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Abstract

We show maximal regularity results concerning parabolic systems with dynamic boundary
conditions and a diffusion theorem on the boundary in the framework of L? spaces, 1 <
p < oo. Analyticity results can be derived for the semigroups generated by suitable classes
of uniformly elliptic operators with general Wentzell boundary conditions having diffusion
terms on the boundary.
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1 Introduction

The main aim of this paper is the study of parabolic systems with dynamic boundary condi-
tions in the form
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Dyu(t, x) = Au(t, x) + f(t, x), (t,x) € (0, T) x L,
Diyu(t,-) = Lyu(t,-)+yEu(t,")+h(,-),t€0,7T) (1.1)
u(0, x) = up(x), x €, ’
(yu)(0) = vo.

Here A s alinear, strongly elliptic, second-order differential operator in the open bounded
subset 2 of R”, L is a second-order strongly elliptic operator in 92, E is a first-order
differential operator and y is the trace operator in 2. A typical example of (1.1) is

Diu(t,x) = a(x)Au(t,x) + f(t, x), (t,x) € (0,T) x Q,

Duu(t, x") — a(x")Apgu(t, x') + b(x") 3% (¢, x') (12)
—c(xXNu(t,x"y = h(t, x'), (t,x)e (0,T) x 0L2, ’

u(0, x) = ug(x), x € Q

where we have indicated with App the Laplace-Beltrami operator in 92, with % the unit
normal derivative, pointing outside €2, and « and a are positively valued. Strictly connected
with (1.1) and (1.2) are, respectively,

Du(t,x) = Au(t, x) + f(¢, x), (t,x) e (0, T) x 2,
Au(t,) — Lyu(t,-) —yEu(t,-) = h(t,-),t € (0,T) (1.3)
u(0, x) = uo(x), x e, :
(yu)(0) = vo.
and
Dyu(t, x) = a(x)Au(t, x) + f(t,x), (,x)€(0,T) xQ,
a(xNAu(t, x") —a(x)Argu(t, x') + b(xl)%(t’ x")
—c(xXut,x)=h@t,x), (t,x)e©,T)xIQ,
u(0, x) = uo(x), x € Q (1.4)

in the framework of L” spaces, both in €2 and in 9$2. Here €2 is an open, bounded subset
of R", with suitably smooth boundary 92, @ and a are positively valued and Arp is the
Laplace—Beltrami operator in d€2. We shall call boundary conditions in the form of (1.3)
general Wentzell boundary conditions.

In our knowledge, problems (1.2) and (1.4) seem to have been introduced and discussed
(from the physical point of view) in [18]. These systems contain a diffusion term of the
boundary, given by a strongly elliptic operator in d€2 (for example, the Laplace-Beltrami
operator). Similar systems without this term were studied, in different functional settings, in
[1,4,6,9,10,12-14].

Systems in the form (1.1)—(1.2) seem to have been considered only recently. The first paper
where a problem in the form (1.2) is really studied seems to be [7]. In it, it was considered
the system

Diu(t,x) = Au(t,x) =V - (a(x)Vu)(t, x), (t,x) e [0, T] x ,
Au(t, x') + B(x")Dy, u(t, x') + y(x') — qALpu(t, x') = 0, (t,x') € [0, T] x 92, (1.5)
u(0, x) = uo(x), x e,

with A strongly elliptic in divergence form, f(x’) > 0 in 92, D,, conormal derivative,
q € [0, 00). It is proved that, if | < p < oo, then the closure of a suitable realisation of the
problem in the space L” (2 x 92) (1 < p < 00) gives rise to an analytic semigroup (not
strongly continuous if p = 00). The continuous dependence on the coefficients had already
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Maximal regularity, analytic semigroups, and dynamic... 129

been considered in [3]. The case of a non-symmetric elliptic operator has been recently
discussed in [8].

In [23], the author considered the case of a domain 2 with merely Lipschitz boundary,
with a strongly elliptic operator A (independent of ). It was shown that a realisation of A
with the general boundary condition (Au)j3q — Yy ALgu + D, ,u + Bu = g in 02 generates
a strongly continuous compact semigroup in C ().

In the paper [22], the authors treated (1.2) in the particular case A(z,x, Dy) = Ay,
f =0,h =0, L) = [Ag withl > 0 and B(t,x’, Dy) = kD,, where k may
be negative (in contrast with the previously quoted literature). They showed that, if the
initial datum ug is in H'() and uope € H'(39), then (1.2) has a unique solu-
tion u in C([0, 00); H'(Q)) N C'((0, 00); H'(R2)) N C((0, 00); H*(RQ)), with upq in
C(10, 00); H'(92)) N C1((0, 00); H'(9R)) N C((0, 00); H?(0R)).

In[11], (1.1) and (1.2) are studied in the setting of spaces of Holder continuous functions.
Results of maximal regularity are proved. Here also the operator E may be essentially arbitrary
in the class of linear partial differential operators of order not exceeding one (apart some
regularity of the coefficients).

Finally, we discuss some content of [4]. In this paper, the authors prove maximal regularity
results for very general classes of mixed parabolic problems. Even systems in the form (1.1)
are considered. In this particular case, they find necessary and sufficient conditions in order
that there exists a unique solution (i, p), with p = yu, with u € WhP(0, T; LP()) N
LP(O, T; W2P(Q)), p € W2~ 2P0, T3 LP(3Q)) N LP(O, T; W™ 5P (3)).

In the present paper, we discuss (1.1) from several points of view. We begin (Sect. 2) by
considering the strongly elliptic problem depending on the complex parameter A

rg—Lg=h

in a compact smooth manifold I" (without boundary) and the corresponding parabolic prob-
lem

D;v(t,x") = Lv(t,x") + h(t, x'),
v(0, x") = vo(x")

We find necessary and sufficient conditions on 4 and v, in order that there exists a unique
solution v in WP (0, T; LP(I')) N LP(0, T; W2P(")) (p € (1, 00)). These results are
essentially well known, but we are not aware of an exposition of them fitting our needs.

