
Annali di Matematica Pura ed Applicata (1923 -) (2020) 199:573–587
https://doi.org/10.1007/s10231-019-00892-3

The one-sided bounded slope condition in evolution
problems

Verena Bögelein1 · Thomas Stanin1

Received: 18 April 2019 / Accepted: 27 July 2019 / Published online: 1 August 2019
© The Author(s) 2019

Abstract
We establish a local Lipschitz regularity result of solutions to the Cauchy–Dirichlet problem
associated with evolutionary partial differential equations{

∂t u − div D f (∇u) = 0, in �T ,

u = u0, on ∂P �T .

We do not impose any growth assumptions from above on the function f : Rn → R and only
require it to be convex and coercive. The domain� is required to be bounded and convex, and
the time-independent boundary datum u0 is supposed to be convex and Lipschitz continuous
on �. It can be seen as an evolutionary analogue to the one-sided bounded slope condition.
Additionally, assuming � to be uniformly convex, we establish global continuity on �T of
the solution.

Keywords Parabolic equations · Continuity of solutions · One-sided bounded slope
condition

Mathematics Subject Classification 35A15 · 35B65 · 35K55 · 49J40

1 Introduction

In this article, we are concerned with regularity properties of solutions to a class of Cauchy–
Dirichlet problems of evolutionary partial differential equations of the form{

∂t u − div D f (∇u) = 0, in �T ,

u = u0, on ∂P �T ,
(1.1)

in a spacetime cylinder �T := � × (0, T ) with a bounded and convex domain � ⊂ R
n ,

n ≥ 2 and T > 0. As usual the parabolic boundary is defined by ∂P�T := � × {0} ∪
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∂� × (0, T ). We do not require our variational integrand f to satisfy any growth conditions
from above but merely assume it to be convex and—to guarantee existence of solutions—also
coercive (see 2.1). This approach follows a famous result inHilbert–Haar theory for stationary
problems, which—starting with a paper by Haar [14] and followed by papers from Hartman
and Nirenberg [16], Stampacchia [23], Miranda [22], and Hartman and Stampacchia [17]—
can now even be found in textbooks (see [13, Chapter 1] as one possible reference). Under the
bounded slope condition (see Definition 5.2), it ensures the existence of Lipschitz continuous
minimizers. For time-dependent problems, a related result for linear growth functionals can
be found in [15].Moreover, in [4] the existence of Lipschitz continuous solutions to parabolic
Cauchy–Dirichlet problems is proven under the assumption that the time-independent initial
and lateral boundary datum satisfies the bounded slope condition. More precisely, Lipschitz
continuity with respect to the parabolic metric is obtained.

In recent years, there were different attempts to weaken the quite restrictive bounded slope
condition. In [11], Clarke introduced the one-sided bounded slope condition and proved
local Lipschitz continuity of minimizers to elliptic variational functionals. Later, a different
generalization—named byMariconda and Treu in [20] asCellina bounded slope condition—
was introduced by Cellina in [10] as a result of establishing a new kind of comparison
principle working without the strict convexity assumption on the variational integrand in the
elliptic case. Mariconda and Treu then combined the two approaches in [21] to receive a
one-sided version of Cellina’s condition. Further results on the one-sided and full bounded
slope condition can be found in [7–9,19] and the references therein.

Our paper has its origin in the effort to weaken the bounded slope condition in the evo-
lutionary setting. As in [11], we impose the one-sided bounded slope condition in order to
compensate the lack of growth. As strict convexity of the variational integrand is not neces-
sary to get unique solutions in the parabolic setting, we stay with Clarke’s approach in this
article and transfer the main ideas of his proof into the context of parabolic problems. To
adapt the lower bounded slope condition to the new setting, we require existence of affine
functions lying below the boundary datum u0 at each point x0 ∈ � in contrast to just requir-
ing it on ∂� as in [11, Section 1] in the elliptic case, so that we can cope with both the initial
and lateral boundary parts at once. This condition is encoded into our structural assumptions
on u0 (see 2.3)—following an alternative characterization of Clarke’s lower bounded slope
condition in [11, Proposition 1.1]—and will be explicitly stated in Lemma 4.1.

Starting from the notion of variational solutions (see Definition 2.1), we prove local
Lipschitz continuitywith respect to space and time.The advantage ofworkingwith variational
solutions rather than weak solutions is that they allow employing methods from the calculus
of variations. If the integrand is sufficiently regular such that the Euler–Lagrange equation
makes sense, it can be shown that variational solutions are weak solutions and vice versa, cf.
[3, Sect. 1.3]. In the proof of the local Lipschitz continuity, we use a dilation method. Quite
remarkably, this method allows to prove local Lipschitz continuity with respect to space and
time. The convexity of the initial datum is needed to ensure the existence of an affine function
lying below the solution in any parabolic boundary point (see Lemma 4.2). On the other hand,
in [4] spatial Lipschitz continuity is proven under the two-sided bounded slope condition by
a translation with respect to the spatial variable only. To prove Lipschitz continuity in time by
a translation in time under the two-sided bounded slope condition would require the initial
datum to be an affine function (u0 as well as −u0 have to be convex). In this respect, one of
the advantages of the one-sided bounded slope condition in the parabolic setting is that for
convex initial data solutions are Lipschitz continuous also with respect to the time variable.

