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Abstract
In this paper, we prove the existence of solutions for a class of viscoelastic dynamic systems
on time-dependent cracked domains, with possibly degenerate viscosity coefficients. Under
stronger regularity assumptions, we also show a uniqueness result. Finally, we exhibit an
example where the energy-dissipation balance is not satisfied, showing there is an additional
dissipation due to the crack growth.
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1 Introduction

In the theory of dynamic fracture, the deformation of an elastic material evolves according
to the elastodynamics system, while the evolution of the crack follows Griffith’s dynamic
criterion, see [13]. This principle, originally formulated in [11] for the quasi-static setting,
states that there is an exact balance between the energy released during the evolution and the
energy used to increase the crack, which is postulated to be proportional to the area increment
of the crack itself.

For an antiplane displacement, the elastodynamics system leads to the following wave
equation

ü(t, x) − �u(t, x) = f (t, x) t ∈ [0, T ], x ∈ �\�t , (1.1)

with some prescribed boundary and initial conditions. Here, � ⊂ R
d is an open bounded

set with Lipschitz boundary, which represents the cross section of the material, the closed
set �t ⊂ � models the crack at time t in the reference configuration, u(t) : �\�t → R is
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the antiplane displacement, and f is a forcing term. In this case, Griffith’s dynamic criterion
reads

E(t) + Hd−1(�t\�0) = E(0) + work of external forces,

where E(t) is the total energy at time t , given by the sum of kinetic and elastic energy, and
Hd−1 is the (d − 1)-dimensional Hausdorff measure.

From the mathematical point of view, the first step to study the evolution of the fracture is
to solve the wave equation (1.1) when the evolution of the crack is assigned, see, for example,
[2,3,7,14,18] (we refer also to [6,10,16] for the case of a one-dimensional model). When we
want to take into account the viscoelastic properties of the material, Kelvin–Voigt’s model is
the most common one. If no crack is present, this leads to the damped wave equation

ü(t, x) − �u(t, x) − �u̇(t, x) = f (t, x) (t, x) ∈ (0, T ) × �. (1.2)

As it is well known, the solutions to (1.2) satisfy the energy-dissipation balance

E(t) +
∫ t

0

∫
�

|∇u̇|2 dx ds = E(0) + work of external forces. (1.3)

When we consider a crack in a viscoelastic material, Griffith’s dynamic criterion becomes

E(t) + Hd−1(�t\�0) +
∫ t

0

∫
�\�s

|∇u̇|2 dx ds = E(0) + work of external forces. (1.4)

For a prescribed crack evolution, this model was already considered by Dal Maso and
Larsen [3] in the antiplane case and more in general by Tasso [18] for the vector-valued
case. As proved in the quoted papers, the solutions to (1.2) on a domain with a prescribed
time-dependent crack, i.e., with� replaced by�\�t , satisfy (1.3) for every time. This equal-
ity implies that (1.4) cannot be satisfied unless �t = �0 for every t . This phenomenon
was already well known in mechanics as the viscoelastic paradox, see, for instance, [17,
Chapter 7].

To overcome this problem, we modify Kelvin–Voigt’s model by considering a possibly
degenerate viscosity term depending on t and x . More precisely, we study the following
equation

ü(t, x) − �u(t, x) − div(�2(t, x)∇u̇(t, x)) = f (t, x) t ∈ [0, T ], x ∈ �\�t . (1.5)

On the function� : (0, T )×� → R, we only require some regularity assumptions (see (2.7));
a particularly interesting case is when � assumes the value zero on some points of �, which
means that the material has no longer viscoelastic properties in such a zone.

The main result of this paper is Theorem 3.1, in which we show the existence of a weak
solution to (1.5). This is done in the more general case of linear elasticity, that is, when the
displacement is vector-valued and the elastic energy depends only on the symmetric part
of its gradient. To this aim, we first perform a time discretization in the same spirit of [3],
and then we pass to the limit as the time step goes to zero by relying on energy estimates;
as a byproduct, we obtain the energy-dissipation inequality (4.4). By using the change of
variables method implemented in [7,14], we also prove a uniqueness result, but only in
dimension d = 2 and when �(t) vanishes on a neighborhood of the tip of �t .

We complete our work by providing an example in d = 2 of a weak solution to (1.5) for
which the fracture can grow while balancing the energy. More precisely, when the cracks �t

move with constant speed along the x1-axis and �(t) is zero in a neighborhood of the crack
tip, we construct a function u which solves (1.5) and satisfies
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E(t) +
∫ t

0

∫
�\�s

|�∇u̇|2 dx ds + H1(�t\�0) = E(0) + work of external forces. (1.6)

Notice that this is the natural extension of Griffith’s dynamic criterion (1.4) to this setting.
The paper is organized as follows. In Sect. 2, we fix the notation adopted throughout

the paper, we list the standard assumptions on the family of cracks {�t }t∈[0,T ] and on the
function �, and we specify the notion of weak solution to problem (1.5). In Sect. 3, we state
our main existence result (Theorem 3.1) and we implement the time discretization method.
We conclude the proof of Theorem 3.1 in Sect. 4, where we show the validity of the initial
conditions and the energy-dissipation inequality (4.4). Section 5 deals with uniqueness: under
stronger regularity assumptions on the cracks sets, in Theorem 5.5 we prove the uniqueness
of a weak solution, but only when the space dimension is d = 2. To this aim, we assume
also that the function � is zero in a neighborhood of the crack tip. We conclude with Sect. 6,
where in dimension d = 2, we show an example of a moving crack that satisfies Griffith’s
dynamic energy-dissipation balance (1.6).

2 Notation and preliminary results

The space of m × d matrices with real entries is denoted by R
m×d ; in case m = d , the

subspace of symmetric matrices is denoted by R
d×d
sym . Given two vectors v1, v2 ∈ R

d , their
Euclidean scalar product is denoted by v1 · v2 ∈ R and their tensor product is denoted by
v1 ⊗ v2 ∈ R

d×d ; we use v1 � v2 ∈ R
d×d
sym to denote the symmetric part of v1 ⊗ v2, namely

v1 � v2 := 1
2 (v1 ⊗ v2 + v2 ⊗ v1). Given A ∈ R

m×d , we use AT to denote its transpose; we
use A1 · A2 ∈ R to denote the Euclidean scalar product of two matrices A1, A2 ∈ R

d×d .
The partial derivatives with respect to the variable xi are denoted by ∂i . Given a function

f : Rd → R
m , we denote its Jacobianmatrix by∇ f , whose components are (∇ f )i j := ∂ j fi ,

i = 1, . . . , m, j = 1, . . . , d . For a tensor field F : Rd → R
m×d , by divF , we mean the

divergence of F with respect to rows, namely (divF)i := ∑d
j=1 ∂ j Fi j , for i = 1, . . . , m.

The d-dimensional Lebesgue measure is denoted by Ld and the (d − 1)-dimensional
Hausdorff measure by Hd−1. We adopted standard notations for Lebesgue and Sobolev
spaces on open subsets of Rd ; given an open set � ⊆ R

d , we use ‖·‖∞ to denote the norm
of L∞(�;Rm). The boundary values of a Sobolev function are always intended in the sense
of traces. Given an open bounded set � with Lipschitz boundary, we denote by ν the outer
unit normal vector to ∂�, which is defined Hd−1-a.e. on the boundary.

Given a Banach space X , its norm is denoted by ‖ · ‖X ; if X is an Hilbert space, we
use (·, ·)X to denote its scalar product. The dual space of X is denoted by X ′, and we use
〈·, ·〉X ′ to denote the duality product between X ′ and X . Given two Banach spaces X1 and
X2, the space of linear and continuous maps from X1 to X2 is denoted byL (X1; X2); given
A ∈ L (X1; X2) and u ∈ X1, we write Au ∈ X2 to denote the image of u under A.

Given an open interval (a, b) ⊆ R, L p(a, b; X) is the space of L p functions from (a, b)

to X . Given u ∈ L p(a, b; X), we denote by u̇ ∈ D′(a, b; X) its distributional derivative. The
set of continuous functions from [a, b] to X is denoted by C0([a, b]; X). Given a reflexive
Banach space X , C0

w([a, b]; X) is the set of weakly continuous functions from [a, b] to X ,
namely, it is the collection of maps u : [a, b] → X such that t �→ 〈x ′, u(t)〉X ′ is continuous
from [a, b] to R for every x ′ ∈ X ′.

Let T be a positive real number and let � ⊂ R
d be an open bounded set with Lipschitz

boundary. Let ∂D� be a (possibly empty) Borel subset of ∂� and let ∂N � be its complement.
We assume the following hypotheses on the geometry of the cracks:
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1266 M. Caponi, F. Sapio

(E1) � ⊂ � is a closed set with Ld(�) = 0 and Hd−1(� ∩ ∂�) = 0;
(E2) for every x ∈ �, there exists an open neighborhood U of x in Rd such that (U ∩ �)\�

is the union of two disjoint open sets U+ and U− with Lipschitz boundary;
(E3) {�t }t∈[0,T ] is a family of closed subsets of � satisfying �s ⊂ �t for 0 ≤ s ≤ t ≤ T .

Thanks to (E1)–(E3), the space L2(�\�t ;Rm) coincideswith L2(�;Rm) for every t ∈ [0, T ]
and m ∈ N. In particular, we can extend a function u ∈ L2(�\�t ;Rm) to a function in
L2(�;Rm) by setting u = 0 on �t . Moreover, the trace of u ∈ H1(�\�) is well defined on
∂�. Indeed, we may find a finite number of open sets with Lipschitz boundary U j ⊂ �\�,
j = 1, . . . m, such that ∂�\(� ∩ ∂�) ⊂ ∪m

j=1∂U j . SinceHd−1(� ∩ ∂�) = 0, there exists a
constant C > 0, depending only on � and �, such that

‖u‖L2(∂�) ≤ C‖u‖H1(�\�) for every u ∈ H1(�\�;Rd). (2.1)

Similarly, we can find a finite number of open sets U j ⊂ �\�, j = 1, . . . m, with Lipschitz
boundary, such that �\� = ∪m

j=1U j . By using second Korn’s inequality in each U j (see,
e.g., [15, Theorem 2.4]) and taking the sum over j , we can find a constant CK , depending
only on � and �, such that

‖∇u‖2L2(�;Rd×d )
≤ CK

(
‖u‖2L2(�;Rd )

+ ‖Eu‖2
L2(�;Rd×d

sym )

)
(2.2)

for every u ∈ H1(�\�;Rd), where Eu is the symmetric part of ∇u, i.e., Eu := 1
2 (∇u +

∇uT ).
For every t ∈ [0, T ], we define

Vt := {u ∈ L2(�\�t ;Rd) : Eu ∈ L2(�\�t ;Rd×d
sym )}.

Notice that in the definition of Vt , we are considering only the distributional gradient of u in
�\�t and not the one in �. The set Vt is a Hilbert space with respect to the following norm:

‖u‖Vt := (‖u‖2H + ‖Eu‖2H )
1
2 for every u ∈ Vt .

To simplify our exposition, we set H := L2(�;Rm) and HN := L2(∂N �;Rm); for every
m ∈ N, we always identify the dual of H by H itself and L2(0, T ; L2(�;Rm))by L2((0, T )×
�;Rm).