In Sect. 3, we prove a theorem of maximal regularity for (1.1), giving necessary and
sufficient conditions in order that there exists a unique solution « in W7 (0, T; L”(£2)) N
LP(0, T; W>P()), with yu in W70, T; LP(3$2)) N LP(0, T; W>P(3)(p € (1, 00) \
{%}). So we prove a maximal regularity result in a class of functions which is larger that
the one considered in [4]. As in [11], E is essentially an arbitrary linear partial differential
operator of order not exceeding one. The argument of the proof is quite simple: we begin by
studying the case £ = 0 and employ the results of Sect. 2, together with classical results for
mixed parabolic problems with Dirichlet boundary conditions (see [16]). The general case
can be treated by a perturbation argument.

In Sect. 4, we show that, for any p in (1, 00), the unbounded operator G, defined as
follows:

D(G,) = {(u, yu) :u € W>P(Q), yu € W>P(3Q)},
Gp(u, yu) := (Au, Lyu + y Eu).

is the infinitesimal generator of an analytic semigroup in L? (2) x L?(92).
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Finally, in Sect. 5 we establish the following precise relation between problems (1.1) and
(1.3). We introduce the operator M), defined as follows:

D(M,) == {(u, yu) :u € C*(Q), yAu — Lyu — y Eu = 0},

My, yu) = (Au, y Au) = (Au, Lyu + y Eu).
and show that, if the coefficients and the boundary of €2 are suitably regular, M, is closable
in X, = LP(Q2) x L?(3L2) and its closure coincides with G ,. The closure of M, is precisely
the main operator studied in [7] and [8], as we explain more in detail in Sect. 5.

In conclusion of this introduction, we precise some notation. N will indicate the set pf pos-
itive integers; BC (A) is the class of complex valued continuous and bounded functions with
domain A; if A € R", BUC(A) will be the class of complex valued uniformly continuous
and bounded functions with domain A.

Given the Banach spaces Xo, X1, X, with X; — X — Xj, and o € (0, 1), we shall
write X € J%(Xo, X1) to indicate that there exists M positive, such that, for any x in X,

1—
lxllx < Mllxllg, Il -

The symbol y will be employed to indicate the trace operator.

2 Elliptic problems depending on a parameter and parabolic problems
in a differentiable manifold

We introduce the following assumptions:
(A1) T is a compact, smooth differentiable manifold of class C? and dimensionm (m € N).
(A2) L is a second-order, partial differential operator in T". More precisely: for every local
chart (U, ®), with U open in I" and ci— diffeomorphism between U and & (U), with
®(U) open in R™, for any v € C2(I), ifx’ € U,

Loy = Y lao()DAw o &™) (@); @.1)

lo|=2

we suppose, moreover, that, if la| < 2,lye € Lin.(U), if |a| =2, ly,0 € C(U) and is real

valued, for any x' € U there exists v(x’) > 0 such that, Vn € R™,

D o) = v(x)nl.

|or|=2
We consider the elliptic system depending on the parameter A € C
rg(x"y — Lg(x") =h(x’), x'eTl. 2.2)
We prove the following
Theorem 2.1 Suppose that (Al) and (A2) hold. Let p € (1, 00). Then:

(I) there exists @ in R such that, if . € C, Re(L) > w and h € LP(T"), (2.2) has a unique
solution g in Wz*p(F); moreover, there exists Co > 0 such that

[AgllLry + Iglw2r @y < CollhllLe ).
() As a consequence, the operator L, : WP () — LP(I), L yu = Lu is the infinitesimal

generator of an analytic semigroup in LP (T").
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Proof We follow the argument in [11], proof of Theorem 2.1.

We take an arbitrary x° € I" and consider a local chart (U, ®) around x°, with U open
subset of I" and ® diffeomorphism between U and ® (U ), open subset in R”. We introduce
in ®(U) the strongly elliptic operator L*,

L' (y) == Lo ®) (@' (y), ye dW). (2.3)

By shrinking U (if necessary), we may assume that the coefficients of L% arein BC(®(U))
and are extensible to elements /g in BUC(R™), in such a way that the operator which we
continue to call L* = ZI aj<2 18( y)Df is uniformly strongly elliptic in R”*. Now we consider
the problem

(y) = Liu(y) = k(). y €R™, 2.4)

with k € LP(R™). Then, (see [17, Chapter 3.1.2]), there exists w(xY%) e R, such that, if
% € Cand Re(X) > w(xY), then (2.4) has a unique solution v in W2:P(R™); moreover, there
exists C(x") > 0 such that

2

S I 0l gy < CEO K Lo @n)-
Jj=0

Now we fix Uy open subset of U, with U contained in U, x° € U; and ¢ e CX(I"), with
compact support in U, ¢(x) = 1 for any x € Uj. Given h € LP(I"), we indicate with k the
trivial extension of (¢h) o ®~1 to R™. If A is such that (2.4) is uniquely solvable for every k
in L?(R™), we set

(SO, MA(x) == p(x)v(P(x)), x €T, (2.5)

with v solving (2.4). We observe that

(1) SO, 2)h € W2P(I);
(@2)
2
D OITIISGO, MRl < CLEO IR Lrry;
j=0
(@3) A — L)S(xY, M)h = hin Uy;
(aeg) if (2.2) is satisfied, for h € LP(T"), by some g € W2P(T) and g vanishes outside
Uy, then g = S(x°, Mh;
in fact, the trivial extension of g o @~ ! solves (2.4), with k trivial extension of 4 o o1
Now we fix, for every x € I', neighbourhoods U (x), Uj(x) of x as before. As I is
compact, there exist x1, ..., xy in " such that I’ = U;VZI Ui (xj).
Let A € C. We show that, if g € W2P(I'), it solves (2.2) with 7 = 0 and Re())
sufficiently large, then g = 0. In fact, let (¢ j)j.\’:1 be a C2— partition of unity in ', with
supp(¢;) € Uy(xj), foreach j € {1, ..., N}. Observe that

A =L)(@j8) =1¢): Llg.

where we have indicated with [¢;; L] the commutator ¢; L — L(¢;-), which is a differential
operator of order one. As (¢;g)(x) = 0 outside U;(x;), we deduce from (ay), if Re(}) is
sufficiently large,

$jg = S(xj, M([¢;; L1g).
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132 G.R. Goldstein et al.