Moreover, we are also interested in global regularity of variational solutions. Global
Lipschitz continuity, however, cannot be expected. There are counterexamples already in
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The one-sided bounded slope condition in evolution problems 575

the stationary setting [11, Sect. 1]. With this respect, it is more natural to investigate global
continuity of solutions as in the stationary setting in [7, Theorem 5] and [11, Theorem 2.2].
In fact, as a second main result we establish that variational solutions are continuous on
�T , provided that the domain � is uniformly convex. In a certain sense, our results allow to
weaken the assumptions in the main existence result in [4], which imposes the full bounded
slope condition on the Cauchy–Dirichlet boundary datum and already starts in a suitably
regular Lipschitz class of functions. As mentioned before, the consequence is that solutions
are not anymore Lipschitz continuous up to the boundary, but merely locally Lipschitz and
continuous up to the boundary in the uniformly convex case.

2 Notation andmain results

Throughout this paper, �T := � × (0, T ) denotes a spacetime cylinder over a bounded and
convex domain � ⊂ R

n and T > 0. For short, we often write v(t) := v(·, t) for a function
in L1(�T ) ≡ L1(0, T ; L1(�)). We consider the parabolic Cauchy–Dirichlet problem (1.1)
with an integrand f : Rn → R that is only supposed to be convex and coercive. More
precisely, we assume that{

f is convex,
f (ξ) ≥ ν|ξ |p + μ, for any ξ ∈ R

n,
(2.1)

with some ν > 0, p > 1 and μ ∈ R. Since we do not impose a growth assumption from
above on f , the notion of weak solution might in general not be well defined. Therefore, we
introduce the notion of variational solution which goes back to a paper by Lichnewsky and
Temam [18].

Definition 2.1 Suppose that f : Rn → R is a variational integrand satisfying (2.1) and con-
sider a Cauchy–Dirichlet datum

u0 ∈ L p(0, T ; W 1,p(�)
)

with ∂t u0 ∈ L2(�T ) and u0(0) ∈ L2(�).

We identify

u ∈ C0([0, T ]; L2(�)
) ∩ u0 + L p(0, T ; W 1,p

0 (�)
)

as a variational solution associated with the Cauchy–Dirichlet problem (1.1) if and only if
the variational inequality∫

�T

f (∇u) dxdt ≤
∫

�T

[
∂tv(v − u) + f (∇v)

]
dxdt

+ 1
2‖v(0) − u0‖2L2(�)

− 1
2‖(v − u)(T )‖2L2(�)

(2.2)

holds true, for any comparison function v ∈ u0 + L p(0, T ; W 1,p
0 (�)) with v(0) ∈ L2(�)

and ∂tv ∈ L2(�T ). �
If the integrand f satisfies additional assumptions like p-growth from above, then vari-

ational solutions are weak solutions in the usual sense, cf. [3]. Moreover, the variational
inequality (2.2) ensures that the initial datum u(0) = u0(0) is assumed. In this paper, we
are mainly interested in time-independent initial and lateral boundary data u0 : � → R. We
assume that {

u0 is convex,
u0 is Lipschitz continuous with constant L > 0.

(2.3)
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576 V. Bögelein, T. Stanin

From [3, Theorem 1.2], we have the following existence result for variational solutions.

Theorem 2.2 Suppose that f : Rn → R is a variational integrand satisfying (2.1) and that
the Cauchy–Dirichlet datum u0 fulfills the second condition in (2.3). Then, there exists a
unique variational solution u in the sense of Definition 2.1. Moreover, u satisfies

∂t u ∈ L2(�T ) and u ∈ C0, 12
([0, T ]; L2(�)

)
.

Note that the second condition of (2.3) together with the convexity of f ensures that∫
�

f (∇uo) dx < ∞ and uo ∈ L2(�), which are the hypotheses in [3, Theorem1.2]. Contrary
to the elliptic setting, in the parabolic setting strict convexity is not a necessary assumption for
uniqueness of solutions. In fact, as stated above, convexity is enough, cf. [4] and Lemma 3.4.
Our first main result ensures that variational solutions are locally Lipschitz continuous with
respect to space and time.

Theorem 2.3 Suppose that f : Rn → R is a variational integrand satisfying (2.1), that the
Cauchy–Dirichlet datum u0 fulfills (2.3) and that u is a variational solution in the sense of
Definition 2.1. Then, u is locally Lipschitz continuous with respect to space and time. More
precisely, for any subcylinder C � �T there holds

|u(x, s) − u(y, t)| ≤ 2M

δ

(|x − y| + |s − t |) for a.e. (x, s), (y, t) ∈ C,

where δ := dist(C, ∂�T ) denotes the Euclidean distance of C to the boundary of �T and

M := 2‖u0‖L∞(�) + L diam(�).

The next natural question concerns global regularity of variational solutions. Global Lip-
schitz continuity cannot be expected due to the counterexample in [11, page 5] and [7].
Nevertheless, under the stronger uniform convexity condition on the domain � we are able
to prove continuity of variational solutions up to the lateral boundary. We first give the
definition of uniform convexity from [22, Definizione 6.1].

Definition 2.4 A bounded, open subset � ⊂ R
n is called uniformly convex if for every

boundary point x0 ∈ ∂� there exists a hyperplane Hx0 passing through that point satisfying

dist(y, Hx0) ≥ ε|y − x0|2, for any y ∈ ∂�. (2.4)

Note that this assumption is stronger than strict convexity. As shown in [22, Propo-
sizione 6.2], this condition ensures that anyC2-function satisfies the bounded slope condition
on ∂�. Our second main result can then be stated as follows:

Theorem 2.5 Suppose that � is uniformly convex, that the variational integrand f : Rn → R

satisfies (2.1), that the Cauchy–Dirichlet datum u0 fulfills (2.3) and that u is a variational
solution in the sense of Definition 2.1. Then, u is continuous on �T .

