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Abstract
We show maximal regularity results concerning parabolic systems with dynamic boundary
conditions and a diffusion theorem on the boundary in the framework of L p spaces, 1 <

p < ∞. Analyticity results can be derived for the semigroups generated by suitable classes
of uniformly elliptic operators with general Wentzell boundary conditions having diffusion
terms on the boundary.
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1 Introduction

The main aim of this paper is the study of parabolic systems with dynamic boundary condi-
tions in the form
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⎧
⎪⎪⎨

⎪⎪⎩

Dtu(t, x) = Au(t, x) + f (t, x), (t, x) ∈ (0, T ) × �,

Dtγ u(t, ·) = Lγ u(t, ·) + γ Eu(t, ·) + h(t, ·), t ∈ (0, T )

u(0, x) = u0(x), x ∈ �,

(γ u)(0) = v0.

(1.1)

HereA is a linear, strongly elliptic, second-order differential operator in the open bounded
subset � of Rn , L is a second-order strongly elliptic operator in ∂�, E is a first-order
differential operator and γ is the trace operator in ∂�. A typical example of (1.1) is

⎧
⎪⎪⎨

⎪⎪⎩

Dtu(t, x) = α(x)�u(t, x) + f (t, x), (t, x) ∈ (0, T ) × �,

Dtu(t, x ′) − a(x ′)�LBu(t, x ′) + b(x ′) ∂u
∂ν

(t, x ′)
−c(x ′)u(t, x ′) = h(t, x ′), (t, x ′) ∈ (0, T ) × ∂�,

u(0, x) = u0(x), x ∈ �

(1.2)

where we have indicated with �LB the Laplace–Beltrami operator in ∂�, with ∂·
∂ν

the unit
normal derivative, pointing outside �, and α and a are positively valued. Strictly connected
with (1.1) and (1.2) are, respectively,

Dtu(t, x) = Au(t, x) + f (t, x), (t, x) ∈ (0, T ) × �,

Au(t, ·) − Lγ u(t, ·) − γ Eu(t, ·) = h(t, ·), t ∈ (0, T )

u(0, x) = u0(x), x ∈ �,

(γ u)(0) = v0.

(1.3)

and

Dtu(t, x) = α(x)�u(t, x) + f (t, x), (t, x) ∈ (0, T ) × �,

α(x ′)�u(t, x ′) − a(x ′)�LBu(t, x ′) + b(x ′) ∂u
∂ν

(t, x ′)

−c(x ′)u(t, x ′) = h(t, x ′), (t, x ′) ∈ (0, T ) × ∂�,

u(0, x) = u0(x), x ∈ � (1.4)

in the framework of L p spaces, both in � and in ∂�. Here � is an open, bounded subset
of Rn , with suitably smooth boundary ∂�, α and a are positively valued and �LB is the
Laplace–Beltrami operator in ∂�. We shall call boundary conditions in the form of (1.3)
general Wentzell boundary conditions.

In our knowledge, problems (1.2) and (1.4) seem to have been introduced and discussed
(from the physical point of view) in [18]. These systems contain a diffusion term of the
boundary, given by a strongly elliptic operator in ∂� (for example, the Laplace-Beltrami
operator). Similar systems without this term were studied, in different functional settings, in
[1,4,6,9,10,12–14].

Systems in the form (1.1)–(1.2) seem to have been considered only recently. The first paper
where a problem in the form (1.2) is really studied seems to be [7]. In it, it was considered
the system

Dtu(t, x) = Au(t, x) = ∇ · (a(x)∇u)(t, x), (t, x) ∈ [0, T ] × �,

Au(t, x ′) + β(x ′)DνAu(t, x ′) + γ (x ′) − q�LBu(t, x ′) = 0, (t, x ′) ∈ [0, T ] × ∂�,

u(0, x) = u0(x), x ∈ �,

(1.5)

with A strongly elliptic in divergence form, β(x ′) > 0 in ∂�, DνA conormal derivative,
q ∈ [0,∞). It is proved that, if 1 ≤ p ≤ ∞, then the closure of a suitable realisation of the
problem in the space L p(� × ∂�) (1 ≤ p ≤ ∞) gives rise to an analytic semigroup (not
strongly continuous if p = ∞). The continuous dependence on the coefficients had already
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been considered in [3]. The case of a non-symmetric elliptic operator has been recently
discussed in [8].

In [23], the author considered the case of a domain � with merely Lipschitz boundary,
with a strongly elliptic operator A (independent of t). It was shown that a realisation of A
with the general boundary condition (Au)|∂� − γ�LBu + DνAu + βu = g in ∂� generates
a strongly continuous compact semigroup in C(�).

In the paper [22], the authors treated (1.2) in the particular case A(t, x, Dx ) = �x ,
f ≡ 0, h ≡ 0, L(t) = l�LB with l > 0 and B(t, x ′, Dx ) = kDν , where k may
be negative (in contrast with the previously quoted literature). They showed that, if the
initial datum u0 is in H1(�) and u0|∂� ∈ H1(∂�), then (1.2) has a unique solu-
tion u in C([0,∞); H1(�)) ∩ C1((0,∞); H1(�)) ∩ C((0,∞); H3(�)), with u|∂� in
C([0,∞); H1(∂�)) ∩ C1((0,∞); H1(∂�)) ∩ C((0,∞); H3(∂�)).

In [11], (1.1) and (1.2) are studied in the setting of spaces of Hölder continuous functions.
Results ofmaximal regularity are proved.Here also theoperator E maybe essentially arbitrary
in the class of linear partial differential operators of order not exceeding one (apart some
regularity of the coefficients).

Finally, we discuss some content of [4]. In this paper, the authors provemaximal regularity
results for very general classes of mixed parabolic problems. Even systems in the form (1.1)
are considered. In this particular case, they find necessary and sufficient conditions in order
that there exists a unique solution (u, ρ), with ρ = γ u, with u ∈ W 1,p(0, T ; L p(�)) ∩
L p(0, T ;W 2,p(�)), ρ ∈ W

3
2− 1

2p ,p
(0, T ; L p(∂�)) ∩ L p(0, T ;W 3− 1

p ,p
(∂�)).

In the present paper, we discuss (1.1) from several points of view. We begin (Sect. 2) by
considering the strongly elliptic problem depending on the complex parameter λ

λg − Lg = h

in a compact smooth manifold � (without boundary) and the corresponding parabolic prob-
lem

{
Dtv(t, x ′) = Lv(t, x ′) + h(t, x ′),
v(0, x ′) = v0(x ′)

We find necessary and sufficient conditions on h and v0, in order that there exists a unique
solution v in W 1,p(0, T ; L p(�)) ∩ L p(0, T ;W 2,p(�)) (p ∈ (1,∞)). These results are
essentially well known, but we are not aware of an exposition of them fitting our needs.

In Sect. 3, we prove a theorem of maximal regularity for (1.1), giving necessary and
sufficient conditions in order that there exists a unique solution u in W 1,p(0, T ; L p(�)) ∩
L p(0, T ;W 2,p(�)), with γ u in W 1,p(0, T ; L p(∂�)) ∩ L p(0, T ;W 2,p(∂�))(p ∈ (1,∞) \
{ 32 }). So we prove a maximal regularity result in a class of functions which is larger that
the one considered in [4]. As in [11], E is essentially an arbitrary linear partial differential
operator of order not exceeding one. The argument of the proof is quite simple: we begin by
studying the case E = 0 and employ the results of Sect. 2, together with classical results for
mixed parabolic problems with Dirichlet boundary conditions (see [16]). The general case
can be treated by a perturbation argument.