So, from (c2),
N N

lgllwiomy < Y lIgjglwioy < CUATY2 Y "I, Lighieay < ColA ™2 lglwir ).
j=1 j=1

implying g = 0 if Re(A) is sufficiently large.

Next, we show that, if |1| is large enough, then (2.2) is solvable for every 1 € L?(I").
This time we fix, foreach j € {1,..., N}, ¥; € CZ(F), vanishing outside U (x;) and such
that Z;V:l v (x)? = 1 for any x in I". We look for g in the form

N
g =Y YiS(x;. M(jh),

j=1

for some i € LP(I"). Again observing that y;S(x;, k)(w/fz) vanishes outside U;(x;) and
that

(= DS, W] = Yih + Y5 LIS (xj, M@k,
we deduce
~ N ~
(= Lyg =h+ Y [¥;; LIS, M.

j=1

So, we have to choose hin such a way that
N

h+Y [js LIS, M@ jh)] = h. (2.6)

j=1

This is uniquely possible if Re(A) is sufficiently large, because

N N
> T LIS (. 1) (W5h)] < Co Y IISGej W@ M oy
j:1 LP(I") Jj=1
< CUATY2 R oy
So, if C1[A|~1/2 < 1, we deduce from (2.6)

Il Ly < 20AllLe ),

which, together with (a2), implies ().
(ID) follows from (I). Observe also that, as W2?(T") is dense in L? (I"), the domain of L p
is dense in L?(T"). O

Corollary 2.2 Suppose that (Al)—(A2) are satisfied. Let 1 < p < 0o, € € R, gg € WP (),
T e RY, f € C<([0, T); L?(I")). Then the problem

w'(t) — Lpou(t) = f(1), 1 €[0,T1,

2.7
u(0) = go. @7
has a unique solution u in C1([0, T1; LP(I")) N C([0, T1; W2P(T)) and
t
u(t) = e'Frug + / U=y f(s5)ds, (2.8)
0

with (e’Ll’)tzo analytic semigroup generated by L .
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The following “maximal regularity” result holds also:

Proposition 2.3 Let p € (1, 00). Consider the problem (2.7). Then the following con-
ditions are necessary and sufficient in order that there exists a unique solution u in
WP, T; LP(I) N LP(0, T; W>P(I):
(a) f€LP@O,T; L))
(b) go € W2=2/PP(I)
If (a)—(b) hold, this unique solution is given by (2.8).
Proof (a) is obviously necessary. The necessity of (b) follows from the fact that
{v(0) : v e WhP(0, T; LP(I) N LP(0, T; WP (I'))}

= (LP(D), WP (D) 1-1p,p = W H/PP(I) (2.9)
(see [17], Chapter 2.2.1 and Theorem 3.2.3).

On the other hand, suppose that (a)—(b) hold. It is well known that the only possible
solution of (2.7) is (2.8). So the solution with the desired properties is, if it exists, unique.
It is known that, if v(r) = e'Lrug, v € WhP(0, T; LP(T")) N LP(0, T; W»P (")) (see
[17], Chapter 2.2.1). Assume that ug = 0. In this case, we deduce, for any ¢ € [0, T], as
wbhr(ry e JY2(LP(I); WP(I)), if u is given by (2.8),

t
lu@llwipry < Co fo t =) 2N F®)llLraryds
so that, by Young’s inequality,

lull e, 7:wirary < CillfllLe.7;Lr@))- (2.10)

Suppose now that f € C€([0, T]; LP(TI")). Then u really solves (2.7) (by Corollary 2.2). We
fix a local chart (U, ®) and take ¢ € C%(I"), with support in U. Then, if

ug(t, x) := p(xu(t, x),

we get
Di(ug)(t, x) — Lp(ug)(t, x) = ¢(x) f (2, x) + ([¢; Lplu)(t, x), (1,x) € [0, T] x T,
ugy0,x) =0, xel.

Setting

u(t,y) = ug(t, ®71(), (t,y) €[0,T] x dU),

and identifying v with its trivial extension to [0, T] x R™, we get

Du(t,y) = L o(t, y) = ¢(@ ' (») £, 7' (1))
(s Lplu)(t, @71 (), (1.3) € [0, T x R,
v(0,y)=0, yeR",
where we have employed again the operator L* introduced in (2.3). From well-known max-

imal regularity results in R” (which can be deduced, for example, from [15], Theorem 6.8),
we obtain

lugllwioo.1: Loy + gl Lo r:w2r )
= Cilllvllwrro,rsr@my + I0lLo©,75w2r @my)
< Gl fllzr©,7:Lp @) + el Loo. 7o wir r))
< G3ll fllLro.1:LP (1))
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134 G.R. Goldstein et al.

by (2.10). From this estimate, it follows immediately that

lullwipo,7:Lr @y + Wtll Lo, 7:w2e @y < CINSfllLe©,7;0 (1))

This implies the conclusion, taking a sequence (fi)ken in (say) C L([0, T]: LP(I")) and
converging to f in L?(0, T; LP(I")). O

Example 2.4 We show an example of an operator fulfilling conditions (A1)—(A2). Let I" be a
smooth compact Riemannian manifold with dimension m and class C2. For every x in ", we
indicate with T (I") the tangent space and with 7, (I") +i T, (I') its complexification. The real
scalar product (-, -), in T (I") can be extended in a natural way to a complex scalar product,
which we continue to indicate with (-, -), (for these elementary facts, see [19], Chapter 6.5).
We shall indicate with 7 (I")+i 7T (I') the disjoint union of the spaces T, (I') +i Ty (I") (x € I'),
which is naturally equipped with a structure of m —dimensional complex vector bundle on
r.

If f: T — Cisofclass C', weindicate with V f (x) the gradient of f in x, which belongs
to T (') + i T (I"). V is a first-order differential operator, mapping smooth complex valued
functions defined in I into sections of 7'(I") 4+ i 7 (I"). We recall that V f (x) is the element
of T, (I') + i Ty (T") such that, for every v € T, ('),

(Vfx),v)x =v(f)
(see, for example, [2], Chapter V). Suppose that we fix a local chart (U, @) in I'. We indicate
with % (1 < j < m) the field in U such that

9 A(fod !
A (=P )

[} , e U,
ox, 7y, (®(x)), «x

where we have indicated by y, ..., y,, the standard coordinates in R”. Moreover, we set

()-((i()i( )))
gx) = o x,axj X ) 15,3]-5",.

