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Abstract
We study the long-time dynamics of the Navier–Stokes equations in the three-dimensional
periodic domains with a body force decaying in time. We introduce appropriate systems of
decaying functions and corresponding asymptotic expansions in those systems. We prove
that if the force has a large-time asymptotic expansion in Gevrey–Sobolev spaces in such
a general system, then any Leray–Hopf weak solution admits an asymptotic expansion of
the same type. This expansion is uniquely determined by the force, and independent of the
solutions. Various applications of the abstract results are provided which particularly include
the previously obtained expansions for the solutions in case of power decay, as well as the
new expansions in case of the logarithmic and iterated logarithmic decay.
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1 Introduction

We study the long-time behavior of viscous, incompressible fluid flows in space R3. First,
we recall the Navier–Stokes equations (NSE) that describe the fluid dynamics.

Let x ∈ R
3 and t ∈ R denote the space and time variables, respectively. Let the (kinematic)

viscosity be denoted by ν > 0, the velocity vector field by u(x, t) ∈ R
3, the pressure by

p(x, t) ∈ R, and the body force by f(x, t) ∈ R
3. The NSE are

∂u
∂t

+ (u · ∇)u − ν�u = −∇ p + f on R3 × (0,∞),

div u = 0 on R
3 × (0,∞).

(1.1)

The initial condition is

u(x, 0) = u0(x), (1.2)

where u0(x) is a given divergence-free vector field.
We avoid the unbounded domains and the boundary conditions by considering only force

f(x, t) and solutions (u(x, t), p(x, t)) that are L-periodic for some L > 0. Hereafter, a
function g(x) is said to be L-periodic if

g(x + Le j ) = g(x) for all x ∈ R
3, j = 1, 2, 3,

where {e1, e2, e3} is the standard basis ofR3 and is said to have zero average over the domain
� = (−L/2, L/2)3 if

∫
�

g(x)dx = 0.

By using a particular Galilean transformation, see details in, e.g., [19], we can also assume,
for all t ≥ 0, that f(x, t) and u(x, t), have zero averages over the domain �. In light of the
Leray–Helmholtz decomposition, and for the sake of convenience, we also assume that f(x, t)
is divergence-free for all t ≥ 0.

By rescaling the variables x and t , we assume throughout, without loss of generality, that
L = 2π and ν = 1.

Throughout the paper, we use the following notation

u(t) = u(·, t), f (t) = f(·, t), u0 = u0(·),
which are function-valued.
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Asymptotic expansions in a general system of decaying… 1025

In the case of potential force, that is, f(x, t) = −∇φ(x, t), for some scalar function φ,
Foias and Saut proved in [15] that any non-trivial, regular solution u(t) in bounded or periodic
domains admits an asymptotic expansion (as t → ∞)

u(t) ∼
∞∑

n=1

qn(t)e
−nt (1.3)

in Sobolev spaces Hm(�)3, for all m ≥ 0. The interested reader is referred to [3,13] for
early results on the solutions’ asymptotic behavior, Foias and Saut [12–16] for associated
normalizationmap and invariant nonlinear manifolds, Foias et al. [6–8] for the corresponding
Poincaré–Dulac normal form, Foias et al. [4,5] for their applications to analysis of helicity,
statistical solutions, and decaying turbulence. The recent paper [9] is a survey on the subject.

In case of periodic domains, it was then improved in [18] that the expansion (1.3) holds
in Gevrey–Sobolev spaces Gα,σ for any α, σ > 0, see definition (2.1) in Sect. 2, which have
much stronger norms than those in Hm(�)3.When the force f is not potential, the asymptotic
expansion of Leray–Hopf weak solutions is established in [19] for an exponentially decaying
force: if the force has an asymptotic expansion

f (t) ∼
∞∑

n=1

pn(t)e
−nt , (1.4)

then u(t) has an asymptotic expansion of type (1.3).
The case of power-decaying forces is treated in [1]: if

f (t) ∼
∞∑

n=1

φnt−γn , (1.5)

then all Leray–Hopf weak solutions u(t) admit the same expansion

u(t) ∼
∞∑

n=1

ξnt−μn . (1.6)

Above φn’s and ξn’s belong to some Gevrey–Sobolev space Gα,σ . The meanings of the
expansions (1.3), (1.4), (1.5), (1.6) are specified precisely in the cited papers.

The current paper aims to develop the results in [1] to cover a very large class of forces.
For example, we will prove that if

f (t) ∼
∞∑

n=1

φn(ln t)−γn , or , f (t) ∼
∞∑

n=1

φn(ln(ln t))−γn ,

then

u(t) ∼
∞∑

n=1

ξn(ln t)−μn , or, respectively, u(t) ∼
∞∑

n=1

ξn(ln(ln t))−μn .

In fact, we obtain a much more general result which is described very roughly here. Let
(ψn)

∞
n=1 be a sequence of time-decaying functions with ψn+1(t) decays to zero, as t → ∞,

much faster thanψn(t). The functionsψn’s are assumed to satisfy a certain set of conditions.
Suppose there exist α ≥ 1/2 and σ ≥ 0 such that

f (t) ∼
∞∑

n=1

φnψn(t) in Gα,σ . (1.7)
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1026 D. Cao, L. Hoang

We will prove that any Leray–Hopf weak solution u(t) will admit an expansion

u(t) ∼
∞∑

n=1

ξnψn(t) in Gα,σ , (1.8)

where ξn’s are explicitly determined by φn’s. The meaning of the expansions (1.7) and (1.8)
is more sophisticated than (1.3)–(1.6), thanks to their generality, and will be made clear later
in the paper.

The paper is organized as follows. Section 2 reviews the functional setting for the NSE
which is suitable for studying the solutions’ dynamics in time. It also recalls basic inequalities
for the Stokes operator and the bilinear form in the NSE. In Sect. 3, we establish the long-time
estimates for solutions of both linearized NSE (Sect. 3.1) and the NSE (Sect. 3.2) with very
general decaying forces. The results for the linearized NSE play a key role in improving
the long-time estimates for the solutions of the NSE. Having their own merits, these esti-
mates are also crucial to the proofs in Sects. 5 and 6. Section 4 introduces the definitions of
systems of decaying functions in time and the asymptotic expansions in those systems. In
Definition 4.3, we aim to balance between the generality, such as in Definition 4.1, and the
technical requirements. Condition 4.4 is particularly emphasized on applications to ordinary
and partial differential equations with quadratic or integral power nonlinearity. Condition 4.5
is focused on functions which are larger than the exponential ones. We state and prove ele-
mentary properties for these systems and expansions. In Sect. 5, we obtain in Theorem 5.4
the expansions in Gevrey–Sobolev spaces for all Leray–Hopf solutions of the NSE, when a
continuum system of decaying functions is available as the expansions’ basis. The result gives
precise meanings to the above expansions (1.7) and (1.8). A version of finite sum asymptotic
approximations is proved in Theorem 5.6. It is suitable for a force that has limited information
about their long-time behavior. In Sect. 6, we study the situation when the discrete system of
functions for expansions cannot be embedded directly into a continuum system as in Sect. 5.
However, by using a continuum background system, we can still obtain in Theorem 6.3 the
asymptotic expansions for solutions of the NSE. An asymptotic approximation result for the
discrete system is similarly obtained in Theorem 6.4. Section 7 provides many applications
of the abstract results in Sects. 5 and 6. They consist of the recovery of the power decay case
previously established in [1], see Sect. 7.1, as well as the new logarithmic and iterated loga-
rithmic decay cases, see Theorem 7.3 and Corollary 7.4. Examples 7.6 and 7.7 demonstrate
some asymptotic expansions with trigonometric functions. More complicated expansions are
presented in Propositions 7.8 and 7.11, particularly, the latter one is achieved by simply using
of the background systems developed in Sect. 6. “Appendix A” contains some criteria for
a convergent series of functions to have corresponding asymptotic expansions of the types
specified in Sects. 4 and 6.

2 Functional setting and basic facts for the NSE

We recall the standard functional setting for the NSE, see e.g. [2,10,21,22], and some basic
inequalities and estimates.

Let L2(�) and Hm(�) = W m,2(�), for integers m ≥ 0, denote the standard Lebesgue
and Sobolev spaces on �. The standard inner product and norm in L2(�)3 are denoted by
〈·, ·〉 and | · |, respectively. (We warn that this notation | · | also denotes the Euclidean norm
in R

n and C
n , for any n ∈ N, but its meaning will be clear based on the context.)
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Asymptotic expansions in a general system of decaying… 1027

Let V be the set of all 2π -periodic trigonometric polynomial vector fields which are
divergence-free and have zero average over �. Define

H , resp. V = closure of V in L2(�)3, resp. H1(�)3.

Notice that each element of H is divergence-free and has zero average over �, and each
element of V is 2π-periodic.

We use the following embeddings and identification

V ⊂ H = H ′ ⊂ V ′,

where each space is dense in the next one, and the embeddings are compact.
Let P denote the orthogonal (Leray) projection in L2(�)3 onto H .
The Stokes operator A is a bounded linear mapping from V to its dual space V ′ defined

by

〈Au, v〉V ′,V = 〈〈u, v〉〉 def=
3∑

j=1

〈 ∂u
∂x j

,
∂v
∂x j

〉 for all u, v ∈ V .

As an unbounded operator on H , the operator A has the domain D(A) = V ∩ H2(�)3,
and, under the current consideration of periodicity conditions,

Au = −P�u = −�u ∈ H for all u ∈ D(A).

The spectrum of A is known to be

S(A) = {|k|2 : k ∈ Z
3,k = 0},

and each λ ∈ S(A) is an eigenvalue. Note thatS(A) ⊂ N and 1 ∈ S(A), hence, the additive
semigroup generated by S(A) is N.

For n ∈ S(A), we denote by Rn the orthogonal projection in H on the eigenspace of A
corresponding to n, and set

Pn =
∑

j∈S(A), j≤n

R j .

Note that each vector space Pn H is finite dimensional.
For α, σ ∈ R and u = ∑

k =0 û(k)e
ik·x, define

Aαu =
∑
k =0

|k|2αû(k)eik·x, eσ A1/2
u =

∑
k =0

eσ |k|̂u(k)eik·x,

and, hence,

Aαeσ A1/2
u = eσ A1/2

Aαu =
∑
k =0

|k|2αeσ |k|̂u(k)eik·x.

The Gevrey–Sobolev spaces are defined by

Gα,σ = D(Aαeσ A1/2
)
def= {u ∈ H : |u|α,σ def= |Aαeσ A1/2

u| < ∞}, (2.1)

and, in particular, when σ = 0, the domain of the fractional operator Aα is

D(Aα) = Gα,0 = {u ∈ H : |Aαu| = |u|α,0 < ∞}.
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1028 D. Cao, L. Hoang

Thanks to the zero-average condition, the norm |Am/2u| is equivalent to ‖u‖Hm (�)3 on
the space D(Am/2) for m = 0, 1, 2, . . .

Note that D(A0) = H , D(A1/2) = V , and ‖u‖ def= |∇u| is equal to |A1/2u| for u ∈ V .
Also, the norms | · |α,σ are increasing in α, σ , hence, the spaces Gα,σ are decreasing in α, σ .

Regarding the nonlinear term in the NSE, a bounded linear map B : V × V → V ′ is
defined by

〈B(u, v),w〉V ′,V = b(u, v,w)
def=

∫
�

((u · ∇)v) · w dx, for all u, v,w ∈ V .

In particular,

B(u, v) = P((u · ∇)v), for all u, v ∈ D(A).

The problems (1.1) and (1.2) can now be rewritten in the functional form as

du(t)

dt
+ Au(t) + B(u(t), u(t)) = f (t) in V ′ on (0,∞), (2.2)

u(0) = u0 ∈ H . (2.3)

(We refer the reader to the books [2,20–22] for more details.)
The next definition makes precise the meaning of weak solutions of (2.2).

Definition 2.1 Let f ∈ L2
loc([0,∞), H). A Leray–Hopf weak solution u(t) of (2.2) is a

mapping from [0,∞) to H such that

u ∈ C([0,∞), Hw) ∩ L2
loc([0,∞), V ), u′ ∈ L4/3

loc ([0,∞), V ′),

and satisfies

d

dt
〈u(t), v〉 + 〈〈u(t), v〉〉 + b(u(t), u(t), v) = 〈 f (t), v〉 (2.4)

in the distribution sense in (0,∞), for all v ∈ V , and the energy inequality

1

2
|u(t)|2 +

∫ t

t0
‖u(τ )‖2dτ ≤ 1

2
|u(t0)|2 +

∫ t

t0
〈 f (τ ), u(τ )〉dτ (2.5)

holds for t0 = 0 and almost all t0 ∈ (0,∞), and all t ≥ t0. Here, Hw denotes the topological
vector space H with the weak topology.

A regular solution is a Leray–Hopf weak solution that belongs to C([0,∞), V ).
If t �→ u(T + t) is a Leray–Hopf weak/regular solution, then we say u is a Leray–Hopf

weak/regular solution on [T ,∞).

It is well known that a regular solution is unique among all Leray–Hopf weak solutions.
We denote by T the set of t0 ∈ [0,∞) such that (2.5) holds for all t ≥ t0. Note that

[0,∞)\T has zero measure.
If u(t) is a Leray–Hopfweak solution and t0 ∈ T , then u(t0+t) is also a Leray–Hopfweak

solution. Assume additionally that there exists a regular solution w(t) with w(0) = u(t0).
Then by the uniqueness of w(t), we have u(t0 + t) = w(t) and, hence, u(t) is a regular
solution on [t0,∞).

We assume throughout the paper that

Assumption 2.2 The function f belongs to L∞
loc([0,∞), H).
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Asymptotic expansions in a general system of decaying… 1029

Under Assumption 2.2, for any u0 ∈ H , there exists a Leray–Hopf weak solution u(t) of
(2.2) and (2.3), see e.g. [10]. The large-time behavior of u(t) is the focus of our study. More
specific conditions on f will be imposed later.

We note that, thanks to Remark 1(e) of [11], the Leray–Hopf weak solutions in Defini-
tion 2.1 are the same as the weak solutions defined in [10, Chapter II, section 7]. Hence,
according to inequality (A.39) in [10, Chap. II], we have for any such solution u(t) that

|u(t)|2 ≤ e−t |u(0)|2 +
∫ t

0
e−(t−τ)| f (τ )|2dτ ∀t > 0. (2.6)

Below are some inequalities that will be needed in later estimates. First, for any σ, α > 0,
one has

max
x≥0

(xαe−σ x ) = d0(α, σ )
def=

( α

eσ

)α

. (2.7)

Thanks to (2.7), one can verify, for all α, σ > 0, that

|Aαe−σ Av| ≤ d0(α, σ )|v| ∀v ∈ H , (2.8)

|Aαe−σ A1/2
v| ≤ d0(2α, σ )|v| ∀v ∈ H ,

and, consequently,

|Aαv| = |(Aαe−σ A1/2
)eσ A1/2

v| ≤ d0(2α, σ )|eσ A1/2
v| ∀v ∈ G0,σ . (2.9)

For the bilinear mapping B(u, v), it follows from its boundedness that there exists a
constant K∗ > 0 such that

‖B(u, v)‖V ′ ≤ K∗‖u‖ ‖v‖ ∀u, v ∈ V . (2.10)

The estimate of the Gevrey norms |B(u, v)|0,σ was initiated by Foias–Temam [17]. Here
we recall an extended and convenient (though not sharp) version from [18, Lemma 2.1].

There exists a constant K > 1 such that if σ ≥ 0 and α ≥ 1/2, then

|B(u, v)|α,σ ≤ K α|u|α+1/2,σ |v|α+1/2,σ ∀u, v ∈ Gα+1/2,σ . (2.11)

Notation We make clear the meaning of the “big oh” and “small oh” notation. Let f and g
be two non-negative functions defined on a neighborhood of infinity (in R).

• We write f (t) = O(g(t)) (implicitly means as t → ∞) if there exist T ,C > 0, such
that f (t) ≤ Cg(t) for all t ≥ T .

• We say f (t)
O= g(t), if f (t) = O(g(t)) and g(t) = O( f (t)).

• We write f (t) = o(g(t)) (implicitly means as t → ∞) if for any ε > 0, there exist
Tε > 0, such that f (t) ≤ εg(t) for all t ≥ Tε .

Let u(t) = O( f (t)) and v(t) = O(g(t)). Then clearly (uv)(t) = O(g(t)g(t)), which we
simply write as

O( f (t))O(g(t)) = O( f (t)g(t)), and particularly, f (t)O(g(t)) = O( f (t)g(t)).

