatives satisfy

j6() @, v)| < Mallullg, lvllg, foru. v e V.
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1B @, v)| < Msllullgllvllg, foru, v e Vo,
|y ()@, v)| < Msllullg lvll; foru € Voandv € H,

18()(u, v)| < Msllull 4llvll; foru,ve H.

Theorem 5.4 (Uniqueness for the wave equation) Assume that H, {f/,},e[o,r], and a satisfy
(1)—(iv) and that (U1)—~(U8) hold. Given u® € Vo, u' € H, and f € L*(0,T; H), there
exists a unique solution

ueV:={pel*0,T;Vr):ueL*O0,T;H), ut) € V, forae t € (0, T)}

to the wave equation

T T T
—/0 (b't(t),</3(t))gdt+/0 a(u(t), (1)) dt :/0 (f(0), 9@) i forevery g €V,

satisfying the initial conditions u(0) = u® and 1(0) = u! in the sense that

Lt 052 . 12
h%Z/O (o) =13, + o) — ') de =00

Proof See [8, Theorem 4.3]. O

‘We now are in position to prove the uniqueness theorem in the case of a moving domain.
We consider the dimensional case d = 2, and we require the following assumptions:

(H1) there is a C>! simple curve I' C © C R?, parametrized by arc-length y : [0, £] — €,
such that ' N 92 = y(0) U y(£) and Q\I is the union of two disjoint open sets with
Lipschitz boundary;

(H2) there exists a non-decreasing function s: [0, T] — (0, £) of class C!! such that
I =y (0, s(®)D;

(H3) |j(t)|2 < é;{ , where A is the ellipticity constant of C and Ck is the constant that
appears in Korn’s inequality in (2.2).

Notice that hypotheses (H1) and (H2) imply (E1)—(E3). We also assume that W satisfies (5.1)

and there exists a constant € > 0 such that for every ¢ € [0, T']

W(t,x) =0 foreveryx e {y € Q: |y — y(s(t))] < €}. 5.7

Theorem 5.5 Assume d = 2 and (HI1)—(H3), (5.1), and (5.7). Then the system (2.8) with
boundary conditions (2.9)—(2.11) has a unique weak solution u € W which satisfies the
initial conditions u(0) = u® and 1(0) = u! in the sense of (2.16).

Proof As before, let u1, up € W be two weak solutions to (2.8)—(2.11) with initial condi-
tions (2.12). Then u := uj —u, satisfies (5.2) and (5.3) forevery ¢ € VP such that o(T) = 0.
Let us define

to :=sup{t € [0, T] : u(s) = 0 forevery s € [0, t]},

and assume by contradiction that 7o < T'. Consider first the case in which 7y > 0. By (H1),
(H2), (5.1), and (5.7), we can find two open sets A; and A,, with A} CC Ay CC 2, and a
number § > 0 such that for every ¢ € [fo — &, fo + 8], we have y(s(r)) € A1, V(r,x) =0
for every x € A, and (A2\A1) \ T is the union of two disjoint open sets with Lipschitz
boundary. Let us define

V= {ue H'((AQ\AD\Ty—s: R®) :u=00ndA; UdAy}, H':=L>(A2\Aj; R?).
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Since every function in V! can be extended to a function in V _s» by classical results for

linear hyperbolic equations (see, e.g., [9]), we deduce ii € L2(to — 8,10+ 6; (V )") and that
u satisfies fora.e. t € (tg — 8,19 + 6)

(ii (1), $) p1y + (CEu(r), E¢) g1 =0 forevery ¢ € v

Moreover, we have u(fg) = 0 as element of A! and 1(ty) = 0 as element of (\71)’, since
u(t) = 0in[to—38, 10),u € CO[t—8,10]; H"), and it € C°([19 -8, 19]; (V'')"). We are now
in position to apply the result of finite speed of propagation of Theorem 5.3. This theorem
ensures the existence of the third open set A3, with A} CC A3 CC A», such that, up to
choose a smaller §, we have u(t) = 0 on d A3 for every t € [tg, tp + 8], and both (Q2\A3)\ T
and A3\T are union of two disjoint open sets with Lipschitz boundary.

In @2\ A3, the function u solves

to+4 to+§
/ / u(t,x) -, x)dx dt+/ / Cx)Eu(t,x) - E@(t,x)dxdt
to— Q\A3 Q\A3
to+36
/ / Bx)W(t, x)Eu(t, x) - W(t,x)Ep(t,x)dxdt =0
10 Q\A3

forevery ¢ € L2(19—8, to+8; VNH (t9—8, to+8; H?) suchthat ¢(f9—8) = ¢(fp+38) = 0,
where

2= {ue H'((Q\A3)\Tyy_s: R?) :u =00n dpQU A3}, H?:= L*(Q\A3; R?).

Since u(t) =0on dpQQU dA3 forevery t € [to — 8,10 + 8] and u(typ — §) = u(tg —8) =0
in the sense of (2.16) (recall that u = 0 in [f9 — §, f9)), we can apply Lemma 5.2 to deduce
u(t) = 0in Q\ A3z forevery t € [to — 8, to + J].