In Sect. 4, we show that, for any p in (1,∞), the unbounded operator Gp defined as
follows:

D(Gp) := {(u, γ u) : u ∈ W 2,p(�), γ u ∈ W 2,p(∂�)},
Gp(u, γ u) := (Au, Lγ u + γ Eu).

is the infinitesimal generator of an analytic semigroup in L p(�) × L p(∂�).
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130 G. R. Goldstein et al.

Finally, in Sect. 5 we establish the following precise relation between problems (1.1) and
(1.3). We introduce the operator Mp defined as follows:

D(Mp) := {(u, γ u) : u ∈ C2(�), γAu − Lγ u − γ Eu = 0},
Mp(u, γ u) = (Au, γAu) = (Au, Lγ u + γ Eu).

and show that, if the coefficients and the boundary of � are suitably regular, Mp is closable
in X p = L p(�)× L p(∂�) and its closure coincides with Gp . The closure of Mp is precisely
the main operator studied in [7] and [8], as we explain more in detail in Sect. 5.

In conclusion of this introduction, we precise some notation.Nwill indicate the set pf pos-
itive integers; BC(A) is the class of complex valued continuous and bounded functions with
domain A; if A ⊆ R

n , BUC(A) will be the class of complex valued uniformly continuous
and bounded functions with domain A.

Given the Banach spaces X0, X1, X , with X1 ↪→ X ↪→ X0, and α ∈ (0, 1), we shall
write X ∈ Jα(X0, X1) to indicate that there exists M positive, such that, for any x in X1,

‖x‖X ≤ M‖x‖1−α
X0

‖x‖α
X1

.

The symbol γ will be employed to indicate the trace operator.

2 Elliptic problems depending on a parameter and parabolic problems
in a differentiable manifold

We introduce the following assumptions:
(A1)� is a compact, smooth differentiablemanifold of class C2 and dimensionm (m ∈ N).
(A2) L is a second-order, partial differential operator in�.More precisely: for every local

chart (U ,
), with U open in � and 
 C2− diffeomorphism between U and 
(U ), with

(U ) open in R

m , for any v ∈ C2(�), if x ′ ∈ U ,

Lv(x ′) =
∑

|α|≤2

lα,
(x ′)Dα
y (v ◦ 
−1)(
(x ′)); (2.1)

we suppose, moreover, that, if |α| ≤ 2, lα,
 ∈ L∞
loc(U ), if |α| = 2, lα,
 ∈ C(U ) and is real

valued, for any x ′ ∈ U there exists ν(x ′) > 0 such that, ∀η ∈ R
m ,

∑

|α|=2

lα,
(x ′)ηα ≥ ν(x ′)|η|2.

We consider the elliptic system depending on the parameter λ ∈ C

λg(x ′) − Lg(x ′) = h(x ′), x ′ ∈ �. (2.2)

We prove the following

Theorem 2.1 Suppose that (A1) and (A2) hold. Let p ∈ (1,∞). Then:

(I) there exists ω in R such that, if λ ∈ C, Re(λ) ≥ ω and h ∈ L p(�), (2.2) has a unique
solution g in W 2,p(�); moreover, there exists C0 > 0 such that

|λ|‖g‖L p(�) + ‖g‖W 2,p(�) ≤ C0‖h‖L p(�).

(II) As a consequence, the operator L p : W 2,p(�) → L p(�), L pu = Lu is the infinitesimal
generator of an analytic semigroup in L p(�).
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Maximal regularity, analytic semigroups, and dynamic... 131

Proof We follow the argument in [11], proof of Theorem 2.1.
We take an arbitrary x0 ∈ � and consider a local chart (U ,
) around x0, with U open

subset of � and 
 diffeomorphism between U and 
(U ), open subset in Rm . We introduce
in 
(U ) the strongly elliptic operator L�,

L�v(y) := L(v ◦ 
)(
−1(y)), y ∈ 
(U ). (2.3)

By shrinking U (if necessary), we may assume that the coefficients of L� are in BC(
(U ))

and are extensible to elements lβ in BUC(Rm), in such a way that the operator which we

continue to call L� = ∑
|α|≤2 lβ(y)Dβ

y is uniformly strongly elliptic inRm . Nowwe consider
the problem

λv(y) − L�v(y) = k(y), y ∈ R
m, (2.4)

with k ∈ L p(Rm). Then, (see [17, Chapter 3.1.2]), there exists ω(x0) ∈ R, such that, if
λ ∈ C and Re(λ) ≥ ω(x0), then (2.4) has a unique solution v inW 2,p(Rm); moreover, there
exists C(x0) > 0 such that

2∑

j=0

|λ|1− j/2‖v‖W j,p(Rm ) ≤ C(x0)‖k‖L p(Rm ).

Now we fix U1 open subset of U , with U1 contained in U , x0 ∈ U1 and φ ∈ C2(�), with
compact support in U , φ(x) = 1 for any x ∈ U1. Given h ∈ L p(�), we indicate with k the
trivial extension of (φh) ◦ 
−1 to Rm . If λ is such that (2.4) is uniquely solvable for every k
in L p(Rm), we set

[S(x0, λ)h](x) := φ(x)v(
(x)), x ∈ �, (2.5)

with v solving (2.4). We observe that

(α1) S(x0, λ)h ∈ W 2,p(�);
(α2)

2∑

j=0

|λ|1− j/2‖S(x0, λ)h‖W j,p(�) ≤ C1(x
0)‖h‖L p(�);

(α3) (λ − L)S(x0, λ)h = h in U1;
(α4) if (2.2) is satisfied, for h ∈ L p(�), by some g ∈ W 2,p(�) and g vanishes outside
U1, then g = S(x0, λ)h;

in fact, the trivial extension of g ◦ 
−1 solves (2.4), with k trivial extension of h ◦ 
−1.
Now we fix, for every x ∈ �, neighbourhoods U (x), U1(x) of x as before. As � is

compact, there exist x1, . . . , xN in � such that � = ∪N
j=1U1(x j ).

Let λ ∈ C. We show that, if g ∈ W 2,p(�), it solves (2.2) with h ≡ 0 and Re(λ)

sufficiently large, then g ≡ 0. In fact, let (φ j )
N
j=1 be a C2− partition of unity in �, with

supp(φ j ) ⊆ U1(x j ), for each j ∈ {1, . . . , N }. Observe that
(λ − L)(φ j g) = [φ j ; L]g,

where we have indicated with [φ j ; L] the commutator φ j L − L(φ j ·), which is a differential
operator of order one. As (φ j g)(x) = 0 outside U1(x j ), we deduce from (α4), if Re(λ) is
sufficiently large,

φ j g = S(x j , λ)([φ j ; L]g).
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132 G. R. Goldstein et al.

So, from (α2),

‖g‖W 1,p(�) ≤
N∑

j=1

‖φ j g‖W 1,p(�) ≤ C1|λ|−1/2
N∑

j=1

‖[φ j ; L]g‖L p(�) ≤ C2|λ|−1/2‖g‖W 1,p(�),

implying g ≡ 0 if Re(λ) is sufficiently large.
Next, we show that, if |λ| is large enough, then (2.2) is solvable for every h ∈ L p(�).

This time we fix, for each j ∈ {1, . . . , N }, ψ j ∈ C2(�), vanishing outside U1(x j ) and such
that

∑N
j=1 ψ j (x)2 = 1 for any x in �. We look for g in the form

g =
N∑

j=1

ψ j S(x j , λ)(ψ j h̃),

for some h̃ ∈ L p(�). Again observing that ψ j S(x j , λ)(ψ j h̃) vanishes outside U1(x j ) and
that

(λ − L)[ψ j S(x j , λ)(ψ j h̃)] = ψ2
j h̃ + [ψ j ; L][S(x j , λ)(ψ j h̃)],

we deduce

(λ − L)g = h̃ +
N∑

j=1

[ψ j ; L][S(x j , λ)(ψ j h̃)].