(2.12)

If f (t) = O(g(t)), then (u + v)(t) = O(g(t)), which we write as

O( f (t)) + O(g(t)) = O(g(t)). (2.13)

Note that the identities in (2.12) and (2.13) are only for convenience and should be read
from left to right.
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1030 D. Cao, L. Hoang

3 Large-time estimates

This section contains long-time estimates for solutions of the linearized NSE and of the NSE
with the force decaying in time.

First, we have a convenient integral estimate which will be used repeatedly later.

Lemma 3.1 Let F be a continuous, decreasing function from [0,∞) to [0,∞). For any σ > 0
and θ ∈ (0, 1), one has∫ t

0
e−σ(t−τ)F(τ )dτ ≤ 1

σ

(
F(0)e−(1−θ)σ t + F(θ t)

)
∀t ≥ 0. (3.1)

Proof We follow the proof of [1, Lemma 2.2]. We split∫ t

0
e−σ(t−τ)F(τ )dτ = I1 + I2,

where I1 is the integral from 0 to θ t , and I2 is the integral from θ t to t . Using themonotonicity
of F , we estimate

I1 ≤ F(0)
∫ θ t

0
e−σ(t−τ)dτ ≤ F(0)

e−(1−θ)σ t

σ
,

I2 ≤ F(θ t)
∫ t

θ t
e−σ(t−τ)dτ ≤ F(θ t)

1

σ
.

Thus, we obtain (3.1). ��

3.1 The linearized NSE

We establish an explicit estimate for solutions of the linearized NSE in terms of the decaying
force.

Theorem 3.2 Given α, σ ≥ 0, let ξ ∈ Gα,σ , and f be a function from (0,∞) to Gα,σ that
satisfies

| f (t)|α,σ ≤ M F(t) a.e. in (0,∞), (3.2)

where M is a positive constant, and F is a continuous, decreasing function from [0,∞) to
[0,∞).

Let w0 ∈ Gα,σ . Suppose w ∈ C([0,∞), Hw) ∩ L1
loc([0,∞), V ), with w′ ∈

L1
loc([0,∞), V ′), is a weak solution of

w′ = −Aw + ξ + f in V ′ on (0,∞), w(0) = w0,

i.e., it holds, for all v ∈ V , that

d

dt
〈w, v〉 = −〈〈w, v〉〉 + 〈ξ + f , v〉 in the distribution sense on (0,∞).

Then the following statements hold true.

(i) w(t) ∈ Gα+1−ε,σ for all ε ∈ (0, 1) and t > 0.
(ii) For any numbers a, a0 ∈ (0, 1) with a + a0 < 1 and any ε ∈ (0, 1), there exists a

positive constant C depending on a0, a, ε, M, F(0), |ξ |α,σ and |w0|α,σ such that

|w(t) − A−1ξ |α+1−ε,σ ≤ C
(
e−a0t + F(at)

) ∀t ≥ 1. (3.3)
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Asymptotic expansions in a general system of decaying… 1031

(iii) Assume, in addition, that

• There exist k0 > 0 and D1 > 0 such that

e−k0t ≤ D1F(t) ∀t ≥ 0, and (3.4)

• For any a ∈ (0, 1), there exists D2 = D2,a > 0 such that

F(at) ≤ D2F(t) ∀t ≥ 0. (3.5)

Then there exists C > 0 such that

|w(t) − A−1ξ |α+1−ε,σ ≤ C F(t) ∀t ≥ 1. (3.6)

Proof (i) This regularity result is the same as [1, Lemma 2.4(i)] inwhichwe set f := ξ+ f .
(ii) First, we state and prove a more technical version of (3.3).

For any ε, δ, θ, θ ′ ∈ (0, 1), there exists C > 0 depending on ε, δ, θ , M , F(0), |ξ |α,σ
and |w0|α,σ such that

|w(t) − A−1ξ |α+1−ε,σ ≤ C
(
e−(1−θ ′)θδt + F(θ ′θ t)

) ∀t ≥ 1. (3.7)

Proof of (3.7) We follow the proof of [1, Lemma 2.3].

(a) Let N ∈ S(A). We recall formula (2.19) of [1]:

PN
(
w(t) − A−1ξ

) = e−t A PNw0 − A−1e−t A PN ξ +
∫ t

0
e−(t−τ)A PN f (τ )dτ ∀t ≥ 0.

(3.8)

(This formula was derived by using the equation of PNw and the variation of constant
formula.)

Let ε ∈ (0, 1). Applying A1−ε to both sides of (3.8), and estimating the | · |α,σ norm of
the resulting quantities, we obtain

|PN (w(t) − A−1ξ)|α+1−ε,σ ≤ |A1−εe−t Aw0|α,σ + |A−εe−t Aξ |α,σ
+

∫ t

0
|e−(t−τ)A A1−ε f (τ )|α,σ dτ.

(3.9)

Let θ, δ ∈ (0, 1) and t ≥ 1. We estimate each term on the right-hand side of (3.9)
separately.

(b) Rewriting the first term on the right-hand side of (3.9) and applying (2.8) yield

|A1−εe−t Aw0|α,σ = |A1−εe−(1−δ)t A(e−δt Aw0)|α,σ ≤
[ 1 − ε

e(1 − δ)t

]1−ε|e−δt Aw0|α,σ

≤
[ 1 − ε

e(1 − δ)

]1−ε

e−δt |w0|α,σ .

The second term on the right-hand side of (3.9) can be easily estimated by

|A−εe−t Aξ |α,σ ≤ |e−t Aξ |α,σ ≤ e−t |ξ |α,σ .
(c) Dealing with the last integral in (3.9), we split it into two integrals

∫ t

0
|e−(t−τ)A A1−ε f (τ )|α,σ dτ = I1 + I2,
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where I1 is the integral from 0 to θ t , and I2 from θ t to t .
For I1, we have

I1 =
∫ θ t

0

∣∣∣e−(t−τ)(1−δ)A
(

e−(t−τ)δA A1−ε f (τ )
)∣∣∣

α,σ
dτ

≤
∫ θ t

0

∣∣∣e−(1−θ)t(1−δ)A A1−ε
(

e−(t−τ)δA f (τ )
)∣∣∣

α,σ
dτ.

Utilizing (2.8) and then using hypothesis (3.2), we obtain

I1 ≤
∫ θ t

0

[ 1 − ε

e(1 − θ)(1 − δ)t

]1−ε|e−(t−τ)δA f (τ )|α,σ dτ

≤
[ 1 − ε

e(1 − θ)(1 − δ)t

]1−ε
∫ θ t

0
e−(t−τ)δ M F(τ )dτ.

≤ M
[ 1 − ε

e(1 − θ)(1 − δ)

]1−ε
∫ θ t

0
e−δ(θ t−τ)F(τ )dτ.

Let θ ′ ∈ (0, 1). Then by Lemma 3.1,

I1 ≤ M
[ 1 − ε

e(1 − θ)(1 − δ)

]1−ε 1

δ

(
F(0)e−(1−θ ′)δθ t + F(θ ′θ t)

)
.

For I2, we apply (2.8) and use (3.2) to have

I2 =
∫ t

θ t
|e−(t−τ)δA(e−(t−τ)(1−δ)A A1−ε f (τ ))|α,σ dτ

≤
∫ t

θ t
e−(t−τ)δ|e−(t−τ)(1−δ)A A1−ε f (τ )|α,σ dτ

≤
∫ t

θ t
e−δ(t−τ)

[ 1 − ε

e(1 − δ)(t − τ)

]1−ε| f (τ )|α,σ dτ

≤
[ 1 − ε

e(1 − δ)

]1−ε

M F(θ t)
∫ t

θ t

e−δ(t−τ)

(t − τ)1−ε
dτ.

We estimate the last integral by

∫ t

θ t

e−δ(t−τ)

(t − τ)1−ε
dτ =

∫ (1−θ)t

0
zε−1e−δzdz ≤

∫ 1−θ

0
zε−1dz + (1 − θ)ε−1

∫ (1−θ)t

1−θ

e−δzdz

≤ (1 − θ)ε

ε
+ (1 − θ)ε−1

δ
e−δ(1−θ).

(d) Combining the above calculations, we obtain

|PN
(
w(t) − A−1ξ

)|α+1−ε,σ ≤ C
(
e−(1−θ ′)θδt + F(θ ′θ t)

) ∀t ≥ 1, (3.10)

with constant C independent of N . By passing N → ∞ in (3.10), and the fact A−1ξ ∈
Gα+1−ε,σ , we obtain w(t) ∈ Gα+1−ε,σ together with the estimate (3.7).

Proof of (3.3) Take θ ∈ (a + a0, 1), and set δ = a0/(θ − a) and θ ′ = a/θ . Then
θ − a > a0 > 0, which gives δ, θ ′ ∈ (0, 1). It is also clear that θθ ′ = a and (1 − θ ′)θδ =
(θ − a)δ = a0. Therefore, with these values of θ, θ ′, δ, inequality (3.3) follows (3.7).
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(iii) Note, by the monotonicity of F , that the property (3.5) in fact holds true for all a > 0,
with D2,a = 1 for all a ≥ 1. Then we have

e−a0t + F(at) = e−k0·a0t/k0 + F(at)

≤ D1F(a0t/k0) + F(at) ≤ (D1D2,a0/k0 + D2,a)F(t).
(3.11)

Combining (3.11) with (3.3), we obtain inequality (3.6). The proof is complete. ��

3.2 The NSE

This subsection aims at establishing the large-time estimates for weak solutions of the NSE.
First, we obtain a result for small initial data and force.

Theorem 3.3 Let F be a continuous, decreasing, non-negative function on [0,∞). Given
α ≥ 1/2 and numbers θ0, θ ∈ (0, 1) such that θ0 + θ < 1. Then there exist positive numbers
ck = ck(α, θ0, θ, F), for k = 0, 1, 2, 3, such that the following holds true. If

|Aαu0| ≤ c0, (3.12)

| f (t)|α−1/2,σ ≤ c1F(t) a.e. in (0,∞) for some σ ≥ 0, (3.13)

then there exists a unique regular solution u(t) of (2.2) and (2.3), which also belongs to
C([0,∞),D(Aα)) and satisfies, for all t ≥ 8σ(1 − θ)/(1 − θ − θ0),

|u(t)|α,σ ≤ c2(e
−2θ0t + F2(θ t))1/2, (3.14)∫ t+1

t
|u(τ )|2α+1/2,σ dτ ≤ c23(e

−2θ0t + F2(θ t)). (3.15)

Proof The proof follows [1, Theorem 3.1]. The calculations below are formal, but can be
made rigorous by using the Galerkin approximations and then pass to the limit.

Let θ∗ = θ0/(1 − θ) ∈ (θ0, 1) and denote t∗ = 8σ/(1 − θ∗) = 8σ(1 − θ)/(1 − θ − θ0).

(a) For σ > 0, let ϕ be aC∞-function onR such that ϕ((−∞, 0]) = {0}, ϕ([t∗,∞)) = {σ },
and 0 < ϕ′ < 2σ/t∗ on (0, t∗). We derive from (2.2) that

d

dt
(Aαeϕ(t)A1/2

u) = ϕ′(t)A1/2Aαeϕ(t)A1/2
u + Aαeϕ(t)A1/2 du

dt

= ϕ′(t)Aα+1/2eϕ(t)A1/2
u + Aαeϕ(t)A1/2

(−Au − B(u, u) + f ).
(3.16)

By taking the inner product in H of (3.16) with Aαeϕ(t)A1/2
u(t), we obtain

1

2

d

dt
|u|2α,ϕ(t) + |A1/2u|2α,ϕ(t) = ϕ′(t)〈Aα+1/2eϕ(t)A1/2

u, Aαeϕ(t)A1/2
u〉

− 〈Aαeϕ(t)A1/2
B(u, u), Aαeϕ(t)A1/2

u〉 + 〈Aα−1/2eϕ(t)A1/2
f , Aα+1/2eϕ(t)A1/2

u〉.
Using the Cauchy–Schwarz inequality, and estimating the second term on the right-hand

side by (2.11), we get

1

2

d

dt
|u|2α,ϕ(t) + |A1/2u|2α,ϕ(t) ≤ ϕ′(t)|A1/2u|2α,ϕ(t)

+ K α|A1/2u|2α,ϕ(t)|u|α,ϕ(t) + | f (t)|α−1/2,ϕ(t)|A1/2u|α,ϕ(t).
(3.17)
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Using the bound of ϕ′(t) and applying Cauchy’s inequality to the last term gives

1

2

d

dt
|u|2α,ϕ(t) + |A1/2u|2α,ϕ(t) ≤ 2σ

t∗
|A1/2u|2α,ϕ(t)

+ K α|u|α,ϕ(t)|A1/2u|2α,ϕ(t) + 2σ

t∗
|A1/2u|2α,ϕ(t) + t∗

8σ
| f (t)|2α−1/2,ϕ(t),

which, together with the fact ϕ(t) ≤ σ , implies

1

2

d

dt
|u|2α,ϕ(t) +

(
1 − 4σ

t∗
− K α|u|α,ϕ(t)

)
|A1/2u|2α,ϕ(t) ≤ t∗

8σ
| f (t)|2α−1/2,σ .

Thus,

1

2

d

dt
|Aαu|2 +

(
1 − 1 − θ∗

2
− K α|Aαu|

)
|Aα+1/2u|2 ≤ 1

1 − θ∗ |Aα−1/2 f |2. (3.18)

(b) For σ = 0, let ϕ ≡ 0 on R. Then the first term in (3.17) vanishes. Applying Cauchy’s
inequality to the last term of (3.17):

| f (t)|α−1/2,ϕ(t)|A1/2u|α,ϕ(t) ≤ 1 − θ∗
2

|A1/2u|2α,ϕ(t) + 1

1 − θ∗
| f (t)|2α−1/2,ϕ(t),

we obtain the same inequality (3.18).
(c) In the calculations below, we use the following constants

c∗ = c∗(α, θ0, θ, F) = 1 − θ∗
4K α

, γ = γ (F) = 1

F(0) + 1
∈ (0, 1],

c0 = c0(α, θ0, θ, F) = γ c∗, c1 = c1(α, θ0, θ, F) = γ 2c∗(θ∗(1 − θ∗))1/2,

c2 = c2(α, θ0, θ, F) = √
2γ c∗, c3 = c3(α, θ0, θ, F) = (1 + θ−1∗ )1/2γ c∗.

At the initial time, we have

|u(0)|α,ϕ(0) = |Aαu0| < 2c0 ≤ 2c∗.

Let T ∈ (0,∞). Assume that

|u(t)|α,ϕ(t) ≤ 2c∗ ∀t ∈ [0, T ). (3.19)

This and the definition of c∗ give

K α|u(t)|α,ϕ(t) ≤ 2c∗K α = (1 − θ∗)/2 ∀t ∈ [0, T ). (3.20)

For t ∈ (0, T ), we have from (3.18) for both σ > 0 and σ = 0, and (3.20) that

d

dt
|u|2α,ϕ(t) + 2θ∗|A1/2u|2α,ϕ(t) ≤ 2(1 − θ∗)−1| f (t)|2α−1/2,σ . (3.21)

Applying Gronwall’s inequality in (3.21) and using (3.12), (3.13) yield, for all t ∈ (0, T ),
that

|u(t)|2α,ϕ(t) ≤ e−2θ∗t |u0|2α,0 + 2(1 − θ∗)−1
∫ t

0
e−2θ∗(t−τ)| f (τ )|2α−1/2,σ dτ

≤ e−2θ0t c20 + 2(1 − θ∗)−1c21

∫ t

0
e−2θ∗(t−τ)F2(τ )dτ.
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For the last integral, applying (3.1) with F := F2, σ := 2θ∗ and noting that (1−θ)θ∗ = θ0
give

∫ t

0
e−2θ∗(t−τ)F2(τ )dτ ≤ 1

2θ∗

(
F2(0)e−2θ0t + F2(θ t)

)
∀t ≥ 0.

Then we obtain

|u(t)|2α,ϕ(t) ≤ c20e−2θ0t + [θ∗(1 − θ∗)]−1c21
(
γ−2e−2θ0t + F2(θ t)

)
≤ 2c2∗γ 2(e−2θ0t + F2(θ t)).

This implies

|u(t)|α,ϕ(t) ≤ √
2c∗γ (e−2θ0t + F2(θ t))1/2 ∀t ∈ [0, T ). (3.22)

Letting t → T − in (3.22) and using the monotonicity of F give

lim
t→T − |u(t)|α,ϕ(t) ≤ √

2c∗γ (1 + F2(0))1/2 < 2c∗. (3.23)

By the standard contradiction argument, it follows (3.19) and (3.23) that the inequalities
(3.19) and (3.22), in fact, hold true for T = ∞. Then, due to the fact ϕ(t) = σ for all t ≥ t∗,
inequality (3.22) implies (3.14).