Thanks to (2.2), the space Vt coincides with the usual Sobolev space H1(�\�t ;Rd).
Therefore, by (2.1), it makes sense to consider for every t ∈ [0, T ] the set

V D
t := {u ∈ Vt : u = 0 on ∂D�},

which is a Hilbert space with respect to ‖·‖Vt . Moreover, by combining (2.2) with (2.1), we
derive also the existence of a constant Ctr > 0 such that

‖u‖HN ≤ Ctr‖u‖VT for every u ∈ VT . (2.3)

Let C,B : � → L (Rd×d
sym ;Rd×d

sym ) be two fourth-order tensors satisfying

Ci jhk ,Bi jhk ∈ L∞(�) for every i, j, h, k = 1, . . . , d, (2.4)

C(x)η1 · η2 = η1 · C(x)η2 for a.e. x ∈ � and for every η1, η2 ∈ R
d
sym,

B(x)η1 · η2 = η1 · B(x)η2 for a.e. x ∈ � and for every η1, η2 ∈ R
d
sym, (2.5)

C(x)η · η ≥ λ1|η|2, B(x)η · η ≥ λ2|η|2 for a.e. x ∈ � and for every η ∈ R
d×d
sym , (2.6)

123



A dynamic model for viscoelastic materials with prescribed… 1267

for two positive constants λ1, λ2 independent of x . Consider a function � : (0, T )×� → R

satisfying
� ∈ L∞((0, T ) × �), ∇� ∈ L∞((0, T ) × �;Rd). (2.7)

Given f ∈ L2(0, T ; H), w ∈ H2(0, T ; H) ∩ H1(0, T ; V0), g ∈ H1(0, T ; HN ), u0 ∈ V0

with u0 − w(0) ∈ V D
0 , and u1 ∈ H , we want to find a solution to the viscoelastic dynamic

system

ü(t) − div(CEu(t)) − div(�2(t)BEu̇(t)) = f (t) in �\�t , t ∈ (0, T ), (2.8)

satisfying the following boundary and initial conditions

u(t) = w(t) on ∂D�, t ∈ (0, T ), (2.9)

(CEu(t) + �2(t)BEu̇(t))ν = g(t) on ∂N �, t ∈ (0, T ), (2.10)

(CEu(t) + �2(t)BEu̇(t))ν = 0 on �t , t ∈ (0, T ), (2.11)

u(0) = u0, u̇(0) = u1. (2.12)

As usual, the Neumann boundary conditions are only formal, and their meaning will be
specified in Definition 2.4.

Throughout the paper, we always assume that the family {�t }t∈[0,T ] satisfies (E1)–(E3),
as well as C, B, �, f , w, g, u0, and u1 the previous hypotheses. Let us define the following
functional spaces:

V := {ϕ ∈ L2(0, T ; VT ) : ϕ̇ ∈ L2(0, T ; H), ϕ(t) ∈ Vt for a.e. t ∈ (0, T )},
VD := {ϕ ∈ V : ϕ(t) ∈ V D

t for a.e. t ∈ (0, T )},
W := {u ∈ V : �u̇ ∈ L2(0, T ; VT ), �(t)u̇(t) ∈ Vt for a.e. t ∈ (0, T )}.

Remark 2.1 In the classical viscoelastic case, namely when � is identically equal to 1, the
solution u to system (2.8) has derivative u̇(t) ∈ Vt for a.e. t ∈ (0, T )with Eu̇ ∈ L2(0, T ; H).
For a generic �, we expect to have �Eu̇ ∈ L2(0, T ; H). Therefore,W is the natural setting
when looking for a solution to (2.8). Indeed, from a distributional point of view, we have

�(t)Eu̇(t) = E(�(t)u̇(t)) − ∇�(t) � u̇(t) in D′(�\�t ;Rd×d
sym ) for a.e. t ∈ (0, T ),

and E(�u̇),∇� � u̇ ∈ L2(0, T ; H) if u ∈ W , thanks to (2.7).

Remark 2.2 The set W coincides with the space of functions u ∈ H1(0, T ; H) such that
u(t) ∈ Vt and �(t)u̇(t) ∈ Vt for a.e. t ∈ (0, T ), and satisfying

∫ T

0
‖u(t)‖2Vt

+ ‖�(t)u̇(t)‖2Vt
dt < ∞. (2.13)

This is a consequence of the strong measurability of the maps t �→ u(t) and t �→ �(t)u̇(t)
from (0, T ) into VT , which gives that (2.13) is well defined and u, �u̇ ∈ L2(0, T ; VT ).
To prove the strong measurability of these two maps, it is enough to observe that VT is a
separable Hilbert space and that the maps t �→ u̇(t) and t �→ �(t)u̇(t) from (0, T ) into VT

are weakly measurable. Indeed, for every ϕ ∈ C∞
c (�\�T ), the maps

t �→
∫

�\�T

Eu(t, x)ϕ(x) dx = −
∫

�\�T

u(t, x) � ∇ϕ(x) dx,

t �→
∫

�\�T

E(�(t, x)u̇(t, x))ϕ(x) dx = −
∫

�\�T

�(t, x)u̇(t, x) � ∇ϕ(x) dx
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1268 M. Caponi, F. Sapio

are measurable from (0, T ) into R, and C∞
c (�\�T ) is dense in L2(�).

Lemma 2.3 The spaces V and W are Hilbert spaces with respect to the following norms:

‖ϕ‖V := (‖ϕ‖2L2(0,T ;VT )
+ ‖ϕ̇‖2L2(0,T ;H)

)
1
2 for every ϕ ∈ V,

‖u‖2W := (‖u‖V + ‖�u̇‖2L2(0,T ;VT )
)
1
2 for every u ∈ W.

Moreover, VD is a closed subspace of V .

Proof It is clear that ‖·‖V and ‖·‖W are norms on V and W induced by scalar products. We
just have to check the completeness of such spaces with respect to these norms.

Let {ϕk}k ⊂ V be a Cauchy sequence. Then, {ϕk}k and {ϕ̇k}k are Cauchy sequences,
respectively, in L2(0, T ; VT ) and L2(0, T ; H), which are complete Hilbert spaces. Thus,
there exists ϕ ∈ L2(0, T ; VT ) with ϕ̇ ∈ L2(0, T ; H) such that ϕk → ϕ in L2(0, T ; VT )

and ϕ̇k → ϕ̇ in L2(0, T ; H). In particular, there exists a subsequence {ϕk j } j such that
ϕk j (t) → ϕ(t) in VT for a.e. t ∈ (0, T ). Since ϕk j (t) ∈ Vt for a.e. t ∈ (0, T ), we deduce
that ϕ(t) ∈ Vt for a.e. t ∈ (0, T ). Hence, ϕ ∈ V and ϕk → ϕ in V . With a similar argument,
we can prove that VD ⊂ V is a closed subspace.

Let us now consider a Cauchy sequence {uk}k ⊂ W . We have that {uk}k and {�u̇k}k are
Cauchy sequences, respectively, in V and L2(0, T ; VT ), which are complete Hilbert spaces.
Thus, there exist two functions u ∈ V and z ∈ L2(0, T ; VT ) such that uk → u in V and
�u̇k → z in L2(0, T ; VT ). Since u̇k → u̇ in L2(0, T ; H) and � ∈ L∞((0, T ) × �), we
also have that �u̇k → �u̇ in L2(0, T ; H), which gives that z = �u̇. Finally, let us prove
that �(t)u̇(t) ∈ Vt for a.e. t ∈ (0, T ). By the fact that �u̇k → �u̇ in L2(0, T ; VT ), there
exists a subsequence {�u̇k j } j such that �(t)u̇k j (t) → �(t)u̇(t) in VT for a.e. t ∈ (0, T ).
Since �(t)u̇k j (t) ∈ Vt for a.e. t ∈ (0, T ), we deduce that �(t)u̇(t) ∈ Vt for a.e. t ∈ (0, T ).
Hence, u ∈ W and uk → u in W . ��

We are now in position to define a weak solution to (2.8)–(2.11).

Definition 2.4 (Weak solution) We say that u ∈ W is a weak solution to system (2.8) with
boundary conditions (2.9)–(2.11) if u − w ∈ VD and

−
∫ T

0
(u̇(t), ϕ̇(t))H dt +

∫ T

0
(CEu(t), Eϕ(t))H dt +

∫ T

0
(BE(�(t)u̇(t)),�(t)Eϕ(t))H dt

−
∫ T

0
(B∇�(t) � u̇(t),�(t)Eϕ(t))H dt =

∫ T

0
( f (t), ϕ(t))H dt +

∫ T

0
(g(t), ϕ(t))HN dt

(2.14)
for every ϕ ∈ VD such that ϕ(0) = ϕ(T ) = 0.

Notice that the Neumann boundary conditions (2.10) and (2.11) can be obtained from (2.14),
by using integration by parts in space, only when u(t) and �t are sufficiently regular.

Remark 2.5 If u̇ is regular enough (for example, u̇ ∈ L2(0, T ; VT ) with u̇(t) ∈ Vt for a.e.
t ∈ (0, T )), then we have �Eu̇ = E(�u̇) − ∇� � u̇. Therefore, (2.14) is coherent with the
strong formulation (2.8). In particular, for a function u ∈ W , we can define

�Eu̇ := E(�u̇) − ∇� � u̇ ∈ L2(0, T ; H), (2.15)
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so that Eq. (2.14) can be rephrased as

−
∫ T

0
(u̇(t), ϕ̇(t))H dt +

∫ T

0
(CEu(t), Eϕ(t))H dt +

∫ T

0
(B�(t)Eu̇(t),�(t)Eϕ(t))H dt

=
∫ T

0
( f (t), ϕ(t))H dt +

∫ T

0
(g(t), ϕ(t))HN dt

for every ϕ ∈ VD such that ϕ(0) = ϕ(T ) = 0.

Definition 2.6 (Initial conditions) We say that u ∈ W satisfies the initial conditions (2.12) if

lim
h→0+

1

h

∫ h

0
(‖u(t) − u0‖2Vt

+ ‖u̇(t) − u1‖2H ) dt = 0. (2.16)

3 Existence

We now state our main existence result, whose proof will be given at the end of Sect. 4.

Theorem 3.1 There exists a weak solution u ∈ W to (2.8)–(2.11) satisfying the initial con-
ditions u(0) = u0 and u̇(0) = u1 in the sense of (2.16). Moreover u ∈ Cw([0, T ]; VT ),
u̇ ∈ Cw([0, T ]; H) ∩ H1(0, T ; (V D

0 )′), and

lim
t→0+ u(t) = u0 in VT , lim

t→0+ u̇(t) = u1 in H .

To prove the existence of a weak solution to (2.8)–(2.11), we use a time discretization
scheme in the same spirit of [3]. Let us fix n ∈ N and set

τn := T

n
, u0

n := u0, u−1
n := u0 − τnu1.

We define

V k
n := V D

kτn
, gk

n := g(kτn), wk
n := w(kτn) for k = 0, . . . , n,

f k
n := 1

τn

∫ kτn

(k−1)τn

f (s) ds, �k
n := 1

τn

∫ kτn

(k−1)τn

�(s) ds, δgk
n := gk

n − gk−1
n

τn
for k = 1, . . . , n,

δw0
n := ẇ(0), δwk

n := wk
n − wk−1

n

τn
, δ2wk

n := δwk
n − δwk−1

n

τn
for k = 1, . . . , n.

For every k = 1, . . . , n, let uk
n ∈ VT , with uk

n − wk
n ∈ V k

n , be the solution to

(δ2uk
n, v)H + (CEuk

n, Ev)H + (B�k
n Eδuk

n, �k
n Ev)H = ( f k

n , v)H + (gk
n, v)HN (3.1)

for every v ∈ V k
n , where

δuk
n := uk

n − uk−1
n

τn
for k = 0, . . . , n, δ2uk

n := δuk
n − δuk−1

n

τn
for k = 1, . . . , n.

The existence of a unique solution uk
n to (3.1) is an easy application of Lax–Milgram’s

theorem.

Remark 3.2 Since δuk
n ∈ V(k−1)τn , then �k

n Eδuk
n = E(�k

n uk
n) − ∇�k

n � uk
n , so that the

discrete equation (3.1) is coherent with the weak formulation given in (2.14).
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In the next lemma, we show a uniform estimate for the family {uk
n}n

k=1 with respect to
n ∈ N that will be used later to pass to the limit in the discrete equation (3.1).

Lemma 3.3 There exists a constant C > 0, independent of n ∈ N, such that

max
i=1,..,n

‖δui
n‖H + max

i=1,..,n
‖Eui

n‖H +
n∑

i=1

τn‖� i
n Eδui

n‖2H ≤ C . (3.2)

Proof We fix n ∈ N. To simplify the notation, we set

a(u, v) := (CEu, Ev)H , bk
n(u, v) := (B�k

n Eu, �k
n Ev)H for every u, v ∈ VT .