3 Setup and preliminaries

Throughout the paper, we will use some important results for variational solutions that will
be stated here for the convenience of the reader. We start with localization principles for
variational solutions with respect to space and time. The proofs are straight forward and can
for instance be deduced as in [4, Lemma 3.2 and Remark 4.2].
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Lemma 3.1 (Spatial localization principle) Let u be a variational solution on �T according
to Definition 2.1 with ∂t u ∈ L2(�T ) and let �′ ⊂ � be a subdomain. Then, u is also a
variational solution on the subcylinder �′

T := �′ × (0, T ).

Lemma 3.2 (Temporal localizationprinciple)Let u be a variational solution on�T according
to Definition 2.1 with ∂t u ∈ L2(�T ) and let 0 ≤ t1 < t2 ≤ T . Then, u is also a variational
solution on the subcylinder � × (t1, t2).

Next, we observe that the variational inequality (2.2) can be reformulated by the use of
the time derivative of u.

Remark 3.3 Let u be a variational solution according to Definition 2.1 with ∂t u ∈ L2(�T ).
Adding and subtracting

∫
�T

∂t u(v−u)dxdt on the right-hand side of the variational inequality
(2.2) and using integration by parts with respect to time, we find that∫

�T

f (∇u) dxdt ≤
∫

�T

[
∂t u(v − u) + f (∇v)

]
dxdt (3.1)

for any v ∈ u0 + L p(0, T ; W 1,p
0 (�)) with v(0) ∈ L2(�) and ∂tv ∈ L2(�T ). By an

approximation argument, we infer that the preceding inequality is valid for any v ∈ L2(�T )∩
u0 + L p(0, T ; W 1,p

0 (�)).

Another very important result, which will be used frequently throughout the paper, is
the following version of the comparison principle for variational solutions. Its proof can be
deduced as in [4, Lemma 4.3].

Lemma 3.4 Suppose that f : Rn → R is a variational integrand satisfying (2.1) and that

ui ∈ L p(0, T ; W 1,p(�)
)

with ui (0) ∈ L2(�) and ∂t ui ∈ L2(�T )

for i ∈ {1, 2} are two variational solutions on �T according to Definition 2.1 with u1 ≤ u2

on ∂P�T in the sense of traces. Then, we have u1 ≤ u2 a.e. on �T .

4 Local Lipschitz continuity

In this section, we prove our first main result, the local Lipschitz continuity of variational
solutions stated in Theorem 2.3. We start with a simple observation for convex functions. For
the sake of completeness, we include the proof.

Lemma 4.1 Let � ⊂ R
n be open, bounded and convex and let ϕ : � → R be a convex and

Lipschitz continuous function with Lipschitz-constant L > 0. Then, for every point x0 ∈ �

there exists p ∈ R
n with |p| ≤ L such that

ϕ(x) ≥ ϕ(x0) + 〈p, x − x0〉
for all x ∈ �.

Proof We first consider the case x0 ∈ �. From the convexity of the function ϕ, we deduce
that the subdifferential ∂ϕ(x0) of ϕ in x0 is nonempty. For any subgradient p ∈ ∂ϕ(x0) ⊂ R

n

of ϕ at x0, we have

ϕ(x) ≥ ϕ(x0) + 〈p, x − x0〉, for any x ∈ �.
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Due to the Lipschitz continuity of ϕ with constant L > 0, we know that

〈p, x − x0〉 ≤ ϕ(x) − ϕ(x0) ≤ L|x − x0|, for any x ∈ �,

which implies |p| ≤ L . This proves the result for x0 ∈ �.
If x0 ∈ ∂�, we consider a sequence (xi )i∈N ∈ � with xi → x0 as i → ∞. We have

already shown that for any i ∈ N there exists pi ∈ R
n with |pi | ≤ L such that ϕ(x) ≥

ϕ(xi ) + 〈pi , x − xi 〉 for any x ∈ �. Then, there exists a (not re-labeled) subsequence and
p ∈ R

n such that pi → p. Since |pi | ≤ L for any i ∈ N we also have |p| ≤ L and due to
the continuity of ϕ we conclude that ϕ(x) ≥ ϕ(x0) + 〈p, x − x0〉. This finishes the proof of
the lemma. �

Combining this resultwith the comparisonprinciple inLemma3.4,weobtain the following
lemma.

Lemma 4.2 Suppose that f : Rn → R is a variational integrand satisfying (2.1), that the
Cauchy–Dirichlet datum u0 fulfills (2.3) and that u is a variational solution in the sense of
Definition 2.1. Then, for any (x0, t0) ∈ ∂P�T there exists p ∈ R

n with |p| ≤ L such that u ≥
	x0 a.e. in �T , where 	x0 denotes the affine function defined by 	x0(x) := u0(x0)+〈p, x −x0〉
for x ∈ �.