(d) For t ≥ t∗, by integrating (3.21) from t to t + 1, and using estimates (3.14), (3.13), we
obtain∫ t+1

t
|A1/2u(τ )|2α,σ dτ ≤ 1

2θ∗
|u(t)|2α,σ + [θ∗(1 − θ∗)]−1c21

∫ t+1

t
F2(τ )dτ

≤ c2∗γ 2θ−1∗ (e−2θ0t + F2(θ t)) + c2∗γ 2F2(θ t).

Then inequality (3.15) follows. The proof is complete. ��
Theorem 3.4 Let F be a continuous, decreasing, non-negative function on [0,∞) that sat-
isfies

lim
t→∞ F(t) = 0. (3.24)

Suppose there exist σ ≥ 0, α ≥ 1/2 such that

| f (t)|α,σ = O(F(t)). (3.25)

Let u(t) be a Leray–Hopf weak solution of (2.2). Then there exists T̂ > 0 such that u(t)
is a regular solution of (2.2) on [T̂ ,∞), and for any ε, λ ∈ (0, 1), and a0, a, θ0, θ ∈ (0, 1)
with a0 + a < 1, θ0 + θ < 1, there exists C > 0 such that

|u(T̂ + t)|α+1−ε,σ ≤ C(e−a0t + e−2θ0at + F2λ(θat) + F(at)) ∀t ≥ 0. (3.26)

If, in addition, F satisfies (3.4) and (3.5), then

|u(T̂ + t)|α+1−ε,σ ≤ C F(t) ∀t ≥ 0. (3.27)

Proof By (3.25), there exist T1 > 0 and C1 > 0 such that

| f (t)|α,σ ≤ C1F(t) t ≥ T1. (3.28)

We claim the following fact which is weaker than the desired estimate (3.27).
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Claim For any λ ∈ (0, 1), and θ, θ0 ∈ (0, 1) with θ + θ0 < 1, there exists T̂ ≥ T1 such that
u(t) is a regular solution of (2.2) on [T̂ ,∞), and one has for all t ≥ 0 that

|u(T̂ + t)|α+1/2,σ ≤ C(e−2θ0t + F2λ(θ t))1/2, (3.29)

for some positive constant C .
Accepting this Claim at the moment, we prove (3.27). Rewrite the NSE (2.2) as the

linearized NSE:

ut + Au = f̃ (t)
def= −B(u(t), u(t)) + f (t). (3.30)

Then from (3.29) and (2.11) we obtain for t large,

|B(u(T̂ + t), u(T̂ + t))|α,σ ≤ K α|u(T̂ + t)|2α+1/2,σ ≤ C2(e
−2θ0t + F2λ(θ t))

for some positive constant C2. From this and (3.28), we have, for t ≥ 0,

| f̃ (T̂ + t)|α,σ ≤ C2(e
−2θ0t + F2λ(θ t)) + C1F(T̂ + t) ≤ C3 F̃(t), (3.31)

where C3 = C1 + C2 and F̃(t) = e−2θ0t + F2λ(θ t) + F(t).
By (3.30) and (3.31), we apply part (iii) of Theorem 3.2 with w(t) := u(T̂ + t), f (t) :=

f̃ (T̂ + t), ξ = 0, M = C3, F(t) := F̃(t) to obtain from (3.3), with t := t + 1, that

|u(T̂ + t + 1)|α+1−ε,σ ≤ C4(e
−a0(t+1) + F̃(a(t + 1)))

≤ C4(e
−a0t + e−2θ0at + F2λ(θat) + F(at)).

for all t ≥ 0 and some constant C4 > 0. By re-denoting T̂ := T̂ + 1, we obtain (3.26).
Now, assume (3.4) and (3.5). Taking λ = 1/2, a0 = θ0 ∈ (0, 1/2) and a = 1/2, we obtain

from (3.26)

|u(T̂ + t)|α+1−ε,σ ≤ C(e−θ0t + F(θ t/2)) ∀t ≥ 0. (3.32)

Similarly to proving (3.11), we obtain inequality (3.27) from (3.32).
The rest of this proof is to prove the Claim.

(a) By Assumption 2.2, there exists C0 > 0 such that

| f (t)| ≤ C0, a.e. in (0, T1). (3.33)

On the one hand, using (2.6), (3.28), (3.33) we have, for all t ≥ T1, that

|u(t)|2 ≤ e−t |u0|2 + C2
0

∫ T1

0
e−(t−τ)dτ + C2

1

∫ t

T1
e−(t−τ)F2(τ )dτ

≤ e−t |u0|2 + C2
0e−t eT1 + C2

1

∫ t

0
e−(t−τ)F2(τ )dτ.

To estimate the last integral, we apply inequality (3.1) with σ := 1, θ := 1/2, F := F2,
hence, obtain

|u(t)|2 ≤ e−t (|u0|2 + C2
0eT1) + C2

1 (F2(0)e−t/2 + F2(t/2)) ∀t ≥ T1. (3.34)

On the other hand, we estimate in (2.5)

|〈 f (τ ), u(τ )〉| ≤ 1

2
|u(τ )|2 + 1

2
| f (τ )|2 ≤ 1

2
‖u(τ )‖2 + 1

2
| f (τ )|2.
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Hence, we obtain

|u(t)|2 +
∫ t

t0
‖u(τ )‖2dτ ≤ |u(t0)|2 +

∫ t

t0
| f (τ )|2 dτ (3.35)

for all t0 ∈ T and t ≥ t0.
Let t0 ∈ T ∩ [T1,∞). Setting t = t0 + 1 in (3.35), using (3.34) to estimate |u(t0)|2, and

(3.28) to estimate | f (τ )|, we derive
∫ t0+1

t0
‖u(τ )‖2dτ ≤ e−t0(|u0|2 + C2

0eT1) + C2
1 (F2(0)e−t0/2 + F2(t0/2)) + C2

1 F2(t0),

thus,
∫ t0+1

t0
‖u(τ )‖2dτ ≤ e−t0/2(|u0|2 + C2

0eT1 + C2
1 F2(0)) + 2C2

1 F2(t0/2). (3.36)

Let t ≥ T1 be arbitrary now. There exists a sequence {tn}∞n=1 in T ∩ (T1,∞) such that
limn→∞ tn = t . Then (3.36) holds for t0 = tn , and letting n → ∞ gives

∫ t+1

t
‖u(τ )‖2dτ ≤ Mt

def= e−t/2(|u0|2 + C2
0eT1 + C2

1 F2(0))

+2C2
1 F2(t/2) ∀t ≥ T1. (3.37)

Note that the quantity Mt in (3.37) is decreasing in t , and goes to zero as t tends to infinity.

(b) Consider σ > 0. Let λ ∈ (0, 1). For T > 0, we write

F(t + T ) = F1−λ(t + T )Fλ(t + T ) ≤ F(T )1−λFλ(t). (3.38)

Choose T2 > T1 such that

MT2 < c0(1/2, Fλ)/2 and F(T2)
1−λ ≤ c1(1/2, Fλ)/C1.

By applying inequality (3.37) to t = T2, there exists t0 ∈ T ∩ (T2, T2 + 1) such that

|A1/2u(t0)| ≤ 2Mt0 ≤ 2MT2 < c0(1/2, Fλ).

Moreover, for t ≥ 0, by (3.28) and (3.38),

| f (t0 + t)|0,σ ≤ C1F(t0 + t) ≤ C1F(t0)
1−λFλ(t) ≤ C1F(T2)

1−λFλ(t)

≤ c1(1/2, Fλ)Fλ(t). (3.39)

Applying Theorem 3.3 to the unique regular solution u(t) := u(t0 + t), force f (t) :=
f (t0 + t) with parameters α = 1/2 and F(t) := Fλ(t), we obtain from (3.14) that

|u(t0 + t)|1/2,σ ≤ c2(1/2, Fλ)(e−θ0t + Fλ(θ t)) ∀t ≥ t∗, (3.40)

where t∗ is a non-negative number. Then by (2.9), we have for all t ≥ t∗ that

|Aα+1/2u(t0 + t)| ≤ d0(2α + 1, σ )|eσ A1/2
u(t0 + t)| ≤ d0(2α + 1, σ )|u(t0 + t)|1/2,σ ,

and, hence, thanks to (3.40),

lim
t→∞ |Aα+1/2u(t0 + t)| = 0. (3.41)
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Using (3.41), and similar to (3.39) with the norm | · |α,σ replacing | · |0,σ , we deduce that
there is T ∈ T ∩ (t0 + t∗,∞) so that

|Aα+1/2u(T )| ≤ c0(α + 1/2, Fλ), (3.42)

| f (T + t)|α,σ ≤ c1(α + 1/2, Fλ)Fλ(t) ∀t ≥ 0. (3.43)

(c) We will establish (3.42) and (3.43) when σ = 0. First, we observe the following: if
j ∈ N such that j ≤ 2α + 1 and

lim
t→∞

∫ t+1

t
|A j/2u(τ )|2dτ = 0, (3.44)

then

lim
t→∞

∫ t+1

t
|A( j+1)/2u(τ )|2dτ = 0. (3.45)

Indeed, since ( j − 1)/2 ≤ α, and thanks to (3.25), we have

|A j−1
2 f (t)| = O(F(t)). (3.46)

By (3.44) and (3.46), we obtain, similar to (3.42) and (3.43) that there exists T3 ∈ T ∩[T1,∞)

so that

|A j/2u(T3)| ≤ c0( j/2, Fλ),

|A j/2−1/2 f (T3 + t)| ≤ c1( j/2, Fλ)Fλ(t) ∀t ≥ 0.

Applying Theorem 3.3 to u(t) := u(T3+ t), f (t) := f (T3+·), F(t) := Fλ(t), α := j/2,
σ := 0, we obtain from (3.15) that

∫ t+1

t
|A( j+1)/2u(τ )|2dτ =

∫ t+1−T3

t−T3
|A( j+1)/2u(T3 + τ)|2dτ

= O(e−2θ0(t−T3) + F2λ(θ(t − T3))),

which proves (3.45), thanks to (3.24).
Now, let m be a non-negative integer such that 2α ≤ m < 2α + 1.
Note that m ≥ 1, and, because of (3.37), condition (3.44) holds true for j = 1. Hence we

obtain (3.45) with j = 1, which is (3.44) for j = 2. We apply the arguments recursively for
j = 1, 2, . . . ,m, and obtain, when j = m, from (3.45) that

lim
t→∞

∫ t+1

t
|A(m+1)/2u(τ )|2dτ = 0.

Since α ≤ m/2, it follows that

lim
t→∞

∫ t+1

t
|Aα+1/2u(τ )|2dτ = 0. (3.47)

By (3.47), (3.28), (3.38) and (3.24), there exists T ∈ T ∩[T1,∞) so that (3.42) and (3.43)
similarly hold true (for this case of σ = 0.)

(d) With T ∈ T ∩ [T1,∞) in (b) and (c), we apply Theorem 3.3 to the unique regular
solution u(t) := u(T + t), f (t) := f (T + t), F(t) := Fλ(t), α := α + 1/2, and obtain
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that there is t∗ ≥ 0 such that, following (3.14) with t := t + t∗,

|u(T + t∗ + t)|α+1/2,σ ≤ c2(α + 1/2, θ0, θ, Fλ)
(

e−2θ0(t∗+t) + F2λ(θ(t∗ + t))
)1/2

≤ C(e−2θ0t + F2λ(θ t))1/2

for all t ≥ 0. By setting T̂ = T + t∗, this estimate implies (3.29). The proof is complete. ��
Remark 3.5 Because the constants c0 and c1 in (3.42), (3.43) can be small, we could not
prove (3.29) for λ = 1 directly. Rather, we use (3.30) and the estimate (3.6) in Theorem 3.2
for the linearized NSE to improve (3.29) to (3.27).

4 General asymptotic expansions

Now, we introduce a very general definition of an asymptotic expansion in a normed space
with respect to a system of time-decaying functions.

Definition 4.1 Let (ψn)
∞
n=1 be a sequence of non-negative functions defined on [T∗,∞) for

some T∗ ∈ R that satisfies the following two conditions:

(a) For each n ∈ N,

lim
t→∞ψn(t) = 0. (4.1)

(b) For n > m,

ψn(t) = o(ψm(t)). (4.2)

Let (X , ‖ · ‖) be a normed space, and g be a function from [T∗,∞) to X . We say g has an
asymptotic expansion (implicitly as t → ∞)

g(t) ∼
∞∑

n=1

ξnψn(t) in X , (4.3)

where ξn ∈ X for all n ∈ N, if, for any N ∈ N,
∥∥∥∥∥g(t) −

N∑
n=1

ξnψn(t)

∥∥∥∥∥ = o(ψN (t)). (4.4)

Obviously, if g(t) = ∑N
n=1 ξnψn(t) for some N ∈ N, then g(t) ∼ ∑∞

n=1 ξnψn(t) where
ξn = 0 for n > N . In case of the infinite sum, the convergent series

g(t) =
∞∑

n=1

ξnψn(t) (4.5)

does not necessarily imply the expansion (4.3). We refer to “Appendix A” for some criteria
for both (4.3) and (4.5) to hold, with the infinite sum not reduced to a finite one.

Note that the expansion (4.3) does not determine the function g. Indeed, if h : [T∗,∞) →
X is a function that satisfies ‖h(t)‖ = o(ψn(t)) for all n ∈ N, then both g and g + h have
the same expansion on the right-hand side of (4.3). The converse is considered in the next
proposition.
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Proposition 4.2 Let (ψn)
∞
n=1, (X , ‖·‖) and g be as in Definition 4.1. Suppose, for each n ∈ N,

that the function ψn is not identically zero on [T ,∞) for all T ≥ T∗. Then the asymptotic
expansion (4.3), if exists, is unique.

Proof Suppose g(t) has two expansions

g(t) ∼
∞∑

n=1

φnψn(t) and g(t) ∼
∞∑

n=1

ξnψn(t). (4.6)

We will prove by induction that φn = ξn for all n ∈ N.
One has from the triangle inequality and each expansion in (4.6) that

‖(φ1 − ξ1)ψ1(t)‖ ≤ ‖φ1ψ1(t) − g(t)‖ + ‖g(t) − ξ1ψ1(t)‖ = o(ψ1(t)). (4.7)

Since ψ1 is asymptotically non-trivial, then one can verify from (4.7) that φ1 = ξ1.
Let N ∈ N and assume φn = ξn for n = 1, 2, . . . , N . Then

‖(φN+1 − ξN+1)ψN+1(t)‖ =
∥∥∥∥∥

N+1∑
n=1

(φn − ξn)ψn(t)

∥∥∥∥∥

≤
∥∥∥∥∥

N+1∑
n=1

φnψn(t) − g(t)

∥∥∥∥∥ +
∥∥∥∥∥g(t) −

N+1∑
n=1

ξnψn(t)

∥∥∥∥∥ = o(ψN+1(t)).

Hence, φN+1 = ξN+1. By the induction principle, φn = ξn for all n ∈ N. ��
Note that the rate of convergence, as t → ∞, in (4.4), in fact, can be related to the next

term ψN+1(t). Indeed,∥∥∥∥∥g(t) −
N∑

n=1

ξnψn(t)

∥∥∥∥∥ ≤
∥∥∥∥∥g(t) −

N+1∑
n=1

ξnψn(t)

∥∥∥∥∥ + ψN+1(t)‖ξN+1‖.

Hence, we can replace equivalently (4.4) by
∥∥∥∥∥g(t) −

N∑
n=1

ξnψn(t)

∥∥∥∥∥ = O(ψN+1(t)). (4.8)

The equivalence of (4.4) and (4.8) is essentially due to the infinite sum in (4.3). If the
sum is finite, this is no more the case. Moreover, for general ψn’s, the relation (4.2) is not
informative enough to work with.

These prompt us to have the following more specific definition.

Definition 4.3 Let � = (ψλ)λ>0 be a system of functions that satisfies the following two
conditions.