By taking as test function v = τn(δuk
n − δwk

n) ∈ V k
n in (3.1), for k = 1, . . . , n, we obtain

‖δuk
n‖2H − (δuk−1

n , δuk
n)H + a(uk

n, uk
n) − a(uk

n, uk−1
n ) + τnbk

n(δuk
n, δuk

n) = τn Lk
n,

where

Lk
n := ( f k

n , δuk
n−δwk

n)H +(gk
n, δuk

n−δwk
n)HN +(δ2uk

n, δwk
n)H +a(uk

n, δwk
n)+bk

n(δuk
n, δwk

n).

Thanks to the following identities

‖δuk
n‖2H − (δuk−1

n , δuk
n)H = 1

2
‖δuk

n‖2H − 1

2
‖δuk−1

n ‖2H + τ 2n

2
‖δ2uk

n‖2H ,

a(uk
n, uk

n) − a(uk
n, uk−1

n ) = 1

2
a(uk

n, uk
n) − 1

2
a(uk−1

n , uk−1
n ) + τ 2n

2
a(δuk

n, δuk
n),

and by omitting the terms with τ 2n , which are non-negative, we derive

1

2
‖δuk

n‖2H − 1

2
‖δuk−1

n ‖2H + 1

2
a(uk

n, uk
n) − 1

2
a(uk−1

n , uk−1
n ) + τnbk

n(δuk
n, δuk

n) ≤ τn Lk
n .

We fix i ∈ {1, . . . , n} and sum over k = 1, . . . , i to obtain the following discrete energy
inequality

1

2
‖δui

n‖2H + 1

2
a(ui

n, ui
n) +

i∑
k=1

τnbk
n(δuk

n, δuk
n) ≤ E0 +

i∑
k=1

τn Lk
n, (3.3)

where E0 := 1
2‖u1‖2H + 1

2 (CEu0, Eu0)H . Let us now estimate the right-hand side in (3.3)
from above. By (2.3) and (2.4), we have

∣∣∣∣∣
i∑

k=1

τn( f k
n , δuk

n − δwk
n)H

∣∣∣∣∣ ≤ ‖ f ‖2L2(0,T ;H)
+ 1

2
‖ẇ‖2L2(0,T ;H)

+ 1

2

i∑
k=1

τn‖δuk
n‖2H , (3.4)

∣∣∣∣∣
i∑

k=1

τna(uk
n, δwk

n)

∣∣∣∣∣ ≤ ‖C‖∞
2

‖ẇ‖2L2(0,T ;V0)
+ ‖C‖∞

2

i∑
k=1

τn‖Euk
n‖2H , (3.5)

∣∣∣∣∣
i∑

k=1

τn(gk
n, δwk

n)HN

∣∣∣∣∣ ≤ 1

2
‖g‖2L2(0,T ;HN )

+ C2
tr

2
‖ẇ‖2L2(0,T ;V0)

. (3.6)

For the other term involving gk
n , we perform the following discrete integration by parts

i∑
k=1

τn(gk
n, δuk

n)HN = (gi
n, ui

n)HN − (g(0), u0)HN −
i∑

k=1

τn(δgk
n, uk−1

n )HN . (3.7)
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Hence, for every ε ∈ (0, 1), by using (2.3) and Young’s inequality, we get

∣∣∣∣∣
i∑

k=1

τn(gk
n, δuk

n)HN

∣∣∣∣∣ ≤ ε

2
‖ui

n‖2HN
+ 1

2ε
‖g‖2L∞(0,T ;HN ) + ‖g(0)‖HN ‖u0‖HN

+
i∑

k=1

τn‖δgk
n‖HN ‖uk−1

n ‖2HN

≤ Cε + εC2
tr

2
‖ui

n‖2VT
+ C2

tr

2

i∑
k=1

τn‖uk
n‖2VT

,

(3.8)

where Cε is a positive constant depending on ε. Thanks to Jensen’s inequality, we can write

‖ul
n‖2VT

≤ ‖Eul
n‖2H +

⎛
⎝‖u0‖H +

l∑
j=1

τn‖δu j
n‖H

⎞
⎠

2

≤ ‖Eul
n‖2H +2‖u0‖2H +2T

l∑
j=1

τn‖δu j
n‖2H ,

so that (3.8) can be further estimated as

∣∣∣∣∣
i∑

k=1

τn(gk
n, δuk

n)HN

∣∣∣∣∣ ≤ Cε + εC2
tr

2

⎛
⎝‖Eui

n‖2H + 2‖u0‖2H + 2T
i∑

j=1

τn‖δu j
n‖2H

⎞
⎠

+ C2
tr

2

i∑
k=1

τn

⎛
⎝‖Euk

n‖2H + 2‖u0‖2H + 2T
k∑

j=1

τn‖δu j
n‖2H

⎞
⎠

≤ C̃ε + εC2
tr

2
‖Eui

n‖2H + C̃
i∑

k=1

τn

(
‖δuk

n‖2H + ‖Euk
n‖2H

)
,

(3.9)

for some positive constants C̃ε and C̃ , with C̃ε depending on ε. Similarly to (3.7), we can say

i∑
k=1

τn(δ2uk
n, δwk

n)H = (δui
n, δwi

n)H − (δu0
n, δw0

n)H −
i∑

k=1

τn(δuk−1
n , δ2wk

n)H , (3.10)

from which we deduce that for every ε > 0

∣∣∣∣∣
i∑

k=1

τn(δ2uk
n, δwk

n)H

∣∣∣∣∣ ≤ ‖δui
n‖H ‖δwi

n‖H + ‖u1‖H ‖ẇ(0)‖H +
i∑

k=1

τn‖δuk−1
n ‖H ‖δ2wk

n‖H

≤ 1

2ε
‖δwi

n‖2H + ε

2
‖δui

n‖2H + ‖u1‖H ‖ẇ(0)‖H + 1

2

i∑
k=1

τn‖δuk−1
n ‖2H

+ 1

2

i∑
k=1

τn‖δ2wk
n‖2H ≤ C̄ε + ε

2
‖δui

n‖2H + 1

2

i∑
k=1

τn‖δuk
n‖2H ,

(3.11)
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where C̄ε is a positive constant depending on ε. We estimate from above the last term in the
right-hand side of (3.3) in the following way

i∑
k=1

τnbk
n(δuk

n, δwk
n) ≤

i∑
k=1

τn(bk
n(δuk

n, δuk
n))

1
2 (bk

n(δwk
n, δwk

n))
1
2

≤ 1

2

i∑
k=1

τnbk
n(δuk

n, δuk
n) + 1

2
‖B‖∞‖�‖2∞‖ẇ‖2L2(0,T ;V0)

.

(3.12)

By considering (3.3)–(3.12) and using (2.6), we obtain

(
1 − ε

2

)
‖δui

n‖2H + λ1 − εC2
tr

2
‖Eui

n‖2H + 1

2

i∑
k=1

τnbk
n(δuk

n, δuk
n)

≤ Ĉε + Ĉ
i∑

k=1

τn

(
‖δuk

n‖2H + ‖Euk
n‖2H

)

for two positive constants Ĉε and Ĉ , with Ĉε depending on ε. We choose ε < 1
2 min

{
1, λ1

C2
tr

}
to derive the following estimate

1

4
‖δui

n‖2H + 1

4
‖Eui

n‖2H + 1

2

i∑
k=1

τnbk
n(δuk

n, δuk
n) ≤ C1 + C2

i∑
k=1

τn

(
‖δuk

n‖2H + ‖Euk
n‖2H

)
,

(3.13)

where C1 and C2 are two positive constants depending only on u0, u1, f , g, andw. Thanks to
a discrete version of Gronwall’s lemma (see, e.g., [1, Lemma 3.2.4]), we deduce the existence
of a constant C3 > 0, independent of i and n, such that

‖δui
n‖H + ‖Eui

n‖H ≤ C3 for every i = 1, . . . , n and for every n ∈ N.

By combining this last estimate with (3.13) and (2.6), we finally get (3.2) and we conclude.
��

We now want to pass to the limit into the discrete equation (3.1) to obtain a weak solution
to (2.8)–(2.11). We start by defining the following approximating sequences of our limit
solution

un(t) := uk
n + (t − kτn)δuk

n, ũn(t) := δuk
n + (t − kτn)δ2uk

n t ∈ [(k − 1)τn, kτn], k = 1, . . . , n,

u+
n (t) := uk

n, ũ+
n (t) := δuk

n t ∈ ((k − 1)τn, kτn], k = 1, . . . , n,

u−
n (t) := uk−1

n , ũ−
n (t) := δuk−1

n t ∈ [(k − 1)τn, kτn), k = 1, . . . , n.

Notice that un ∈ H1(0, T ; H) with u̇n(t) = δuk
n = ũ+

n (t) for t ∈ ((k − 1)τn, kτn) and
k = 1, . . . , n. Let us approximate � and w by

�+
n (t) := �k

n , w+
n (t) := wk

n t ∈ ((k − 1)τn, kτn], k = 1, . . . , n,

�−
n (t) := �k−1

n , w−
n (t) := wk−1

n t ∈ [(k − 1)τn, kτn), k = 1, . . . , n.

Lemma 3.4 There exists a function u ∈ W , with u −w ∈ VD, such that, up to a not relabeled
subsequence

un
H1(0,T ;H)−−−−−−⇀

n→∞ u, u±
n

L2(0,T ;VT )−−−−−−−⇀
n→∞ u, ũ±

n
L2(0,T ;H)−−−−−−⇀

n→∞ u̇, (3.14)
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∇�±
n � ũ±

n
L2(0,T ;H)−−−−−−⇀

n→∞ ∇� � u̇, E(�±
n ũ±

n )
L2(0,T ;H)−−−−−−⇀

n→∞ E(�u̇). (3.15)

Proof Thanks to Lemma 3.3, the sequences {un}n ⊂ H1(0, T ; H)∩L∞(0, T ; VT ), {u±
n }n ⊂

L∞(0, T ; VT ), and {ũ±
n }n ⊂ L∞(0, T ; H) are uniformly bounded. By Banach–Alaoglu’s

theorem, there exist u ∈ H1(0, T ; H) and v ∈ L2(0, T ; VT ) such that, up to a not relabeled
subsequence

un
L2(0,T ;VT )−−−−−−−⇀

n→∞ u, u̇n
L2(0,T ;H)−−−−−−⇀

n→∞ u̇, u+
n

L2(0,T ;VT )−−−−−−−⇀
n→∞ v.

Since there exists a constant C > 0 such that

‖un − u+
n ‖L∞(0,T ;H) ≤ Cτn −−−→

n→∞ 0,

we can conclude that u = v. Moreover, given that u−
n (t) = u+

n (t − τn) for t ∈ (τn, T ),
ũ+

n (t) = u̇n(t) for a.e. t ∈ (0, T ), and ũ−
n (t) = ũ+

n (t − τn) for t ∈ (τn, T ), we deduce

u−
n

L2(0,T ;VT )−−−−−−−⇀
n→∞ u, ũ±

n
L2(0,T ;H)−−−−−−⇀

n→∞ u̇.

By (3.2), we derive that the sequences {E(�+
n ũ+

n )}n ⊂ L2(0, T ; H) and {∇�+
n � ũ+

n }n ⊂
L2(0, T ; H) are uniformly bounded. Indeed, there exists a constant C > 0 independent of n
such that

‖∇�+
n � ũ+

n ‖2L2(0,T ;H)
=

n∑
k=1

∫ kτn

(k−1)τn

‖∇�k
n � δuk

n‖2H dt ≤ ‖∇�‖2∞
n∑

k=1

τn‖δuk
n‖2H ≤ C,

‖E(�+
n ũ+

n )‖2L2(0,T ;H)
=

n∑
k=1

∫ kτn

(k−1)τn

‖E(�k
nδuk

n)‖2H dt =
n∑

k=1

τn‖�k
n Eδuk

n + ∇�k
n � δuk

n‖2H

≤ 2
n∑

k=1

τn‖�k
n Eδuk

n‖2H + 2
n∑

k=1

τn‖∇�k
n � δuk

n‖2H ≤ C .