So, we have to choose h̃ in such a way that

h̃ +
N∑

j=1

[ψ j ; L][S(x j , λ)(ψ j h̃)] = h. (2.6)

This is uniquely possible if Re(λ) is sufficiently large, because
∥
∥
∥
∥
∥
∥

N∑

j=1

[ψ j ; L][S(x j , λ)(ψ j h̃)]
∥
∥
∥
∥
∥
∥
L p(�)

≤ C0

N∑

j=1

‖S(x j , λ)(ψ j h̃)]‖W 1,p(�)

≤ C1|λ|−1/2‖h̃‖L p(�).

So, if C1|λ|−1/2 ≤ 1
2 , we deduce from (2.6)

‖h̃‖L p(�) ≤ 2‖h‖L p(�),

which, together with (α2), implies (I).
(II) follows from (I). Observe also that, as W 2,p(�) is dense in L p(�), the domain of L p

is dense in L p(�). ��
Corollary 2.2 Suppose that (A1)–(A2) are satisfied. Let 1 < p < ∞, ε ∈ R

+, g0 ∈ W 2,p(�),
T ∈ R

+, f ∈ Cε([0, T ]; L p(�)). Then the problem

u′(t) − L pu(t) = f (t), t ∈ [0, T ],
u(0) = g0.

(2.7)

has a unique solution u in C1([0, T ]; L p(�)) ∩ C([0, T ];W 2,p(�)) and

u(t) = etL pu0 +
∫ t

0
e(t−s)L p f (s)ds, (2.8)

with (etL p )t≥0 analytic semigroup generated by L p.
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The following “maximal regularity” result holds also:

Proposition 2.3 Let p ∈ (1,∞). Consider the problem (2.7). Then the following con-
ditions are necessary and sufficient in order that there exists a unique solution u in
W 1,p(0, T ; L p(�)) ∩ L p(0, T ;W 2,p(�)):

(a) f ∈ L p(0, T ; L p(�));
(b) g0 ∈ W 2−2/p,p(�)

If (a)–(b) hold, this unique solution is given by (2.8).

Proof (a) is obviously necessary. The necessity of (b) follows from the fact that

{v(0) : v ∈ W 1,p(0, T ; L p(�)) ∩ L p(0, T ;W 2,p(�))}
= (L p(�),W 2,p(�))1−1/p,p = W 2−2/p,p(�) (2.9)

(see [17], Chapter 2.2.1 and Theorem 3.2.3).
On the other hand, suppose that (a)–(b) hold. It is well known that the only possible

solution of (2.7) is (2.8). So the solution with the desired properties is, if it exists, unique.
It is known that, if v(t) = etL pu0, v ∈ W 1,p(0, T ; L p(�)) ∩ L p(0, T ;W 2,p(�)) (see
[17], Chapter 2.2.1). Assume that u0 = 0. In this case, we deduce, for any t ∈ [0, T ], as
W 1,p(�) ∈ J 1/2(L p(�);W 2,p(�)), if u is given by (2.8),

‖u(t)‖W 1,p(�) ≤ C0

∫ t

0
(t − s)−1/2‖ f (s)‖L p(�)ds

so that, by Young’s inequality,

‖u‖L p(0,T ;W 1,p(�)) ≤ C1‖ f ‖L p(0,T ;L p(�)). (2.10)

Suppose now that f ∈ Cε([0, T ]; L p(�)). Then u really solves (2.7) (by Corollary 2.2). We
fix a local chart (U ,
) and take φ ∈ C2(�)), with support in U . Then, if

uφ(t, x) := φ(x)u(t, x),

we get

Dt (uφ)(t, x) − L p(uφ)(t, x) = φ(x) f (t, x) + ([φ; L p]u)(t, x), (t, x) ∈ [0, T ] × �,

uφ(0, x) = 0, x ∈ �.

Setting

v(t, y) := uφ(t,
−1(y)), (t, y) ∈ [0, T ] × 
(U ),

and identifying v with its trivial extension to [0, T ] × R
m , we get

Dtv(t, y) − L�v(t, y) = φ(
−1(y)) f (t,
−1(y))

+([φ; L p]u)(t,
−1(y)), (t, y) ∈ [0, T ] × R
m,

v(0, y) = 0, y ∈ R
m,

where we have employed again the operator L� introduced in (2.3). From well-known max-
imal regularity results in Rm (which can be deduced, for example, from [15], Theorem 6.8),
we obtain

‖uφ‖W 1,p(0,T ;L p(�)) + ‖uφ‖L p(0,T ;W 2,p(�))

≤ C1(‖v‖W 1,p(0,T ;L p(Rm )) + ‖v‖L p(0,T ;W 2,p(Rm )))

≤ C2(‖ f ‖L p(0,T ;L p(�) + ‖u‖L p(0,T ;W 1,p(�)))

≤ C3‖ f ‖L p(0,T ;L p(�)),
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134 G. R. Goldstein et al.

by (2.10). From this estimate, it follows immediately that

‖u‖W 1,p(0,T ;L p(�)) + ‖u‖L p(0,T ;W 2,p(�)) ≤ C‖ f ‖L p(0,T ;L p(�)).

This implies the conclusion, taking a sequence ( fk)k∈N in (say) C1([0, T ]; L p(�)) and
converging to f in L p(0, T ; L p(�)). ��
Example 2.4 We show an example of an operator fulfilling conditions (A1)–(A2). Let � be a
smooth compact Riemannian manifold with dimensionm and class C2. For every x in �, we
indicate with Tx (�) the tangent space and with Tx (�)+ iTx (�) its complexification. The real
scalar product (·, ·)x in Tx (�) can be extended in a natural way to a complex scalar product,
which we continue to indicate with (·, ·)x (for these elementary facts, see [19], Chapter 6.5).
We shall indicate with T (�)+iT (�) the disjoint union of the spaces Tx (�)+iTx (�) (x ∈ �),
which is naturally equipped with a structure of m−dimensional complex vector bundle on
�.

If f : � → C is of classC1, we indicate with∇ f (x) the gradient of f in x , which belongs
to Tx (�) + iTx (�). ∇ is a first-order differential operator, mapping smooth complex valued
functions defined in � into sections of T (�) + iT (�). We recall that ∇ f (x) is the element
of Tx (�) + iTx (�) such that, for every v ∈ Tx (�),

(∇ f (x), v)x = v( f )

(see, for example, [2], Chapter V). Suppose that we fix a local chart (U ,
) in �. We indicate
with ∂

∂x j
(1 ≤ j ≤ m) the field in U such that

∂ f

∂x j
(x) = ∂( f ◦ 
−1)

∂ y j
(
(x)), x ∈ U ,

where we have indicated by y1, . . . , ym the standard coordinates in R
m . Moreover, we set

g(x) =
((

∂

∂xi
(x),

∂

∂x j
(x)

)

x

)

1≤i, j≤m

.

It is easily seen that the matrix g(x) is symmetric and positive definite. We introduce also its
inverse

G(x) := g(x)−1,

again symmetric andpositive definite. Then it is not difficult to check that, in local coordinates,

∇ f (x) =
m∑

i=1

m∑

j=1

Gi j (x)
∂ f

∂x j
(x)

∂

∂xi
(x). (2.11)

Nowwe assume that, for any x ∈ �, B(x) is a linear operator from Tx (�) into itself, Hermitian
and positive definite with respect to (·, ·)x , that is, ∀ξ, η ∈ Tx (�),

(B(x)ξ, η)x = (ξ, B(x)η)x

and, if v ∈ Tx (�) \ {0},
(B(x)v, v)x > 0.