(a) There exists T∗ ≥ 0 such that, for each λ > 0, ψλ is a positive function defined on
[T∗,∞), and

lim
t→∞ψλ(t) = 0. (4.9)

(b) For any λ > μ, there exists η > 0 such that

ψλ(t) = O(ψμ(t)ψη(t)). (4.10)
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Let (X , ‖ · ‖) be a real normed space, and g be a function from (0,∞) to X . The function
g is said to have the asymptotic expansion

g(t)
�∼

∞∑
n=1

ξnψλn (t) in X , (4.11)

where ξn ∈ X for all n ∈ N, and (λn)
∞
n=1 is a strictly increasing, divergent sequence of

positive numbers, if it holds, for any N ≥ 1, that there exists ε > 0 such that
∥∥∥∥∥g(t) −

N∑
n=1

ξnψλn (t)

∥∥∥∥∥ = O(ψλN (t)ψε(t)). (4.12)

We have the following remarks on Definition 4.3.

(a) If λ > μ, it follows (4.10) and (4.9) that

ψλ(t) = o(ψμ(t)). (4.13)

(b) If a function g has an expansion (4.11), then g(t) ∼ ∑∞
n=1 ξnψλn (t) in X in the sense

of Definition 4.1.
(c) Thanks to (b) and Proposition 4.2, the ξn’s in (4.11) are unique. Similarly, following the

proof of Proposition 4.2, we also have the uniqueness of ξn’s in (4.16).
(d) The main difference between Definition 4.1 and Definition 4.3 is the specific decaying

rateψη(t) on the right-hand side of (4.10), in contrast with the non-specific one in (4.2).
In the proofs, this crucially allows comparisons and estimates for different quantities.

We have the following special cases for the expansion (4.11).

(i) Assume (4.11). If there exists N ∈ N, such that

ξn = 0 for all n > N , (4.14)

then it holds for all λ > 0 that∥∥∥∥∥g(t) −
N∑

n=1

ξnψλn (t)

∥∥∥∥∥ = O(ψλ(t)). (4.15)

(ii) Assume there exist N ∈ N, ξn ∈ X for 1 ≤ n ≤ N , and λn’s, for 1 ≤ n ≤ N , are
positive numbers, strictly increasing in n such that (4.15) holds for all λ > 0.We extend
ξn ∈ X for 1 ≤ n ≤ N to a sequence (ξn)

∞
n=1 with (4.14), and extend λn for 1 ≤ n ≤ N

to any sequence (λn)
∞
n=1 that is a strictly increasing and divergent. Then one can verify

that (4.11) holds true.
Therefore, we say in cases (i) and (ii) that the function g has the asymptotic expansion

g(t)
�∼

N∑
n=1

ξnψλn (t) in X . (4.16)

(iii) If ξn = 0 for all n ∈ N in (4.11), then

‖g(t)‖ = O(ψλ(t)) (4.17)

for all λ > 0.
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(iv) Assume (4.17) holds for all λ > 0. Let ξn = 0 for all n ∈ N. Let (λn)
∞
n=1 be any strictly

increasing, divergent sequence of positive numbers. Then we have (4.11).
Therefore, we say in cases (iii) and (iv) that the function g has the asymptotic expansion

g(t)
�∼ 0 in X .

(v) For N = 0, we conveniently set the sum
∑N

n=1 ξnψλn (t) to be zero in (4.16), and see
that the condition (4.15) is, in fact, (4.17). Thus the expression

g(t)
�∼

0∑
n=1

ξnψλn (t) will mean g(t)
�∼ 0.

(vi) If a function g has an asymptotic expansion

g(t)
�∼

N∑
n=1

ξnψλn (t) in X ,

for N ∈ N ∪ {0,∞}, then by remark (c) above, this expansion is unique for g.

For solutions of ODEs or PDEs, the linear and nonlinear structures of the equations will
impose more conditions on the system. We consider below the ones that are appropriate to
our current study of the NSE.

Condition 4.4 The system � = (ψλ)λ>0 satisfies (a) and (b) in Definition 4.3 and the fol-
lowing.

(i) For any λ,μ > 0, there exist γ > max{λ,μ} and a nonzero constant dλ,μ such that

ψλψμ = dλ,μψγ . (4.18)

(ii) For each λ > 0, the function ψλ is continuous and differentiable on [T∗,∞), and its
derivative ψ ′

λ has an expansion in the sense of Definition 4.3

ψ ′
λ(t)

�∼
Nλ∑

k=1

cλ,kψλ∨(k)(t) in R, (4.19)

where Nλ ∈ N ∪ {0,∞}, all cλ,k are constants, all λ∨(k) > λ, and, for each λ > 0,
λ∨(k)’s are strictly increasing in k.

The following remarks on Condition 4.4 are in order.

(a) By (4.13), the numbers γ and dλ,μ in (4.18) are unique.
(b) By (4.18), we have the reverse of (4.10) in the following sense:

ψμ(t)ψη(t) = O(ψλ(t)) for some λ > μ. (4.20)

(c) Thanks to (4.10) and (4.20), the condition (4.12) is equivalent to
∥∥∥∥∥g(t) −

N∑
n=1

ξnψλn (t)

∥∥∥∥∥ = O(ψλ(t)),

for some λ > λN .
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(d) Expansion (4.19) of ψ ′
λ, in all cases of Nλ, and property (4.10) imply that there exists

η > 0 such that

|ψ ′
λ(t)| = O(ψλ(t)ψη(t)). (4.21)

(e) If, instead of (4.19),ψ ′
λ = cλψλ for all λ, thenψλ’s are exponential functions. This case

was studied in [19]. For other examples of (4.19), see Sects. 7.3 and 7.4.

Notation Denote γ in (4.18) by λ ∧ μ, which is uniquely determined thanks to remark (a)
above.

For the current study, we focus on decaying functions that are larger than the exponentially
decaying ones; hence, we impose more specific conditions.

Condition 4.5 The system � = (ψλ)λ>0 satisfies (a), (b) of Definition 4.3, and the following.

(i) For each λ > 0, the function ψλ is decreasing (in t).
(ii) If λ, α > 0, then

e−αt = o(ψλ(t)). (4.22)

(iii) For any number a ∈ (0, 1),

ψλ(at) = O(ψλ(t)). (4.23)

The followings are direct consequences of Condition 4.5.

(a) By (4.22), for any α, λ > 0, there exists a positive constant Cα,λ such that

e−α(t+T∗) ≤ Cα,λψλ(t + T∗) ∀t ≥ 0,

hence, by denoting D1(λ, α) = eαT∗Cλ,α , we have

e−αt ≤ D1(λ, α)ψλ(t + T∗). (4.24)

(b) For a ∈ (0, 1), we have from (i) that ψλ(t) = O(ψλ(at)). Thus, the condition (4.23), in
fact, is equivalent to

ψλ(at)
O= ψλ(t).

(c) Property (4.23) and the decrease of ψλ(t) in t imply, for a ∈ (0, 1), that

ψλ(at) ≤ D2(a, λ)ψλ(t) ∀t ≥ T∗/a,

where D2(a, λ) is a constant in [1,∞). Consequently, for a ∈ (0, 1) and t ≥ 0,

ψλ(at + T∗) = ψλ(a(t + T∗/a)) ≤ D2(a, λ)ψλ(t + T∗/a) ≤ D2(a, λ)ψλ(t + T∗).
(4.25)

Then by the decrease of ψλ in t , we have

ψλ(at + T∗) ≤ D2(a, λ)ψλ(t) ∀t ≥ T∗. (4.26)

In particular, for any T ≥ 0 and t ≥ 2(T∗ + T ), we have t − T ≥ t/2 + T∗, then by
(4.26),

ψλ(t − T ) ≤ ψλ(t/2 + T∗) ≤ D3(λ)ψλ(t), where D3(λ) = D2(1/2, λ).

123



1044 D. Cao, L. Hoang

Combining this with the boundedness ofψλ(t −T )/ψλ(t) for small t ∈ [T∗ +T , 2(T∗ +
T )], we obtain

ψλ(t − T ) ≤ D4(λ, T )ψλ(t) ∀t ≥ T∗ + T ,

which yields

ψλ(t) ≤ D4(λ, T )ψλ(t + T ) ∀t ≥ T∗,

for some positive constant D4(λ, T ). Consequently, for any T ∈ R,

ψλ(t)
O= ψλ(t + T ). (4.27)

In applications to the NSE, suppose that the force f has an expansion containing the
terms ψγn ’s for some numeric sequence (γn)

∞
n=1. Then the operators in the NSE require that

a solution u(t), in case of having an expansion itself, may need many more terms in addition
to ψγn ’s. We describe below a general principle to find those other terms.

For any x ∈ (0,∞), define the set

Gx =

⎧⎪⎨
⎪⎩

∅, if Nx = 0,

{x∨(k) : 1 ≤ k ≤ Nx }, if Nx ∈ N,

{x∨(k) : k ∈ N}, if Nx = ∞.

A non-empty subset S of (0,∞) is said to preserve the operation ∨ if

∀x ∈ S : Gx ⊂ S. (4.28)

Similarly, S is said to preserve the operation ∧ if

∀x, y ∈ S : x ∧ y ∈ S. (4.29)

Lemma 4.6 Let S be any non-empty subset of (0,∞).

(i) There exists a smallest set S∗ ⊂ (0,∞) that contains S, and preserves the operations ∨
and ∧.

(ii) In fact, S∗ = S∗, where S∗ is constructed explicitly in (4.30) below.

Proof (i) For any non-empty subset M of (0,∞), we denote

M∧ = {x ∧ y : x, y ∈ M},
M∨ =

⋃
x∈M

Gx .

(a) Let S0 = S. We define recursively the sets Sn , for n ∈ N, by

S2k+1 = S2k ∪ S∨
2k and S2k+2 = S2k+1 ∪ S∧

2k+1 for k ≥ 0.

Define

S∗ =
∞⋃

n=0

Sn . (4.30)

We obviously have

S2k ⊂ S2k+1 ⊂ S2k+2 ⊂ S2k+3 ∀k ≥ 0. (4.31)
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It follows (4.31) that (Sn), (S2n) and (S2n+1) are increasing sequences, and, hence,

S∗ =
∞⋃

k=0

S2k =
∞⋃

k=0

S2k+1. (4.32)

Clearly, S = S0 ⊂ S∗. Next, we prove S∗ preserves the operations ∨ and ∧.
Let x ∈ S∗. By (4.32), x ∈ S2k for some k ≥ 0. Then obviously by definition Gx ⊂ S∨

2k ⊂
S2k+1 ⊂ S∗. Thus, Gx ⊂ S∗.

For x, y ∈ S∗, then by (4.32), x ∈ S2k+1, y ∈ S2m+1 for some k,m ≥ 0. Assume k ≥ m,
then y ∈ S2k+1 by (4.31). This implies x ∧ y ∈ S2k+2 ⊂ S∗.
(b) Let C be the collection of sets M that contain S and preserve the operations ∨ and ∧.

Because S∗ ∈ C, then the collection C is non-empty.

Let S∗ be the intersections of all the elements in C. Then S∗ ⊂ S∗. Let M ∈ C, properties
(4.28) and (4.29) for S := M clearly imply

M∨ ⊂ M and M∧ ⊂ M . (4.33)

Thus,

(S∗)∨ ⊂ M∨ ⊂ M and (S∗)∧ ⊂ M∧ ⊂ M .

It follows that

(S∗)∨ ⊂
⋂

M∈C

M = S∗ and (S∗)∧ ⊂
⋂

M∈C

M = S∗.

Therefore, S∗ ∈ C. By its definition, S∗ is the smallest set in C.
(ii) We prove S∗ = S∗. It suffices to show S∗ ⊂ S∗.
Let M be an arbitrary element in C. We shall show that S∗ ⊂ M . First, we see that S0 ⊂ M .
By (4.33),

S1 = S0 ∪ S∨
0 ⊂ M ∪ M∨ = M,

and then,

S2 = S1 ∪ S∧
1 ⊂ M ∪ M∧ = M .

By induction, we can prove similarly that Sk ⊂ M for all k. Therefore S∗ = ⋃∞
k=0 Sk ⊂ M .

Then S∗ ⊂ ⋂
M∈C M = S∗. This completes the proof of the lemma. ��

Notation We denote the set S∗ in Lemma 4.6 by G�(S).

5 Asymptotic expansions in a continuum system

Let � = (ψλ)λ>0 be a system of functions that satisfies both Conditions 4.4 and 4.5.

Assumption 5.1 Suppose there exist real numbers σ ≥ 0, α ≥ 1/2, a strictly increasing,
divergent sequence of positive numbers (γn)

∞
n=1 and a sequence (φ̃n)

∞
n=1 in Gα,σ such that,

in the sense of Definition 4.3,

f (t)
�∼

∞∑
n=1

φ̃nψγn (t) in Gα,σ . (5.1)
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Note from (5.1) that f (t) belongs to Gα,σ for all t sufficiently large.
Letu(t)be aLeray–Hopfweak solutionof theNSE.Wesearch for an asymptotic expansion

of u(t) in the form

u(t)
�∼

∞∑
n=1

ξnψλn (t). (5.2)

Formally substituting expansion (5.2) into the NSE (2.2), we find that the indices λn’s natu-
rally take values in the set

G�({γn : n ∈ N}). (5.3)

However, the expansion (5.2) only agrees with (4.11) in Definition 4.3 if the set in (5.3) does
not have a finite cluster point. Therefore, we impose one more condition.

Assumption 5.2 There exists a set S∗ that contains {γn : n ∈ N}, preserves the operations ∨
and ∧, and can be ordered so that

S∗ = {λn : n ∈ N}, where λn’s are strictly increasing to infinity. (5.4)

We usually choose S∗ in Assumption 5.2 to be (5.3), but this is not the only choice.
Under Assumption 5.2, we can show that the expansion (5.1) implies

f (t)
�∼

∞∑
n=1

φnψλn (t) in Gα,σ as t → ∞, (5.5)

where the sequence (φn)
∞
n=1 in Gα,σ is defined by φn = φ̃k if there exists k ≥ 1 such that

λn = γk , and φn = 0 otherwise. Note in the former case that such an index k, when exists,
is unique.

Remark 5.3 In case the set S = {γn : n ∈ N} itself preserves the operations ∨ and ∧, then
S = G�(S). Hence, Assumption 5.2 is met with S∗ = S and (5.5) holds with λn = γn ,
φn = φ̃n , i.e., expansion (5.5) is just the original (5.1).

Our first main result on the expansion of the Leray–Hopf weak solutions is the following.

Theorem 5.4 Let Assumptions 5.1 and 5.2 hold true, and let f have the asymptotic expansion
(5.5). Then any Leray–Hopf weak solution u(t) of (2.2) has the asymptotic expansion

u(t)
�∼

∞∑
n=1

ξnψλn (t) in Gα+1−ρ,σ for all ρ ∈ (0, 1), (5.6)

where ξn’s are defined recursively by

ξ1 = A−1φ1, (5.7)

ξn = A−1
(
φn − χn −

∑
1≤k,m≤n−1,
λk∧λm=λn

dλk ,λm B(ξk, ξm)
)

for n ≥ 2, (5.8)

where

χn =
⎧⎨
⎩
∑

(p,k)∈[1,n−1]×N:
λ∨

p (k)=λn

cλp,kξp, if ∃p ∈ [1, n − 1], k ∈ N : λ∨
p (k) = λn,

0, otherwise.
(5.9)
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Proof The proof is divided into parts A, B, . . ., steps 1,2, and substeps (a), (b), . . .
A. Notation. For n ∈ N, denote

Fn(t) = φnψλn (t), F̄n(t) =
n∑

j=1

Fj (t), and F̃n(t) = f (t) − F̄n(t),

un(t) = ξnψλn (t), ūn(t) =
n∑

j=1

u j (t), and vn = u(t) − ūn(t).

According to the expansion (5.5) and Definition 4.3, we can assume that

|F̃N (t)|α,σ = O(ψλN (t)ψδN (t)), (5.10)

for any N ∈ N, with some δN > 0.
B. We observe that

ξn ∈ Gα+1,σ ∀n ≥ 1. (5.11)

The proof of (5.11) is by induction and is the same as in [1, Lemma 4.2].
By (5.11), we have

|ūn(t)|α+1,σ = O(ψλ1(t)) ∀n ∈ N. (5.12)

C. As a preparation, we need to establish the large-time decay for u(t) first. Letting N = 1
in (5.10) gives | f (t) − φ1ψλ1(t)|α,σ = O(ψλ1(t)ψδ1(t)), which implies

| f (t)|α,σ = O(ψλ1(t)) = O(ψλ1(t + T∗)).