On the other hand in A3, by setting

={uec H' (A3\I';;RY) :u =00ndA3}, H>:=L*(A3;R?),

we get that the function u solves

to+38 t0+6
/ / u(t, x) - o(t, x)dxdt—i—f / Cx)Eu(t,x) - Ep(t,x)dxdt =0
to— A3 Az

for every ¢ € L%(tg — 8, to + 6; \7[2+6) NH' (19— 68,10+ 86; 1:13) such that p(t) € \7t3 for
ae.t € (tp — 6,10+ 8) and ¢(ty — &) = ¢(to + §) = 0. Here, we would like to apply the
uniqueness result of Theorem 5.4 for the spaces {\7[3};6[10_5, 10+s] and H 3 endowed with the
usual norms, and for the bilinear form

a(u,v) = C(x)Eu(x) - Ev(x)dx foreveryu,v € \7,3+5.
A3
As shown in [7, Example 2.14], we can construct &, A € C1([tg — 8, 1o + 8] x A3; R?)
such that for every ¢+ € [0, T], the function ®(¢, -): Az —> Asisa dlffeomorphlsm of
Aj in itself with inverse A(f,-): A3 — Ajz. Moreover, ®(0,y) = y for every y € As,
®(t,T'NA3) = T'NAzand ®(¢, [y,—s N A3) = [, N Az for every t € [tg — 8, 19 + 8].
For every t € [tg — 8, tg + §], the maps (Q;u)(y) = u(P(t,y)), u € ‘73 and y € A3z, and
(Riv)(x) := v(A(t, x)), v € V _s and x € A3, provide a family of linear and continuous
operators which satisfy the assumptlons (U1)—(U8) of Theorem 5.4 (see [8, Example 4.2]).
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The only condition to check is (U5). The bilinear form a satisfies the following ellipticity
condition

A ~
2 1 2 2 3
alusw) 2 M EUl Gy ey = oy =kl foreveryue Vs (58)
. el

where C k is the constant in Korn’s inequality in V3

o6 namely

~

I|V”||i2(A3;R2x2) < CA‘K(||u||i2(A3;R2) + ||Eu||iz(A3;Rfer§)) for every u € V,g_H;.
Notice that for ¢t € [ty — 8, t9 + 5]
(R,v)(x) = Vu(A(z, x))A(t, x) fora.e.x € Aj,
from which we obtain

1R Qul, < [ IVuGPIba, AP dr.
3

Hence, have to show the property

. A _
|D(z, y)|2 < él forevery t € [to — 8,10 + 8] and y € As.
K
This is ensured by (H3). Indeed, as explained in [7, Example 3.1], we can construct the maps
® and A in such a way that

. Al
O, yIF < —,
[P, »)I° < Cx

since |$(1)|> < é—;{ Moreover, every function in Vtg 1 can be extended to a function in

H'(Q\I'; RY). Hence, for Korn’s inequality in ‘A/zi%’
H'(Q\I'; RY). This allows us to apply Theorem 5.4, which implies u(r) = 0in A3 for every
t € [to, to+6]. In the case tp = 0, it is enough to argue as before in [0, §], by exploiting (5.2).
Therefore, u(¢t) = 0 in Q for every ¢ € [ty, fo + ], which contradicts the maximality of #.

Hence 1o = T, that yields u(¢) = 0in Q for every ¢ € [0, T']. O

we can use the same constant Cx of

Remark 5.6 Also Theorem 5.5 is true in the antiplane case, with essentially the same proof.
Notice that, when the displacement is scalar, we do not need to use Korn’s inequality in (5.8)
to get the coercivity in Vtg s of the bilinear form a defined before. Therefore, in this case in

(H3), it is enough to assume I5()]? < A1

6 A moving crack satisfying Griffith’s dynamic energy-dissipation
balance

We conclude this paper with an example of a moving crack {I';};¢[0,7] and weak solution
to (2.8)—(2.12) which satisfy the energy-dissipation balance of Griffith’s dynamic criterion,
as happens in [4] for the purely elastic case. In dimension d = 2, we consider an antiplane
evolution, which means that the displacement u is scalar, and = {x € R? : |x| < R},
with R > 0. We fix a constant 0 < ¢ < 1 such that ¢cT < R, and we set

I :={(,00eQ :0 <ct).
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Let us define the following function

1 X2
S(x1,x2) == Im(\/x1 +ixg) = —( ———
V2 VIxT+ X
where Im denotes the imaginary part of a complex number. Notice that the function § satisfies
S e H'(Q\ o)\ H3(Q\ I'p), and it is a weak solution to

x € R2\{(0,0) : 0 <0},

AS =0 in Q\To,
VS -v=S5=0 only.