Therefore, there exist w1, w2 ∈ L2(0, T ; H) such that, up to a further not relabeled subse-
quence

∇�+
n � ũ+

n
L2(0,T ;H)−−−−−−⇀

n→∞ w1, E(�+
n ũ+

n )
L2(0,T ;H)−−−−−−⇀

n→∞ w2.

We want to identify the limit functions w1 and w2. Consider ϕ ∈ L2(0, T ; H), then
∫ T

0
(∇�+

n � ũ+
n , ϕ)H dt = 1

2

∫ T

0
(ũ+

n , ϕ∇�+
n )H dt + 1

2

∫ T

0
(ũ+

n , ϕT ∇�+
n )H dt

=
∫ T

0
(ũ+

n , ϕsym∇�+
n )H dt,

where ϕsym := ϕ+ϕT

2 . Since ũ+
n

L2(0,T ;H)−−−−−−⇀
n→∞ u̇ and ϕsym∇�+

n
L2(0,T ;H)−−−−−−→

n→∞ ϕsym∇� by domi-

nated convergence theorem, we obtain
∫ T

0
(∇�+

n � ũ+
n , ϕ)H dt −−−→

n→∞

∫ T

0
(u̇, ϕsym∇�)H dt =

∫ T

0
(∇� � u̇, ϕ)H dt,

and so w1 = ∇� � u̇. Moreover, for φ ∈ L2(0, T ; H), we have∫ T

0
(�+

n ũ+
n , φ)H dt =

∫ T

0
(ũ+

n , φ�+
n )H dt −−−→

n→∞

∫ T

0
(u̇, �φ)H dt =

∫ T

0
(�u̇, φ)H dt,
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thanks to ũ+
n

L2(0,T ;H)−−−−−−⇀
n→∞ u̇ and �+

n φ
L2(0,T ;H)−−−−−−→

n→∞ �φ, again implied by dominated conver-

gence theorem.Therefore,�+
n ũ+

n
L2(0,T ;H)−−−−−−⇀

n→∞ �u̇, fromwhich E(�+
n ũ+

n )
D′(0,T ;H)−−−−−−→

n→∞ E(�u̇),

that gives w2 = E(�u̇). In particular, we have �u̇ ∈ L2(0, T ; VT ). By arguing in a similar
way, we also obtain

∇�−
n � ũ−

n
L2(0,T ;H)−−−−−−⇀

n→∞ ∇� � u̇, E(�−
n ũ−

n )
L2(0,T ;H)−−−−−−⇀

n→∞ E(�u̇).

Let us check that u ∈ W . To this aim, let us consider the following set

F := {v ∈ L2(0, T ; VT ) : v(t) ∈ Vt for a.e. t ∈ (0, T )} ⊂ L2(0, T ; VT ).

We have that F is a (strong) closed convex subset of L2(0, T ; VT ), and so by Hahn–Banach’s
theorem, the set F is weakly closed. Notice that {u−

n }n, {�−
n ũ−

n }n ⊂ F , indeed

u−
n (t) = uk−1

n ∈ V(k−1)τn ⊂ Vt for t ∈ [(k − 1)τn, kτn), k = 1, . . . , n,

�−
n (t)ũ−

n (t) = �k−1
n δuk−1

n ∈ V(k−1)τn ⊆ Vt for t ∈ [(k − 1)τn, kτn), k = 1, . . . , n.

Since u−
n

L2(0,T ;VT )−−−−−−−⇀
n→∞ u and �−

n ũ−
n

L2(0,T ;VT )−−−−−−−⇀
n→∞ �u̇, we conclude that u, �u̇ ∈ F . Finally, to

show that u − w ∈ VD , we observe

u−
n (t) − w−

n (t) = uk−1
n − wk−1

n ∈ V k−1
n ⊆ V D

t for t ∈ [(k − 1)τn, kτn), k = 1, . . . , n.

Therefore, {u−
n w−

n }n ⊂ {v ∈ L2(0, T ; VT ) : v(t) ∈ V D
t for a.e. t ∈ (0, T )}, which

is a (strong) closed convex subset of L2(0, T ; VT ), and so it is weakly closed. Since

u−
n

L2(0,T ;VT )−−−−−−−⇀
n→∞ u and w−

n
L2(0,T ;V0)−−−−−−→

n→∞ w, we get that u(t) − w(t) ∈ V D
t for a.e. t ∈ (0, T ),

which implies u − w ∈ VD . ��
We now use Lemma 3.4 to pass to the limit in the discrete equation (3.1).

Lemma 3.5 The limit function u ∈ W of Lemma 3.4 is a weak solution to (2.8)–(2.11).

Proof We only need to prove that u ∈ W satisfies (2.14). We fix n ∈ N, ϕ ∈ C1
c (0, T ; VT )

such that ϕ(t) ∈ V D
t for every t ∈ (0, T ), and we consider

ϕk
n := ϕ(kτn) for k = 0, . . . , n, δϕk

n := ϕk
n − ϕk−1

n

τn
for k = 1, . . . , n,

and the approximating sequences

ϕ+
n (t) := ϕk

n , ϕ̃+
n (t) := δϕk

n t ∈ ((k − 1)τn, kτn], k = 1, . . . , n.

If we use τnϕk
n ∈ V k

n as test function in (3.1), after summing over k = 1, . . . , n, we get

n∑
k=1

τn(δ2uk
n, ϕk

n)H +
n∑

k=1

τn(CEuk
n, Eϕk

n)H +
n∑

k=1

τn(B�k
n Eδuk

n, �k
n Eϕk

n)H

=
n∑

k=1

τn( f k
n , ϕk

n)H +
n∑

k=1

τn(gk
n, ϕk

n)HN .

(3.16)
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By these identities

n∑
k=1

τn(δ2uk
n, ϕk

n)H = −
n∑

k=1

τn(δuk−1
n , δϕk

n)H = −
∫ T

0
(ũ−

n (t), ϕ̃+
n (t))H dt,

from (3.16), we deduce

−
∫ T

0
(ũ−

n , ϕ̃+
n )H dt +

∫ T

0
(CEu+

n , Eϕ+
n )H dt −

∫ T

0
(B∇�+

n � ũ+
n , Eϕ+

n )H dt

+
∫ T

0
(BE(�+

n ũ+
n ), Eϕ+

n )H dt =
∫ T

0
( f +

n , ϕ+
n )H dt +

∫ T

0
(g+

n , ϕ+
n )HN dt .

(3.17)

Thanks to (3.14), (3.15), and the following convergences

ϕ+
n

L2(0,T ;VT )−−−−−−−→
n→∞ ϕ, ϕ̃+

n
L2(0,T ;H)−−−−−−→

n→∞ ϕ̇, f +
n

L2(0,T ;H)−−−−−−→
n→∞ f , g+

n
L2(0,T ;HN )−−−−−−−→

n→∞ g,

we can pass to the limit in (3.17), and we get that the function u ∈ W satisfies (2.14) for
every ϕ ∈ C1

c (0, T ; VT ) such that ϕ(t) ∈ V D
t for every t ∈ (0, T ). Finally, by using a density

argument (see [8, Remark 2.9]), we conclude that u ∈ W is a weak solution to (2.8)–(2.11).
��

4 Initial conditions and energy-dissipation inequality

To complete our existence result, it remains to prove that the function u ∈ W given by
Lemma 3.5 satisfies the initial conditions (2.12) in the sense of (2.16). Let us start by showing
that the second distributional derivative ü belongs to L2(0, T ; (V D

0 )′). If we consider the
discrete equation (3.1), for every v ∈ V D

0 ⊆ V k
n , with ‖v‖V0 ≤ 1, we have

|(δ2uk
n, v)H | ≤ ‖C‖∞‖Euk

n‖H + ‖B‖∞‖�‖∞‖�k
n Eδuk

n‖H + ‖ f k
n ‖H + Ctr‖gk

n‖HN .

Therefore, taking the supremum over v ∈ V D
0 with ‖v‖V0 ≤ 1, we obtain the existence of a

positive constant C such that

‖δ2uk
n‖2

(V D
0 )′ ≤ C(‖Euk

n‖2H + ‖�k
n Eδuk

n‖2H + ‖ f k
n ‖2H + ‖gk

n‖2HN
).

If we multiply this inequality by τn and we sum over k = 1, . . . , n, we get

n∑
k=1

τn‖δ2uk
n‖2

(V D
0 )′

≤ C

(
n∑

k=1

τn‖Euk
n‖2H +

n∑
k=1

τn‖�k
n Eδuk

n‖2H + ‖ f ‖2L2(0,T ;H)
+ ‖g‖2L2(0,T ;HN )

)
. (4.1)

Thanks to (4.1) and Lemma 3.3, we conclude that
∑n

k=1 τn‖δ2uk
n‖2

(V D
0 )′ ≤ C̃ for every

n ∈ N for a positive constant C̃ independent on n ∈ N. In particular, the sequence {ũn}n ⊂
H1(0, T ; (V D

0 )′) is uniformly bounded (notice that ˙̃un(t) = δ2uk
n for t ∈ ((k − 1)τn, kτn)

and k = 1, . . . , n). Hence, up to extract a further (not relabeled) subsequence from the one
of Lemma 3.4, we get

ũn
H1(0,T ;(V D

0 )′)−−−−−−−−−⇀
n→∞ w3, (4.2)
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and by using the following estimate

‖ũn − ũ+
n ‖L2(0,T ;(V D

0 )′) ≤ τn‖ ˙̃un‖L2(0,T ;(V D
0 )′) ≤ C̃τn −−−→

n→∞ 0

we conclude that w3 = u̇.
Let us recall the following result, whose proof can be found, for example, in [9].

Lemma 4.1 Let X , Y be two reflexive Banach spaces such that X ↪→ Y continuously. Then

L∞(0, T ; X) ∩ C0
w([0, T ]; Y ) = C0

w([0, T ]; X).

Since H1(0, T ; (V D
0 )′) ↪→ C0([0, T ], (V D

0 )′), by using Lemmas 3.4 and 4.1, we get that
our weak solution u ∈ W satisfies

u ∈ C0
w([0, T ]; VT ), u̇ ∈ C0

w([0, T ]; H), ü ∈ L2(0, T ; (V D
0 )′).

By (3.14) and (4.2), we hence obtain

un(t)
H−−−⇀

n→∞ u(t), ũn(t)
(V D

0 )′−−−⇀
n→∞ u̇(t) for every t ∈ [0, T ], (4.3)

so that u(0) = u0 and u̇(0) = u1, since un(0) = u0 and ũn(0) = u1.
To prove that

lim
h→0+

1

h

∫ h

0

(‖u(t) − u0‖2Vt
+ ‖u̇(t) − u1‖2H

)
dt = 0,

we will actually show

lim
t→0+ u(t) = u0 in VT , lim

t→0+ u̇(t) = u1 in H .

This is a consequence of the following energy-dissipation inequality which holds for the
weak solution u ∈ W of Lemma 3.5. Let us define the total energy as

E(t) := 1

2
‖u̇(t)‖2H + 1

2
(CEu(t), Eu(t))H t ∈ [0, T ].

Notice that the total energy E(t) is well defined for every t ∈ [0, T ] since u ∈ C0
w([0, T ]; VT )

and u̇ ∈ C0
w([0, T ]; H), and that E(0) = 1

2‖u1‖2H + 1
2 (CEu0, Eu0)H .

Theorem 4.2 The weak solution u ∈ W to (2.8)–(2.11), given by Lemma 3.5, satisfies for
every t ∈ [0, T ] the following energy-dissipation inequality

E(t) +
∫ t

0
(B�Eu̇, �Eu̇)H ds ≤ E(0) + Wtot(t), (4.4)

where �Eu̇ is the function defined in (2.15) and Wtot(t) is the total work on the solution u
at time t ∈ [0, T ], which is given by

Wtot(t) : =
∫ t

0
[( f , u̇ − ẇ)H + (CEu, Eẇ)H + (B�Eu̇, �Eẇ)H ] ds

−
∫ t

0
[(u̇, ẅ)H + (ġ, u − w)HN ] ds + (u̇(t), ẇ(t))H

+ (g(t), u(t) − w(t))HN − (u1, ẇ(0))H − (g(0), u0 − w(0))HN .