The last relation is due to (4.27).
Let F(t) = ψλ1(t + T∗). Then | f (t)|α,σ = O(F(t)), and, by (4.24) and (4.25), the

function F satisfies (3.4) and (3.5). We now apply Theorem 3.4 with ε = 1/2. Then there
exists time T̂ > 0 and a constant C > 0 such that u(t) is a regular solution of (2.2) on
[T̂ ,∞), and

|u(T̂ + t)|α+1/2,σ ≤ Cψλ1(t + T∗) ∀t ≥ 0. (5.13)

It follows (2.11) and (5.13) that

|B(u(T̂ + t), u(T̂ + t))|α,σ ≤ C |u(T̂ + t)|2α+1/2,σ ≤ Cψ2
λ1
(t + T∗) ∀t ≥ 0. (5.14)

D. It suffices to prove, for any N ∈ N, that there exists a number εN > 0 such that

|vN (t)|α,σ = O(ψλN (t)ψεN (t)). (5.15)

We will prove (5.15) by induction in N . In calculations below, all differential equations
hold in V ′-valued distribution sense on (T ,∞) for any T > 0, which is similar to (2.4).
One can easily verify them by using (2.10), and the facts u ∈ L2

loc([0,∞), V ) and u′ ∈
L1
loc([0,∞), V ′) in Definition 2.1.

Step 1: N = 1 Define w1(t) = ψ−1
λ1

(t)u(t).

(a) Equation for w1(t). We have

w′
1(t) = ψ−1

λ1
(t)u′(t) − ψ−2

λ1
(t)ψ ′

λ1
(t)u(t)

= ψ−1
λ1

(t)
( − Au(t) − B(u, u) + φ1ψλ1(t) + F̃1(t)

) − ψ−2
λ1

(t)ψ ′
λ1
(t)u(t).
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Thus,

w′
1(t) + Aw1(t) = φ1 + H1(t), t > T∗, (5.16)

where

H1(t) = ψ−1
λ1

[F̃1(t) − B(u(t), u(t))] − ψ ′
λ1
ψ−2

λ1
u(t).

(b) Estimation of |H1(t)|α,σ . By estimates (5.13), (5.14), and the relations in (4.27), we
have

|u(t)|α+1/2,σ = O(ψλ1(t)). (5.17)

|B(u(t), u(t)))|α,σ = O(ψ2
λ1
(t)). (5.18)

By (5.10), (5.17), (5.18), and properties (4.21), (4.27), there exist T0 ≥ T∗, η1 > 0, and
D0 > 0 such that for t ≥ 0,

ψ−1
λ1

(T0 + t)|F̃1(T0 + t)|α,σ ≤ D0ψ
−1
λ1

(T0 + t)ψλ1(T0 + t)ψδ1(T0 + t)

≤ D0ψδ1(T0 + t),

ψ−1
λ1

(T0 + t)|B(u(T0 + t), u(T0 + t))|α,σ ≤ D0ψ
−1
λ1

(T0 + t)ψ2
λ1
(T0 + t)

≤ D0ψλ1(T0 + t),

and

ψ ′
λ1
(T0 + t)ψ−2

λ1
(T0 + t)|u(T0 + t)|α+1/2,σ

≤ D0ψλ1(T0 + t)ψη1(T0 + t)ψ−2
λ1

(T0 + t)ψλ1(T0 + t)

≤ D0ψη1(T0 + t).

Let ε1 = min{δ1, η1, λ1}. Then
|H1(T0 + t)|α,σ ≤ 3D0ψε1(T0 + t) ∀t ≥ 0.

(c) We apply Theorem 3.2(iii) to Eq. (5.16) in Gα,σ with w(t) := w1(T0 + t), f (t) :=
H1(T0 + t), F(t) := ψε1(T0 + t) and ξ = φ1. We obtain from (3.6) that

|w1(T0 + t) − A−1φ1|α+1−ρ,σ = O(ψε1(T0 + t))

for any ρ ∈ (0, 1), which yields

|w1(t) − A−1φ1|α+1−ρ,σ = O(ψε1(t)).

Multiplying this equation by ψλ1(t) gives

|u(t) − ξ1ψλ1(t)|α+1−ρ,σ = O(ψλ1(t)ψε1(t)) ∀ρ ∈ (0, 1).

This proves that (5.15) holds for N = 1.
Step 2: Induction step Let N ≥ 1 be an integer and assume there exists εN > 0 such that

|vN (t)|α+1−ρ,σ = O(ψλN (t)ψεN (t)) ∀ρ ∈ (0, 1). (5.19)

(a) We will find an equation for vN which is suitable to study its asymptotic behavior.
First, we have the preliminary calculations.
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Rewri ting u′. By the NSE,

u′ = −Au − B(u, u) + f (t)

= −AvN − AūN − B(ūN + vN , ūN + vN ) + F̄N + FN+1 + F̃N+1

= −AvN − AūN + F̄N − B(ūN , ūN ) + φN+1ψλN+1(t) + hN+1,1,

where

hN+1,1 = −B(ūN , vN ) − B(vN , ūN ) − B(vN , vN ) + F̃N+1.

On the one hand,

−AūN + F̄N = −
N∑

n=1

ψλn (t)
(

Aξn − φn

)
.

On the other hand,

B(ūN , ūN ) =
N∑

m, j=1

ψλm (t)ψλ j (t)B(ξm, ξ j )

=
N∑

n=1

ψλn (t)

⎛
⎜⎜⎝

∑
1≤m, j≤N ,

λm∧λ j =λn

dλm ,λ j B(ξm, ξ j )

⎞
⎟⎟⎠

+ ψλN+1(t)
∑

1≤m, j≤N ,

λm∧λ j =λN+1

dλm ,λ j B(ξm, ξ j ) + hN+1,2,

where

hN+1,2 =
∑

1≤m, j≤N ,

λm∧λ j ≥λN+2

ψλm (t)ψλ j (t)B(ξm, ξ j ).

Then we obtain the equation

u′ = −AvN −
N∑

n=1

ψλn (t)

⎛
⎜⎜⎝Aξn − φn +

∑
1≤m, j≤N ,

λm∧λ j =λn

dλm ,λ j B(ξm, ξ j )

⎞
⎟⎟⎠

− ψλN+1(t)

⎛
⎜⎜⎝

∑
1≤m, j≤N ,

λm∧λ j =λN+1

dλm ,λ j B(ξm, ξ j ) − φN+1

⎞
⎟⎟⎠ − hN+1,2 + hN+1,1.

(5.20)

In calculations below to the end of this proof, ε denotes a generic positive index used for
function ψε(t).
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Utilizing (5.10), (5.12) and (5.19), we estimate, with the use of the short-hand notation
ψλ = ψλ(t),

|hN+1,1(t)|α,σ = O(ψλ1)O(ψλN ψεN ) + O(ψλN ψεN )O(ψλ1)

+ O(ψλN ψεN )O(ψλN ψεN ) + O(ψλN+1ψδN+1)

= O(ψλ1ψλN ψεN ) + O(ψλN+1ψδN+1)

= O(ψλ1∧λN ψεN ) + O(ψλN+1ψδN+1).

Since λ1 ∧ λN ≥ λN+1, we have

|hN+1,1(t)|α,σ = O(ψλN+1(t)ψε(t)).

It is also clear that

|hN+1,2(t)|α,σ ≤
∑

1≤m, j≤N ,

λm∧λ j ≥λN+2

|dλm ,λ j |ψλm∧λ j (t)|B(ξm, ξ j )|α,σ

= O(ψλN+2(t)) = O(ψλN+1(t)ψε(t)).

Rewri ting ū′
N . We have

ū′
N =

N∑
p=1

ψ ′
λp

ξp =
N∑

p=1

ξp

⎛
⎝

Ñp∑
k=1

cλp,kψλ∨
p (k) + ψ ′

λp
−

Ñp∑
k=1

cλp,kψλ∨
p (k)

⎞
⎠ ,

where Ñp is the largest integer k such that

λ∨
p (k) ≤ λN+1.

Then we obtain

ū′
N =

N∑
n=1

ψλnχn + ψλN+1χN+1 + hN+1,3, (5.21)

where

hN+1,3 =
N∑

p=1

ξp

⎛
⎝ψ ′

λp
−

Ñp∑
k=1

cλp,kψλ∨
p (k)

⎞
⎠ .

Note from (4.19) and the definition of Ñp that

|ψ ′
λp

(t) −
Ñp∑

k=1

cλp,kψλ∨
p (k)(t)| = O(ψλ(t)), some λ > λN+1.

Together with (4.10), we have

|hN+1,3(t)|α,σ = O(ψλN+1(t)ψε(t)).
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Equation f or vN . Combining (5.20) and (5.21) yields

v′
N = u′ − ū′

N

= −AvN −
N∑

n=1

ψλn (t)

⎛
⎜⎜⎝Aξn +

∑
1≤m, j≤N ,

λm∧λ j =λn

dλm ,λ j B(ξm, ξ j ) − φn + χn

⎞
⎟⎟⎠

+ ψλN+1(t)

⎛
⎜⎜⎝−

∑
1≤m, j≤N ,

λm∧λ j =λN+1

dλm ,λ j B(ξm, ξ j ) + φN+1 − χN+1

⎞
⎟⎟⎠ + hN+1,4(t),

where

hN+1,4 = hN+1,1 − hN+1,2 − hN+1,3.

Note, for 1 ≤ n ≤ N + 1, that∑
1≤m, j≤N ,

λm∧λ j =λn

B(ξm, ξ j ) =
∑

1≤m, j≤n−1,
λm∧λ j =λn

B(ξm, ξ j ).

Therefore, one has, for 1 ≤ n ≤ N ,

Aξn +
∑

1≤m, j≤N ,

λm∧λ j =λn

dλm ,λ j B(ξm, ξ j ) − φn + χn = 0,

and

−
∑

1≤m, j≤N ,

λm∧λ j =λN+1

dλm ,λ j B(ξm, ξ j ) + φN+1 − χN+1 = AξN+1.

These yield

v′
N = −AvN + ψλN+1(t)AξN+1 + hN+1,4(t). (5.22)

(b) Estimation of vN (t). In Eq. (5.22), we have

|hN+1,4(t)|α,σ ≤ |hN+1,1|α,σ + |hN+1,2|α,σ + |hN+1,3|α,σ = O(ψλN+1(t)ψε(t)).

(5.23)

One has from (5.23) that

|ψλN+1(t)AξN+1 + hN+1,4(t)|α,σ ≤ ψλN+1(t)|AξN+1|α,σ + |hN+1,4(t)|α,σ = O(ψλN+1(t)).

Similar to part (c) of Step 1, we apply Theorem 3.2(iii) to the linearized NSE (5.22)
with w(t) = vN (T0 + t), ξ = 0, f (t) = ψλN+1(T0 + t)AξN+1 + hN+1,4(T0 + t), and
F(t) = ψλN+1(T0 + t), where T0 ≥ T∗ is an appropriate, sufficient large time. We have from
(3.6), for any ρ ∈ (0, 1), that

|vN (t)|α+1−ρ,σ = O(ψλN+1(t)). (5.24)

(c) We will improve the precision of decay in (5.24). Define wN+1(t) = ψλN+1(t)
−1vN (t)

for t ≥ T∗. We have

w′
N+1 = ψ−1

λN+1
(t)v′

N + ψ ′
λN+1

(t)ψ−2
λN+1

(t)vN ,
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which, thanks to (5.22), yields

w′
N+1 = −AwN+1 + AξN+1 + HN+1(t), (5.25)

where HN+1(t) = ψ−1
λN+1

(t)hN+1,4(t) + ψ ′
λN+1

(t)ψ−2
λN+1

(t)vN (t).
We estimate HN+1(t) next. By (5.23),

|ψ−1
λN+1

(t)hN+1,4(t)|α,σ = ψ−1
λN+1

(t)O(ψλN+1(t)ψε(t)) = O(ψε(t)).

For the second term, we use (4.21) and (5.24) to obtain

|ψ ′
λN+1

(t)ψ−2
λN+1

(t)vN (t)|α,σ = ψ−2
λN+1

(t)O(ψλN+1(t)ψε(t))O(ψλN+1(t)) = O(ψε(t)).

Hence, there exists εN+1 > 0 such that

|HN+1(t)|α,σ = O(ψεN+1(t)).

(d) Note from (5.11) that AξN+1 ∈ Gα,σ ⊂ Gα− 1
2 ,σ

. Again, by applying Theorem 3.2(iii)

to equation (5.25) with w(t) := wN+1(T1 + t), ξ := AξN+1, f (t) := HN+1(t + T1),
F(t) := ψεN+1(t + T1) for some T1 ≥ T∗ sufficiently large, we obtain from (3.6), for
any ρ ∈ (0, 1), that

|wN+1(T1 + t) − A−1(AξN+1)|α+1−ρ,σ ≤ CψεN+1(t + T1) ∀t ≥ 1.

Thus, |wN+1(t) − ξN+1|α+1−ρ,σ = O(ψεN+1(t)). Multiplying this equation by ψλN+1(t)
yields

|vN (t) − ξN+1ψλN+1(t)|α+1−ρ,σ = O(ψλN+1(t)ψεN+1(t)).

Since the left-hand side of this equation is |vN+1(t)|α+1−ρ,σ , it proves that the statement
(5.15) holds true for N := N + 1.

Conclusion By the induction principle, we have (5.15) holds true for all N ∈ N. Our proof
is complete. ��

In Theorem 5.4, both force f and solution u have infinite sum expansions which means
that they can be approximated by infinitely many terms ψλ’s as λ → ∞. The case of finite
sum approximations can be treated similarly. We briefly discuss the idea and result here.

Assumption 5.5 Suppose there exist numbers σ ≥ 0, α ≥ 1/2, an integer N0 ≥ 1, strictly
increasing, positive numbers γn and functions φ̃n ∈ Gα,σ for 1 ≤ n ≤ N0 such that∣∣∣∣∣ f (t) −

N0∑
n=1

φ̃nψγn (t)

∣∣∣∣∣
α,σ

= O(ψλ(t)) for some λ > γN0 . (5.26)

Assume further that there exists a set S∞ that contains {γn : 1 ≤ n ≤ N0} and preserves

the operations ∨ and ∧, so that the set S∗
def= S∞ ∩ [γ1, γN0 ] is finite.

In applications, we often choose S∞ = G�({γn : 1 ≤ n ≤ N0}), but it can be more
general than this.

We rewrite S∗ = {λn : 1 ≤ n ≤ N∗} for some integer N∗ ≥ N0, where λn’s are strictly
increasing. Note that λN∗ = γN0 . Then from (5.26) we have

∣∣∣ f (t) −
N∗∑

n=1

φnψλn (t)
∣∣∣
α,σ

= O(ψλ(t)) for some λ > λN∗ , (5.27)

where φn ∈ Gα,σ for all 1 ≤ n ≤ N∗.
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Theorem 5.6 Let Assumption 5.5 hold true, and let f have the asymptotic approximation
(5.27). Let ξn be defined by (5.7) and (5.8) for 1 ≤ n ≤ N∗. For any Leray–Hopf weak
solution u(t) of (2.2), it holds that∣∣∣∣∣u(t) −

N∗∑
n=1

ξnψλn (t)

∣∣∣∣∣
α,σ

= O(ψλ(t)) for some λ > λN∗ .

Proof The proof of Theorem 5.6 is the same as that of Theorem 5.4 except that we only use
finite induction to establish (5.15) for 1 ≤ N ≤ N∗. ��

6 Asymptotic expansions in a discrete systemwith a continuum
background

In this section, we investigate the case that the system of functions (ψn)
∞
n=1 in Definition 4.1

cannot be mapped directly to a system (ψλn )
∞
n=1 to be embedded into a continuum system

(ψλ)λ>0. Hence, Definition 4.3 will not apply. However, we consider below the case when
each ψn is of the same decaying order, when t → ∞, as ϕλn with the functions ϕλn ’s being
part of a continuum system (ϕλ)λ>0.

Definition 6.1 Let � = (ψn)
∞
n=1 be a sequence of positive functions defined on [T∗,∞) for

some T∗ ∈ R, and � = (ϕλ)λ>0 be a continuum system as in Definition 4.3 such that there
exists a strictly increasing, divergent sequence (λn)

∞
n=1 of positive numbers such that

ψn(t)
O= ϕλn (t) for all n ∈ N. (6.1)

Let (X , ‖ · ‖) be a normed space, and g be a function from (0,∞) to X . We define the
asymptotic expansions

g(t) ∼
�

∞∑
n=1

ξnψn(t), g(t) ∼
�

N∑
n=1

ξnψn(t) with N ∈ N, g(t) ∼
�
0 in X , (6.2)

in the same way as Definition 4.3 and the special cases (i)–(iv) below it, where we replace
ψλn with ψn , replace (4.12) with∥∥∥∥∥g(t) −

N∑
n=1

ξnψn(t)

∥∥∥∥∥ = O(ψN (t)ϕε(t)), (6.3)

replace (4.15) with ∥∥∥∥∥g(t) −
N∑

n=1

ξnψn(t)

∥∥∥∥∥ = O(ϕλ(t)), (6.4)

replace (4.17) with

‖g(t)‖ = O(ϕλ(t)). (6.5)

We refer to � as a background system of (ψn)
∞
n=1. We will write expansions in (6.2) as

g(t) ∼
�

N∑
n=1

ξnψn(t) in X , for N = ∞, N ∈ N, and N = 0, respectively.