Proof We first note that x0 ∈ �, since (x0, t0) ∈ ∂P�T . From Lemma 4.1, we infer that
there exists p ∈ R

n with |p| ≤ L such that u0(x) ≥ 	x0(x) for every x ∈ �, where the affine
function 	x0 is defined in the statement of the lemma. In particular, this shows that u ≥ 	x0
on ∂P�T . Note that the constant in time extension of 	x0 to�T is a variational solution in the
sense of Definition 2.1 with initial and lateral boundary values 	x0 and that ∂t u ∈ L2(�T )

due to Theorem 2.2. Therefore, the application of the comparison principle in Lemma 3.4
yields that u ≥ 	x0 a.e. in �T . �

Weare now in the position to prove Theorem2.3. The idea to use a dilation of the domain in
order to prove local Lipschitz continuity of minimizers to elliptic variational integrals is due
to Clarke [11]. Here, we introduce a parabolic version of this technique. Quite surprisingly,
we obtain a stronger result than local Lipschitz continuitywith respect to the parabolicmetric.
We prove that variational solutions are locally Lipschitz continuous in space and time.

Proof of Theorem 2.3 We start by introducing some notation used throughout the proof. Let
λ ∈ (0, 1). For a fixed point ξ ∈ �, we define the space-dilated domain

�ξ ;λ := λ� + (1 − λ)ξ

and space-dilated points

xξ ;λ := λx + (1 − λ)ξ, for x ∈ �. (4.1)

Similarly, for a fixed time τ ∈ [0, T ] we let
(0, T )τ ;λ := (

(1 − λ2)τ, λ2T + (1 − λ2)τ
)
.

and

tτ ;λ := λ2t + (1 − λ2)τ, for t ∈ [0, T ]. (4.2)

Furthermore, the dilated spacetime cylinder is given by

�
ξ,τ ;λ
T := �ξ ;λ × (0, T )τ ;λ,
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The one-sided bounded slope condition in evolution problems 579

and the dilated variational solution uξ,τ ;λ : �
ξ,τ ;λ
T → R is defined via

uξ,τ ;λ(x, t) := λu
(
ξ + x−ξ

λ
, τ + t−τ

λ2

)
. (4.3)

Note that uξ,τ ;λ(xξ ;λ, tτ ;λ) = λu(x, t) for any x ∈ � and t ∈ [0, T ] by definition. In the
following, we proceed in four steps.

Step 1: Bound for the difference uλ−u on the parabolic boundary ∂P�λ
T . Let λ ∈ (0, 1),

ξ ∈ �, and τ ∈ [0, T ]. We claim that

uξ,τ ;λ − u ≤ (1 − λ)M0 on ∂P�
ξ,τ ;λ
T (4.4)

in the sense of traces, where

M0 := ‖u0‖L∞(�) + L diam(�). (4.5)

We consider (x̄, t̄) ∈ ∂P�
ξ,τ ;λ
T . Then, there exists a point (x0, t0) ∈ ∂P�T such that

(xξ ;λ
0 , tτ ;λ

0 ) = (x̄, t̄). For convenience in notation, we abbreviate xλ
0 := xξ ;λ

0 , tλ0 := tτ ;λ
0 ,

�λ
T := �

ξ,τ ;λ
T , and uλ := uξ,τ ;λ. From Lemma 4.2, we infer that there exists p ∈ R

n with
|p| ≤ L such that u ≥ 	x0 a.e. in �T , where 	x0 denotes the affine function 	x0(x) :=
u0(x0) + 〈p, x − x0〉. Since ∂P�λ

T ⊂ �T , this implies that u ≥ 	x0 on ∂P�λ
T in the sense

of traces. Recalling that (x̄, t̄) = (xλ
0 , tλ0 ) ∈ ∂P�λ

T , this allows to estimate

uλ(x̄, t̄) − u(x̄, t̄) = λu(x0, t0) − u(xλ
0 , tλ0 )

= λu0(x0) − u(xλ
0 , tλ0 )

≤ λu0(x0) − 	x0(xλ
0 )

= λu0(x0) − u0(x0) − 〈p, xλ
0 − x0〉

= (λ − 1)
[
u0(x0) − 〈p, x0 − ξ 〉]

≤ (1 − λ)
[
‖u0‖L∞(�) + L diam(�)

]
.

This completes the proof of the claimed inequality (4.4). In the next step, we extend inequality
(4.4) to the whole dilated spacetime cylinder �λ

T .

Step 2: Bound for the difference uλ−u on the spacetime cylinder �λ
T . Let λ ∈ (0, 1), ξ ∈ �,

and τ ∈ [0, T ]. We claim that

uξ,τ ;λ − u ≤ (1 − λ)M0 a.e. on �
ξ,τ ;λ
T , (4.6)

where M0 is defined in (4.5).
As before, we use the shorthand notations uλ := uξ,τ ;λ, and �λ

T := �
ξ,τ ;λ
T and recall

that ∂t u ∈ L2(�T ) by Theorem 2.2. Due to the spatial and temporal localization principles
for variational solutions from Lemmas 3.1 and 3.2, we know that (u + M0(1 − λ))|�λ

T
is a

variational solution on �λ
T ⊂ �T . We claim that also uλ is a variational solution on �λ

T .
To prove this, we consider a comparison function v ∈ u0 + L p

(
(1 − λ2)τ, λ2T + (1 −

λ2)τ ; W 1,p
0 (�λ)

)
with v((1 − λ2)τ ) ∈ L2(�λ) and ∂tv ∈ L2(�λ

T ) and let

ṽ(y, s) := 1
λ

v
(
ξ + λ(y − ξ), τ + λ2(s − τ)