We suppose also that B(x) depends smoothly on x . This is equivalent to prescribe that, for
every local chart (U ,
) the following conditions are satisfied:
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Maximal regularity, analytic semigroups, and dynamic... 135

(a) for each i ∈ {1, . . . ,m}, B(x)( ∂
∂xi

(x)) = ∑m
j=1 Bi j (x)

∂
∂x j

(x), with Bi j ∈ C1(U );
(b) if we set, for any x in U , B(x) := (Bi j (x))1≤i, j≤m , the product B(x)g(x) is symmetric

and positive definite.

Observe that (a)–(b) imply that, for any x inU , even G(x)B(x) is symmetric and positive
definite. In fact,

(G(x)B(x))T = B(x)T G(x) = G(x)(g(x)B(x)T )G(x)

= G(x)(B(x)g(x))T G(x) = G(x)B(x)g(x)G(x) = G(x)B(x).

Moreover, if ξ ∈ R
m \ {0},
(G(x)B(x)ξ) · ξ = (B(x)g(x)G(x)ξ) · G(x)ξ > 0.

We indicate by σ the measure induced by the Riemannian metric in � and by −div the
adjoint operator of ∇. So, if u : � → C and v is a smooth vector field,

∫

�

(∇u(x), v(x))xdσ = −
∫

�

u(x)div(v)(x)dσ.

It is not difficult to check that, if (U , φ) is the usual chart, and if ρ : 
(U ) → R
+ is such

that, for every measurable subset A of U

σ(A) =
∫


(A)

ρ(y)dy,

for every smooth vector field X = ∑m
k=1 Xk

∂
∂xk

in U , one has

div(X)(x) = (∇ · X)(x) =
m∑

k=1

∂

∂xk
((ρ ◦ 
)Xk)(x). (2.12)

We introduce now the operator

Lu(x) := div(B(x)∇xu) (2.13)

Observe that, if B(x) = ITx (�) for any x in�,B is nothing but the Laplace-Beltrami operator.
We show that it satisfies the conditions (A1)–(A2). In fact, if f : U → C is sufficiently smooth
and x ∈ U , we have, on account of (2.11),

B(x)∇ f (x) =
∑m

i=1

∑m

j=1
Gi j (x)

∂ f

∂x j
(x)B(x)

(
∂ f

∂xi
(x)

)

=
∑m

i=1

∑m

j=1

∑m

k=1
Gi j (x)

∂ f

∂x j
(x)Bik(x)

∂ f

∂xk
(x)

=
∑m

j=1

∑m

k=1
(G(x)B(x)) jk

∂ f

∂x j
(x)

∂ f

∂xk
(x),

so that, by (2.13),

L f (x) =
m∑

k=1

m∑

j=1

∂

∂xk

[

(ρ ◦ 
)(x)(G(x)B(x)) jk
∂ f

∂x j
(x)

]

.

or

L f (x) =
m∑

k=1

m∑

j=1

∂

∂ yk

[

ρ(y)(GB) jk(

−1(y))

∂( f ◦ 
−1)

∂ y j
(y)

]

(
(x)).
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The principal part of the operator is
m∑

k=1

m∑

j=1

ρ(
(x))(GB) jk(x)
∂2( f ◦ 
−1)

∂ yk∂ y j
(
(x)).

and the matrix ρ(
(x))(GB)(x) is symmetric and positive definite.
So L , defined in (2.13), satisfies the conditions (A1)–(A2).

3 Maximal regularity

Now we consider the following classical Cauchy–Dirichlet parabolic problem

Dtu(t, x) = Au(t, x) + f (t, x), (t, x) ∈ (0, T ) × �,

γ u(t, ·) = g(t, ·), t ∈ (0, T ),

u(0, x) = u0(x), x ∈ �,

(3.1)

with the following conditions:
(B1) � is an open, bounded subset of Rn , lying on one side of its boundary �, which is a

submanifold of Rn of class C2.
(B2) A = ∑n

i, j=1 ai j (x)Dxi x j + ∑n
j=1 b j (x)Dx j + c(x), with ai j , b j , c ∈ C(�)

(1 ≤ i, j ≤ n); the functions ai j are real valued and there exists ν ∈ R
+ such that

∑n
i, j=1 ai j (x)ξiξ j ≥ ν|ξ |2, for any x ∈ �, ξ = (ξ1, . . . , ξn) ∈ R

n .
The following classical result holds (see [16], Theorem 9.1):

Theorem 3.1 Suppose that (B1)–(B2) hold. Let p ∈ (1,∞) \ { 32 }. Then the following
conditions are necessary and sufficient, in order that (3.1) has a unique solution u in
W 1,p(0, T ; L p(�)) ∩ L p(0, T ;W 2,p(�)):

(I) f ∈ L p(0, T ; L p(�));
(II) g ∈ W 1−1/(2p),p(0, T ; L p(�)) ∩ L p(0, T ;W 2−1/p,p(�));
(III) u0 ∈ W 2−2/p,p(�);
(IV) in case p > 3

2 , γ u0 = g(0).

Remark 3.2 Observe that, as u ∈ L p(0, T ;W 2,p(�)), the second equation in (3.1) is assumed
to be satisfied only almost everywhere in (0, T ).

However, the identity (2.9) and the analogous identity obtained by replacing � with �

imply that

W 1,p(0, T ; L p(�)) ∩ L p(0, T ; L p(�)) ⊆ C([0, T ];W 2−2/p,p(�)),

W 1,p(0, T ; L p(�)) ∩ L p(0, T ; L p(�)) ⊆ C([0, T ];W 2−2/p,p(�)).

If p > 3
2 , then 2 − 2

p > 1
p , so that γ u ∈ C([0, T ]; L p(�)) and the second equation in (3.1)

can be assumed to be satisfied for every t ∈ [0, T ]. This explains the necessity of (IV) in this
case. Observe also that, as 1 − 1

2p > 1
p , (II) implies that g ∈ C([0, T ]; L p(�)).

Now we consider the problem

Dtu(t, x) = Au(t, x) + f (t, x), (t, x) ∈ (0, T ) × �,

Dtγ u(t, ·) = Lγ u(t, ·) + h(t, ·), t ∈ (0, T ),

u(0, x) = u0(x), x ∈ �,

(3.2)

with L as in (2.1).
We consider first the case p > 3

2 :
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Proposition 3.3 Let p ∈ ( 32 ,∞). Consider problem (3.2). Suppose that (B1)–(B2) hold
and L is as in (2.1). Then the following conditions are necessary and sufficient in order
that (3.2) has a unique solution u in W 1,p(0, T ; L p(�)) ∩ L p(0, T ;W 2,p(�)) with γ u ∈
W 1,p(0, T ; L p(�)) ∩ L p(0, T ;W 2,p(�)):

(I) f ∈ L p(0, T ; L p(�));
(II) h ∈ L p(0, T ; L p(�));
(III) u0 ∈ W 2−2/p,p(�), γ u0 ∈ W 2−2/p,p(�).

Proof (I)–(II) are obviously necessary. The belonging of u0 to W 2−2/p,p(�) follows from
Theorem 3.1. From what we have observed in Remark 3.2, if we set v := γ u, the identity
v(t) = γ [u(t)] can be intended pointwise. We deduce that v(0) must coincide with γ u0. So
from Proposition 2.3, we deduce the necessity of (III).