The following remarks on Definition 6.1 are in order.
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(a) It follows (6.1) immediately that property (4.1) holds true. Moreover, for any n > m,
there exists η > 0 such that

ψn(t) = O(ψm(t)ϕη(t)). (6.6)

where η is a number such that ϕλn (t) = O(ϕλm (t)ϕη(t)), thanks to property (4.10) for the
system�. Thus, property (4.2) is also true. Therefore, Definition 4.1 for the asymptotic
expansions g(t) ∼ ∑∞

n=1 ξnψn(t) in X still applies.
Obviously, if g(t) ∼

�

∑N
n=1 ξnψn(t) then g(t) ∼ ∑N

n=1 ξnψn(t) in the sense ofDefinition

4.1. Then, thanks to Proposition 4.2, the uniqueness of the latter expansion implies the
uniqueness of the former one.

(b) We can equivalently replace O(ψN (t)ϕε(t)) in (6.3) with O(ϕλN (t)ϕε(t)), or O(ϕλ(t))
for some λ > λN .

(c) For a given sequence (ψn)
∞
n=1, there may be different background systems. However,

the asymptotic expansion of a function g as defined in (6.2), thanks to remark (a), is
unique disregarding the choice of the background system �.

(d) Let� = (ϕλ)λ>0 and� = (ϑλ)λ>0 be two systems as in Definition 4.3. If there exists a

strictly increasing bijection μ from (0,∞) to (0,∞) such that ϕλ(t)
O= ϑμ(λ)(t) for all

λ > 0, then

g(t) ∼
�

N∑
n=1

ξnψn(t) if and only if g(t) ∼
�

N∑
n=1

ξnψn(t).

(e) Let � = (ψλ)λ>0 and � = (ϕλ)λ>0 satisfy (a) and (b) of Definition 4.3. Suppose there
exists a strictly increasing bijection μ from (0,∞) to (0,∞) such that

ψλ(t)
O= ϕμ(λ)(t) for all λ > 0. (6.7)

Let X , (ξn)
∞
n=1 and (λn)

∞
n=1 be as in Definition 4.3. Set ψ̃n = ψλn for all n ∈ N. If g is

a function from (0,∞) to X , then

g(t)
�∼

∞∑
n=1

ξnψλn (t) if and only if g(t) ∼
�

∞∑
n=1

ξnψ̃n(t). (6.8)

For simplicity, we will write the last expansion as

g(t) ∼
�

∞∑
n=1

ξnψλn (t). (6.9)

While the functions ψn’s, with discrete index n, are the actual functions presented in the
expansions in (6.2), the functions ϕλ, with the continuum index λ, provide specific rates in
comparison (6.6) and remainder estimates (6.5), (6.4), (6.3). The fact that λ has the range
(0,∞) gives ϕλ the flexibility in many comparisons and estimates, while the structure of
the expansions is maintained by ψn’s. Note also that ψn’s are not required to be decreasing
anymore.

Assumption 6.2 For the rest of this section, we assume that� = (ψn)
∞
n=1 and� = (ϕλ)λ>0

are a pair of systems as in Definition 6.1 that further satisfy

(i) For any m, n ∈ N, there exist a natural number k > max{m, n} and a nonzero constant
dm,n such that

ψmψn = dm,nψk . (6.10)
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(ii) For eachn ∈ N,ψn is continuous and differentiable on [T∗,∞), andψ ′
n has an expansion

in the sense of Definition 6.1

ψ ′
n(t) ∼

�

Nn∑
k=n+1

cn,kψk(t) in R,

where Nn ∈ N ∪ {0,∞}, all cn,k are constants.
(iii) The system � = (ϕλ)λ>0 satisfies Condition 4.5.

Notation We denote the unique number k in (6.10) by m ∧ n.

We obtain the asymptotic expansions of type (6.2) for the NSE.

Theorem 6.3 Suppose there exist α ≥ 1/2, σ ≥ 0, and φn ∈ Gα,σ for all n ∈ N such that

f (t) ∼
�

∞∑
n=1

φnψn(t) in Gα,σ .

Then any Leray–Hopf weak solution u(t) of (2.2) has the asymptotic expansion

u(t) ∼
�

∞∑
n=1

ξnψn(t) in Gα+1−ρ,σ for all ρ ∈ (0, 1), (6.11)

where

ξ1 = A−1φ1, ξn = A−1

⎛
⎜⎝φn − χn −

∑
1≤k,m≤n−1,

k∧m=n

dk,m B(ξk, ξm)

⎞
⎟⎠ for n ≥ 2, (6.12)

with χn = ∑n−1
p=1 cp,nξp.

Proof We follow the proof of Theorem 5.4 and make the following replacements:

• ψλn is replaced with ψn for all n ∈ N, and
• ψ� is replaced with ϕ� whenever the subscript symbol � is δ1, ε, ε1, η1, εN , εN+1, δN+1.

It results in the expansion (6.11) as desired. ��
For finite sum asymptotic approximations in a discrete system, we obtain the following

counter part of Theorem 5.6.

Theorem 6.4 Suppose there exist numbers σ ≥ 0, α ≥ 1/2, N∗ ∈ N, and functions φn ∈
Gα,σ for 1 ≤ n ≤ N∗ such that

∣∣∣∣∣ f (t) −
N∗∑

n=1

φnψn(t)

∣∣∣∣∣
α,σ

= O(ϕλ(t)) for some λ > λN∗ .

Let ξn be defined by (6.12) for 1 ≤ n ≤ N∗. Then any Leray–Hopf weak solution u(t)
satisfies ∣∣∣∣∣u(t) −

N∗∑
n=1

ξnψn(t)

∣∣∣∣∣
α,σ

= O(ϕλ(t)) for some λ > λN∗ .

Proof The proof of Theorem 6.4 is the same as that of Theorem 5.6 with the use of replace-
ments in the proof of Theorem 6.3. ��
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7 Applications

We will apply results in Sects. 5 and 6 to obtain specific expansions for solutions of the NSE
corresponding to different types of forces. We focus on the infinite expansions, hence, show
only applications of Theorems 5.4 and 6.3. Their counterparts using the finite asymptotic
approximations in Theorems 5.6 and 6.4 can be similarly obtained. However, they will not
be presented here, for the sake of avoiding repetitions and keeping the paper concise.

First, we discuss a very frequently used type of systems of functions for long-time asymp-
totic expansions.

Definition 7.1 A P-system is a system � = (ψλ)λ>0, with ψλ = ϕλ, where ϕ is a positive
function defined on [T∗,∞) for some T∗ ≥ 0, and ϕ(t) → 0 as t → ∞.

Property (P) Clearly, a P-system � satisfies (a) and (b) in Definition 4.3 with η = λ − μ,
and (i) in Condition 4.4 with dλ,μ = 1 and γ = λ ∧ μ = λ + μ.

In this case, a set S ⊂ (0,∞) preserves the operation ∧, see (4.29), if and only if it
preserves the addition, i.e., x + y ∈ S whenever x, y ∈ S.

In Sects. 7.1–7.4, letσ ≥ 0 andα ≥ 1/2 be given numbers, (γn)
∞
n=1 be a strictly increasing,

divergent sequence of positive numbers, and (φ̃n)
∞
n=1 be a sequence in Gα,σ .

7.1 The system of power-decaying functions

We quickly demonstrate how to apply Theorem 5.4 to recover one of the main theorems in
[1] on the expansions in the system of power-decaying functions.

Let � = (t−λ)λ>0 which is a P-system.

(i) By Property (P), � satisfies (a) and (b) of Definition 4.3.
(ii) By Property (P), � satisfies (i) of Condition 4.4. In addition, it satisfies (ii) of Condi-

tion 4.4 with

Nλ = 1, cλ,1 = −λ, λ∨(1) = λ + 1 for all λ > 0. (7.1)

Thus, � meets Condition 4.4.
(iii) Elementary calculations show � meets Condition 4.5.

Therefore, � satisfies the conditions set from the beginning of Sect. 5.
Note from (7.1) that a set S ⊂ (0,∞) preserves the operation ∨, see (4.28), if and only

if it preserves the increments by 1, i.e., x + 1 ∈ S whenever x ∈ S.
We assume the force has an expansion

f (t)
�∼

∞∑
n=1

φ̃nt−γn in Gα,σ . (7.2)

Let

S∗ =
⎧⎨
⎩

p∑
j=1

γn j + k : p, n1, n2, . . . , n p ∈ N, k ∈ N ∪ {0}
⎫⎬
⎭ . (7.3)

Clearly, the set S∗ in (7.3) satisfies Assumption 5.2. We assume (5.4), and rewrite (7.2)
as

f (t)
�∼

∞∑
n=1

φnt−λn in Gα,σ ,
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where the sequence (φn)
∞
n=1 ⊂ Gα,σ is defined as in (5.5). Then Theorem 5.4 implies that

any Leray–Hopf weak solution u(t) of the NSE (2.2) has the asymptotic expansion

u(t)
�∼

∞∑
n=1

ξnt−λn in Gα+1−ρ,σ for all ρ ∈ (0, 1),

where

ξ1 = A−1φ1, ξn = A−1

⎛
⎜⎜⎝φn + χn −

∑
1≤k,m≤n−1,
λk+λm=λn

B(ξk, ξm)

⎞
⎟⎟⎠ for n ≥ 2,

with χn = λpξp if there exists an integer p ∈ [1, n − 1] such that λp + 1 = λn , and χn = 0
otherwise.

We have recovered Theorem 4.3 in [1] as a consequence of Theorem 5.4.

7.2 Systems of iterated logarithmic, decaying functions

We consider the case when the force decays as logarithmic or iterated logarithmic functions.
For k,m ∈ N, let

Lk(t) = ln(ln(· · · ln(t)))︸ ︷︷ ︸
k-times

and Lm(t) = (L1(t), L2(t), . . . , Lm(t)).

Let Q0 : Rm → R be a polynomial in m variables:

Q0(z) =
∑
α

cαzα for z ∈ R
m, (7.4)

where the sum is taken over finitely many multi-index α = (α1, α2, . . . , αm), and cα’s are
(real) constants. We use the lexicographic order for the multi-indices in (7.4).

We assume that Q0(z) has positive degree and positive leading coefficient. Denote by
α∗ = (α∗1, α∗2, . . . , α∗m) the largest multi-index (with the lexicographic order) in (7.4) for
which cα∗ = 0. Then we have |α∗| ≥ 1 and cα∗ > 0.

Let Q1 be a polynomial in one variable of positive degree with positive leading coefficient.
Denote the degree of Q1 by d ≥ 1, and the leading coefficient by ad > 0.

Given a number β > 0, we define

ω(t) = (Q0 ◦ Lm ◦ Q1)(t
β)) with t ∈ R. (7.5)

One can see that there exists T∗ > 0 such that ω is a positive function defined on [T∗,∞)

and ω(t) → ∞ as t → ∞.
Let ψλ(t) = ω(t)−λ for λ > 0, and let � be the P-system (ψλ)λ>0.

Lemma 7.2 If λ > 0, then

lim
t→∞ψλ(t)Lm(t)λα∗ = (cα∗(βd)α∗1)−λ. (7.6)

Proof First, if k < j , then L j (t) = o(Lk(t)). With the lexicographic order, we have

lim
t→∞

(Q0 ◦ Lm)(t)

cα∗Lm(t)α∗ = 1, which implies lim
t→∞

ω(t)

Lm(Q1(tβ))α∗ = cα∗ > 0.
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Moreover,

lim
t→∞

Lm(Q1(tβ))α∗

Lm(ad tβd)α∗ = 1.

By the properties of the logarithmic function, one has, for any a, r > 0, that

lim
t→∞

Lk(atr )

Lk(t)
=

{
r , for k = 1,

1, for k > 1.
(7.7)

Combining these gives

lim
t→∞

ω(t)

Lm(t)α∗

= lim
t→∞

ω(t)

Lm(Q1(tβ))α∗ · lim
t→∞

Lm(Q1(tβ))α∗

Lm(ad tβd)α∗ · lim
t→∞

Lm(ad tβd)α∗

Lm(t)α∗ = cα∗(βd)α∗1 .

Thus, (7.6) follows. ��
As a consequence of (7.6), we have

ψλ(t)
O= Lm(t)−λα∗ . (7.8)

In particular, if α∗ = p0ek for some p0 ∈ N, where ek is the k-th unit vector of the
canonical basis of Rm , then

ψλ(t)
O= Lk(t)

−p0λ. (7.9)

We verify Conditions 4.4 and 4.5 for the P-system �.
Verification of Condition 4.4 Because of Property (P) for �, we only need to check (ii) of
Condition 4.4. By Chain Rule,

d

dt
(Lm(t)α) =

m∑
k=1

αkLm(t)α−ek
d

dt
Lk(t) =

m∑
k=1

αkLm(t)α−ek
1

t�k−1
p=1L p(t)

= 1

t

m∑
k=1

αkLm(t)α−e1−e2−···ek .

Then,

d

dt
(Lm(Q1(t

β))α) = βtβ−1Q′
1(t

β)

Q1(tβ)

m∑
k=1

αkLm(Q1(t
β))α−e1−e2−···−ek .

We estimate∣∣∣∣ ddt
(Lm(Q1(t

β))α)

∣∣∣∣ = O(t−1Lm(Q1(t
β))α∗) = O(t−1Lm(t))α∗).

Hence,

|ω′(t)| = O(t−1Lm(t))α∗).

Since ψ ′
λ(t) = −λω(t)−λ−1ω′(t), we combine these with Lemma 7.2 to obtain

|ψ ′
λ(t)| = O

(
Lm(t)α∗

t · Lm(t)(1+λ)α∗

)
= O(t−1).
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This implies

|ψ ′
λ(t)| = O

(
Lm(t)−μα∗) = O(ψμ(t)), ∀μ > 0.

Therefore, by definition,

ψ ′
λ(t)

�∼ 0 for all λ > 0. (7.10)

Thus, � satisfies (ii) of Condition 4.4 with Nλ = 0 for all λ > 0.
Verification of Condition 4.5 Thanks to (7.6) and (7.7), the requirements (ii) and (iii) are met.
For (i), using the above calculations we find

ω′(t) = βtβ−1Q′
1(t

β)

Q1(tβ)

∑
α=(α1,α2,...,αm )

cα

m∑
k=1

αkLm(Q1(t
β))α−e1−e2−···ek .

Let γ∗ be the largest multi-index among α − e1 − e2 − · · · − ek with nonzero cααk .
Then γ∗ = α∗ − e1 − e2 −· · ·− ek where k is the smallest index for which the component

α∗k ≥ 1. Hence the corresponding coefficient is cα∗α∗k > 0. Note also that Q′
1(t

β) > 0 for
large t . We conclude, for sufficiently large t , that ω′(t) > 0, and hence ψ ′

λ(t) < 0 .
Now, we assume the force has the following expansion

f (t)
�∼

∞∑
n=1

φ̃nω(t)−γn =
∞∑

n=1

φ̃nψγn (t) in Gα,σ .

Let S∗ = {∑p
j=1 γn j : p, n1, n2, . . . , n p ∈ N}. Then, again, this set S∗ satisfies Assump-

tion 5.2; hence, we can assume (5.4) and the expansion (5.5), which reads as

f (t)
�∼

∞∑
n=1

φnω(t)−λn in Gα,σ , (7.11)

for a sequence (φn)
∞
n=1 in Gα,σ .

Theorem 7.3 Let ω be defined by (7.5) and assume the expansion (7.11).

(i) Then any Leray–Hopf weak solution u(t) of the NSE (2.2) has the asymptotic expansion

u(t)
�∼

∞∑
n=1

ξnω(t)−λn in Gα+1−ρ,σ for all ρ ∈ (0, 1), (7.12)

where

ξ1 = A−1φ1, ξn = A−1

⎛
⎜⎜⎝φn −

∑
1≤k,m≤n−1,
λk+λm=λn

B(ξk, ξm)

⎞
⎟⎟⎠ for n ≥ 2. (7.13)

(ii) By defining ϕλ(t) = Lm(t)−λα∗ and � = (ϕλ)λ>0, we can equivalently replace
�∼ with

∼
�

in (7.11) and (7.12), in the sense of (6.9).

