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Abstract
In this paper, we are concerned with the existence of the least energy sign-changing solutions
for the following fractional Schrödinger–Poisson system:{

(−�)su + V (x)u + λφ(x)u = f (x, u), in R
3,

(−�)tφ = u2, in R
3,

where λ ∈ R
+ is a parameter, s, t ∈ (0, 1) and 4s + 2t > 3, (−�)s stands for the fractional

Laplacian. By constraint variational method and quantitative deformation lemma, we prove
that the above problem has one least energy sign-changing solution.Moreover, for any λ > 0,
we show that the energy of the least energy sign-changing solutions is strictly larger than two
times the ground state energy. Finally, we considerλ as a parameter and study the convergence
property of the least energy sign-changing solutions as λ ↘ 0.

Keywords Fractional Schrödinger–Poisson system · Sign-changing solutions · Constraint
variational method · Quantitative deformation lemma

Mathematics Subject Classification 35J61 · 58E30

1 Introduction

In this article, we are interested in the existence, energy property of the least energy sign-
changing solution uλ and a convergence property of uλ as λ ↘ 0 for the nonlinear fractional
Schrödinger–Poisson system{

(−�)su + V (x)u + λφ(x)u = f (x, u), in R
3,

(−�)tφ = u2, in R
3.

(1.1)

where λ > 0 is a parameter, s, t ∈ (0, 1) and 4s + 2t > 3, (−�)s stands for the fractional
Laplacian and the potential V (x) satisfies the following assumptions:
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1564 C. Ji

(V1) V ∈ C(R3) satisfies infx∈R3V (x) ≥ V0 > 0, where V0 is a positive constant;
(V2) There exists h > 0 such that lim|y|→∞meas({x ∈ Bh(y) : V (x) ≤ c}) = 0 for any

c > 0;

where Bh(y) denotes an open ball of R3 centered at y with radius h > 0, and meas(A)

denotes the Lebesgue measure of set A. Condition (V2), which is weaker than the coercivity
assumption: V (x) → ∞ as |x | → ∞, was originally introduced by Bartsch and Wang [1] to
overcome the lack of compactness for the local elliptic equations and then was used by Pucci,
Xia and Zhang [18] for the fractional Schrödinger–Kirchhoff type equations. Moreover, on
the nonlinearity f , we assume that

( f1) f : R3 × R → R is a Carathéodory function and f (x, u) = o(|u|) as u → 0 for
x ∈ R

3 uniformly;
( f2) For some 1 < p < 2∗

s − 1, there exits C > 0 such that

| f (x, u)| ≤ C(1 + |u|p),
where 2∗

s = 6
3−2s ;

( f3) lim|u|→∞ F(x,u)

u4
= +∞, where F(x, u) = ∫ u

0 f (x, s)ds;

( f4)
f (x,t)
|t |3 is an increasing function of t on R \ {0} for a.e. x ∈ R

3.

When s = t = 1, the system (1.1) reduces to the following Schrödinger–Poisson system{ − �u + V (x)u + λφ(x)u = f (x, u), in R
3,

− �φ = u2, in R
3.

This kind of system has a strong physical meaning. For instance, they appear in quantum
mechanics models [4,6] and in semiconductor theory [2,3]. For the research of Schrödinger–
Poisson system, we may refer to [9,10,13,19,23].

In recent years, there has been a great deal works dealing with the nonlinear equations or
systems involving fractional Laplacian, which arise in fractional quantummechanics [11,12],
physics and chemistry [14], obstacle problems [21], optimization and finance [8] and so on.
In the remarkable work of Caffarelli and Silvestre [5], the authors express this nonlocal
operator (−�)s as a Dirichlet–Neumann map for a certain elliptic boundary value problem
with local differential operators defined on the upper half space. This technique is a valid
tool to deal with the equations involving fractional operators in the respects of regularity
and variational methods. For some results on the fractional differential equations, we refer
to [7,16,18,25,26]. Recently, using Caffarelli and Silvestre’s method in [5] and variational
method, in [22], Teng studied the ground state for the fractional Schrödinger–Poisson system
with critical Sobolev exponent. To the best of our knowledge, there are few papers which
considered the least energy sign-changing solutions of system (1.1). In [20], Combining
constraint variational methods and quantitative deformation lemma, Shuai firstly studied the
least energy sign-changing solutions for a class of Kirchhoff problems in bounded domain,
where a stronger condition that f ∈ C1 was assumed. In virtue of the fractional operator and
Poisson equation which are included in (1.1), our problem is more complicated and difficult.