)
, for (y, s) ∈ �T .
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Keeping in mind that 0λ = (1− λ2)τ and T λ = λ2T + (1− λ2)τ by (4.2), the computation∫∫
�λ

T

f
(∇x uλ(x, t)

)
dxdt

= λn+2
∫∫

�T

f
(∇yu(y, s)

)
dyds

≤ λn+2
∫∫

�T

[
∂s ṽ(y, s)(̃v − u)(y, s) + f

(∇y ṽ(y, s)
)]
dyds

+ λn+2
[
1
2 ‖̃v(0) − u0‖2L2(�)

− 1
2‖(̃v − u)(T )‖2L2(�)

]

=
∫∫

�λ
T

[
∂tv(x, t)(v − uλ)(x, t) + f

(∇xv(x, t)
)]
dxdt

+ 1
2‖(v − uλ)(0λ)‖2L2(�λ)

− 1
2‖(v − uλ)(T λ)‖2L2(�λ)

shows the claim that uλ is a variational solution on �λ
T . Thus, so far we have shown that

u + M0(1−λ) and uλ are variational solutions on�λ
T with weak time derivatives in L2(�λ

T ).
Moreover, from (4.4) we know that

uλ ≤ u + M0(1 − λ) on ∂P�λ
T

in the sense of traces. At this point, the comparison principle from Lemma 3.4 yields the
claimed inequality (4.6).

Step 3: Local spatial Lipschitz continuity. Here, we prove that

|u(x, t) − u(y, t)| ≤ M

min{d∂�(x |y), d∂�(y|x)} |x − y|, (4.7)

for a.e. x, y ∈ � and a.e. t ∈ [0, T ), where for x �= y d∂�(x |y) denotes the distance in space
of x to the lateral boundary ∂� in the direction of y and M is defined as

M := 2‖u0‖L∞(�) + L diam(�). (4.8)

For x �= y, we denote by π∂�(x |y) the spatial projection of x onto ∂� in the direction of
y, which is the unique point of the form π∂�(x |y) = x + α(y − x) ∈ ∂� for some α > 1.
Then d∂�(x |y) = |x − π∂�(x |y)|. We now choose ξ = π∂�(x |y) and τ = t in the dilations
defined in (4.1) – (4.3). Then, y can be written in the form

y = xξ ;λ ∈ �ξ ;λ with λ = 1 − |x − y|
d∂�(x |y)

and t = tτ ;λ. From (4.6), we infer that

λu(x, t) − u(y, t) = uξ,τ ;λ(xξ ;λ, tτ ;λ) − u
(
xξ ;λ, tτ ;λ) ≤ (1 − λ)M0

holds true for a.e. x, y ∈ � and a.e. t ∈ (0, T ). The comparison principle in Lemma 3.4
ensures that |u| ≤ ‖u0‖L∞(�) a.e. in �T . Hence, adding (1 − λ)u(x, t) on both sides of the
preceding inequality, we obtain

u(x, t) − u(y, t) ≤ (1 − λ)u(x, t) + (1 − λ)M0 ≤ (1 − λ)M = M

d∂�(x |y)
|x − y|

for a.e. x, y ∈ � and a.e. t ∈ [0, T ). Since the argument can be repeated with x and y
reversed and choosing ξ = π∂�(y|x), the claimed local Lipschitz estimate (4.7) follows.
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The one-sided bounded slope condition in evolution problems 581

Step 4: Lipschitz continuity with respect to time. In the final step, we prove that

|u(x, t) − u(x, s)| ≤ M

min{t, T − s} (t − s), (4.9)

for a.e. x ∈ � and a.e. s, t ∈ (0, T ) with s < t , where M is defined as in (4.8).
For the dilations defined in (4.1)–(4.3), we choose ξ = x and τ = 0, so that x = xξ ;λ and

s = tτ ;λ ∈ (0, T )τ ;λ with λ =
√

s

t
∈ (0, 1).

From (4.6), we infer that

λu(x, t) − u(x, s) = uξ,τ ;λ(xξ ;λ, tτ ;λ) − u
(
xξ ;λ, tτ ;λ) ≤ (1 − λ)M0

holds true for a.e. x ∈ � and a.e. 0 < s < t < T . As before, we add (1 − λ)u(x, t) on both
sides of the preceding inequality and recall that |u| ≤ ‖u0‖L∞(�) in �T . In this way, we
obtain

u(x, t) − u(x, s) ≤ (1 − λ)u(x, t) + (1 − λ)M0 ≤ (1 − λ)M

= M√
t

(√
t − √

s
) = M√

t
(√

t + √
s
) (t − s) ≤ M

t
(t − s)

for a.e. x ∈ � and a.e. 0 < s < t < T .
Next, we keep ξ = x and choose τ = T in the dilations (4.1)–(4.3). Then, we have

x = xξ ;λ and

t = sτ ;λ ∈ (0, T )τ ;λ with λ =
√

T − t

T − s
∈ (0, 1).

In an analogous way as done above, we infer that

u(x, s) − u(x, t) ≤ (1 − λ)M = M√
T −s

(√
T −s + √

T −t
) (t − s) ≤ M

T − s
(t − s).

Combining these two estimates, we receive the claimed inequality (4.9). Note that (4.9) is
equivalent with

|u(x, t) − u(x, s)| ≤ M

min{max{t, s},max{T − t, T − s}} |t − s|,

for a.e. x ∈ � and a.e. s, t ∈ (0, T ). This finishes the proof of Theorem 2.3. �

5 Continuity up to the boundary

In this section, we analyze global continuity of variational solutions. We start with a result
ensuring lower Lipschitz semi-continuity up to the parabolic boundary.