On the other hand, suppose that (I)–(III) hold. We consider the system

Dtv(t, ·) = Lv(t, ·) + h(t, ·), t ∈ (0, T )

v(0, ·) = γ u0.
(3.3)

Then, by Proposition 2.3, (3.3) has a unique solution v in W 1,p(0, T ; L p(�)) ∩ L p(0, T ;
W 2,p(�)). Now we consider the solution u to

Dtu(t, x) = Au(t, x) + f (t, x), (t, x) ∈ (0, T ) × �,

γ u(t, ·) = v(t, ·), t ∈ (0, T ),

u(0, x) = u0(x), x ∈ �,

By Theorem 3.1, such u is the unique solution to (3.2).
��

Now we consider the case p < 3
2 . In this case, (3.2) is underdetermined. It is more

convenient to consider the problem

Dtu(t, x) = Au(t, x) + f (t, x), (t, x) ∈ (0, T ) × �,

Dtγ u(t, ·) = Lγ u(t, ·) + h(t, ·), t ∈ (0, T )

u(0, x) = u0(x), x ∈ �,

(γ u)(0) = v0.

(3.4)

The following result holds:

Proposition 3.4 Let p ∈ (1, 3
2 ). Consider problem (3.4). Suppose that (B1)–(B2) hold and

L is as in (2.1). Then the following conditions are necessary and sufficient in order that
(3.4) has a unique solution u in W 1,p(0, T ; L p(�)) ∩ L p(0, T ;W 2,p(�)) with γ u ∈
W 1,p(0, T ; L p(�)) ∩ L p(0, T ;W 2,p(�)):

(I) f ∈ L p(0, T ; L p(�));
(II) h ∈ L p(0, T ; L p(�));
(III) u0 ∈ W 2−2/p,p(�), v0 ∈ W 2−2/p,p(�).

Proof The necessity of (I)–(III) follows immediately from Proposition 2.3 and Theorem 3.1.
The proof of the sufficiency is the same as in Proposition 3.3. ��
Remark 3.5 As already observed in Remark 3.2, if v(t) = γ u(t), the identity should be
intended to be satisfied only for almost every t . In our case v should be extensible to an
element ofC([0, T ]; L p(�)), but v(0) should not necessarily coincide with γ u0; by the way,
as u0 ∈ W 2−2/p,p(�) and 2 − 2

p < 1
p if p < 3

2 , u0 does not necessarily admit a trace on �.
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It is convenient to reformulate together the results of Propositions 3.3 and 3.4:

Proposition 3.6 Let p ∈ (1,∞) \ { 32 }. Consider problem (3.4). Suppose that (B1)–(B2)
hold and L is as in (2.1). Then the following conditions are necessary and sufficient in
order that (3.4) has a unique solution u in W 1,p(0, T ; L p(�)) ∩ L p(0, T ;W 2,p(�)) with
γ u ∈ W 1,p(0, T ; L p(�)) ∩ L p(0, T ;W 2,p(�)):

(I) f ∈ L p(0, T ; L p(�));
(II) h ∈ L p(0, T ; L p(�));
(III) u0 ∈ W 2−2/p,p(�), v0 ∈ W 2−2/p,p(�) and, in case p > 3

2 , γ u0 = v0.

We proceed with some useful estimates.

Lemma 3.7 Consider problem (3.4). Suppose that (B1)–(B2) hold and L is as in (2.1). Let
p ∈ (1,∞) \ { 32 }, T0 ∈ R

+, 0 < T ≤ T0. Suppose that f ∈ L p(0, T ; L p(�)), h ∈
L p(0, T ; L p(�)), u0 ∈ W 2−2/p,p(�), v0 ∈ W 2−2/p,p(�) and, in case p > 3

2 , γ u0 = v0.
Then there exists C(T0) in R

+ such that

‖Dtu‖L p(0,T ;L p(�)) + ‖u‖L p(0,T ;W 2,p(�)) + ‖Dtγ u‖L p(0,T ;L p(�)) + ‖γ u‖L p(0,T ;W 2,p(�))

≤ C(T0)(‖ f ‖L p(0,T ;L p(�)) + ‖h‖L p(0,T ;L p(�)) + ‖u0‖W 2−2/p,p(�) + ‖v0‖W 2−2/p,p(�)).

Proof We set, for t ∈ (0, T0),

F(t, ·) =
{
f (t, ·) if t ∈ (0, T ),

0 if t ∈ [T , T0),

H(t, ·) =
{
h(t, ·) if t ∈ (0, T ),

0 if t ∈ [T , T0),

and consider the problem

DtU (t, x) = AU (t, x) + F(t, x), (t, x) ∈ (0, T0) × �,

DtγU (t, ·) = LγU (t, ·) + H(t, ·), t ∈ (0, T0)
U (0, x) = u0(x), x ∈ �,

(γU )(0) = v0.

(3.5)

ByProposition3.6, (3.5) has a unique solutionU inW 1,p(0, T0; L p(�))∩L p(0, T0;W 2,p(�))

with γU ∈ W 1,p(0, T0; L p(�)) ∩ L p(0, T0;W 2,p(�)), which is clearly an extension of u.
We deduce

‖Dtu‖L p(0,T ;L p(�)) + ‖u‖L p(0,T ;W 2,p(�)) + ‖Dtγ u‖L p(0,T ;L p(�)) + ‖γ u‖L p(0,T ;W 2,p(�))

≤ ‖DtU‖L p(0,T0;L p(�)) + ‖U‖L p(0,T0;W 2,p(�)) + ‖DtγU‖L p(0,T0;L p(�))

+‖γU‖L p(0,T0;W 2,p(�))

≤ C(T0)(‖F‖L p(0,T ;L p(�)) + ‖H‖L p(0,T ;L p(�)) + ‖u0‖W 2−2/p,p(�) + ‖v0‖W 2−2/p,p(�))

= C(T0)(‖ f ‖L p(0,T ;L p(�)) + ‖h‖L p(0,T ;L p(�)) + ‖u0‖W 2−2/p,p(�) + ‖v0‖W 2−2/p,p(�)).

��
Lemma 3.8 Suppose that the assumptions of Lemma 3.7 are fulfilled. Suppose that u0 = 0
and let θ ∈ [0, 2]. Then there exists C(T0, θ) > 0 such that

‖u‖L p(0,T ;W θ,p(�))

≤ C(T0)T
1−θ/2(‖ f ‖L p(0,T ;L p(�)) + ‖h‖L p(0,T ;L p(�)) + ‖v0‖W 2−2/p,p(�)).
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Proof Consider first the case θ = 0. Then, as u0 = 0, u = 1 ∗ Dtu. It follows from Young’s
inequality and Lemma 3.7 that

‖u‖L p(0,T ;L p(�)) ≤ T ‖Dtu‖L p(0,T ;L p(�))

≤ C(T0)T (‖ f ‖L p(0,T ;L p(�)) + ‖h‖L p(0,T ;L p(�)) + ‖v0‖W 2−2/p,p(�)).

In general, there exists C(θ) > such that, for any z ∈ W 2,p(�),

‖z‖W θ,p(�) ≤ C(θ)‖z‖1−θ/2
L p(�)‖z‖θ/2

W 2,p(�)
,

asW θ,p(�) coincideswith the real interpolation space (L p(�),W 2,p(�))θ/2,p in case θ �= 1,
with the complex interpolation space (L p(�),W 2,p(�))[ 12 ] in case θ = 1

2 (see [21]). We
deduce that

‖u‖L p(0,T ;W θ,p(�)) ≤ C(θ)

(∫ T

0
‖u(t)‖p(1−θ/2)

L p(�) ‖u(t)‖pθ/2
W 2,p(�)

dt

)1/p

≤ C(θ)‖u‖1−θ/2
L p(0,T ;L p(�))

‖u‖θ/2
L p(0,T ;W 2,p(�))

.