It is easily seen that the matrix g(x) is symmetric and positive definite. We introduce also its
inverse

G(x) =g,
again symmetric and positive definite. Then it is not difficult to check that, in local coordinates,

m

- 9 9
VI =YY 6w w . @11)
i=1 j=1

Now we assume that, forany x € I', B(x) is alinear operator from 7 (I') into itself, Hermitian
and positive definite with respect to (-, -)x, thatis, V&€, n € Ty ("),

(B(x)&,m)x = (§, B(x)n)x
and, if v € T,(I") \ {0},
(B(x)v,v), > 0.
We suppose also that B(x) depends smoothly on x. This is equivalent to prescribe that, for

every local chart (U, ®) the following conditions are satisfied:
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(@) foreachi € {I.....m}, B()(g: (1) = X1y Bij(x) 5 (x), with Byj € C'(U):
(b) if we set, for any x in U, B(x) := (B;;j(x))1<i, j<m, the product B(x)g(x) is symmetric
and positive definite.

Observe that (a)—(b) imply that, for any x in U, even G (x)5(x) is symmetric and positive
definite. In fact,

(G)B)T =Bx) ' G(x) = Gx)(g(x)Bx)T)G(x)
=G (BN Gx) = G)B(x)g(x)G(x) = G(x)B(x).

Moreover, if £ € R™ \ {0},
(G(x)B(x)§) - § = (B(x)g(x)G(x)§) - G(x)§ > 0.

We indicate by o the measure induced by the Riemannian metric in I and by —div the
adjoint operator of V. So, if u : ' — C and v is a smooth vector field,

/(Vu(x), v(x))ydo = —/ u(x)div(v)(x)do.
r r

It is not difficult to check that, if (U, ¢) is the usual chart, and if p : ®(U) — R is such
that, for every measurable subset A of U

o(A) = / p(y)dy,
D(A)

for every smooth vector field X = Y j; X % in U, one has

m

d
div(X) () = (V- X)(0) = ) = ((p o D)X)(). 2.12)
o 0%
We introduce now the operator
Lu(x) := div(B(x)Vyu) (2.13)

Observe that, if B(x) = I7 (r) for any x in I', B is nothing but the Laplace-Beltrami operator.
We show that it satisfies the conditions (A1)—(A2). Infact, if f : U — Cis sufficiently smooth
and x € U, we have, on account of (2.11),

BOV@) =Y Z G,,<x) (x)B()(—f( ))

- Zz 1 Z] 1 Zk 1 G,](x) (X)sz(x)l(x)

=> Zkzl(G(x)B(x))_;kgjm@(x),

so that, by (2.13),

- 3
Lfx) =) Z [(p o d>)(x)<G(x)B<x>),,-kax’;<x)} :

k=1 j=1

or

(fod!

Lf(x) = ZZ [p(y)(GB),»k@”(y)) 7, )<y>](c1>(x)).
J

k=1 j=1
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136 G.R. Goldstein et al.

The principal part of the operator is

ZZ,O(®(X))(GB)] (x) (f )( O (x)).

k=1 j=1

and the matrix p(®(x))(GB)(x) is symmetric and positive definite.
So L, defined in (2.13), satisfies the conditions (A1)—(A2).

3 Maximal regularity

Now we consider the following classical Cauchy—Dirichlet parabolic problem

Diu(t,x) = Au(t,x) + f(t,x), (t,x) € (0, T) x Q,
yu(t, ) = g(t, ), te0,7), 3.1
u(0, x) = ug(x), x € Q,

with the following conditions:

(B1) Q2 is an open, bounded subset of R", lying on one side of its boundary T, which is a
submanifold of R" of class C2. -

(B2) A = 3y aij(x)Dxx; + 2 bj(x)Dx; + c(x), with ajj,bj,c € C(RQ)
(I < i,j < n); the functions a;; areireal valued and there exists v € R such that
Sy ai (05 = VIR foranyx € Q& = (&1..... &) € R".

The following classical result holds (see [16], Theorem 9.1):

Theorem 3.1 Suppose that (B1)—(B2) hold. Let p € (1,00) \ {%}. Then the following
conditions are necessary and sufficient, in order that (3.1) has a unique solution u in
WP, T3 LP(R)) N LP(0, T; W>P(R)):

(D feLPO,T; LP(Q));

() g € W!=VCP-P(, T; LP(T) N LP(0, T3 W2~1/PP(I));

() ug € W22/P-P(Q);
(IV) in case p > %, yuo = g(0).
Remark 3.2 Observethat,asu € L?(0, T; W2P()), the second equationin (3.1)is assumed
to be satisfied only almost everywhere in (0, 7).

However, the identity (2.9) and the analogous identity obtained by replacing I' with 2
imply that

WP, T; LP(Q) N LP(0, T; LP(Q) < C([0, T]; W>2/7P(Q)),
WP, T; LP(I) N LP(0, T; LP(I) € C([0, T]; W>=/PP(I)),

Ifp > %, then 2 — % > %, so that yu € C([0, T]; LP(I")) and the second equation in (3.1)
can be assumed to be satisfied for every t € [0, T]. This explains the necessity of (IV) in this
case. Observe also that, as 1 — 27 > % (II) implies that g € C([0, T]; LP(I")).

Now we consider the problem

Duu(t, x) = Au(t, x) + f(t,x), (t,x) € (0,T) x 2,
u(0, x) = uo(x), x €,

with L asin (2.1).

We consider first the case p > %:
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Proposition3.3 Let p € (%, o0). Consider problem (3.2). Suppose that (B1)—(B2) hold
and L is as in (2.1). Then the following conditions are necessary and sufficient in order
that (3.2) has a unique solution u in W-P(0, T; LP(2)) N LP(0, T; W2 () with yu €
WP, T; LP(T)) N LP(0, T; WHP(I)):

(D) feLPO,T;LP(Q);
(I) h e LP(0, T; LP(I));
(IID) wg € W22/PP(Q), yug € W22/P-P(I).