(4.5)
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Remark 4.3 From the classical point of view, the totalwork on the solution u at time t ∈ [0, T ]
is given by

Wtot(t) := Wload(t) + Wbdry(t), (4.6)

whereWload(t) is the work on the solution u at time t ∈ [0, T ] due to the loading term, which
is defined as

Wload(t) :=
∫ t

0
( f (s), u̇(s))H ds,

and Wbdry(t) is the work on the solution u at time t ∈ [0, T ] due to the varying boundary
conditions, which one expects to be equal to

Wbdry(t) :=
∫ t

0
(g(s), u̇(s))HN ds +

∫ t

0
((CEu(s) + �2(s)BEu̇(s))ν, ẇ(s))HD ds,

being HD := L2(∂D�;Rd). Unfortunately, Wbdry(t) is not well defined under our assump-
tions on u. Notice that when � ≡ 1 on a neighborhood U of the closure of ∂N �, then every
weak solution u to (2.8)–(2.11) satisfies u ∈ H1(0, T ; H1((� ∩ U )\�;Rd)), which gives
that u ∈ H1(0, T ; HN ) by our assumptions on �. Hence, the first term of Wbdry(t) makes
sense and satisfies∫ t

0
(g(s), u̇(s))HN ds = (g(t), u(t))HN − (g(0), u(0))HN −

∫ t

0
(ġ(s), u(s))HN ds.

The term involving the Dirichlet datum w is more difficult to handle since the trace of
(CEu + �2

BEu̇)ν on ∂D� is not well defined even when � ≡ 1 on a neighborhood of the
closure of ∂D�. If we assume that u ∈ H1(0, T ; H2(�\�;Rd)) ∩ H2(0, T ; L2(�;Rd))

and that � is a smooth manifold, then we can integrate by part Eq. (2.14) to deduce that u
satisfies (2.8). In this case, (CEu + �2

BEu̇)ν ∈ L2(0, T ; HD) and by using (2.8), together
with the divergence theorem and the integration by parts formula, we deduce

∫ t

0
((CEu(s) + �2(s)BEu̇(s))ν, ẇ(s))HD ds

=
∫ t

0

[
(div(CEu(s) + �2(s)BEu̇(s)), ẇ(s))H + (CEu(s), Eẇ(s))H

]
ds

∫ t

0

[
(+�2(s)BEu̇(s), Eẇ(s))H − (g(s), ẇ(s))HN

]
ds

=
∫ t

0
[(ü(s), ẇ(s))H − ( f (s), ẇ(s))H + (CEu(s), Eẇ(s))H ] ds

∫ t

0
[(+�2(s)BEu̇(s), Eẇ(s))H − (g(s), ẇ(s))HN

]
ds

=
∫ t

0
[(CEu(s), Eẇ(s))H + (B�(s)Eu̇(s),�(s)Eẇ(s))H − ( f (s), ẇ(s))H ] ds

+
∫ t

0

[
(ġ(s), w(s))HN − (u̇(s), ẅ(s))H

]
ds − (g(t), w(t))HN + (u̇(t), ẇ(t))H

+ (g(0), w(0))HN − (u1, ẇ(0))H .

Hence, the definition of totalwork given in (4.5) is coherentwith the classical one (4.6).Notice
that if u is the solution to (2.8)–(2.11) given by Lemma 3.5, then (4.5) is well defined for
every t ∈ [0, T ], since g ∈ C0([0, T ]; HN ), ẇ ∈ C0([0, T ]; H), u ∈ C0

w([0, T ]; VT ), and
u̇ ∈ C0

w([0, T ]; H). In particular, the function t �→ Wtot(t) from [0, T ] to R is continuous.
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Proof Fixed t ∈ (0, T ], for every n ∈ N, there exists a unique j ∈ {1, . . . , n} such that
t ∈ (( j − 1)τn, jτn]. After setting tn := jτn , we can rewrite (3.3) as

1

2
‖ũ+

n (t)‖2H + 1

2
(CEu+

n (t), Eu+
n (t))H +

∫ tn

0
(B�+

n Eũ+
n , �+

n Eũ+
n )H ds ≤ E(0) +W+

n (t),

(4.7)
where

W+
n (t) :=

∫ tn

0

[
( f +

n , ũ+
n − w̃+

n )H + (CEu+
n , Ew̃+

n )H + (B�+
n Eũ+

n , �+
n Ew̃+

n )H
]
ds

+
∫ tn

0

[
(ũ+

n , w̃+
n )H + (g+

n , ũ+
n − w̃+

n )HN

]
ds.

Thanks to (3.2), we have

‖un(t) − u+
n (t)‖H = ‖u j

n + (t − jτn)δu j
n − u j

n‖H ≤ τn‖δu j
n‖H ≤ Cτn −−−→

n→∞ 0,

‖ũn(t) − ũ+
n (t)‖2

(V D
0 )′ = ‖δu j

n + (t − jτn)δ2u j
n − δu j

n‖2
(V D

0 )′ ≤ τ 2n ‖δ2u j
n‖2

(V D
0 )′ ≤ Cτn −−−→

n→∞ 0.

The last convergences and (4.3) imply

u+
n (t)

H−−−⇀
n→∞ u(t), ũ+

n (t)
(V D

0 )′−−−⇀
n→∞ u̇(t),

and since ‖u+
n (t)‖VT + ‖ũ+

n (t)‖H ≤ C for every n ∈ N, we get

u+
n (t)

VT−−−⇀
n→∞ u(t), ũ+

n (t)
H−−−⇀

n→∞ u̇(t). (4.8)

By the lower semicontinuity properties of v �→ ‖v‖2H and v �→ (CEv, Ev)H , we conclude

‖u̇(t)‖2H ≤ lim inf
n→∞ ‖ũ+

n (t)‖2H , (4.9)

(CEu(t), Eu(t))H ≤ lim inf
n→∞ (CEu+

n (t), Eu+
n (t))H . (4.10)

Thanks to Lemma 3.4 and (2.15), we obtain

�+
n Eũ+

n = E(�+
n ũ+

n ) − ∇�+
n � ũ+

n
L2(0,T ;H)−−−−−−⇀

n→∞ E(�u̇) − ∇� � u̇ = �Eu̇,

so that ∫ t

0
(B�Eu̇, �Eu̇)H ds ≤ lim inf

n→∞

∫ t

0
(B�+

n Eũ+
n , �+

n Eũ+
n )H ds

≤ lim inf
n→∞

∫ tn

0
(B�+

n Eũ+
n , �+

n Eũ+
n )H ds, (4.11)

since t ≤ tn and v �→ ∫ t
0 (Bv, v)H ds is a non-negative quadratic form on L2(0, T ; H). Let

us study the right-hand side of (4.7). Given that we have

χ[0,tn ] f +
n

L2(0,T ;H)−−−−−−→
n→∞ χ[0,t] f , ũ+

n − w̃+
n

L2(0,T ;H)−−−−−−⇀
n→∞ u̇ − ẇ,

we can deduce ∫ tn

0
( f +

n , ũ+
n − w̃+

n )H ds −−−→
n→∞

∫ t

0
( f , u̇ − ẇ)H ds. (4.12)
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In a similar way, we can prove∫ tn

0
(CEu+

n , Ew̃+
n )H ds −−−→

n→∞

∫ t

0
(CEu, Eẇ)H ds, (4.13)

∫ tn

0
(B�+

n Eũ+
n , �+

n Ew̃+
n )H ds −−−→

n→∞

∫ t

0
(B�Eu̇, �Eẇ)H ds, (4.14)

since the following convergences hold

χ[0,tn ]Ew̃+
n

L2(0,T ;H)−−−−−−→
n→∞ χ[0,t]Eẇ, CEu+

n
L2(0,T ;H)−−−−−−⇀

n→∞ CEu,

χ[0,tn ]�+
n Ew̃+

n
L2(0,T ;H)−−−−−−→

n→∞ χ[0,t]�Eẇ, �+
n Eũ+

n
L2(0,T ;H)−−−−−−⇀

n→∞ �Eu̇.

It remains to study the behavior as n → ∞ of the terms∫ tn

0
( ˙̃un, w̃+

n )H ds,
∫ tn

0
(g+

n , ũ+
n − w̃+

n )HN ds.

Thanks to formula (3.10), we have∫ tn

0
( ˙̃un, w̃+

n )H ds = (ũ+
n (t), w̃+

n (t))H − (u1, ẇ(0))H −
∫ tn

0
(ũ−

n , ˙̃wn)H ds.

By arguing as before, we hence deduce∫ tn

0
( ˙̃un, w̃+

n )H ds −−−→
n→∞ (u̇(t), ẇ(t))H − (u1, ẇ(0))H −

∫ t

0
(u̇, ẅ)H ds, (4.15)

thanks to (4.8) and by these convergences

χ[0,tn ] ˙̃wn
L2(0,T ;H)−−−−−−→

n→∞ χ[0,t]ẅ, ũ−
n

L2(0,T ;H)−−−−−−⇀
n→∞ u̇,

‖w̃+
n (t) − ẇ(t)‖H =

∥∥∥∥w( jτn) − w(( j − 1)τn)

τn
− ẇ(t)

∥∥∥∥
H

=
∥∥∥∥−
∫ jτn

( j−1)τn

(ẇ(s) − ẇ(t)) ds

∥∥∥∥
H

≤ −
∫ jτn

( j−1)τn

‖ẇ(s) − ẇ(t)‖H ds −−−→
n→∞ 0.

Notice that in the last convergence, we used the continuity of w from [0, T ] in H . Similarly,
we have∫ tn

0
(g+

n , ũ+
n − w̃+

n )HN ds = (g+
n (t), u+

n (t) − w+
n (t))HN − (g(0), u0 − w(0))HN

−
∫ tn

0
(ġn, u−

n − w−
n )HN ds

so that we get∫ tn

0
(g+

n , ũ+
n − w̃+

n )HN ds −−−→
n→∞ (g(t), u(t) − w(t))HN − (g(0), u0 − w(0))HN

−
∫ t

0
(ġ, u − w)HN ds (4.16)

thanks to (4.8), the continuity of s �→ g(s) in HN , and the fact that

χ[0,tn ]ġn
L2(0,T ;HN )−−−−−−−→

n→∞ χ[0,t]ġ, u−
n w−

n
L2(0,T ;HN )−−−−−−−⇀

n→∞ u − w.
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By combining (4.9)–(4.16), we deduce the validity of the energy-dissipation inequality (4.4)
for every t ∈ (0, T ]. Finally, for t = 0, the inequality trivially holds since u(0) = u0 and
u̇(0) = u1. ��

We now are in position to prove the validity of the initial conditions.

Lemma 4.4 The weak solution u ∈ W to (2.8)–(2.11) of Lemma 3.5 satisfies

lim
t→0+ u(t) = u0 in VT , lim

t→0+ u̇(t) = u1 in H . (4.17)

In particular, u satisfies the initial conditions (2.12) in the sense of (2.16).

Proof By sending t → 0+ into the energy-dissipation inequality (4.4) and using that the
functions u ∈ C0

w([0, T ]; VT ) and u̇ ∈ C0
w([0, T ]; H), we deduce

E(0) ≤ lim inf
t→0+ E(t) ≤ lim sup

t→0+
E(t) ≤ E(0),

since the right-hand side of (4.4) is continuous in t , u(0) = u0, and u̇(0) = u1. Therefore,
there exists limt→0+ E(t) = E(0). By using the lower semicontinuity of t �→ ‖u̇(t)‖2H and
t �→ (CEu(t), Eu(t))H , we derive

lim
t→0+‖u̇(t)‖2H = ‖u1‖2H , lim

t→0+(CEu(t), Eu(t))H = (CEu0, Eu0)H .

Finally, since we have

u̇(t)
H−−−⇀

t→0+ u1, Eu(t)
H−−−⇀

t→0+ Eu0,

we deduce (4.17). In particular, the functions u : [0, T ] → VT and u̇ : [0, T ] → H are
continuous at t = 0, which implies (2.16). ��

We can finally prove Theorem 3.1.