In particular, if α∗ is co-linear with the k-th unit vector ek of the canonical basis of Rm,
then this replacement still holds true for � = (Lk(t)−λ)λ>0.

Proof (i) Applying Theorem 5.4 while noting that χn = 0 in (5.9) for all n ∈ N due to the
fact (7.10), we deduce (7.12) from (5.6).
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(ii) Let ϕλ(t) = Lm(t)−λα∗ and � = (ϕλ)λ>0. Note by (7.8) that ψλ(t)
O= ϕλ(t) which

implies (6.7) with μ(λ) = λ. Then the replacement is valid thanks to (6.8) and (6.9) in
remark (e) after Definition 6.1.
Now, consider the case when α∗ = p0ek for some p0 ∈ N. Let ϕλ(t) = Lk(t)−λ and,
again, � = (ϕλ)λ>0. By (7.9), we have

ψλ(t)
O= ϕp0λ(t) = ϕμ(λ)(t), where μ(λ) = p0λ.

Hence, the replacement is valid again by the same (6.8) and (6.9). ��

Corollary 7.4 Given m ∈ N, define� = (Lm(t)−λ)λ>0. Suppose (λn)
∞
n=1 is a strictly increas-

ing, divergent sequence of positive numbers such that the set {λn : n ∈ N} preserves the
addition. If

f (t)
�∼

∞∑
n=1

φn Lm(t)−λn in Gα,σ ,

then any Leray–Hopf weak solution u(t) of the NSE (2.2) admits the same asymptotic expan-
sion

u(t)
�∼

∞∑
n=1

ξn Lm(t)−λn in Gα+1−ρ,σ for all ρ ∈ (0, 1),

where ξn’s are defined by (7.13).

Proof We choose Q0(z1, z2, . . . , zm) = zm , Q1(t) = t and β = 1. Notice, in this case, that
(7.5) becomes ω(t) = Lm(t). Then the result in this corollary follows Theorem 7.3(i) and
Remark 5.3. ��

Example 7.5 Thanks to Theorem 7.3, we can have asymptotic expansions of many different
types. We illustrate it with just two here. Let (λn)

∞
n=1 be a strictly increasing, divergent

sequence of positive numbers that preserves the addition. By Remark 5.3, we can use, from
the beginning, expansion (7.11) for the force. We will also use the replacements indicated in
Theorem 7.3(ii).

(a) When m = 5, Q0(z1, z2, . . . , z5) = 3z21z3 − 2z2z45, Q1(t) = t , and β = 1, if

f (t) ∼
�

∞∑
n=1

φn
[
3(ln t)2L3(t) − 2L2(t)L5(t)

4]−λn in Gα,σ ,

where � = (
(ln t)−2λL3(t)−λ

)
λ>0, then

u(t) ∼
�

∞∑
n=1

ξn
[
3(ln t)2L3(t) − 2L2(t)L5(t)

4]−λn in Gα+1−ρ,σ for all ρ ∈ (0, 1).

(b) When m = 7, Q0(z1, z2, . . . , z7) = 4z2 − z57 + 3, Q1(t) = t3 − 3t + 1, and β = 1/2,
if

f (t) ∼
�

∞∑
n=1

φn
[
4L2(t

3/2 − 3t1/2 + 1) − L7(t
3/2 − 3t1/2 + 1)5 + 3

]−λn in Gα,σ ,
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where � = (L2(t)−λ)λ>0, then

u(t) ∼
�

∞∑
n=1

ξn
[
4L2(t

3/2 − 3t1/2 + 1) − L7(t
3/2 − 3t1/2 + 1)5 + 3

]−λn

in Gα+1−ρ,σ for all ρ ∈ (0, 1).

Example 7.6 Given m ∈ N. Consider the system

� = (ψλ)λ>0 =
([
sin(L−1

m (t))
]λ)

λ>0
.

Clearly, sin(L−1
m (t)) is a positive function defined on [T∗,∞) for some T∗ > 0 and

sin(L−1
m (t)) → 0 as t → ∞. Thus � is a P-system.

Since sinλ(x) is increasing in x on (0, π/2), it implies that
[
sin(L−1

m (t))
]λ

is decreasing
on [T1,∞) for some sufficiently large number T1. Noting that

2x

π
≤ sin(x) ≤ x, for 0 ≤ x ≤ π/2,

and 0 < L−1
m (t) ≤ 1 for large t , one has sin(L−1

m (t))
O= L−1

m (t).
This and Lemma 7.2 yield

[
sin(L−1

m (at))
]λ O= [

L−1
m (at)

]λ O= [
L−1

m (t)
]λ O= [

sin(L−1
m (t))

]λ
.

Clearly,

lim
t→∞

e−αt

ψλ(t)
= lim

t→∞ e−αt Lm(t)λ = 0.

Therefore, � satisfies Condition 4.5. We write

ψ ′
λ(t) = −λ

(
sin(L−1

m (t)
)λ−1

cos(L−1
m (t))

1

t
(
�m−1

p=1 L p(t)
)

Lm(t)2
,

and estimate

|ψ ′
λ(t)| = O

(
t−1(sin(L−1

m (t))λ−1) = O
(
t−1Lm(t)−λ+1) = O

(
Lm(t)−μ

) = O(ψμ(t))

for all μ > 0. Then � satisfies (ii) of Condition 4.4 with Nλ = 0 for all λ > 0, and thus, all
parts of Condition 4.4 due to Property (P). Let (λn)

∞
n=1 be as in Example 7.5. By Theorem

5.4, if

f (t)
�∼

∞∑
n=1

φn
[
sin(L−1

m (t))
]λn in Gα,σ ,

then

u(t)
�∼

∞∑
n=1

ξn
[
sin(L−1

m (t))
]λn in Gα+1−ρ,σ for all ρ ∈ (0, 1),

with ξn’s being (7.13).
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Example 7.7 Given m ∈ N. Consider the system

� = (ψλ)λ>0 =
([
tan(L−1

m (t))
]λ)

λ>0
.

Similar to Example 7.6, using the fact that

x ≤ tan(x) ≤ 2x, for 0 ≤ x ≤ 1/2,

one can verify that � satisfies Condition 4.5 and Condition 4.4 with Nλ = 0 for all λ > 0.
Again, let (λn)

∞
n=1 be as in Example 7.5. We obtain that if

f (t)
�∼

∞∑
n=1

φn
[
tan(L−1

m (t))
]λn in Gα,σ ,

then

u(t)
�∼

∞∑
n=1

ξn
[
tan(L−1

m (t))
]λn in Gα+1−ρ,σ for all ρ ∈ (0, 1),

with ξn’s from (7.13).

7.3 A systemwith infinite expansions for the derivatives

In the previous two subsections, the expansion (4.19) is zero or a finite sum. In this subsection,
we demonstrate the case when each expansion (4.19) is an infinite sum.

Consider a particular P-system� = (ψλ)λ>0 with ψλ = (
√

t + 1)−λ. Let λ > 0. We see,
for any t > 0, that

ψ ′
λ(t) = −λ(

√
t + 1)−λ−1 1

2

1√
t

= −λ

2
(
√

t + 1)−λ−1 1√
t + 1

· 1

1 − 1√
t+1

= −λ

2
(
√

t + 1)−λ−1
∞∑

k=1

1

(
√

t + 1)k
=

∞∑
k=1

−λ

2
(
√

t + 1)−λ−k−1.

Applying LemmaA.1 to X = R, ϕ(t) = (
√

t +1)−1, λn = λ+n+1, M = 2, ξn = −λ/2,
c0 = λ/2, κ = 1, we deduce that the derivative ψ ′

λ(t), in fact, has the expansion

ψ ′
λ(t)

�∼
∞∑

k=1

−λ

2
(
√

t + 1)−λ−k−1.

Thus, we have expansion (4.19) with

Nλ = ∞, and cλ,k = −λ/2, λ∨(k) = λ + 1 + k for all k ∈ N.

With this, Property (P), and some elementary estimates, we can verify that Conditions 4.4
and 4.5 are met.

We assume the force has the expansion

f (t)
�∼

∞∑
n=1

φ̃nψγn (t) =
∞∑

n=1

φ̃n(
√

t + 1)−γn in Gα,σ .
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Define

S∗ =
{
(

p∑
j=1

γn j ) + k : p, n1, n2, . . . , n p ∈ N, k = 0 or k ∈ N ∩ [2,∞)
}
.

Then the set S∗ satisfies Assumption 5.2, and we can assume (5.4) and the expansion

f (t)
�∼

∞∑
n=1

φn(
√

t + 1)−λn in Gα,σ , (7.14)

for a sequence (φn)
∞
n=1 in Gα,σ . We apply Theorem 5.4 and obtain the following.

Proposition 7.8 Assume (7.14). Then any Leray–Hopf weak solution u(t) of the NSE (2.2)
admits the asymptotic expansion

u(t)
�∼

∞∑
n=1

ξn(
√

t + 1)−λn in Gα+1−ρ,σ for all ρ ∈ (0, 1),

where

ξ1 = A−1φ1, ξn = A−1

⎛
⎜⎜⎝φn + 1

2

∑
p∈Zn

λpξp −
∑

1≤k,m≤n−1,
λk+λm=λn

B(ξk, ξm)

⎞
⎟⎟⎠ for n ≥ 2,

with Zn = {p ∈ N ∩ [1, n − 1] : ∃k ∈ N, λp + 1 + k = λn}.

7.4 Expansions using a background system

In this subsection, we present a scenario for which the use of the background systems in
Sect. 6 is essential. To motivate our more general force f later, we consider a simple case
first. Let γ ∈ (0, 1), β0 > 0, and

f (t) = φ

(tγ + 1)β0
with φ ∈ Gα,σ .

We expect a solution u(t) of the NSE (2.2) to have an asymptotic expansion containing
at least (tγ + 1)−β for some β > 0. (Here, the structure of f (t) is maintained without being
converted to a different form such as (7.2).) The derivative term ut in the NSE will contain
d
dt (t

γ + 1)−β , which is

d

dt
(tγ + 1)−β = −γβ

(tγ + 1)β+1t1−γ
= −γβ

(tγ + 1)β+1(t1−γ + 1)(1 − 1
t1−γ +1

)

= −γβ

(tγ + 1)β+1

∞∑
k=1

1

(t1−γ + 1)k
,

thus,

d

dt
(tγ + 1)−β =

∞∑
k=1

−γβ

(tγ + 1)β+1(t1−γ + 1)k
. (7.15)

Thanks to the term Au in the NSE, (7.15) in turn suggests that a possible asymptotic
expansion of u(t) may have to include infinitely many terms (tγ + 1)−λ(t1−γ + 1)−μ.
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Because of this, we now consider a function ψ(t) = (tγ + 1)−λ(t1−γ + 1)−μ. Taking the
derivative by the product rule gives

ψ ′(t) =
( d

dt

1

(tγ + 1)λ

) 1

(t1−γ + 1)μ
+ 1

(tγ + 1)λ

( d

dt

1

(t1−γ + 1)μ

)
.

Using (7.15) with β := λ for the first derivative, and with γ := 1− γ , β := μ for second
derivative, we obtain

ψ ′(t) =
∞∑

k=1

−γ λ

(tγ + 1)λ+1(t1−γ + 1)μ+k
+

∞∑
k=1

−(1 − γ )μ

(t1−γ + 1)μ+1(tγ + 1)λ+k
. (7.16)

Observe that the sums in (7.16) involve the functions of thesame form as ψ , but with dif-
ferent powers. Also, the equality can be converted, under proper conditions, to an asymptotic
expansion with the background system � = (t−λ)λ>0.
Fixing a background system Let us fix the P-system � = (ϕλ)λ>0, where ϕλ(t) = t−λ. By
(i)–(iii) in Sect. 7.1, we see that � satisfies Condition (iii) of Assumption 6.2.

From the above observation,we consider a force f having the following general expansion

f (t) ∼
�

∞∑
n=1

φ̃nψ̃n(t) =
∞∑

n=1

φ̃n

(tγ + 1)α̃n (t1−γ + 1)β̃n
in Gα,σ , (7.17)

where ψ̃n(t) = (tγ + 1)−α̃n (t1−γ + 1)−β̃n , γ is a constant in the interval (0, 1), (α̃n)
∞
n=1 and

(β̃n)
∞
n=1 are sequences of non-negative numbers such that

λ̃n
def= γ α̃n + (1 − γ )β̃n is positive, strictly increasing (in n) to infinity. (7.18)

Note that the expansion in (7.17) is understood in the sense of Definition 6.1 with �̃ =
(ψ̃n)

∞
n=1 replacing �, and λ̃n replacing λn .

A simple example of (7.17) is a finite sum f (t) = ∑N
n=1 φ̃nψ̃n(t) for some N ∈ N. For

more complicated cases of infinite sums, see Corollary A.3.

Assumption 7.9 The number γ is irrational, while numbers α̃n and β̃n are rational for all
n ∈ N.

Define the sets

S∗ =
⎧⎨
⎩γ

⎛
⎝

p∑
j=1

α̃n j + k

⎞
⎠ + (1 − γ )

⎛
⎝

p∑
j=1

β̃n j + �

⎞
⎠ :

p, n1, n2, . . . , n p ∈ N, (k, �) ∈ N
2 ∪ (0, 0)

}
, (7.19)

E1 =
⎧⎨
⎩

p∑
j=1

α̃n j + k : p, n1, n2, . . . , n p ∈ N, k ∈ N ∪ {0}
⎫⎬
⎭ ,

E2 =
⎧⎨
⎩

q∑
j=1

β̃k j + � : q, k1, k2, . . . , kq ∈ N, � ∈ N ∪ {0}
⎫⎬
⎭ .

Note that

{λ̃n : n ∈ N} ⊂ S∗ ⊂ E∗ def= {γα + (1 − γ )β : α ∈ E1, β ∈ E2}. (7.20)

We see that S∗ and E∗ preserve the addition.
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Lemma 7.10 For each μ ∈ E∗, there exists a unique pair (α, β) ∈ E1 × E2 such that

μ = γα + (1 − γ )β. (7.21)

Proof The existence of the decomposition (7.21) comes directly from (7.20). We prove the
uniqueness now. Let μ ∈ E∗ and suppose there are (α, β), (α′, β ′) ∈ E1 × E2 such that

μ = γα + (1 − γ )β = γα′ + (1 − γ )β ′.

Then γ (α − α′) = −(1 − γ )(β − β ′). Note from this relation that α = α′ if and only if
β = β ′.

Consider the case α = α′ and β = β ′. Then

γ

1 − γ
= −β − β ′

α − α′ . (7.22)

We have α − α′ = ∑p
j=1 ±α̃n j + k = 0, and β − β ′ = ∑q

j=1 ±β̃k j + � = 0, for some
k, � ∈ Z, and some particular +/− signs in the two sums.

Since γ is irrational, so is γ /(1−γ ), while the right-hand side of (7.22) is rational, which
yields a contradiction. Therefore, we can only have α = α′ and β = β ′. ��

We rewrite S∗ as

S∗ =
⎧⎨
⎩

p∑
j=1

λ̃n j + γ k + (1 − γ )� : p, n1, n2, . . . , n p ∈ N, (k, �) ∈ N
2 ∪ (0, 0)

⎫⎬
⎭ .

(7.23)

Since λ̃n → ∞, it follows (7.23) that we can order S∗ to be a sequence (λn)
∞
n=1 as in

(5.4).
Note that λn → ∞, hence consequently, αn + βn → ∞.

The discrete system for expansions Let � = (ψn)
∞
n=1, where

ψn(t) = (tγ + 1)−αn (t1−γ + 1)−βn ,

with (αn, βn), thanks to Lemma 7.10, being the unique pair in E1 × E2 such that

λn = γαn + (1 − γ )βn . (7.24)

Clearly,ψn(t)
O= t−λn = ϕλn (t). Hence,� and� satisfy condition (6.1) in Definition 6.1.

We still need to verify the remaining Conditions (i) and (ii) of Assumption 6.2.
Verification of Condition (i) For m, n ∈ N, we have

ψm(t) = (tγ + 1)−αm (t1−γ + 1)−βm , λm = γαm + (1 − γ )βm ∈ S∗, (7.25)

ψn(t) = (tγ + 1)−αn (t1−γ + 1)−βn , λn = γαn + (1 − γ )βn ∈ S∗, (7.26)

where αm, αn ∈ E1 and βm, βn ∈ E2. Then

(ψmψn)(t) = (tγ + 1)−αm−αm (t1−γ + 1)−βn−βn .