So the conclusion follows from the case θ = 0 and Lemma 3.7. ��
Now we introduce an operator E of order not exceeding one, with coefficients in C1(�):

Eu(x) =
n∑

j=1

e j (x)Dx j u(x) + e0(x)u(x) (3.6)

and the following system:

Dtu(t, x) = Au(t, x) + f (t, x), (t, x) ∈ (0, T ) × �,

Dtγ u(t, ·) = Lγ u(t, ·) + γ Eu(t, ·) + h(t, ·), t ∈ (0, T )

u(0, x) = u0(x), x ∈ �,

(γ u)(0) = v0.

(3.7)

We show the following

Theorem 3.9 Let p ∈ (1,∞) \ { 32 }. Consider problem (3.7). Suppose that (B1)–(B2) hold, L
is as in (2.1) and E is as in (3.6)with coefficients in C1(�). Then the following conditions are
necessary and sufficient in order that (3.7) has a unique solution u in W 1,p(0, T ; L p(�)) ∩
L p(0, T ;W 2,p(�)) with γ u ∈ W 1,p(0, T ; L p(�)) ∩ L p(0, T ;W 2,p(�)):

(I) f ∈ L p(0, T ; L p(�));
(II) h ∈ L p(0, T ; L p(�));
(III) u0 ∈ W 2−2/p,p(�), v0 ∈ W 2−2/p,p(�) and, in case p > 3

2 , γ u0 = v0.

Proof The fact that (I)–(III) are necessary can be shown with the same arguments as in the
proofs of Propositions 3.3 and 3.4.

We show that they are also sufficient. We fix θ ∈ (1+ 1
p , 2). We observe that, by classical

trace theorems, u → γ Eu belongs to L(W θ,p(�), L p(�)). We take τ ∈ (0, T ] and consider
the system

Dtu(t, x) = Au(t, x) + f (t, x), (t, x) ∈ (0, τ ) × �,

Dtγ u(t, ·) = Lγ u(t, ·) + γ EU (t, ·) + h(t, ·), t ∈ (0, τ ),

u(0, x) = u0(x), x ∈ �,

(γ u)(0) = v0,

(3.8)
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with U ∈ L p(0, τ ;W θ,p(�)). By Proposition 3.6, (3.8) has a unique solution u =
S(U ) in W 1,p(0, τ ; L p(�)) ∩ L p(0, τ ;W 2,p(�)) with γ u ∈ W 1,p(0, τ ; L p(�)) ∩
L p(0, τ ;W 2,p(�)). If Uj ∈ L p(0, τ ;W θ,p(�)) ( j ∈ {1, 2}), we set u j := S(Uj ). Then
u1 − u2 solves the system

Dt (u1 − u2)(t, x) = A(u1 − u2)(t, x), (t, x) ∈ (0, τ ) × �,

Dtγ (u1 − u2)(t, ·) = Lγ (u1 − u2)(t, ·) + γ E(U1 −U2)(t, ·), t ∈ (0, τ ),

(u1 − u2)(0, x) = 0, x ∈ �,

γ (u1 − u2)(0) = 0.
(3.9)

We deduce from Lemma 3.8 the estimate

‖u1 − u2‖L p(0,τ ;W θ,p(�))

≤ C(T )τ 1−θ/2‖γ E(U1 −U2)‖L p(0,τ ;L p(�)) ≤ C1(T )τ 1−θ/2‖U1 −U2‖L p(0,τ ;W θ,p(�)).

So, if we choose τ so small that C1(T )τ 1−θ/2 < 1, S has a unique fixed point in
L p(0, τ ;W θ,p(�)). We deduce that (3.8) has a unique solution u in W 1,p(0, τ ; L p(�)) ∩
L p(0, τ ;W 2,p(�)) with γ u inW 1,p(0, τ ; L p(�))∩ L p(0, τ ;W 2,p(�)). Observe that τ can
be chosen independently of f , h, u0, v0.

Now we show that, in case f ≡ 0, h ≡ 0, u0 = 0, v0 = 0, the unique solu-
tion u in W 1,p(0, T ; L p(�)) ∩ L p(0, T ;W 2,p(�)) with γ u in W 1,p(0, T ; L p(�)) ∩
L p(0, T ;W 2,p(�)) is u ≡ 0. This is true (by the uniqueness of the fixed point for S), if
we replace T by τ sufficiently small. Assume that there exists a nontrivial solution u in
(0, T ). We set

σ := inf{t ∈ [0, T ] : u(t, ·) �= 0}.
As u ∈ C([0, T ];W 2−2/p,p(�)) and u(0, ·) = 0, σ ∈ [0, T ) and u(σ, ·) = 0. Moreover,
γ u(t, ·) = 0 for almost every t in [0, σ ). As γ u ∈ C([0, T ];W 2−2/p,p(�)), we deduce that
(γ u)(σ, ·) = 0. So, if τ > 0, and σ + τ ≤ T , w(t) := u(σ + t) solves the system

Dtw(t, x) = Aw(t, x), (t, x) ∈ (0, τ ) × �,

Dtγw(t, ·) = Lγw(t, ·) + γ Ew(t, ·), t ∈ (0, τ ),

w(0, x) = 0, x ∈ �,

(γw)(0) = 0.

If τ is sufficiently small, we deduce w(t, ·) = 0 for any t ∈ [0, τ ], so that u(t, ·) = 0 for any
t ∈ [0, σ + τ ], in contradiction with the definition of σ .

Finally, we show the existence of a global solution. We have already proved the existence
of a solution z in some interval [0, τ ], independent of the data. Suppose that τ < T .We extend
the solution to [0, (2τ)∧ T ]. We have that z(τ, ·) ∈ W 2−2/p,p(�), (γ z)(τ ) ∈ W 2−2/p,p(�).
In case p > 3

2 we have also

γ [z(τ )] = (γ z)(τ ).

So we consider the system

Dtw(t, x) = Aw(t, x) + f (τ + t, x), (t, x) ∈ (0, τ ∧ (T − τ)) × �,

Dtγw(t, ·) = Lγw(t, ·) + γ Ew(t, ·) + h(τ + t, ·), t ∈ (0, τ ∧ (T − τ))

w(0, x) = z(τ, x), x ∈ �,

(γw)(0) = (γ z)(τ ).

(3.10)

123



Maximal regularity, analytic semigroups, and dynamic... 141

(3.10) has a unique solutionw inW 1,p(0, τ∧(T−τ); L p(�))∩L p(0, τ∧(T−τ);W 2,p(�)),
with γw in W 1,p(0, τ ∧ (T − τ); L p(�)) ∩ L p(0, τ ∧ (T − τ);W 2,p(�)). If we set

u(t, ·) :=
{
z(t, ·) if t ∈ (0, τ ],
w(t − τ, ·) if t ∈ (τ, τ ∧ (T − τ)],

it is easily seen that u ∈ W 1,p(0, (2τ) ∧ T ; L p(�)) ∩ L p(0, (2τ) ∧ T ;W 2,p(�)), with γ u
inW 1,p(0, (2τ)∧ T ; L p(�))∩ L p(0, (2τ)∧ T ;W 2,p(�)) and solves (3.7) , if we replace T
with (2τ) ∧ T . In case 2τ < T , we iterate the argument extending the solution to (3τ) ∧ T .
It is clear that in a finite number of steps we reach the conclusion. ��
Remark 3.10 It is easily seen that the conclusion of Theorem 3.9 still holds if we replace γ E
with an arbitrary operator F which is bounded fromW θ,p(�) to L p(�), for some θ in [0, 2).