Proof (I)—(II) are obviously necessary. The belonging of ug to W>~2/7-7(2) follows from
Theorem 3.1. From what we have observed in Remark 3.2, if we set v := yu, the identity
v(t) = ylu(t)] can be intended pointwise. We deduce that v(0) must coincide with yug. So
from Proposition 2.3, we deduce the necessity of (III).

On the other hand, suppose that (I)—(III) hold. We consider the system

Div(t,-) = Lv(t,-) +h(t,-), t € (0,T)

v(0, ) = yup. 3.3)

Then, by Proposition 2.3, (3.3) has a unique solution v in whpo,T; LP ) NLPO,T;
WZP(I")). Now we consider the solution u to

Dyu(t,x) = Au(t,x) + f(t,x), (t,x) € (0,T) x Q,
Vu(f, '):U(t,'), te(O, T)»
u(0, x) = ug(x), x € Q,

By Theorem 3.1, such u is the unique solution to (3.2).
]

Now we consider the case p < % In this case, (3.2) is underdetermined. It is more
convenient to consider the problem

Diu(t,x) = Au(t,x)+ f(t,x), (t,x) € (0, T) x Q,
D;yu(t,-) = Lyu(t,-)+h(,-),t€(0,T)

u(0, x) = ugp(x), x €,

(yu)(0) = vo.

The following result holds:

3.4)

Proposition3.4 Let p € (1, %). Consider problem (3.4). Suppose that (B1)—(B2) hold and
L is as in (2.1). Then the following conditions are necessary and sufficient in order that
(3.4) has a unique solution u in WL, T; LP()) N LP(0, T; WP () with yu €
WP, T; LP(T) N LP(0, T; WHP(I)):

(D feLPO,T; LP(Q));
() h e LP(0, T; LP(T));
(D) ug € W2=2/P-P(Q), vy € W2=2/P-P(T).

Proof The necessity of (I)—(IIT) follows immediately from Proposition 2.3 and Theorem 3.1.
The proof of the sufficiency is the same as in Proposition 3.3. O

Remark 3.5 As already observed in Remark 3.2, if v(r) = ypu(r), the identity should be
intended to be satisfied only for almost every ¢. In our case v should be extensible to an
element of C ([0, T']; L? (")), but v(0) should not necessarily coincide with y u¢; by the way,
as ug € W2=2/P-P(Q) and 2 — % < % if p < %, uo does not necessarily admit a trace on I'.

@ Springer



138 G.R. Goldstein et al.

It is convenient to reformulate together the results of Propositions 3.3 and 3.4:

Proposition3.6 Let p € (1,00) \ {%}. Consider problem (3.4). Suppose that (B1)—(B2)
hold and L is as in (2.1). Then the following conditions are necessary and sufficient in
order that (3.4) has a unique solution u in W'P(0, T; LP(Q)) N LP(0, T; W>P(Q)) with
yu € Wh-P(0, T; LP(T)) N LP(0, T; W2P(I)):

(I feLPO,T;LP(Q));

) h e LPO,T; LP(T"));
(D) ug € W22/P-P(Q), vo € W22/P-P(T") and, in case p > % yuy = vo.

We proceed with some useful estimates.

Lemma 3.7 Consider problem (3.4). Suppose that (B1)—(B2) hold and L is as in (2.1). Let
p € (1,00) \ {%}, To € RY, 0 < T < Ty. Suppose that f € LP(0,T; LP(Q)), h €
LP(0, T; LP()), ug € W2=2/r-r(Q), vo € W22/P-P(I") and, in case p > %, yug = vo.
Then there exists C(Ty) in RT such that

IDeuliLr.7:re) + WullLoomw2r @y + IDivullLro.riee @y + 1yullLro,r;wer )
< CT U fllro.rser@) + bl ey + luollwz-2m0 (@) + Ivollw2-2/p.0(r))-
Proof We set, for t € (0, Tp),
) f@,Hifre 0, 1),
F(”)—{o if 1 € [T, Ty).
_[hGyifre©.7),
HG. ) = {o if 1 € [T, To),

and consider the problem

D:U(t,x) = AU, x) + F(t,x), (£, x) € (0, T x €,
DiyU(t,)=LyU(t, )+ H(,-), t € (0, Tp)
U0, x) = ug(x), x e,
(yU)(0) = vo.
By Proposition 3.6, (3.5) has aunique solution U in W17 (0, Tp; L (2))NLP (0, To; W2r(Q))

with yU € WLr(, Ty; LP(T)) N LP(0, Ty; WP (), which is clearly an extension of u.
We deduce

(3.5)

| DeuliLro.1;r) + Nullro r:w2r ) + 1 DevullLero.r:Leay + lvullpro, mw2e @)
< D:UllLr©.19:Lr ) + WU e, 15: w2r ey + 1Dy UllLr©,79;LP (1))
Iy UllLr o, 19: w2r )
< C(T)UIFllLr©,7:Lr ) + 1 H | Lr©, ;L0 + ol w2-2/p.0(q) + lvollwz-2/p.p )
= CTo)Ulf e, 1:r ) + hllLr©.7:0 () + luollw2-2/p.0q) + Vol w2-2/p.0r))-
O
Lemma 3.8 Suppose that the assumptions of Lemma 3.7 are fulfilled. Suppose that ug = 0
and let 0 € [0, 2]. Then there exists C(Ty, 0) > 0 such that
||u||LP((),T;W9-p(Q))

< CT)T "2 fllro.7:r@) + hllLe©, ;0@ + 10l w2-2/m01))-

@ Springer



Maximal regularity, analytic semigroups, and dynamic... 139

Proof Consider first the case & = 0. Then, as ug = 0, u = 1 % D;u. It follows from Young’s
inequality and Lemma 3.7 that
lullLro,1;r @) < T DrullLro, ;L0 )
< CTO)T U fllLro.1:Lr) + IhllLr©. ;e @) + lvollw2z-2/0.0 (1))
In general, there exists C(0) > such that, for any z € WP (Q),

1-6/2 0/2
lellwe.n@ < CONNL G5, )

as W27 () coincides with the real interpolation space (L (£2), Wz*”(Q))g/z,p incasef # 1,
with the complex interpolation space (L?(£2), Wz’p(fl))[%J in case 6 = % (see [21]). We
deduce that

T 1/p
1-6/2 6/2
leell Lo 0.7 wor )y < C(O) ( /0 @I ) ’||u(r)||€vl.p(mdr>

1-6/2 0/2
<CO)lu ”Ll'([),T;LF(Q)) ||u||Lp(0,T;W2.[1(Q))'

So the conclusion follows from the case & = 0 and Lemma 3.7. O

Now we introduce an operator E of order not exceeding one, with coefficients in C!(Q):

Eu(x) =) e;(x) Dy,u(x) + eo(x)u(x) (3.6)
j=1
and the following system:
Du(t, x) = Au(t, x) + f(t, x), (t,x) € (0, T) x 2,
D;yu(t,-) = Lyu(t,-) + yEu(t,-) +h(t,-),t€(0,T) 3.7
u(0, x) = uo(x), x €Q, :
(yu)(0) = vo.