Proof of Theorem 3.1 It is enough to combine Lemmas 3.5 and 4.4. ��
Remark 4.5 We have proved Theorem 3.1 for the d-dimensional linear elastic case, namely
when the displacement u is a vector-valued function. The same result is true with identi-
cal proofs in the antiplane case, that is, when the displacement u is a scalar function and
satisfies (1.5).

5 Uniqueness

In this section, we investigate the uniqueness properties of system (2.8) with boundary and
initial conditions (2.9)–(2.12). To this aim,we need to assume stronger regularity assumptions
on the crack sets {�t }t∈[0,T ] and on the function�. Moreover, we have to restrict our problem
to the dimensional case d = 2, since in our proof, we need to construct a suitable family of
diffeomorphisms which maps the time-dependent crack �t into a fixed set, and this can be
explicitly done only for d = 2 (see [7, Example 2.14]).

We proceed in two steps; first, in Lemma 5.2, we prove a uniqueness result in every
dimension d , but when the cracks are not increasing, that is, �T = �0. Next, in Theorem 5.5,
we combineLemma5.2with the finite speed of propagation theoremof [5] and the uniqueness
result of [8] to derive the uniqueness of a weak solution to (2.8)–(2.12) in the case d = 2.

Let us start with the following lemma, whose proof is similar to that one of
[8, Proposition 2.10].

123



A dynamic model for viscoelastic materials with prescribed… 1281

Lemma 5.1 Let u ∈ W be a weak solution to (2.8)–(2.11) satisfying the initial condition
u̇(0) = 0 in the following sense

lim
h→0+

1

h

∫ h

0
‖u̇(t)‖2H = 0.

Then u satisfies

−
∫ T

0
(u̇(t), ϕ̇(t))H dt +

∫ T

0
(CEu(t), Eϕ(t))H dt +

∫ T

0
(B�(t)Eu̇(t),�(t)Eϕ(t))H dt

=
∫ T

0
( f (t), ϕ(t))H dt +

∫ T

0
(g(t), ϕ(t))HN dt

for every ϕ ∈ VD such that ϕ(T ) = 0, where �Eu̇ is the function defined in (2.15).

Proof We fix ϕ ∈ VD with ϕ(T ) = 0 and for every ε > 0, we define the following function

ϕε(t) :=
{

t
ε
ϕ(t) t ∈ [0, ε],

ϕ(t) t ∈ [ε, T ].
We have that ϕε ∈ VD and ϕε(0) = ϕε(T ) = 0, so we can use ϕε as test function in (2.14).
By proceeding as in [8, Proposition 2.10], we obtain

lim
ε→0+

∫ T

0
(u̇(t), ϕ̇ε(t))H dt =

∫ T

0
(u̇(t), ϕ̇(t))H dt,

lim
ε→0+

∫ T

0
(CEu(t), Eϕε(t))H dt =

∫ T

0
(CEu(t), Eϕ(t))H dt,

lim
ε→0+

∫ T

0
( f (t), ϕε(t))H dt =

∫ T

0
( f (t), ϕ(t))H dt .

It remains to consider the terms involving B and g.
We have∫ T

0
(B�(t)Eu̇(t),�(t)Eϕε(t))H dt =

∫ ε

0
(B�(t)Eu̇(t),

t

ε
�(t)Eϕ(t))H dt

+
∫ T

ε

(B�(t)Eu̇(t),�(t)Eϕ(t))H dt,

∫ T

0
(g(t), ϕε(t))HN dt =

∫ ε

0
(g(t),

t

ε
ϕ(t))HN dt +

∫ T

ε

(g(t), ϕ(t))HN dt,

hence, by the dominated convergence theorem, we get

∫ T

ε

(B�(t)Eu̇(t),�(t)Eϕ(t))H dt −−−→
ε→0+

∫ T

0
(B�(t)Eu̇(t),�(t)Eϕ(t))H dt,

∣∣∣∣
∫ ε

0
(B�(t)Eu̇(t),

t

ε
�(t)Eϕ(t))H dt

∣∣∣∣ ≤ ‖B‖∞‖�‖∞
∫ ε

0
‖�(t)Eu̇(t)‖H ‖Eϕ(t)‖H dt −−−→

ε→0+ 0,

∫ T

ε

(g(t), ϕ(t))HN dt −−−→
ε→0+

∫ T

0
(g(t), ϕ(t))HN dt,

∣∣∣∣
∫ ε

0
(g(t),

t

ε
ϕ(t))HN dt

∣∣∣∣ ≤
∫ ε

0
‖g(t)‖HN ‖ϕ(t)‖HN dt −−−→

ε→0+ 0.

By combining together all the previous convergences, we get the thesis. ��
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We now state the uniqueness result in the case of a fixed domain, that is, �T = �0. We
follow the same ideas of [12], and we need to assume

� ∈ Lip([0, T ] × �), ∇�̇ ∈ L∞((0, T ) × �;Rd), (5.1)

while on �0, we do not require any further hypotheses.

Lemma 5.2 (Uniqueness in a fixed domain)Assume (5.1) and �T = �0. Then the viscoelastic
dynamic system (2.8)with boundary and initial conditions (2.9)–(2.12) (the latter in the sense
of (2.16)) has a unique weak solution.

Proof Let u1, u2 ∈ W be two weak solutions to (2.8)–(2.11) with initial conditions (2.12).
The function u := u1 − u2 satisfies

1

h

∫ h

0
(‖u(t)‖2Vt

+ ‖u̇(t)‖2H ) dt −−−→
h→0+ 0, (5.2)

hence, by Lemma 5.1, it solves

−
∫ T

0
(u̇(t), ϕ̇(t))H dt+

∫ T

0
(CEu(t), Eϕ(t))H dt+

∫ T

0
(B�(t)Eu̇(t),�(t)Eϕ(t))H dt = 0

(5.3)
for every ϕ ∈ VD such that ϕ(T ) = 0. We fix s ∈ (0, T ] and consider the function

ϕs(t) :=
{

− ∫ s
t u(τ )dτ t ∈ [0, s],

0 t ∈ [s, T ].
Since ϕs ∈ VD and ϕs(T ) = 0, we can use it as test function in (5.3) to obtain

−
∫ s

0
(u̇(t), u(t))H dt +

∫ s

0
(CE ϕ̇s(t), Eϕs(t))H dt +

∫ s

0
(B�(t)Eu̇(t),�(t)Eϕs(t))H dt = 0.

In particular, we deduce

−1

2

∫ s

0

d

dt
‖u(t)‖2H dt + 1

2

∫ s

0

d

dt
(CEϕs(t), Eϕs(t))H dt

+
∫ s

0
(B�(t)Eu̇(t),�(t)Eϕs(t))H dt = 0,

which implies

1

2
‖u(s)‖2H + 1

2
(CEϕs(0), Eϕs(0))H =

∫ s

0
(B�(t)Eu̇(t),�(t)Eϕs(t))H dt, (5.4)

since u(0) = 0 = ϕs(s). From the distributional point of view, the following equality holds

d

dt
(�Eu) = �̇Eu + �Eu̇ ∈ L2(0, T ; H), (5.5)

indeed, for all v ∈ C∞
c (0, T ; H), we have

∫ T

0

(
d

dt
(�(t)Eu(t)), v(t)

)
H
dt = −

∫ T

0
(�(t)Eu(t), v̇(t))H dt

= −
∫ T

0
(E(�(t)u(t)) − ∇�(t) � u(t), v̇(t))H dt
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=
∫ T

0
(E(�̇(t)u(t)) + E(�(t)u̇(t)), v(t))H dt

−
∫ T

0
(∇�̇(t) � u(t) + ∇�(t) � u̇(t), v(t))H dt

=
∫ T

0
(�̇(t)Eu(t), v(t))H dt +

∫ T

0
(�(t)Eu̇(t), v(t))H dt .

In particular, �Eu ∈ H1(0, T ; H) ⊂ C0([0, T ], H), so that by (5.2)

‖�(0)Eu(0)‖2H = lim
h→0

1

h

∫ h

0
‖�(t)Eu(t)‖2Hdt ≤ C lim

h→0

1

h

∫ h

0
‖u(t)‖2Vt

dt = 0

which yields �(0)Eu(0) = 0. Thanks to (5.5) and to property �u ∈ H1(0, T ; H), we
deduce

d

dt
(B�Eu, �Eϕs)H = (B�̇Eu, �Eϕs)H + (B�Eu̇, �Eϕs)H + (B�Eu, �̇Eϕs)H

+ (B�Eu, �E ϕ̇s)H

= 2(B�Eu, �̇Eϕs)H + (B�Eu̇, �Eϕs)H + (B�Eu, �E ϕ̇s)H ,

and by integrating on [0, s], we get
∫ s

0
(B�(t)Eu̇(t),�(t)Eϕs(t))H dt

=
∫ s

0

[
d

dt
(B�(t)Eu(t),�(t)Eϕs(t))H − 2(B�(t)Eu(t), �̇(t)Eϕs(t))H

]
dt

−
∫ s

0
(B�(t)E ϕ̇s(t),�(t)E ϕ̇s(t))Hdt

≤ (B�(s)Eu(s),�(s)Eϕs(s))H − (B�(0)Eu(0),�(0)Eϕs(0))H ] dt

+
∫ s

0

[
2(B�(t)Eu(t),�(t)Eu(t))

1
2
H (B�̇(t)Eϕs(t), �̇(t)Eϕs(t))

1
2
H

]
dt

−
∫ s

0
(B�(t)E ϕ̇s(t),�(t)E ϕ̇s(t))Hdt

≤
∫ s

0

[
(B�(t)Eu(t),�(t)Eu(t))H + (B�̇(t)Eϕs(t), �̇(t)Eϕs(t))H

]
dt

−
∫ s

0
(B�(t)E ϕ̇s(t),�(t)E ϕ̇s(t))H

]
dt

≤ ‖B‖∞‖�̇‖2∞
∫ s

0
‖Eϕs(t)‖2Hdt,

since Eϕs(s) = 0 = �(0)Eu(0) and E ϕ̇s = Eu in (0, s). By combining the previous
inequality with (5.4) and using the coercivity of the tensor C, we derive

λ1

2
‖Eϕs(0)‖2H + 1

2
‖u(s)‖2H ≤ 1

2
(CEϕs(0), Eϕs(0))H + 1

2
‖u(s)‖2H

≤ ‖B‖∞‖�̇‖2∞
∫ s

0
‖Eϕs(t)‖2Hdt .

123



1284 M. Caponi, F. Sapio

Let us set ξ(t) := ∫ t
0 u(τ )dτ , then

‖Eϕs(0)‖2H = ‖Eξ(s)‖2H , ‖Eϕs(t)‖2H = ‖Eξ(t) − Eξ(s)‖2H ≤ 2‖Eξ(t)‖2H + 2‖Eξ(s)‖2H ,

from which we deduce

λ1

2
‖Eξ(s)‖2H + 1

2
‖u(s)‖2H ≤ C

∫ s

0
‖Eξ(t)‖2Hdt + Cs‖Eξ(s)‖2H , (5.6)

where C := 2‖B‖∞‖�̇‖2∞. Therefore, if we set s0 := λ1
4C , for all s ≤ s0, we obtain

λ1

4
‖Eξ(s)‖2H ≤

(
λ1

2
− Cs

)
‖Eξ(s)‖2H ≤ C

∫ s

0
‖Eξ(t)‖2Hdt .

By Gronwall’s lemma, the last inequality implies Eξ(s) = 0 for all s ≤ s0. Hence, thanks
to (5.6), we get ‖u(s)‖2H ≤ 0 for all s ≤ s0, which yields u(s) = 0 for all s ≤ s0. Since s0
depends only on C, B, and �, we can repeat this argument starting from s0, and with a finite
number of steps, we obtain u ≡ 0 on [0, T ]. ��

In order to prove our uniqueness result in the case of amoving crack, we need two auxiliary
results, which are [4, Theorem 6.1] and [8, Theorem 4.3]. For the sake of the readers, we
rewrite below the statements without proof.