4 Generation of an analytic semigroup

Now we prove a result of generation of an analytic semigroup.

Theorem 4.1 Suppose that the conditions (B1)–(B2) hold, L is as in (2.1) and E is as in
(3.6), with coefficients e j in C1(�) (0 ≤ j ≤ n). Let p ∈ (1,∞). Consider the space
X p := L p(�) × L p(�) and define the following operator G p acting on X p:

D(Gp) := {(u, γ u) : u ∈ W 2,p(�), γ u ∈ W 2,p(�)},
Gp(u, γ u) := (Au, Lγ u + γ Eu).

(4.1)

Then G p is the infinitesimal generator of an analytic semigroup in X p.

In the proof, we shall employ the following

Lemma 4.2 For any p ∈ [1,∞], there exists a linear operator P : W 2,p(�) → W 2,p(�)

such that γ Pg = g for any g ∈ W 2,p(�) and, for some C > 0, independent of g,

‖Pg‖L p(�) ≤ C‖g‖L p(�), ‖Pg‖W 2,p(�) ≤ C‖g‖W 2,p(�).

Proof Firstly, P can be constructed in the particular case � = R
n−1 ×R

+, � = R
n−1 ×{0},

setting, for g ∈ W 2,p(�),

Pg(x ′, xn) := g(x ′, 0)φ(xn),

with φ ∈ C2([0,∞)), φ(t) = 1 if 0 ≤ t ≤ 1, φ(t) = 0 if t ≥ 2. The general case can be
reduced to this one, employing partitions of unity and changes of variable. ��
Remark 4.3 It can be easily seen that P can be extended to a linear bounded operator from
L p(�) to L p(�), for any p in [1,∞], and from Cα(�) to Cα(�) for any α in [0, 2].
Proof of Theorem 4.1 Let λ ∈ C, Re(λ) ≥ 0. We shall show that the problem

λ(u, γ u) − Gp(u, γ u) = ( f , h) (4.2)

has a unique solution (u, γ u) in D(Gp) if |λ| is sufficiently large. Moreover, there exists
C > 0, independent of λ and ( f , h), such that

‖(u, γ u)‖X p ≤ C |λ|−1‖( f , h)‖X p .
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Observe that (4.2) is equivalent to
{

λu(x) − Au(x) = f (x), x ∈ �,

λγ u(x ′) − Lγ u(x ′) − γ Eu(x ′) = h(x ′), x ′ ∈ �.
(4.3)

We begin by considering the particular case E = 0, that is,
{

λu(x) − Au(x) = f (x), x ∈ �,

λγ u(x ′) − Lγ u(x ′) = h(x ′), x ′ ∈ �.
(4.4)

By Theorem 2.1, there exists R1 positive such that, if |λ| ≥ R1, the equation

λv(x ′) − Lv(x ′) = h(x ′), x ′ ∈ �

has a unique solution v in W 2,p(�). Moreover, for some C1 positive, independent of λ and
h,

|λ|‖v‖L p(�) + ‖v‖W 2,p(�) ≤ C1‖h‖L p(�).

Now we consider the system

λu(x) − Au(x) = f (x), x ∈ �,

γ u(x ′) = v(x ′), x ′ ∈ �.
(4.5)

By [20], Chapter 3.8, there exists R ≥ R1 such that (4.5) has a unique solution u inW 2,p(�).
Moreover, for someC2 > 0 independent ofλ and f , for any V ∈ W 2,p(�) such that γ V = v,

|λ|‖u‖L p(�) + ‖u‖W 2,p(�) ≤ C2(‖ f ‖L p(�) + ‖V ‖W 2,p(�) + |λ|‖V ‖L p(�)).

Choosing V = Pv, with P as in Lemma 4.2, we deduce

|λ|‖u‖L p(�) + ‖u‖W 2,p(�) ≤ C2(‖ f ‖L p(�) + ‖Pv‖W 2,p(�) + |λ|‖Pv‖L p(�))

≤ C3(‖ f ‖L p(�) + ‖v‖W 2,p(�) + |λ|‖v‖L p(�))

≤ C4(‖ f ‖L p(�) + ‖h‖L p(�)). (4.6)

Now we consider the general case E �= 0. For any θ ∈ [0, 2], it follows from (4.6) that

‖u‖W θ,p(�) ≤ C(θ)|λ|θ/2−1(‖ f ‖L p(�) + ‖h‖L p(�)). (4.7)

Now we fix θ ∈ (1 + 1
p , 2) and, for U ∈ W θ,p(�), we consider the system

λu(x) − Au(x) = f (x), x ∈ �,

λγ u(x ′) − Lγ u(x ′) = γ EU (x ′) + h(x ′), x ′ ∈ �.
(4.8)

If |λ| is sufficiently large, there exists a unique solution u = u(U ) in W 2,p(�). We shall
think ofU → u(U ) as an operator from W θ,p(�) into itself. If u j = u(Uj ) ( j ∈ {1, 2}), we
have

λ(u1 − u2)(x) − A(u1 − u2)(x) = 0, x ∈ �,

λγ (u1 − u2)(x ′) − Lγ (u1 − u2)(x ′) = γ E(U1 −U2)(x ′), x ′ ∈ �,

so that, by (4.7),

‖u1 − u2‖W θ,p(�) ≤ C(θ)|λ|θ/2−1‖γ E(U1 −U2)‖L p(�))

≤ C1(θ)|λ|θ/2−1‖U1 −U2‖W θ,p(�).
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We deduce that U → u(U ) is a contraction if |λ| is sufficiently large. We conclude that, for
such choice of λ, (4.3) has a unique solution u. Moreover, from (4.7),

‖u‖W θ,p(�) ≤ C(θ)|λ|θ/2−1(‖ f ‖L p(�) + ‖h‖L p(�) + ‖γ Eu‖L p(�))

≤ C1|λ|θ/2−1(‖ f ‖L p(�) + ‖h‖L p(�) + ‖u‖W θ,p(�)),

implying

‖u‖W θ,p(�) ≤ C2(‖ f ‖L p(�) + ‖h‖L p(�))

if |λ| is sufficiently large. We deduce that

|λ|‖u‖L p(�) + ‖u‖W 2,p(�) + |λ|‖γ u‖L p(�) + ‖γ u‖W 2,p(�)

≤ C3(‖ f ‖L p(�) + ‖h‖L p(�) + ‖u‖W θ,p(�))

≤ C4(‖ f ‖L p(�) + ‖h‖L p(�)).

The proof is complete. ��

Remark 4.4 Here also the assertion of Theorem 4.1 holds replacing γ E with any operator F
which is bounded from W θ,p(�) to L p(�), for some θ in [0, 2).

Remark 4.5 We have chosen to prove Theorem 4.1 estimating directly the resolvent (λ −
Gp)

−1. In fact, the result can be obtained quite quickly, applying Theorem 3.1 together with
a nice theorem by G. Dore (see [5]).

5 General Wentzell boundary conditions

In [7] and [8], the authors considered the problem
⎧
⎪⎪⎨

⎪⎪⎩

Dtu(t, x) = Mu(t, x), (t, x) ∈ (0, T ) × �,

Mu(t, x ′) + β(x ′)∂aν u(t, x ′) − qβ(x ′)L∂γ u(t, x ′)
+qã(x ′) · ∇τ γ u(t, x ′) + r̃(x ′)γ u(t, x ′) = 0, (t, x ′) ∈ (0, T ) × �,

u(0, x) = u0(x), x ∈ �.