Lemma 5.1 Suppose that f : Rn → R is a variational integrand satisfying (2.1), that the
Cauchy–Dirichlet datum u0 fulfills (2.3) and that u is a variational solution in the sense of
Definition 2.1. Then, for any (x0, t0) ∈ ∂P�T we have the inequality

u0(x0) ≤ u(x, t) + L|x − x0|, for a.e. (x, t) ∈ �T .

In particular, u is lower Lipschitz semi-continuous when approaching the parabolic boundary
of �T .
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582 V. Bögelein, T. Stanin

Proof Let (x0, t0) ∈ ∂P�T . From Lemma 4.2, we know that there exists p ∈ R
n with

|p| ≤ L such that u ≥ 	x0 a.e. in �T , where 	x0 denotes the affine function defined by
	x0(x) := u0(x0) + 〈p, x − x0〉 for x ∈ �. This implies the claim, since

u(x, t) ≥ u0(x0) + 〈p, x − x0〉 ≥ u0(x0) − L|x − x0|
for a.e. (x, t) ∈ �T . �

Concerning global Lipschitz continuity, Lemma 5.1 is the best result we can expect.
Already in the elliptic setting the counterexample in [11, Sect. 1] shows that global Lipschitz
continuity is in general not true, i.e., variational solutions might fail to be upper Lipschitz
semi-continuous when approaching the parabolic boundary. Therefore, we have to restrict
ourselves to the proof of global continuity as stated in Theorem 2.5. This will be achieved in
the remaining part of this section.

As mentioned before, due to a result by Miranda [22] we know that the uniform convexity
of � ensures that every C2-function satisfies the bounded slope condition on ∂�. For the
sake of completeness, we shortly recall the classical bounded slope condition.

Definition 5.2 We say that a function ϕ : ∂� → R satisfies the bounded slope condition
(B.S.C.) with constant Q > 0 if for any x0 ∈ ∂� there exist two affine functions 	−

x0 and 	+
x0

with [	−
x0 ]0,1 ≤ Q and [	+

x0 ]0,1 ≤ Q such that

	−
x0(x) ≤ ϕ(x) ≤ 	+

x0(x), for any x ∈ ∂�

and 	−
x0(x0) = ϕ(x0) = 	+

x0(x0) hold true. �
From [22, Proposizione 6.2], we have the following result.

Proposition 5.3 Let � be a uniformly convex domain inRn. Then, every function ϕ ∈ C2(Rn)

satisfies the B.S.C. on ∂�.

We now come to the proof of our secondmain result, stated in Theorem 2.5.We first prove
the result under the stronger condition that u0 satisfies the full bounded slope condition.

Proposition 5.4 Suppose that f : Rn → R is a variational integrand satisfying (2.1) and let
u0 ∈ W 1,∞(�) be a Cauchy–Dirichlet datum such that u0|∂� fulfills the B.S.C. with constant
Q > 0. Then, there exists a variational solution u : �T → R in the sense of Definition 2.1
which in addition is Lipschitz continuous with respect to the parabolic metric on �T , i.e.,
u ∈ C0;1,1/2(�T ).

Proof Following the notation in [4, Chapter 1.1], we define

K (�T ) := {
v ∈ L∞(�T ) ∩ C0([0, T ]; L2(�)) : ∇v ∈ L∞(�T ;Rn)

}
and denote by Ku0(�T ) the subclass of those v ∈ K (�T ) coinciding with u0 on the lateral
boundary ∂� × (0, T ). From here on, we will continue in two steps, first proving existence
of a variational solution under C1-regularity of f and afterward dealing with general convex
integrands via an approximation procedure.

Step 1: Integrands of class C1. We assume that f satisfies (2.1) and is continuously differen-
tiable on Rn . An application of [4, Theorem 1.2] yields the existence of a unique variational
solution u ∈ Ku0(�T ) in the sense of [4, Definition 1.1] satisfying

‖∇u‖L∞(�T ;Rn) ≤ M := max
{

Q, ‖∇u0‖L∞(�,Rn)

}
(5.1)
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and the variational inequality∫∫
�T

f (∇u) dxdt ≤
∫∫

�T

[
∂tv(v − u) + f (∇v)

]
dxdt

+ 1
2‖v(0) − u0‖2L2(�)

− 1
2‖(v − u)(T )‖2L2(�)

(5.2)

for all v ∈ Ku0(�T ) with ∂tv ∈ L2(�T ). Our next aim is to show that u is a varia-
tional solution in the sense of Definition 2.1 with initial and lateral boundary values u0.
Since

Ku0(�T ) ⊂ C0([0, T ]; L2(�)
) ∩ u0 + L p(0, T ; W 1,p

0 (�)
)
,

we are left with showing that u fulfills the variational inequality (5.2) for all comparison
functions v ∈ u0 + L p(0, T ; W 1,p

0 (�)) with v(0) ∈ L2(�) and ∂tv ∈ L2(�T ).
To this aim,wederive theweakEuler–Lagrange equation associatedwith (5.2) by choosing

the comparison function v = u + sϕ with s ∈ (0, 1) and ϕ ∈ C∞(�T ) such that ϕ = 0
on ∂� × (0, T ); we note that ∂t u ∈ L2(�T ) due to [4, Theorem 1.3]. In this way, we
obtain ∫∫

�T

f (∇u) dxdt ≤
∫∫

�T

[
s∂t (u + sϕ)ϕ + f (∇u + s∇ϕ)

]
dxdt

+ s2
2 ‖ϕ(0)‖2L2(�)

− s2
2 ‖ϕ(T )‖2L2(�)

.