Now, we recall some theory of the fractional Sobolev spaces. We firstly define the homo-
geneous fractional Sobolev space Dα,2(R3)(α ∈ (0, 1)) as follows

Dα,2(R3) =
{
u ∈ L2∗

α (R3) : |u(x) − u(y)|
|x − y| 32+α

∈ L2(R3 × R
3)

}
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which is the completion of C∞
0 (R3) under the norm

‖u‖Dα,2(R3) = ‖(−�)
α
2 u‖L2(R3) =

( ∫∫
R3×R3

|u(x) − u(y)|2
|x − y|3+2α dxdy

) 1
2
.

The embedding Dα,2(R3) ↪→ L2∗
α is continuous and there exists a best constant Sα > 0

such that

Sα = inf
u∈Dα,2(R3)

=
∫
R3 |(−�)

α
2 u|2dx( ∫

R3 |u(x)|2∗
αdx

) 2
2∗α

. (1.2)

The fractional Sobolev space Hα(R3) is defined by

Hα(R3) =
{
u ∈ L2(R3) : |u(x) − u(y)|

|x − y| 32+α
∈ L2(R3 × R

3)
}
,

endowed with the norm

‖u‖Hα(R3) =
( ∫∫

R3×R3

|u(x) − u(y)|2
|x − y|3+2α dxdy +

∫
R3

|u|2dx
) 1

2
.

In this paper, we denote the fractional Sobolev space for (1.1) by

H =
{
u ∈ Hs(R3) :

∫
R3

V (x)u2dx < ∞
}
,

with the norm

‖u‖ =
( ∫∫

R3×R3

|u(x) − u(y)|2
|x − y|3+2s dxdy +

∫
R3

V (x)u2dx
) 1

2
.

In the sequel, we need the following embedding lemma which is a special case of Lemma
1 in [18], so we omit its proof.

Lemma 1.1 (i) Suppose that (V1) holds. Let q ∈ [2, 2∗
s ], then the embeddings

H ↪→ Hs(R3) ↪→ Lq(R3)

are continuous, with min{1, V0}‖u‖2
Hs (R3)

≤ ‖u‖2 for all u ∈ H. In particular, there exists
a constant Cq > 0 such that

‖u‖Lq (R3) ≤ Cq‖u‖ for all u ∈ H .

Moreover, if q ∈ [1, 2∗
s ), then the embedding H ↪→↪→ Lq(BR) is compact for any R > 0.

(ii) Suppose that (V1)− (V2) hold. Let q ∈ [2, 2∗
s ) be fixed and {un}n be a bounded sequence

in H, then there exists u ∈ H ∩ Lq(RN ) such that, up to a subsequence,

un → u strongly in Lq(R3) as n → ∞.

Assume that s, t ∈ (0, 1), if 4s + 2t ≥ 3, there holds 2 ≤ 12
3+2t ≤ 6

3−2s and thus

H ↪→ L
12

3+2t (R3) by Lemma 1.1. For u ∈ H , the linear functional Lu : Dt,2(R3) → R is
defined by

Lu(v) =
∫
R3

u2vdx,
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the Hölder’s inequality and (1.2) implies that

|Lu(v)| ≤
( ∫

R3
|u(x)| 12

3+2t dx
) 3+2t

6
( ∫

R3
|v(x)|2∗

t dx
) 1

2∗t ≤ C‖u‖2‖v‖Dt,2(R3).

By the Lax–Milgram theorem, there exists a unique φt
u ∈ Dt,2(R3) such that∫

R3
(−�)

t
2 u(−�)

t
2 vdx =

∫
R3

u2vdx, ∀v ∈ Dt,2(R3),

that is φt
u is the weak solution of

(−�)tφt
u = u2, x ∈ R

3

and the representation formula holds

φt
u(x) = ct

∫
R3

u2(y)

|x − y|3−2t dy, x ∈ R
3,

which is called t-Riesz potential, where

ct = π− 3
2 2−2t �(3 − 2t)

�(t)
. (1.3)

In the sequel, we often omit the constant ct for convenience in (1.3). The properties of the
function φt

u are given as follows.