(5.1)

Here

Mu =
n∑

i, j=1

∂i (ai j (·)∂ j u) +
n∑

i=1

ci∂i u + ru,

with ai j real valued, ai j = a ji ,
∑n

i, j=1 ai j (x)ξiξ j ≥ α0|ξ |2 for any (x, ξ) ∈ �×R
n for some

α0 positive, β positive, ∂aν = ∑n
i, j=1 ai j (·)νi∂ j u, q ∈ R

+, ai j , ci , r defined and sufficiently

regular on�, ã and r̃ defined and sufficiently regular on�.∇τ stands for the gradient operator
in � and

L∂γ u = div(B(x)∇τ γ u)

is an operator of the form considered in Example 2.4. Of course, the Riemannian structure
in � is that inherited as an embedded submanifold of Rn . The open set � is not assumed
to be bounded. System (5.1) is studied in the following way: it is introduced the following
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operator M̃p:

D(M̃p) := {(u, γ u) : u ∈ C2
c (�), γ Mu + β∂aν u − qβL∂γ u + qã · ∇τu + r̃γ u = 0},

M̃p(u, γ u) = (Mu, γ Mu) = (Au,−β∂aν u + qβL∂γ u − qã · ∇τu − r̃γ u).

(5.2)
Then it is proved that the closure of M̂p in L p(�)× L p(�) generates an analytic semigroup.
It follows that, for every u0 belonging to the domain of M̂p , (5.1) has a solution (in some
generalised sense).

Following this idea, we can consider the problem

Dtu(t, x) = Au(t, x), (t, x) ∈ (0, T ) × �,

γAu(t, ·) − Lγ u(t, ·) − γ Eu(t, ·) = 0, t ∈ (0, T )

u(0, x) = u0(x), x ∈ �,

(5.3)

with the assumptions of Theorem 3.9: we introduce the following operator Mp , for p ∈
(1,∞):

D(Mp) := {(u, γ u) : u ∈ C2(�), γAu − Lγ u − γ Eu = 0},
Mp(u, γ u) = (Au, γAu) = (Au, Lγ u + γ Eu).

(5.4)

We show the following

Theorem 5.1 Suppose that (B1)–(B2) hold, L is as in (2.1)and E is as in (3.6)with coefficients
in C1(�). Moreover,

(a) � = ∂� is of class C2+α , for some α ∈ (0, 1);
(b) the coefficients ai j , b j , c of A (1 ≤ i, j ≤ n) are of class Cα(�);
(c) the coefficients lα,
 in (2.1) are in Cα(U );
(d) the coefficients e j (0 ≤ j ≤ n) of E (see (3.6) are in Cα(�)).

Then, if 1 < p < ∞, Mp is closable in X p = L p(�)× L p(∂�) and its closure coincides
with G p (defined in (4.1)).

Proof We have to prove the following:
∀(u, γ u) ∈ D(Gp) there exists a sequence ((uk, γ uk))k∈N in D(Mp) such that

‖(uk, γ uk) − (u, γ u)‖X p + ‖Mp(uk, γ uk) − Gp(u, γ u)‖X p → 0 (k → ∞).

We start by proving three steps.
Step 1: Let (u, γ u) ∈ D(Gp) be such that, for some λ ∈ C, (λ−Gp)(u, γ u) ∈ Cα(�)×

Cα(�). Then (u, γ u) ∈ C2+α(�) × C2+α(�)

We start by considering the case E = 0. Then, λγ u − Lγ u = h ∈ Cα(�) and so
γ u ∈ C2+α(�) (see [11], Theorem 2.1). So u ∈ W 2,p(�) and solves the system

(λ − A)u = f ∈ Cα(�),

γ u ∈ C2+α(�),

again implying u ∈ C2+α(�).
Now we consider the case E �= 0, employing a bootstrap argument. Suppose that we have

shown that (u, γ u) ∈ W 2,q(�) × W 2,q(�) for some q ≥ p. Then γ Eu ∈ W 1−1/q,q(�).
Assume that

q ≥ n

1 − α
.

Then W 1−1/q,q(�) ↪→ Cα(�), so that (λu − Au, λγ u − Lγ u) ∈ Cα(�) × Cα(�) and the
conclusion follows.
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Suppose q > n. Then γ Eu ∈ Cα′
(�), for some α′ ∈ (0, 1). It follows that

(λu − Au, λγ u − Lγ u) ∈ Cα′
(�) × Cα′

(�). This implies u ∈ C2+α′
(�), so that

γ Eu ∈ C1+α′
(�) ↪→ Cα(�), and we have again the conclusion.

Suppose q < n. Then γ Eu ∈ W 1−1/q,q(�) ↪→ L
n−1
n−q q(�). We deduce (λu −Au, λγ u −

Lγ u) ∈ Cα(�)× L
n−1
n−q q(�), implying (u, γ u) ∈ W 2,q1(�)×W 2,q1(�), with q1 = n−1

n−q q >

q . If q1 > n, we can conclude. Otherwise, we deduce that (u, γ u) ∈ W 2,q2(�) × W 2,q2(�),
with q2 = n−1

n−q1
q1 > q1. We can iterate the process until we get the belonging of (u, γ u) to

W 2,r (�) × W 2,r (�) for some r > n. This can be necessarily achieved in a finite number of
steps. Otherwise, we should obtain the belonging of (u, γ u) to W 2,qk (�) × W 2,qk (�) with
q < q1 < · · · < qk < qk+1 ≤ · · · < n for a certain sequence (qk)k∈N. But this is not
possible, because

qk = n − 1

n − qk−1
qk−1 ≥

(
n − 1

n − q

)k

q → ∞ (k → ∞),

a contradiction.
Step 2: Let (u, γ u) ∈ D(Gp) be such that, for some λ ∈ C, (λ −Gp)(u, γ u) = ( f , h) ∈

Cα(�) × Cα(�), with α ∈ (0, 1) and h = γ f . Then (u, γ u) ∈ D(Mp).
In fact, by Step 1, (u, γ u) ∈ C2+α(�) × C2+α(�). Moreover,

γAu − Lγ u − γ Eu = λγ u − γ f − λγ u + h = 0.

Step 3: {(ψ, γψ) : ψ ∈ Cα(�)} is dense in X p .
In fact, let ( f , h) ∈ X p . We begin by considering a sequence (hk)k∈N with values in

Cα(�), such that ‖hk − h‖L p(�) → 0 (k → ∞). Let P be the extension operator described
in Lemma 4.2. By Remark 4.3, it can be extended to a linear bounded operator from Cα(�)

to Cα(�) and from L p(�) to L p(�). So Phk ∈ Cα(�) for every k ∈ N and (Phk)k∈N
converges to Ph in L p(�). Now we consider a sequence (φk)k∈N in C∞

0 (�) converging to
f − Ph in L p(�). We set ψk := Phk + φk . Then ψk ∈ Cα(�), (ψk)k∈N converges to f in
L p(�) and (γψk)k∈N = (hk)k∈N converges to h in L p(�).

Now let us consider (u, γ u) ∈ D(Gp). We fix λ ∈ ρ(Gp) and set ( f , h) := λ(u, γ u) −
Gp((u, γ u)) ∈ X p . We take a sequence ((ψk, γψk))k∈N with ψk ∈ Cα(�), converging
to ( f , h) in X p . We set (uk, γ uk) := (λ − Gp)

−1(ψk, γψk) (k ∈ N). Then (uk, γ uk) ∈
D(Mp), the sequence ((uk, γ uk))k∈N converges to (u, γ u) in W 2,p(�) × W 2,p(�), so that
(Mp(uk, γ uk))k∈N converges to Gp(u, γ u) in X p . ��
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