The first one ([4, Theorem 6.1]) is a generalization of the well-known result of finite speed
of propagation for the wave equation. Given an open bounded setU ⊂ R

d , we define by ∂LU
the Lipschitz part of the boundary ∂U , which is the collection of points x ∈ ∂U for which
there exist an orthogonal coordinate system y1, . . . , yd , a neighborhood V of x of the form
A × I , with A open in R

d−1 and I open interval in R, and a Lipschitz function g : A → I ,
such that V ∩ U := {(y1, . . . , yd) ∈ V : yd < g(y1, . . . , yd−1)}. Moreover, given a Borel
set S ⊆ ∂LU , we define

HS(U ;Rd) := {u ∈ H1(U ;Rd) : u = 0 on S}.
Notice that HS(U ;Rd) is a Hilbert space, and we denote its dual by H−1

S (U ;Rd).

Theorem 5.3 (Finite speed of propagation) Let U ⊂ R
d be an open bounded set and let ∂LU

be the Lipschitz part of ∂U. Let S0 and S1 be two Borel sets with S0 ⊆ S1 ⊆ ∂LU, and let
C : U → L (Rd×d

sym ;Rd×d
sym ) be a fourth-order tensor satisfying (2.4)–(2.6). Let

u ∈ L2(0, T ; H1
S0(U ;Rd)) ∩ H1(0, T ; L2(U ;Rd)) ∩ H2(0, T ; H−1

S1
(U ;Rd))

be a solution to

〈ü(t), ψ〉H−1
S1

(U ;Rd )
+ (CEu(t), Eψ)L2(U ;Rd×d

sym )
= 0 for every ψ ∈ H1

S1(U ;Rd),

with initial conditions u(0) = 0 and u̇(0) = 0 in the sense of L2(U ;Rd) and H−1
S1

(U ;Rd),
respectively. Then

u(t) = 0 a.e. in Ut := {x ∈ U : dist(x, S1\S0) > t
√‖C‖∞}

for every t ∈ [0, T ].
Proof See [4, Theorem 6.1]. ��

The second one ([8, Theorem 4.3]) is a uniqueness result for the weak solutions of the
wave equation in a moving domain. Let Ĥ be a separable Hilbert space, and let {V̂t }t∈[0,T ]
be a family of separable Hilbert spaces with the following properties:
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(i) for every t ∈ [0, T ], the space V̂t is contained and dense in Ĥ with continuous embedding;
(i i) for every s, t ∈ [0, T ], with s < t , V̂s ⊂ V̂t and the Hilbert space structure on V̂s is the

one induced by V̂t .

Let a : V̂T × V̂T → R be a bilinear symmetric form satisfying the following conditions:

(i i i) there exists M0 such that

|a(u, v)| ≤ M0‖u‖V̂T
‖v‖V̂T

for every u, v ∈ V̂T ;
(iv) there exists λ0 > 0 and ν0 ∈ R such that

a(u, u) ≥ λ0‖u‖2
V̂T

− ν0‖u‖2
Ĥ

for every u ∈ V̂T .

Assume that

(U1) for every t ∈ [0, T ], there is a continuous and linear bijective operator Qt : V̂t → V̂0,
with continuous inverse Rt : V̂0 → V̂t ;

(U2) Q0 and R0 are the identity maps on V̂0;
(U3) there exists a constant M1 independent of t such that

‖Qt u‖Ĥ ≤ M1‖u‖Ĥ for every u ∈ V̂t , ‖Rt u‖Ĥ ≤ M1‖u‖Ĥ for every u ∈ V̂0,

‖Qt u‖V̂0
≤ M1‖u‖V̂t

for every u ∈ V̂t , ‖Rt u‖V̂t
≤ M1‖u‖V̂0

for every u ∈ V̂0.

Since V̂t is dense in Ĥ , (U3) implies that Qt and Rt can be extended to continuous linear
operators from Ĥ into itself, still denoted by Qt and Rt . We also require

(U4) for every v ∈ V̂0, the function t �→ Rtv from [0, T ] into Ĥ has a derivative, denoted
by Ṙtv;

(U5) there exists η ∈ (0, 1) such that

‖Ṙt Qtv‖2
Ĥ

≤ λ0(1 − η)‖v‖2
V̂t

for every v ∈ V̂t ;
(U6) there exists a constant M2 such that

‖Qtv − Qsv‖Ĥ ≤ M2‖v‖V̂s
(t − s) for every 0 ≤ s < t ≤ T and every v ∈ V̂s;

(U7) for very t ∈ [0, T ) and for every v ∈ V̂t , there exists an element of Ĥ , denoted by
Q̇tv, such that

lim
h→0+

Qt+hv − Qtv

h
= Q̇tv in Ĥ .

For every t ∈ [0, T ], define
α(t) : V̂0 × V̂0 → R as α(t)(u, v) := a(Rt u, Rtv) for u, v ∈ V̂0,

β(t) : V̂0 × V̂0 → R as β(t)(u, v) := (Ṙt u, Ṙtv) for u, v ∈ V̂0,

γ (t) : V̂0 × Ĥ → R as γ (t)(u, v) := (Ṙt u, Rtv) for u ∈ V̂0 and v ∈ Ĥ ,

δ(t) : Ĥ × Ĥ → R as δ(t)(u, v) := (Rt u, Rtv) − (u, v) for u, v ∈ Ĥ .

We assume that there exists a constant M3 such that

(U8) the maps t �→ α(t)(u, v), t �→ β(t)(u, v), t �→ γ (t)(u, v), and t �→ δ(t)(u, v) are
Lipschitz continuous and for a.e. t ∈ (0, T ), their derivatives satisfy

|α̇(t)(u, v)| ≤ M3‖u‖V̂0
‖v‖V̂0

for u, v ∈ V̂0,
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|β̇(t)(u, v)| ≤ M3‖u‖V̂0
‖v‖V̂0

for u, v ∈ V̂0,

|γ̇ (t)(u, v)| ≤ M3‖u‖V̂0
‖v‖Ĥ for u ∈ V̂0 and v ∈ Ĥ ,

|δ̇(t)(u, v)| ≤ M3‖u‖Ĥ ‖v‖Ĥ for u, v ∈ Ĥ .

Theorem 5.4 (Uniqueness for the wave equation) Assume that Ĥ , {V̂t }t∈[0,T ], and a satisfy
(i)–(iv) and that (U1)–(U8) hold. Given u0 ∈ V̂0, u1 ∈ Ĥ , and f ∈ L2(0, T ; Ĥ), there
exists a unique solution

u ∈ V̂ := {ϕ ∈ L2(0, T ; V̂T ) : u̇ ∈ L2(0, T ; Ĥ), u(t) ∈ V̂t for a.e. t ∈ (0, T )}
to the wave equation

−
∫ T

0
(u̇(t), ϕ̇(t))Ĥ dt +

∫ T

0
a(u(t), ϕ(t)) dt =

∫ T

0
( f (t), ϕ(t))Ĥ dt for every ϕ ∈ V̂,

satisfying the initial conditions u(0) = u0 and u̇(0) = u1 in the sense that

lim
h→0+

1

h

∫ h

0

(
‖u(t) − u0‖2

V̂t
+ ‖u̇(t) − u1‖2

Ĥ

)
dt = 0.

Proof See [8, Theorem 4.3]. ��
We now are in position to prove the uniqueness theorem in the case of a moving domain.

We consider the dimensional case d = 2, and we require the following assumptions:

(H1) there is a C2,1 simple curve � ⊂ � ⊂ R
2, parametrized by arc-length γ : [0, �] → �,

such that � ∩ ∂� = γ (0) ∪ γ (�) and �\� is the union of two disjoint open sets with
Lipschitz boundary;

(H2) there exists a non-decreasing function s : [0, T ] → (0, �) of class C1,1 such that
�t = γ ([0, s(t)]);

(H3) |ṡ(t)|2 < λ1
CK

, where λ1 is the ellipticity constant of C and CK is the constant that
appears in Korn’s inequality in (2.2).

Notice that hypotheses (H1) and (H2) imply (E1)–(E3). We also assume that� satisfies (5.1)
and there exists a constant ε > 0 such that for every t ∈ [0, T ]

�(t, x) = 0 for every x ∈ {y ∈ � : |y − γ (s(t))| < ε}. (5.7)

Theorem 5.5 Assume d = 2 and (H1)–(H3), (5.1), and (5.7). Then the system (2.8) with
boundary conditions (2.9)–(2.11) has a unique weak solution u ∈ W which satisfies the
initial conditions u(0) = u0 and u̇(0) = u1 in the sense of (2.16).

Proof As before, let u1, u2 ∈ W be two weak solutions to (2.8)–(2.11) with initial condi-
tions (2.12). Then u := u1−u2 satisfies (5.2) and (5.3) for every ϕ ∈ VD such that ϕ(T ) = 0.
Let us define

t0 := sup{t ∈ [0, T ] : u(s) = 0 for every s ∈ [0, t]},
and assume by contradiction that t0 < T . Consider first the case in which t0 > 0. By (H1),
(H2), (5.1), and (5.7), we can find two open sets A1 and A2, with A1 ⊂⊂ A2 ⊂⊂ �, and a
number δ > 0 such that for every t ∈ [t0 − δ, t0 + δ], we have γ (s(t)) ∈ A1, �(t, x) = 0
for every x ∈ A2, and (A2\A1) \ � is the union of two disjoint open sets with Lipschitz
boundary. Let us define

V̂ 1 := {u ∈ H1((A2\A1) \ �t0−δ;R2) : u = 0 on ∂ A1 ∪ ∂ A2}, Ĥ1 := L2(A2\A1;R2).
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Since every function in V̂ 1 can be extended to a function in V D
t0−δ , by classical results for

linear hyperbolic equations (see, e.g., [9]), we deduce ü ∈ L2(t0 − δ, t0 + δ; (V̂ 1)′) and that
u satisfies for a.e. t ∈ (t0 − δ, t0 + δ)

〈ü(t), φ〉
(V̂ 1)′ + (CEu(t), Eφ)Ĥ1 = 0 for every φ ∈ V̂ 1.

Moreover, we have u(t0) = 0 as element of Ĥ1 and u̇(t0) = 0 as element of (V̂ 1)′, since
u(t) ≡ 0 in [t0−δ, t0), u ∈ C0([t0−δ, t0]; Ĥ1), and u̇ ∈ C0([t0−δ, t0]; (V̂ 1)′). We are now
in position to apply the result of finite speed of propagation of Theorem 5.3. This theorem
ensures the existence of the third open set A3, with A1 ⊂⊂ A3 ⊂⊂ A2, such that, up to
choose a smaller δ, we have u(t) = 0 on ∂ A3 for every t ∈ [t0, t0 + δ], and both (�\A3) \ �

and A3\� are union of two disjoint open sets with Lipschitz boundary.
In �\A3, the function u solves

−
∫ t0+δ

t0−δ

∫
�\A3

u̇(t, x) · ϕ̇(t, x) dx dt +
∫ t0+δ

t0−δ

∫
�\A3

C(x)Eu(t, x) · Eϕ(t, x) dx dt

+
∫ t0+δ

t0−δ

∫
�\A3

B(x)�(t, x)Eu̇(t, x) · �(t, x)Eϕ(t, x) dx dt = 0

for everyϕ ∈ L2(t0−δ, t0+δ; V̂ 2)∩H1(t0−δ, t0+δ; Ĥ2) such thatϕ(t0−δ) = ϕ(t0+δ) = 0,
where

V̂ 2 := {u ∈ H1((�\A3) \ �t0−δ;R2) : u = 0 on ∂D� ∪ ∂ A3}, Ĥ2 := L2(�\A3;R2).

Since u(t) = 0 on ∂D� ∪ ∂ A3 for every t ∈ [t0 − δ, t0 + δ] and u(t0 − δ) = u̇(t0 − δ) = 0
in the sense of (2.16) (recall that u ≡ 0 in [t0 − δ, t0)), we can apply Lemma 5.2 to deduce
u(t) = 0 in �\A3 for every t ∈ [t0 − δ, t0 + δ].