Let us consider the function

2 xp —ct
u(t,x):=—==35 <7,x2> tel0,T], x e Q\T
\/7? /71 —C2 \ t

and let w(¢) be its restriction to 9<2. Since u(¢) has a singularity only at the crack tip (cz, 0),
the function w(¢) can be seen as the trace on 92 of a function belonging to H 20, T; L2())N
H! O, T; H 1 (2\INp)), still denoted by w(t). It is easy to see that u solves the wave equation

i(t) — Au() =0 inQ\I';, t € (0, 7),
with boundary conditions
u(t) = w(t) ond2,t € (0,7),
2—:(1‘) =Vu(t)-v=0 onIy, t € (0,7),

and initial data

X1

0 _ 2 I
u (x1,x2) 1= ﬁs (ﬁJ@) € H (Q\I'p),

2 c X1
1 o 2
u (x1,x2) = ﬁmad (m,xz) e LY ().

Let us consider a function W which satisfies the regularity assumptions (5.1) and condi-
tion (5.7), namely

W) =0 onB(t) :={x € R? : |x — (ct,0)| < €} foreveryt € [0, T],

with 0 < € < R — ¢T. In this case, u is a weak solution, in the sense of Definition 2.4, to
the damped wave equation

ii(t) — Au(t) — div(¥? (1)) Vi(t)) = f(r) in € Q\I'y, 1 € (0, T),
with forcing term f given by
f = —div(¥2Vi) = =V - 2W Vi — W2 A € L0, T; LX(Q)),
and boundary and initial conditions
u(t) = w(t) ond2,t e (0,7),
ou L
—O+V () —@)=0 only, 1€(0,7),
av av

u©) =u°, @0 =u'.
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Notice that to derive the homogeneous Neumann boundary conditions on I';, we used g—]’j (t) =
Viu(t) - v = du(t) = 0 on I';. By the uniqueness result proved in the previous section, the
function u coincides with that one found in Theorem 3.1. Thanks to the computations done in
[4, Section 4], we know that u satisfies for every ¢ € [0, T'] the following energy-dissipation
balance for the undamped equation, where ct coincides with the length of I';\I'g

1., 1 5 1. 1 5
E”M(t)”LZ(Q) + E'lvu(t)llLZ(Q;RZ) +ct = E”u(o)”Lz(Q) + E”VM(O)”LZ(Q;RZ)

t
+/ (al(s), w(s)) ds. (6.1)
o \dv L200Q)

Moreover, we have

t a t t
f <a—u(s),u')(s)> ds:/ (Vu(s),Vu')(s))Lz(Q;Rz)ds—[ (Gi(s), () 12 ds
0 % L2(39) 0 0

+ (), w)) 2@ — (0), wO0)) 2q)-
(6.2)

For every ¢ € [0, T'], we compute

(fF(O), i) — (1)) 2y = —/ div[W2(r, x)Vir(r, )] (t, x) — i (t, x)) dx
(@\Be()\T
= —/ div[ W2 (¢, x)Vi(t, x) (@(t, x) — w(t, x))] dx

(@\Be (I

+/ W2(t, x)Vi(t, x) - (Vi(t, x) — Vi (t, x)) dx.
(Q\Be(\Ts

If we denote by 2® (¢) and 1w® (¢) the traces of it(¢) and w(z) on I'; from above and by 1 (¢)
and w® (¢) the trace from below, thanks to the divergence theorem, we have

/ div[\lfz(t, X)Vau(t, x)(u(t, x) — w(t, x))]dx
(@\Be(\I;
=/ xp2(z,x)a—“(t,x)(u(z,x) — (1, x)) dx
Ble) v
f 2 i . :
+ We(t, x)—(t, x)(u(t, x) — w(t, x))dx
9B (1) v
- / W2 (1, x)du® (1, ) (@® (2, x) — wE(r, x)) dH' (x)
(Q\Be(t))NI;

+/ W2(t, x)00u°(t, x) (¢, x) — wo(t, x))dH' (x) = 0,
(Q\Be(1))NI;

since u(t) = w(t) on 92, W(¢) = 0 on dB.(¢), and d»ut(t) = 0 on I';. Therefore, for every
t €[0,T], we get

(S @), 1k0) = () 20y = IV OV 652, — (YO V1), WOVI0)) 120,52,
(6.3)
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By combining (6.1)—(6.3), we deduce that u satisfies for every ¢t € [0, T'] the following
Griffith’s energy-dissipation balance for the viscoelastic dynamic equation

1. 1 d .
SN2 + S IVHO 172050, + /0 19 () Vi ()17 2 g2 ds + et o

1 . 1
= S 1Oz gy + 5 IVuO) 72 g2, + Wiar (),

where in this case, the total work takes the form

t
Wit (1) 1= /0 [(f (), () — ()12 + (Vu(s), Vi(5)) 12 r2) ] ds
t
—l—/ (W (s)Vi(s), U(s)V(s)) 2. r2)ds
0

t
—fo (i(5), (5)) 12y ds + @(0), (1) 12 — (@(0), W(0)) 12(qy-

Notice that equality (6.4) gives (1.6). This shows that in this model Griffith’s dynamic energy-
dissipation balance can be satisfied by a moving crack, in contrast with the case ¥ = 1, which
always leads to (1.3).
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