Due to convexity of f and the fact that f is of class C1, we have

f (∇u) ≥ f (∇u + s∇ϕ) − s
〈
D f (∇u + s∇ϕ),∇ϕ

〉
.

Using this estimate in the previous inequality and letting s ↓ 0, which is allowed since
f (∇u + s∇ϕ) is uniformly bounded on �T , we receive∫∫

�T

[〈D f (∇u),∇ϕ〉 + ∂t u ϕ
]
dxdt ≥ 0 (5.3)

for all ϕ ∈ C∞(�T ) with ϕ = 0 on ∂� × (0, T ). Finally, replacing ϕ by −ϕ, we
also get the reverse inequality. Hence, (5.3) holds as an identity. By approximation, we
observe that this identity holds for a larger class of test functions. More precisely, we
have ∫∫

�T

[〈D f (∇u),∇ϕ〉 + ∂t u ϕ
]
dxdt = 0

for all ϕ ∈ L p(0, T ; W 1,p
0 (�)) with ϕ(0) ∈ L2(�) and ∂tϕ ∈ L2(�T ). Now, we let v ∈

u0+ L p(0, T ; W 1,p
0 (�)) satisfying v(0) ∈ L2(�) and ∂tv ∈ L2(�T ) and choose ϕ = v−u.

Using again the convexity of f in the form

〈D f (∇u),∇ϕ〉 ≤ f (∇u + ∇ϕ) − f (∇u) = f (∇v) − f (∇u)

yields the inequality∫∫
�T

f (∇u) dxdt ≤
∫∫

�T

[
f (∇v) + ∂t u(v − u)

]
dxdt .
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584 V. Bögelein, T. Stanin

In the second term on the right-hand side, wewrite u = v−(v−u) and perform an integration
by parts with respect to time. Simplifying the appearing expressions leaves us with∫∫

�T

f (∇u) dxdt ≤
∫∫

�T

[
f (∇v) + ∂tv(v − u)

]
dxdt

+ 1
2‖v(0) − u0‖2L2(�)

− 1
2‖(v − u)(T )‖2L2(�)

,

for all v ∈ u0 + L p(0, T ; W 1,p
0 (�)) with v(0) ∈ L2(�) and ∂tv ∈ L2(�T ). This shows that

u is a variational solution in the sense of Definition 2.1. Finally, applying [4, Theorem 1.3]
in the case of a C1-integrand f , we have u being Lipschitz continuous with respect to
the parabolic metric. More precisely, as in [4, Sect. 8] we have for any parabolic cylinder
Q�(z0) := B�(x0) × (t0 − �2, t0 + �2) with z0 = (x0, t0) such that B�(x0) ⊂ � and
t0 ∈ [0, T ) the Poincaré type inequality

−−
∫∫

Q�(z0)∩�T

∣∣u − (u)Q�(z0)∩�T

∣∣2 dxdt

≤ c(n) �2
[
−−
∫∫

Q�(z0)∩�T

|∇u|2 dxdt + sup
BM (0)

|D f |2
]

≤ c(n) �2
[

M2 + sup
BM (0)

|D f |2
]
,

where in the last line we used (5.1). The proof of this inequality can be deduced as in [6,
Lemma 3.1]. Observe that the argument continues to work for cylinders Q�(z0) intersecting
the initial boundary�×{0}, cf. [5, Lemma4.13].We note that� is convex by assumption, and
therefore, it is a Lipschitz domain. This allows to apply Poincaré’s inequality for parabolic
cylinders with center z0 = (x0, t0) on the lateral boundary, i.e., with x0 ∈ ∂�. In this way,
we obtain

−−
∫∫

Q�(z0)∩�T

∣∣u − (u)Q�(z0)∩�T

∣∣2 dxdt

≤ 6−−
∫∫

Q�(z0)∩�T

|u − u0|2 dxdt + 3 −
∫

B�(x0)∩�

∣∣u0 − (u0)B�(x0)∩�

∣∣2 dx

≤ c(n,�) �2
[
−−
∫∫

Q�(z0)∩�T

|∇u − ∇u0|2 dxdt + −
∫

B�(x0)∩�

|∇u0|2 dx

]

≤ c(n,�) �2[M2 + ‖∇u0‖2L∞(�)

]
for any parabolic cylinder Q�(z0) with x0 ∈ ∂� and t0 ∈ [0, T ). Combining both cases, we
find that

−−
∫∫

Q�(z0)∩�T

∣∣u − (u)Q�(z0)∩�T

∣∣2 dxdt

≤ c �2
[

M2 + sup
BM (0)

|D f |2 + ‖∇u0‖2L∞(�,Rn)