On the other hand in A3, by setting

V̂ 3
t := {u ∈ H1(A3\�t ;R2) : u = 0 on ∂ A3}, Ĥ3 := L2(A3;R2),

we get that the function u solves

−
∫ t0+δ

t0−δ

∫
A3

u̇(t, x) · ϕ̇(t, x) dx dt +
∫ t0+δ

t0−δ

∫
A3

C(x)Eu(t, x) · Eϕ(t, x) dx dt = 0

for every ϕ ∈ L2(t0 − δ, t0 + δ; V̂ 3
t0+δ) ∩ H1(t0 − δ, t0 + δ; Ĥ3) such that ϕ(t) ∈ V̂ 3

t for
a.e. t ∈ (t0 − δ, t0 + δ) and ϕ(t0 − δ) = ϕ(t0 + δ) = 0. Here, we would like to apply the
uniqueness result of Theorem 5.4 for the spaces {V̂ 3

t }t∈[t0−δ,t0+δ] and Ĥ3, endowed with the
usual norms, and for the bilinear form

a(u, v) :=
∫

A3

C(x)Eu(x) · Ev(x)dx for every u, v ∈ V̂ 3
t0+δ.

As shown in [7, Example 2.14], we can construct �,� ∈ C1,1([t0 − δ, t0 + δ] × A3;R2)

such that for every t ∈ [0, T ], the function �(t, ·) : A3 → A3 is a diffeomorphism of
A3 in itself with inverse �(t, ·) : A3 → A3. Moreover, �(0, y) = y for every y ∈ A3,
�(t, � ∩ A3) = � ∩ A3 and �(t, �t0−δ ∩ A3) = �t ∩ A3 for every t ∈ [t0 − δ, t0 + δ].
For every t ∈ [t0 − δ, t0 + δ], the maps (Qt u)(y) := u(�(t, y)), u ∈ V̂ 3

t and y ∈ A3, and
(Rtv)(x) := v(�(t, x)), v ∈ V̂ 3

t0−δ and x ∈ A3, provide a family of linear and continuous
operators which satisfy the assumptions (U1)–(U8) of Theorem 5.4 (see [8, Example 4.2]).

123



1288 M. Caponi, F. Sapio

The only condition to check is (U5). The bilinear form a satisfies the following ellipticity
condition

a(u, u) ≥ λ1‖Eu‖2
L2(A3;R2×2

sym )
≥ λ1

Ĉk
‖u‖2

V̂ 3
t0+δ

− λ1‖u‖2
Ĥ3 for every u ∈ V̂ 3

t0+δ, (5.8)

where ĈK is the constant in Korn’s inequality in V̂ 3
t0+δ , namely

‖∇u‖2L2(A3;R2×2)
≤ ĈK (‖u‖2L2(A3;R2)

+ ‖Eu‖2
L2(A3;R2×2

sym )
) for every u ∈ V̂ 3

t0+δ.

Notice that for t ∈ [t0 − δ, t0 + δ]
(Ṙtv)(x) = ∇v(�(t, x))�̇(t, x) for a.e. x ∈ A3,

from which we obtain

‖Ṙt Qt u‖2
Ĥ3 ≤

∫
A3

|∇u(x)|2|�̇(t,�(t, x))|2 dx .

Hence, have to show the property

|�̇(t, y)|2 <
λ1

ĈK
for every t ∈ [t0 − δ, t0 + δ] and y ∈ A3.

This is ensured by (H3). Indeed, as explained in [7, Example 3.1], we can construct the maps
� and � in such a way that

|�̇(t, y)|2 <
λ1

CK
,

since |ṡ(t)|2 < λ1
CK

. Moreover, every function in V̂ 3
t0+δ can be extended to a function in

H1(�\�;Rd). Hence, for Korn’s inequality in V̂ 3
t0+δ , we can use the same constant CK of

H1(�\�;Rd). This allows us to apply Theorem 5.4, which implies u(t) = 0 in A3 for every
t ∈ [t0, t0+δ]. In the case t0 = 0, it is enough to argue as before in [0, δ], by exploiting (5.2).
Therefore, u(t) = 0 in � for every t ∈ [t0, t0 + δ], which contradicts the maximality of t0.
Hence t0 = T , that yields u(t) = 0 in � for every t ∈ [0, T ]. ��
Remark 5.6 Also Theorem 5.5 is true in the antiplane case, with essentially the same proof.
Notice that, when the displacement is scalar, we do not need to use Korn’s inequality in (5.8)
to get the coercivity in V̂ 3

t0+δ of the bilinear form a defined before. Therefore, in this case in

(H3), it is enough to assume |ṡ(t)|2 < λ1.

6 Amoving crack satisfying Griffith’s dynamic energy-dissipation
balance

We conclude this paper with an example of a moving crack {�t }t∈[0,T ] and weak solution
to (2.8)–(2.12) which satisfy the energy-dissipation balance of Griffith’s dynamic criterion,
as happens in [4] for the purely elastic case. In dimension d = 2, we consider an antiplane
evolution, which means that the displacement u is scalar, and � := {x ∈ R

2 : |x | < R},
with R > 0. We fix a constant 0 < c < 1 such that cT < R, and we set

�t := {(σ, 0) ∈ � : σ ≤ ct}.
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Let us define the following function

S(x1, x2) := Im(
√

x1 + i x2) = 1√
2

x2√|x | + x1
x ∈ R

2\{(σ, 0) : σ ≤ 0},

where Im denotes the imaginary part of a complex number. Notice that the function S satisfies
S ∈ H1(� \ �0) \ H2(� \ �0), and it is a weak solution to

{
�S = 0 in �\�0,

∇S · ν = ∂2S = 0 on �0.

Let us consider the function

u(t, x) := 2√
π

S

(
x1 − ct√
1 − c2

, x2

)
t ∈ [0, T ], x ∈ �\�t

and let w(t) be its restriction to ∂�. Since u(t) has a singularity only at the crack tip (ct, 0),
the functionw(t) can be seen as the trace on ∂� of a function belonging to H2(0, T ; L2(�))∩
H1(0, T ; H1(�\�0)), still denoted by w(t). It is easy to see that u solves the wave equation

ü(t) − �u(t) = 0 in �\�t , t ∈ (0, T ),

with boundary conditions

u(t) = w(t) on ∂�, t ∈ (0, T ),

∂u

∂ν
(t) = ∇u(t) · ν = 0 on �t , t ∈ (0, T ),

and initial data

u0(x1, x2) := 2√
π

S

(
x1√
1 − c2

, x2

)
∈ H1(�\�0),

u1(x1, x2) := − 2√
π

c√
1 − c2

∂1S

(
x1√
1 − c2

, x2

)
∈ L2(�).

Let us consider a function � which satisfies the regularity assumptions (5.1) and condi-
tion (5.7), namely

�(t) = 0 on Bε(t) := {x ∈ R
2 : |x − (ct, 0)| < ε} for every t ∈ [0, T ],

with 0 < ε < R − cT . In this case, u is a weak solution, in the sense of Definition 2.4, to
the damped wave equation

ü(t) − �u(t) − div(�2(t)∇u̇(t)) = f (t) in ∈ �\�t , t ∈ (0, T ),

with forcing term f given by

f := −div(�2∇u̇) = −∇� · 2�∇u̇ − �2�u̇ ∈ L2(0, T ; L2(�)),

and boundary and initial conditions

u(t) = w(t) on ∂�, t ∈ (0, T ),

∂u

∂ν
(t) + �2(t)

∂ u̇

∂ν
(t) = 0 on �t , t ∈ (0, T ),

u(0) = u0, u̇(0) = u1.

123



1290 M. Caponi, F. Sapio

Notice that to derive the homogeneousNeumann boundary conditions on�t , we used ∂ u̇
∂ν

(t) =
∇u̇(t) · ν = ∂2u̇(t) = 0 on �t . By the uniqueness result proved in the previous section, the
function u coincides with that one found in Theorem 3.1. Thanks to the computations done in
[4, Section 4], we know that u satisfies for every t ∈ [0, T ] the following energy-dissipation
balance for the undamped equation, where ct coincides with the length of �t\�0

1

2
‖u̇(t)‖2L2(�)

+ 1

2
‖∇u(t)‖2L2(�;R2)

+ ct = 1

2
‖u̇(0)‖2L2(�)

+ 1

2
‖∇u(0)‖2L2(�;R2)

+
∫ t

0

(
∂u

∂ν
(s), ẇ(s)

)
L2(∂�)

ds. (6.1)

Moreover, we have

∫ t

0

(
∂u

∂ν
(s), ẇ(s)

)
L2(∂�)

ds =
∫ t

0
(∇u(s),∇ẇ(s))L2(�;R2) ds −

∫ t

0
(u̇(s), ẅ(s))L2(�) ds

+ (u̇(t), ẇ(t))L2(�) − (u̇(0), ẇ(0))L2(�).

(6.2)
For every t ∈ [0, T ], we compute

( f (t), u̇(t) − ẇ(t))L2(�) = −
∫

(�\Bε (t))\�t

div[�2(t, x)∇u̇(t, x)](u̇(t, x) − ẇ(t, x)) dx

= −
∫

(�\Bε (t))\�t

div[�2(t, x)∇u̇(t, x)(u̇(t, x) − ẇ(t, x))] dx

+
∫

(�\Bε (t))\�t

�2(t, x)∇u̇(t, x) · (∇u̇(t, x) − ∇ẇ(t, x)) dx .

If we denote by u̇⊕(t) and ẇ⊕(t) the traces of u̇(t) and ẇ(t) on �t from above and by u̇�(t)
and ẇ�(t) the trace from below, thanks to the divergence theorem, we have

∫
(�\Bε (t))\�t

div[�2(t, x)∇u̇(t, x)(u̇(t, x) − ẇ(t, x))] dx

=
∫

∂�

�2(t, x)
∂ u̇

∂ν
(t, x)(u̇(t, x) − ẇ(t, x)) dx

+
∫

∂ Bε (t)
�2(t, x)

∂ u̇

∂ν
(t, x)(u̇(t, x) − ẇ(t, x)) dx

−
∫

(�\Bε (t))∩�t

�2(t, x)∂2u̇⊕(t, x)(u̇⊕(t, x) − ẇ⊕(t, x)) dH1(x)

+
∫

(�\Bε (t))∩�t

�2(t, x)∂2u̇�(t, x)(u̇�(t, x) − ẇ�(t, x)) dH1(x) = 0,

since u(t) = w(t) on ∂�, �(t) = 0 on ∂ Bε(t), and ∂2u̇(t) = 0 on �t . Therefore, for every
t ∈ [0, T ], we get

( f (t), u̇(t) − ẇ(t))L2(�) = ‖�(t)∇u̇(t)‖2L2(�;R2)
− (�(t)∇u̇(t),�(t)∇ẇ(t))L2(�;R2).

(6.3)
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By combining (6.1)–(6.3), we deduce that u satisfies for every t ∈ [0, T ] the following
Griffith’s energy-dissipation balance for the viscoelastic dynamic equation

1

2
‖u̇(t)‖2L2(�)

+ 1

2
‖∇u(t)‖2L2(�;R2)

+
∫ t

0
‖�(s)∇u̇(s)‖2L2(�;R2)

ds + ct

= 1

2
‖u̇(0)‖2L2(�)

+ 1

2
‖∇u(0)‖2L2(�;R2)

+ Wtot(t),

(6.4)

where in this case, the total work takes the form

Wtot(t) :=
∫ t

0

[
( f (s), u̇(s) − ẇ(s))L2(�) + (∇u(s),∇ẇ(s))L2(�;R2)

]
ds

+
∫ t

0
(�(s)∇u̇(s),�(s)∇ẇ(s))L2(�;R2)ds

−
∫ t

0
(u̇(s), ẅ(s))L2(�) ds + (u̇(t), ẇ(t))L2(�) − (u̇(0), ẇ(0))L2(�).

Notice that equality (6.4) gives (1.6). This shows that in thismodel Griffith’s dynamic energy-
dissipation balance can be satisfied by amoving crack, in contrast with the case� = 1, which
always leads to (1.3).
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