Lemma 1.2 ([22]) If 4s + 2t ≥ 3, then for any u ∈ Hs(R3), we have

(1) φt
u : Hs(R3) → Dt,2(R3) is continuous and maps bounded sets into bounded maps;

(2)
∫
R3 φt

uu
2dx ≤ S2

t ‖u‖4
L

12
3+2t

;

(3) φt
τu = τ 2φt

u for all τ ∈ R, φt
u(·+y) = φt

u(x + y);

(4) φuθ = θ2s(φt
u)θ for all θ > 0, where uθ = u( ·

θ
);

(5) If un⇀u in Hs(R3), then φt
un⇀φt

u in Dt,2(R3);
(6) If un → u in Hs(R3), then φt

un → φt
u in Dt,2(R3) and

∫
R3 φt

un un
2dx → ∫

R3 φt
uu

2dx.

If we substitute φt
u in (1.1), it leads to the following fractional Schrödinger equation

(−�)su + V (x)u + λφt
uu = f (x, u), in R

3, (1.4)

whose solutions are the critical points of the functional Iλ : H → R defined by

Iλ(u) = 1

2

∫
R3

(|(−�)
s
2 u|2 + V (x)u2)dx + λ

4

∫
R3

φt
uu

2dx −
∫
R3

F(x, u)dx

where F(x, u) = ∫ u
0 f (x, r)dr . The functional Iλ ∈ C1(H ,R) and for any v ∈ H

〈I ′
λ(u), ϕ〉 =

∫
R3

(
(−�)

s
2 u(−�)

s
2 ϕ + V (x)uv

)
dx + λ

∫
R3

φt
uuϕdx −

∫
R3

f (x, u)ϕdx .

We call u a least energy sign-changing solution to problem (1.1) if u is a solution of problem
(1.4) with u± �= 0 and

Iλ(u) = inf{Iλ(v) | v± �= 0, I ′
λ(v) = 0},

where v+ = max{v(x), 0} and v− = min{v(x), 0}.
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For problem (1.4), due to the effect of the nonlocal term φt
u and (−�)su, that is∫

R3

(
(−�)

s
2 u+(−�)

s
2 u−

)
dx > 0 and

∫
R3

φt
uu

2dx >

∫
R3

φt
u+(u+)

2 +
∫
R3

φt
u−(u−)

2

for u± �= 0, a straightforward computation yields that

Iλ(u) > Iλ(u
+) + Iλ(u

−),

〈I ′
λ(u), u+〉 > 〈I ′

λ(u
+), u+〉, and 〈I ′

λ(u), u−〉 > 〈I ′
λ(u

−), u−〉. (1.5)

So the methods to obtain sign-changing solutions of the local problems and to estimate the
energy of the sign-changing solutions seem not suitable for our nonlocal one (1.4). In order
to get a sign-changing solution for problem (1.4), we firstly try to seek a minimizer of the
energy functional Iλ over the following constraint:

Mλ = {u ∈ H : u± �= 0, 〈I ′
λ(u), u+〉 = 〈I ′

λ(u), u−〉 = 0}
and then we show that the minimizer is a sign-changing solution of (1.4). To show that the
minimizer of the constrained problem is a sign-changing solution, wewill use the quantitative
deformation lemma and degree theory.

The following are the main results of this paper.

Theorem 1.1 Let ( f1) − ( f4) and (V1) − (V2) hold. Then, for any λ > 0, problem (1.1) has
a least energy sign-changing solution uλ, which has precisely two nodal domains.

Let

Nλ := {u ∈ H \ {0} : 〈I ′
λ(u), u〉 = 0}, (1.6)

and

cλ := inf
u∈Nλ

Iλ(u). (1.7)

Let uλ ∈ H be a sign-changing solution of problem (1.4), it is clear from (1.5) and (1.6) that
u±

λ /∈ Nλ.

Theorem 1.2 Under the assumptions of Theorem 1.1, cλ > 0 is achieved and Iλ(uλ) > 2cλ,
where uλ is the least energy sign-changing solution obtained in Theorem 1.1. In particular,
cλ > 0 is achieved either by a nonpositive or a nonnegative function.

It is clear that the energy of the sign-changing solution uλ obtained in Theorem1.1 depends
on λ. Furthermore, we give a convergence property of uλ as λ ↘ 0, which reflects some
relationship between λ > 0 and λ = 0 in problem (1.4).