]
(5.4)

holds true with a constant c = c(n,�) and for any parabolic cylinder Q�(z0) with z0 ∈ �T .
Due to the parabolic version of Campanato’s characterization of Hölder continuity by Da
Prato [12, Teorema 3.1], this implies the Lipschitz continuity of u with respect to the parabolic
metric, i.e., u ∈ C0;1,1/2(�T ).
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Step 2: General convex integrands. Nowwe consider the case where f satisfies only assump-
tion (2.1). From the convexity assumption, we infer that f is Lipschitz continuous on B2M (0),
where M is defined in (5.1). We let K := supB2M (0) |D f | < ∞. For ε ∈ (0, 1), we infer
from [1, Corollary 1.3] the existence of a convex function fε : Rn → R of class C1 with
f −ε ≤ fε ≤ f and supBM (0) |D fε| ≤ K . Note that the coercivity of fε follows immediately
from the one of f and the fact that fε ≥ f −ε. Applying our previously obtained result from
Step 1 with integrand fε, we infer that there exist variational solutions

uε ∈ C0([0, T ]; L2(�)
) ∩ u0 + L p(0, T ; W 1,p

0 (�)
)

in the sense of Definition 2.1 with integrand fε instead of f satisfying (5.1) and (5.4), i.e.,

‖∇uε‖L∞(�T ;Rn) ≤ M (5.5)

and

−−
∫∫

Q�(z0)∩�T

∣∣uε − (uε)Q�(z0)∩�T

∣∣2 dxdt ≤ c �2
[

M2 + K 2 + ‖∇u0‖2L∞(�,Rn)

]

hold true for any parabolic cylinder Q�(z0)with z0 ∈ �T . Recall that the preceding inequality
is a bound on the parabolic Campanato seminorm of uε, which ensures—using Da Prato’s
characterization [12, Teorema 3.1] again—that uε is Lipschitz continuous with respect to the
parabolic metric. Moreover, we have the quantitative estimate

|uε(x, s) − uε(y, t)| ≤ C
√

|x − y|2 + |s − t |, for a.e. x, y,∈ �, s, t ∈ [0, T ],
(5.6)

with a constant C independent of ε. Moreover, from the comparison principle in Lemma 3.4
we know that

‖uε‖L∞(�T ) ≤ ‖u0‖L∞(�). (5.7)

Our next aim is to pass to the limit ε ↓ 0. Inequalities (5.6) and (5.7) ensure that the family
of functions {uε}ε>0 is uniformly bounded and equicontinuous with respect to the Euclidean
metric on Rn+1. Therefore, Arzelà–Ascoli’s theorem ensures the existence of a subsequence
(uεi )i∈N with εi ↓ 0 as i → ∞ and a continuous function u ∈ C0(�T ) such that uεi → u
uniformly on �T as i → ∞. Since we can now pass to the limit εi ↓ 0 in inequality (5.6),
we infer that u ∈ C0;1,1/2(�T ). Particularly, we have that u ∈ C0([0, T ]; L2(�)) ∩ u0 +
L p(0, T ; W 1,p

0 (�)). Our last step is to show that u fulfills the variational inequality (2.2)
associated with the original variational integrand f . To this aim, we make use of the lower
semi-continuity of u �→ ∫∫

�T
f (∇u) dxdt with respect to strong convergence in L1(�T )

(cf. [2, Lemma 3.1]), the variational inequality for uε, f − ε ≤ fε ≤ f , as well as the
uniform convergence of uεi to u. For v ∈ u0 + L p(0, T ; W 1,p

0 (�)) with v(0) ∈ L2(�) and
∂tv ∈ L2(�T ), we receive∫∫

�T

f (∇u) dxdt ≤ lim inf
i→∞

∫∫
�T

f (∇uεi ) dxdt

= lim inf
i→∞

∫∫
�T

fεi (∇uεi ) dxdt

≤ lim inf
i→∞

[ ∫∫
�T

[
fεi (∇v) + ∂tv(v − uεi )

]
dxdt
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+ 1
2‖v(0) − u0‖2L2(�)

− 1
2‖(v − uεi )(T )‖2L2(�)

]

=
∫∫

�T

[
f (∇v) + ∂tv(v − u)

]
dxdt

+ 1
2‖v(0) − u0‖2L2(�)

− 1
2‖(v − u)(T )‖2L2(�)

,

which finishes the proof of Proposition 5.4. �
Observe that under the full B.S.C. we have obtained global Lipschitz continuity with

respect to the parabolicmetric in Proposition 5.4.As explained before, this cannot be expected
under the assumption of the one-sided bounded slope condition.

Proof of Theorem 2.5 Here, we assume that � is uniformly convex. Since u0 is Lipschitz
continuous on �, there exists a sequence of C2-functions (u(i)

0 )i∈N such that u(i)
0 → u0 uni-

formly on� as i → ∞. FromProposition 5.3, we know that our approximating functions u(i)
0

satisfy the full bounded slope condition on ∂�with constants Qi > 0. Using Proposition 5.4
with u(i)

0 as boundary data and f as variational integrand yields the existence of variational
solutions u(i) in the sense of Definition 2.1 with u(i) ∈ C0,1;1/2(�T ). Considering now the
quantity |u − u(i)| on ∂P�T , we get

|u(x0, t0) − u(i)(x0, t0)| = |u0(x0) − u(i)
0 (x0)| ≤ ‖u0 − u(i)

0 ‖L∞(�) =: εi .

Due to the uniform convergence u(i)
0 → u0, we have that εi → 0 as i → ∞. Using the

comparison principle from Lemma 3.4, we find that |u − u(i)| ≤ εi a.e. on �T . Therefore,
we know u to be a uniform limit of a sequence of continuous functions on �T ; hence, it is
continuous itself on �T . This proves the claim of Theorem 2.5. �
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