Since S∗ preserves the addition we have λm + λn ∈ S∗, hence there exists k such that

λk = λm + λn . (7.27)
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By (7.27), (7.25) and (7.26), we have λk = γ (αm + αn) + (1 − γ )(βm + βn). Because
αm +αn ∈ E1, βm +βn ∈ E2, and by the uniqueness of the decomposition of λk , we deduce
αm + αn = αk and βn + βm = βk . Therefore,

(ψmψn)(t) = (tγ + 1)−αk (t1−γ + 1)−βk = ψk(t).

This proves that (6.10) of Assumption 6.2 holds true with dm,n = 1 and k = m ∧ n ∈ N

satisfying (7.27).
Thus, Condition (i) of Assumption 6.2 is met.

Verification of Condition (ii) Using (7.16), we have, for n ∈ N, t > 0,

ψ ′
n(t) =

∞∑
k=1

−γαn

(tγ + 1)αn+1(t1−γ + 1)βn+k
+

∞∑
k=1

−(1 − γ )βn

(tγ + 1)αn+k(t (1−γ + 1)βn+1

= gn,1(t) + gn,2(t),

where

gn,1(t) =
∞∑

k=1

−γαn

(tγ + 1)αn+1(t1−γ + 1)βn+k
,

gn,2(t) =
∞∑

k=1

−(1 − γ )βn

(tγ + 1)αn+k(t (1−γ + 1)βn+1
.

Let n ∈ N be fixed momentarily. We apply Lemma A.2 to

ϕ(t) = t−1, ψ̄k(t) = (tγ + 1)−αn−1(t1−γ + 1)−βn−k, T∗ = 1,

X = R, ξ̄k = −γαn, ν̄k = γ (αn + 1) + (1 − γ )(βn + k).

Note, for t ≥ 1, that

2−αn−βn−k−1t−ν̄k = (2tγ )−αn−1(2t1−γ )−βn−k ≤ ψ̄k(t) ≤ t−ν̄k ,

which yields

D−1
k ϕ(t)ν̄k ≤ ψ̄k(t) ≤ Dkϕ(t)

ν̄k ,

where Dk = 2αn+βn+k+1. Taking c0 = γαn , κ = 1, and M = 31/(1−γ ), we have

|ξk | ≤ c0κ
ν̄k ,

∞∑
k=1

Dk M−ν̄k < ∞.

Since (ν̄k)
∞
k=1 is already strictly increasing, it is its own strictly increasing re-arrangement.

Then, by Lemma A.2,

gn,1(t) ∼
�

∞∑
k=1

ξ̄kψ̄k(t) =
∞∑

k=1

−γαn

(tγ + 1)αn+1(t1−γ + 1)βn+k
. (7.28)

Now, with ξ̂k = −(1 − γ )βn replacing ξk , ψ̂k(t) = (tγ + 1)−αn−k(t1−γ + 1)−βn−1

replacing ψ̄k(t), and ν̂k = γ (αn + k) + (1 − γ )(βn + 1) replacing ν̄k , we similarly obtain

gn,2(t) ∼
�

∞∑
k=1

ξ̂kψ̂k(t) =
∞∑

k=1

−(1 − γ )βn

(tγ + 1)αn+k(t1−γ + 1)βn+1 . (7.29)
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Since ν̄k and ν̂k belong to S∗, all functions ψ̄k(t) in (7.28), and ψ̂k(t) in (7.29) belong to
the collection {ψn : n ∈ N}. Then we can rewrite

gn,i (t) ∼
�

∞∑
k=1

c̃n,i,kψk(t), for i = 1, 2,

for some constants c̃n,i,k . Therefore,

ψ ′
n(t) = gn,1(t) + gn,2(t) ∼

�
−

∞∑
k=1

cn,kψk(t), (7.30)

where

cn,k = −(c̃n,1,k + c̃n,2,k) = γ
∑

j

α j + (1 − γ )
∑
�

β�, (7.31)

with α j + 1 = αk , β j + p = βk , and α� + q = αk , β� + 1 = βk for some p, q ∈ N ∪ {0}.
Note that these pairs ( j, p) and (�, q) are only finitely many. Indeed, since

α j + β j + p + 1 = αk + βk and α j + β j → ∞,

we have, for each fixed k, there are only finitely many j and p. The same arguments apply
to (�, q). Therefore, the sums in (7.31) are only finite ones.

With (7.30), Condition (ii) of Assumption 6.2 is met.
Conclusion on Assumption 6.2Wehave checked that the systems� and� satisfyAssumption
6.2.

We now return to the expansion (7.17) for the force. Since λ̃n ∈ S∗, we have that each
function (tγ + 1)−α̃n (t1−γ + 1)−β̃n in the sum in (7.17) belongs to {ψn : n ∈ N}. Hence, we
can rewrite (7.17) as

f (t) ∼
�

∞∑
n=1

φnψn(t) =
∞∑

n=1

φn

(tγ + 1)αn (t1−γ + 1)βn
in Gα,σ , (7.32)

for some sequence (φn)
∞
n=1 in Gα,σ .

By applying Theorem 6.3, we obtain the following result.

Proposition 7.11 Assume (7.32). Then any Leray–Hopf weak solution u(t) of the NSE (2.2)
admits the asymptotic expansion

u(t) ∼
�

∞∑
n=1

ξnψn(t) =
∞∑

n=1

ξn

(tγ + 1)αn (t1−γ + 1)βn
in Gα+1−ρ,σ for all ρ ∈ (0, 1),

where

ξ1 = A−1φ1, ξn = A−1

⎛
⎜⎜⎝φn +

n−1∑
p=1

cp,nξp −
∑

1≤k,m≤n−1,
λk+λm=λn

B(ξk, ξm)

⎞
⎟⎟⎠ for n ≥ 2,

with cp,n being defined in (7.31).

Remark 7.12 This is a counterpart of Remark 5.3, but applied to the expansion (7.17).
Assume (α̃n)

∞
n=1 and (β̃n)

∞
n=1 are sequences of non-negative numbers such that
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(a) Property (7.18) holds true,
(b) For each n ∈ N, the right-hand side of (7.18) is the unique decomposition among

γ α̃k + (1 − γ )β̃ j for k, j ∈ N,
(c) Each set E∗,1 = {α̃n : n ∈ N}, E∗,2 = {β̃n : n ∈ N} preserves the addition, and the

increments by 1,

(d) The set E∗
def= {λ̃n : n ∈ N} is equal to Ē

def= {γ α̃k + (1 − γ )β̃ j : k, j ∈ N}.
Define E =

{
γ (α̃n + k) + (1 − γ )(β̃n + j) : n ∈ N, k, j ∈ N ∪ {0}

}
.

By the preservation of E∗,1 and E∗,2 in (c), we have α̃n + k ∈ E∗,1 and β̃n + k ∈ E∗,2.
Then E∗ ⊂ E ⊂ Ē = E∗, which implies E∗ = E .

Let S∗ be defined by (7.19). We have E∗ ⊂ S∗ ⊂ E = E∗. Hence, S∗ = E∗, which, by
(7.18), is already ordered by (λ̃n)

∞
n=1. By this and (5.4), (7.24), we have λn = λ̃n , αn = α̃n ,

βn = β̃n , and ψn = ψ̃n . Therefore, the expansion (7.32) is the original (7.17).

A Appendix

One way to generate an infinite expansion of the type (4.3) is to start with a function as a
convergent series in (4.5). We give a criterion for such a conversion.

Lemma A.1 Let ϕ be a positive function defined on [T∗,∞) for some T∗ ≥ 0, and ϕ(t) → 0
as t → ∞.

Let (λn)
∞
n=1 be a strictly increasing, divergent sequence of positive numbers and there

exists a number M > 1 such that

∞∑
n=1

M−λn < ∞. (A.1)

Let (X , ‖ · ‖) be a Banach space and let (ξn)
∞
n=1 ⊂ X satisfy

‖ξn‖ ≤ c0κ
λn ∀n ∈ N, (A.2)

for some positive constants c0 and κ .
Then the series

∑∞
n=1 ξnϕ(t)λn converges absolutely and uniformly to a function g(t) on

[T0,∞) for some T0 ≥ T∗, and g has the expansion

g(t)
�∼

∞∑
n=1

ξnϕ(t)
λn in X , where � = (ϕλ)λ>0. (A.3)

Proof Since ϕ(t) → 0 as t → ∞, there exists T0 ≥ T∗ such that for all t ≥ T0,

ϕ(t) ≤ 1

Mκ
. (A.4)

Combining (A.2) and (A.4) yields, for all n ∈ N,

sup
[T0,∞)

‖ξnϕ(t)
λn ‖ ≤ c0M−λn .

This and (A.1) imply that
∑∞

n=1 ξnϕ(t)λn converges absolutely and uniformly on [T0,∞),
with g(t) = ∑∞

n=1 ξnϕ(t)λn being its limit function.
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It remains to prove the expansion (A.3). We note, by the convergence of the series∑∞
n=1 ξnϕ(T0)λn , that

sup
n∈N

‖ξn‖ϕ(T0)λn = c1 < ∞,

which implies

‖ξn‖ ≤ c1
ϕ(T0)λn

∀n ∈ N. (A.5)

Again, since ϕ(t) → 0 as t → ∞, there exists T1 ≥ T0 such that for all t ≥ T1,

ϕ(t)

ϕ(T0)
≤ 1

M
. (A.6)

Using (A.5) and (A.6), we estimate, for all t ≥ T1,∥∥∥∥∥g(t) −
N∑

n=1

ξnϕ(t)
λn

∥∥∥∥∥ =
∥∥∥∥∥

∞∑
n=N+1

ξnϕ(t)
λn

∥∥∥∥∥

≤ c1

∞∑
n=N+1

ϕ(t)λn

ϕ(T0)λn
= c1

ϕ(t)λN+1

ϕ(T0)λN+1

∞∑
n=N+1

(
ϕ(t)

ϕ(T0)

)λn−λN+1

≤ c1
ϕ(t)λN+1

ϕ(T0)λN+1

∞∑
n=N+1

M−λn+λN+1 ≤ CNϕ(t)λN+1 ,

where CN = c1(M/ϕ(T0))λN+1
∑∞

n=1 M−λn < ∞. Therefore, we obtain the expansion
(A.3), according to Definition 4.3 with ψλ = ϕλ. ��

We extend Lemma A.1 to cover the expansions with a background system such as those
in Sect. 6.

Lemma A.2 Let ϕ(t) and ψn(t), for n ∈ N, be positive functions defined on [T∗,∞) for some
T∗ ≥ 0 that tend to zero as t → ∞. Assume, for each n ∈ N, there exist a numbers Dn ≥ 1
such that

D−1
n ϕ(t)λn ≤ ψn(t) ≤ Dnϕ(t)

λn ∀t ≥ T∗, (A.7)

where (λn)
∞
n=1 is a sequence of positive numbers and λn → ∞ as n → ∞. Assume further

that there exists M > 0 such that
∞∑

n=1

Dn M−λn < ∞. (A.8)

Let (X , ‖ · ‖) be a Banach space, and (ξn)
∞
n=1 be a sequence in X such that (A.2) holds.

(i) Then the series
∑∞

n=1 ξnψn(t) converges absolutely and uniformly on [T0,∞) for some
T0 ≥ T∗. Define

f (t) =
∞∑

n=1

ξnψn(t) ∈ X ∀t ≥ T0. (A.9)

(ii) Assume the mapping n �→ λn is one-to-one. Let (μn)
∞
n=1 be the strictly increasing re-

arrangement of (λn)
∞
n=1. Define ψ∗

n = ψk and ξ∗
n = ξk with μn = λk . Let � = (ϕ(t)λ)λ>0.
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Then

f (t) ∼
�

∞∑
n=1

ξ∗
n ψ

∗
n (t). (A.10)

Proof (i) There is T0 ≥ T∗ such that ϕ(t) ≤ 1/κM for all t ≥ T0. Then for all t ≥ T0, by
(A.2), (A.7), and (A.8),

∞∑
n=1

‖ξn‖ψn(t) ≤
∞∑

n=1

‖ξn‖Dnϕ(t)
λn ≤

∞∑
n=1

c0Dn M−λn < ∞.

Therefore, we obtain the absolute and uniform convergence on [T0,∞).
(ii) Let D∗

n = Dk with μn = λk . After the re-arrangement we still have

∞∑
n=1

D∗
n M−μn =

∞∑
k=1

Dk M−λk < ∞, (A.11)

and, because of the absolute convergence,

f (t) =
∞∑

n=1

ξ∗
n ψ

∗
n (t) for t ≥ T0. (A.12)

For each n ∈ N, let k ∈ N such that μn = λk , then we have

(D∗
n)

−1ϕμn = D−1
k ϕλk ≤ ψ∗

n = ψk ≤ Dkϕ
λk = D∗

nϕ
μn .

The convergence of f (T0) in (A.12) implies that there exists c1 > 0 such that

‖ξ∗
n ‖ ≤ c1ψ

∗
n (T0)

−1 ≤ c1D∗
nϕ(T0)

−μn ∀n ∈ N.

Let T1 ≥ T0 such that ϕ(t)/ϕ(T0) ≤ 1/M2 for all t ≥ T1. Then, for t ≥ T1,∥∥∥∥∥ f (t) −
N∑

n=1

ξ∗
n ψ

∗
n (t)

∥∥∥∥∥ =
∥∥∥∥∥

∞∑
n=N+1

ξ∗
n ψ

∗
n (t)

∥∥∥∥∥ ≤
∞∑

n=N+1

c1D∗
nϕ(T0)

−μn · D∗
nϕ(t)

μn

≤ c1(ϕ(t)/ϕ(T0))
μN+1

∞∑
n=N+1

(D∗
n)

2(ϕ(t)/ϕ(T0))
μn−μN+1

≤ c1(ϕ(t)/ϕ(T0))
μN+1

∞∑
n=N+1

(D∗
n)

2M−2μn+2μN+1

≤ c1(M2ϕ(t)/ϕ(T0))
μN+1

( ∞∑
n=N+1

D∗
n M−μn

)2

≤ Cϕ(t)μN+1 ,

where thanks to (A.11), C is a positive number. Since μN+1 > μN , we obtain (A.10). ��
Weemphasize that the sum in (A.9)must be re-arranged to have ameaningful expansion as

in (A.10). In particular cases, Lemma A.2 is used to obtain expansions when ψn is generated
by two functions with two different sequences of powers.

Corollary A.3 Suppose ζ(t), ϑ(t) and ϕ(t) are three positive functions defined on [T∗,∞)

for some T∗ ≥ 0 that tend to zero as t → ∞, and there exist numbers D ≥ 1, s1, s2 > 0
such that

D−1ϕ(t)s1 ≤ ζ(t) ≤ Dϕ(t)s1 , D−1ϕ(t)s2 ≤ ϑ(t) ≤ Dϕ(t)s2 ∀t ≥ T∗. (A.13)
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Let (αn)
∞
n=1 and (βn)

∞
n=1 be two sequences of non-negative numbers such that αn +βn →

∞.
Define λn = s1αn + s2βn for n ∈ N. Let (X , ‖ · ‖) be a Banach space, and (ξn)

∞
n=1 be a

sequence in X. Assume (A.1) and (A.2).
(i) Then the series

∑∞
n=1 ξnζ(t)αnϑ(t)βn converges absolutely and uniformly on [T0,∞)

for some T0 ≥ T∗. Define

f (t) =
∞∑

n=1

ξnζ(t)
αnϑ(t)βn ∀t ≥ T0.

(ii) Suppose the mapping n �→ λn is one-to-one. Let (μn)
∞
n=1 be the strictly increasing

re-arrangement of (λn)
∞
n=1. Define ψ∗

n = ζ αkϑβk and ξ∗
n = ξk with μn = λk .

Let � = (ϕ(t)−λ)λ>0. Then

f (t) ∼
�

∞∑
n=1

ξ∗
n ψ

∗
n (t).

Proof Let ψn(t) = ζ(t)αnϑ(t)βn and Dn = Dαn+βn . Thanks to (A.13), we have

D−1
n ϕλn = D−(αn+βn)ϕλn ≤ ψn ≤ Dαn+βnϕλn = Dnϕ

λn .

Note that λn → ∞. Denote s = max{1/s1, 1/s2}. Then
∞∑

n=1

Dn(M Ds)−λn =
∞∑

n=1

M−λn D(1−s1s)αn+(1−s2s)βn ≤
∞∑

n=1

M−λn < ∞.

Hence, (A.8) holds true with M := M Ds . Applying Lemma A.2, we obtain the desired
statements in (i) and (ii). ��
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