We show the following

Theorem 3.9 Let p € (1,00)\ {%}. Consider problem (3.7). Suppose that (B1)—(B2) hold, L
is asin (2.1) and E is as in (3.6) with coefficients in C' (Q). Then the following conditions are

necessary and sufficient in order that (3.7) has a unique solution u in wLp, T; LP())N
LP(0, T; WP (Q)) with yu € WHP(0, T; LP(T')) N LP(0, T; W>P(I)):

@) feLPO,T; LV (Q));
) h e LPO,T; LP(T));
(M) ug € W2=2/PP(Q), vg € W=2/P-P(T") and, in case p > %, yugy = vo.

Proof The fact that (I)—(III) are necessary can be shown with the same arguments as in the
proofs of Propositions 3.3 and 3.4.

We show that they are also sufficient. We fix 6 € (1 + %, 2). We observe that, by classical
trace theorems, u — y Eu belongs to L(WP(Q), LP(T)). We take T € (0, T'] and consider
the system

Diu(t, x) = Au(t, x) + f(t, x), (t,x) € (0,7) x Q,

Dyyu(t,-) = Lyu(t,") +yEU(t,-) + h(t,-), t € (0, T), 3.8)
u(0, x) = uo(x), xeQ, :
(yu)(0) = vo,
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with U € LP, 7; WP (Q)). By Proposition 3.6, (3.8) has a unique solution u =
S(U) in WP(0,7; LP(Q)) N LP(0, 7; W2P(Q)) with yu € WP, t; LP(T) N
LP(0, 7; W2P(I)). If U; € LP(0, T; WoP(Q)) (j € {1,2}), we set uj := S(Uj). Then
u1 — uy solves the system

D;(uy —u2)(t, x) = A(uy — u2)(t, x), (t,x) € (0,7) x Q,
Dy (uy —uz)(t,-) = Ly(uy —u)(t,-) + yEWU; — Up)(t,-), t € (0, 7),
(w1 —uz)(0,x) =0, xeq,

y(uy —uz)(0) =0.
3.9)
We deduce from Lemma 3.8 the estimate

lur — w2l o,c;we-r (@)
< C(M' Py EW = U)lr@.einry < CLIT UL = Uall oo, rswen -

So, if we choose 7 so small that C;(T)t!=%/2 < 1, S has a unique fixed point in

LP(0, r; W?P()). We deduce that (3.8) has a unique solution « in wLhP,t; LP(Q)) N
LP(0, T; W2P(Q)) with yu in WHP(0, T; LP(I')) N LP(0, T; W2P(I")). Observe that 7 can
be chosen independently of f, h, ug, vg.

Now we show that, in case f = 0, h = 0, up = 0, vo = 0, the unique solu-
tion u in WhP(0, T; LP(Q)) N LP(0, T; W2P()) with yu in WP, T; LP(T)) N
LP(0,T; W-P(I") is u = 0. This is true (by the uniqueness of the fixed point for S), if
we replace T by t sufficiently small. Assume that there exists a nontrivial solution u in
0, T). We set

o :=inf{t € [0, T]: u(t,-) # 0}.

Asu € C([0, T]; W2=2/P-P(Q)) and u(0, ) = 0, o € [0, T) and u(o, -) = 0. Moreover,
yu(t, -) = 0 for almost every 7 in [0, o). As yu € C([0, T]; W2~2/P-P(I")), we deduce that
(yu)(o,-) =0.S0,if 7 > 0,ando + 7 < T, w(t) := u(o + t) solves the system

D,w(t, x) = Aw(t, x), (t,x) € (0,7) x Q,
D;yw(t,-) = Lyw(t,)+yEw(t,-), t € (0, 1),

w(0,x) =0, x € Q,

(yw)(0) =0.

If 7 is sufficiently small, we deduce w(¢, -) = O forany ¢ € [0, 7], so that u(z, -) = O for any
t € [0, o + 1], in contradiction with the definition of o.

Finally, we show the existence of a global solution. We have already proved the existence
of a solution z in some interval [0, 7], independent of the data. Suppose that t < T. We extend
the solution to [0, (27) A T']. We have that z(t, -) € W2=2/PP(Q), (yz)(r) € W2 2/P-P(T).
In case p > % we have also

ylz(D)] = (y2) (o).

So we consider the system

Dyw(t, x) = Aw(t, x) + f (T + 1, x), t,x)e 0, AT —1)) xQ,
Diyw(t,-) = Lyw(t,) + yEw(t,) + h(r +t,-), t € 0,7 A (T — 1))
w(0, x) = z(z, x), x €Q,

(yw)(0) = (y2)(7).
(3.10)
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(3.10) has a unique solution w in WL, t A(T =1); LP())NLP 0, tA(T —1); W2P()),
with yw in WP (0, t A (T —1); LP(I)) N LP(0, T A (T — 1); W2P(I)). If we set

z(t, +) if t € (0, 7],

u(t, ) = {w(t—‘b Yift e (r, T AT — 1)],

it is easily seen that u € W7 (0, (27) A T; LP(Q)) N LP(0, 27) A T; W>P(R)), with yu
in WhP(0, Q) AT; LP(D))NLP(0, 27) AT; W2P(I")) and solves (3.7) , if we replace T
with (2t) A T. In case 2t < T, we iterate the argument extending the solution to (3t) A T'.
It is clear that in a finite number of steps we reach the conclusion. O

Remark 3.10 It is easily seen that the conclusion of Theorem 3.9 still holds if we replace y E
with an arbitrary operator F' which is bounded from W?P(Q) to LP(T"), for some 6 in [0, 2).

4 Generation of an analytic semigroup

Now we prove a result of generation of an analytic semigroup.

Theorem 4.1 Suppose that the COEdiliOnS (B1)—~(B2) hold, L is as in (2.1) and E is as in
(3.6), with coefficients e; in cl(Q) (0 < j < n). Let p € (1,00). Consider the space
Xp = LP(Q) x LP(I") and define the following operator G, acting on X ,:

D(Gp) = {(u, yu) 1 u € WP (), yu € WP ()}, @1

Gp(u, yu) := (Au, Lyu + y Eu). ’

Then G, is the infinitesimal generator of an analytic semigroup in X .
In the proof, we shall employ the following

Lemma 4.2 For any p € [1, o0], there exists a linear operator P : WZP(I) —> W2P(Q)
such that y Pg = g for any g € W>P(T') and, for some C > 0, independent of g,

I1Pgllr@) < CliglLeay, 1PglIlw2r) < Cligllwzrr)-

Proof Firstly, P can be constructed in the particular case 2 = R xR+ T =R x {0},
setting, for g € W2P(I),

Pg(xlv Xp) = g(xlv 0)¢ (xn),

with ¢ € C2([0, 00)), ¢(t) =1if0 <t <1,¢(@) = 0ifr > 2. The general case can be
reduced to this one, employing partitions of unity and changes of variable. O

Remark 4.3 1t can be easily seen that P can be extended to a linear bounded operator from
LP(T) to LP(2), for any p in [1, 0co], and from C%(T") to C*(2) for any « in [0, 2].

Proof of Theorem 4.1 Let A € C, Re(1) > 0. We shall show that the problem
AMu, yu) — Gpu, yu) = (f, h) 4.2)

has a unique solution (u, yu) in D(G)) if |A| is sufficiently large. Moreover, there exists
C > 0, independent of A and (f, &), such that

I, ywlix, < CIAT'IC DIx,
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Observe that (4.2) is equivalent to

Au(x) — Au(x) = f(x), x €, 43)
Ayu(x’y — Lyu(x') —yEu(x') = h(x"), x' eT. ’
We begin by considering the particular case £ = 0, that is,
u(x) — Au(x) = f(x), x €, (4.4)
Ayu(x’y — Lyu(x’) = h(x’), x’ eT. )

By Theorem 2.1, there exists R; positive such that, if |L| > Ry, the equation
awix) — Lv(x) =h&"), x' el

has a unique solution v in W2P(I"). Moreover, for some C; positive, independent of A and
h,

[AMlvllLeay + vllwe @y < CillkllLe -
Now we consider the system

Au(x) — Au(x) = f(x), x €9,

)/u(x’) = U(x/), x/ erl. (45)

By [20], Chapter 3.8, there exists R > Rj such that (4.5) has a unique solution « in WZP(Q).
Moreover, for some C> > Oindependentof X and f,forany V € W2P () such that yV =wv,

[AllwllLr@) + lullw2r@) = C20lf e + 1V lwze @) + ATV P @)
Choosing V = Pv, with P as in Lemma 4.2, we deduce
[AMllwllzr@) + lullw2r @) = C2(I fliLr@) + 1PVliw2r @) + M PUILr (@)

< Gl fller@ + Ivliwze@y + 1A VILA @)
< Cs(l fllLrie) + IAllLr(T))- (4.6)

Now we consider the general case E # 0. For any 0 € [0, 2], it follows from (4.6) that
lullwo.rey < CORZA FllLr + IhllLe)).- 4.7)
Now we fix 6 € (1 + %, 2) and, for U € W% (Q), we consider the system

ru(x) — Au(x) = f(x), x e,

Ayu(x’) — Lyu(x') = yEU(X') + h(x’), x' €T. @3)

If |A| is sufficiently large, there exists a unique solution # = u(U) in WZP(Q). We shall
think of U — u(U) as an operator from W?P(Q) into itself. If uj=u(U;) (j €{l,2}),we
have

Aur —u)(x) — A(up —u2)(x) =0, x €,
Ay(ui —u2)(x') — Ly (uy —u2)(x’) = yE(U; — Up)(x'), x' €T,

so that, by (4.7),

lur — uzllye.r gy < COI> "y EWU = UdllLry)
< L@ = Uallwon -
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We deduce that U — u(U) is a contraction if |A| is sufficiently large. We conclude that, for
such choice of A, (4.3) has a unique solution u. Moreover, from (4.7),

lullwo.rcqy < COMZ fllr + IhllLoay + Iy Eullze))
< LA U fller) + IR ey + lullwe.r @)

implying
lullwe.r@y < C2lll fllr@) + lIRlILr(r))
if |A| is sufficiently large. We deduce that

[AluliLr@) + lullw2r @) + ANl vullLe @y + lyullwzer
< G fliLr) + hllLe ey + llullwe.r )
< CslfllLre) + lIAllLrT))-

The proof is complete. O

Remark 4.4 Here also the assertion of Theorem 4.1 holds replacing y E with any operator F
which is bounded from W7 () to L?(2), for some 6 in [0, 2).

Remark 4.5 We have chosen to prove Theorem 4.1 estimating directly the resolvent (A —
G ,,)’1. In fact, the result can be obtained quite quickly, applying Theorem 3.1 together with
a nice theorem by G. Dore (see [5]).

5 General Wentzell boundary conditions

In [7] and [8], the authors considered the problem

Diu(t,x) = Mu(t, x), (t,x) € (0,T) x Q,

Mu(t, %) + B, x') — B Lyyu(t, ) 5
+qga(x’) - Veyu(t, x") + F(x)yu(t, x') =0, (t,x)e (0, T) x I, )
u(0, x) = ug(x), x € Q.

Here

n n
Mu = Z 0i (a;j(-)0ju) + Zc,»a,»u +ru,
i,j=1 i=1

with g;; real valued, a;; = aj;, Z?,j:l a;j(X)E&; > apl€|? forany (x, £) € Qx R" for some

@ positive, B positive, 3¢ = Z?,j:l aij(-)vidju, g € R, ajj, ¢;, r defined and sufficiently
regular on , @ and 7 defined and sufficiently regular on I'. V, stands for the gradient operator

in I and
Lyyu = div(B(x)V:yu)

is an operator of the form considered in Example 2.4. Of course, the Riemannian structure
in I is that inherited as an embedded submanifold of R". The open set €2 is not assumed
to be bounded. System (5.1) is studied in the following way: it is introduced the following
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operator M p-

D(Mp) := {(u, yu) : u € C2(Q), yMu + Bd%u — gBLyyu + qa - Veu + Fyu = 0},
Mp(u, yu) = (Mu,yMu) = (Au, —B0iu +qBLyyu —qa - Veu —ryu).
(5.2)
Then it is proved that the closure of M pin LP () x LP(I") generates an analytic semigroup.
It follows that, for every uo belonging to the domain of M p» (5.1) has a solution (in some
generalised sense).
Following this idea, we can consider the problem

D[M([,X):AM([,X), (I,X)G(O, T)XQ,
yAu(t,-) — Lyu(t,-) —yEu(t,)=0,1t€ (0, T) (5.3)
u(0, x) = uo(x), xeq,

with the assumptions of Theorem 3.9: we introduce the following operator M), for p €
(1, 00):
D(Mp) :={(u, yu) :u € C1(Q), yAu — Lyu — y Eu = 0},
My, yu) = (Au, y Au) = (Au, Lyu + y Eu).

We show the following

54

Theorem 5.1 Suppose that (B1)—(B2) hold, L isasin (2.1) and E is as in (3.6) with coefficients
in CY(Q). Moreover;,

(a) ' =0Q is of class C2+°‘,f0r some o € (0, 1);

(b) the coefficients a;j, bj, c of A(1 < i, j < n)are of class C¥(Q);
(c) the coefficients ly ¢ in (2.1) are in C*(U);

(d) the coefficients ej (0 < j < n) of E (see (3.6) are in C* ().

Then, if1 < p < 00, M, is closable in X, = LP(Q2) x L?(dR2) and its closure coincides
with G, (defined in (4.1)).

Proof We have to prove the following:
V(u,yu) € D(G)) there exists a sequence ((uy, yug))keN in D(Mp) such that

| Gurs yur) = (u, yw)llx, + 1MpQur, yur) — Gpu, yu)lx, = 0 (k — 00).

We start by proving three steps.

Step 1: Let (u, yu) € D(G ) be such that, for some A € C, (A — G p)(u, yu) € C*(Q) x
CY(I"). Then (u, yu) € C**(Q) x C?>T(I")

We start by considering the case £ = 0. Then, Ayu — Lyu = h € C*(I") and so
yu € CTH*(T) (see [11], Theorem 2.1). So u € W2P () and solves the system

h—Au = f eC¥Q),
yu € Ce(I),

again implying u € C2T%(Q).

Now we consider the case E # 0, employing a bootstrap argument. Suppose that we have
shown that (u, yu) € W>4(Q) x W>4(I') for some q > p. Then yEu € wi-l/a.a),
Assume that

n

> .
q_l—ot

Then W!=124(I") < C*(T"), so that (Au — Au, Ayu — Lyu) € C¥(Q2) x C%(I') and the
conclusion follows.
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Suppose ¢ > n. Then yEu ¢ C¥(I'), for some o € (0,1). It follows that
(hu — Au,Ayu — Lyu) € C* () x C*(I'). This implies u € C2+°‘/(Q), so that
yEu e Clte (T') — C%(I"), and we have again the conclusion.

n—1
Suppose ¢ < n. Then y Eu € W'=1/2:4(I') — L9 (T"). We deduce (Au — Au, Ayu —
— n—1

Lyu) € C*(Q) x L*49(I"), implying (u, yu) € W>4(Q) x W>41(I'), with ¢ = ;;:;q >
q.If g1 > n, we can conclude. Otherwise, we deduce that (u, yu) € W24a2(Q) x W2 (),
with g2 = 7= ql. q1 > q1. We can iterate the process until we get the belonging of (u, yu) to
W2 (Q) x W2 (T") for some r > n. This can be necessarily achieved in a finite number of
steps. Otherwise, we should obtain the belonging of (u, yu) to W24 () x W24 (T") with
g <q1 < -+ < qk < qk+1 < --- < n for a certain sequence (gx)reN. But this is not
possible, because

n—1 n—1\*
Gk = ———qk-1 = g — o0 (k— 00),
n —dqk-1 n—gq
a contradiction.
Step 2: Let (u, yu) € D(G p) be such that, for some . € C, (A — G p)(u, yu) = (f, h) €
C¥(Q) x C*(I"), witha € (0, 1) and h=vyf.Then (u,yu) € D(M)).
In fact, by Step 1, (u, yu) € C*t*(Q) x C>T%(I"). Moreover,

yAu — Lyu —yEu=Ayu—yf —Ayu+h=0.

Step 3: {(Yr, y¥) : ¥ € C*(Q)} is dense in X .

In fact, let (f,h) € X,. We begin by considering a sequence (/z)ren With values in
C%(I"), such that ||Ax — hllzrry = O (k = 00). Let P be the extension operator described
in Lemma 4.2. By Remark 4.3, it can be extended to a linear bounded operator from C*(I")
to C*(Q2) and from LP(I") to LP(R). So Phy € C%(Q) for every k € N and (Phy)ken
converges to Ph in L?(§2). Now we consider a sequence (¢ )ken in C{°(£2) converging to
f — Phin LP(S2). We set Yy := Phy + ¢k. Then . € C*(R2), (Yx)ken converges to f in
LP(2) and (YY) ren = (hi)ren converges to i in LP(T).

Now let us consider (u, yu) € D(Gp). We fix A € p(G)) and set (f, h) := A(u, yu) —
Gp,((u, yu)) € X,. We take a sequence ((Vg, ¥y ¥))ken with ¥y € C*(S), converging
to (f,h)in X,. We set (ug, yur) == (A — Gp)_l(wk, y) (k € N). Then (uy, yuy) €
D(M,), the sequence ((ux, yui))keN converges to (u, yu) in WZP(Q) x W2P (), so that
(M, (ug, yug))ren converges to G, (u, yu) in X . ]
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