Theorem 1.3 If the assumptions of Theorem 1.1 hold, then for any sequence {λn}n with
λn ↘ 0 as n → ∞, there exists a subsequence, still denoted by {λn}n, such that uλn → u0
strongly in H as n → ∞, where u0 is a least energy sign-changing solution of the problem

(−�)su + V (x)u = f (x, u), in R
3, (1.8)

which has precisely two nodal domains.

This paper is organized as follows. In Sect. 2, we present some preliminary lemmas which
are essential for this paper. In Sect. 3, we give the proofs of Theorems 1.1–1.3, respectively.
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2 Some technical lemmas

We will use constraint minimization on Mλ to look for a critical point of Iλ. For this, we
start with this section by claiming that the set Mλ is nonempty in H .

Lemma 2.1 Assume that ( f1) − ( f4) and (V1) hold, if u ∈ H with u± �= 0, then there exists
a unique pair (αu, βu) ∈ R+ × R+ such that αuu+ + βuu− ∈ Mλ.

Proof Fixed an u ∈ H with u± �= 0. We first establish the existence of αu and βu . Let

g1(α, β) = 〈I ′
λ(αu

+ + βu−), αu+〉
=

∫
R3

(−�)
s
2 (αu+ + βu−)(−�)

s
2 (αu+)dx + α2

∫
R3

V (x)(u+)
2
dx

+ λα2
∫
R3

φt
αu++βu−(u+)

2
dx −

∫
R3

f (x, αu+)αu+dx

= α2
∫
R3

|(−�)
s
2 u+|2dx + αβ

∫
R3

(−�)
s
2 u+(−�)

s
2 u−dx

+ α2
∫
R3

V (x)(u+)
2
dx + λα4

∫
R3

φt
u+(u+)

2
dx + λα2β2

∫
R3

φt
u−(u+)

2
dx

−
∫
R3

f (x, αu+)αu+dx, (2.1)

and

g2(α, β) = 〈I ′
λ(αu

+ + βu−), βu−〉
=

∫
R3

(−�)
s
2 (αu+ + βu−)(−�)

s
2 (βu−)dx + β2

∫
R3

V (x)(u−)
2
dx

+ λβ2
∫
R3

φt
αu++βu−(u−)

2
dx −

∫
R3

f (x, βu−)βu−dx

= β2
∫
R3

|(−�)
s
2 u−|2dx + αβ

∫
R3

(−�)
s
2 u+(−�)

s
2 u−dx

+ β2
∫
R3

V (x)(u−)
2
dx + λβ4

∫
R3

φt
u−(u−)

2
dx + λα2β2

∫
R3

φt
u+(u−)

2
dx

−
∫
R3

f (x, βu−)βu−dx . (2.2)

By ( f1) and ( f3), it is easy to see that g1(α, α) > 0 and g2(α, α) > 0 for α > 0 small and
g1(β, β) < 0 and g2(β, β) < 0 for β > 0 large. Thus, there exist 0 < r < R such that

g1(r , r) > 0, g2(r , r) > 0, g1(R, R) < 0, g2(R, R) < 0. (2.3)

From (2.1), (2.2) and (2.3), we have

g1(r , β) > 0, g1(β, R) < 0 ∀β ∈ [r , R]
and

g2(α, r) > 0, g2(α, R) < 0 ∀α ∈ [r , R].
By virtue of Miranda’s Theorem [15], there exists some point (αu, βu) with r < αu, βu < R
such that g1(αu, βu) = g2(αu, βu) = 0. So αuu+ + βuu− ∈ Mλ.

Now, we prove the uniqueness of the pair (αu, βu) and consider two cases.
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Case 1 u ∈ Mλ.
If u ∈ Mλ, then u+ + u− = u ∈ Mλ. It means that

〈I ′
λ(u), u+〉 = 〈I ′

λ(u), u−〉 = 0,

that is ∫
R3

|(−�)
s
2 u+|2dx +

∫
R3

(−�)
s
2 u+(−�)

s
2 u−dx +

∫
R3

V (x)(u+)
2
dx

+ λ

∫
R3

φt
u+(u+)

2
dx + λ

∫
R3

φt
u−(u+)

2
dx =

∫
R3

f (x, u+)u+dx, (2.4)

and ∫
R3

|(−�)
s
2 u−|2dx +

∫
R3

(−�)
s
2 u+(−�)

s
2 u−dx +

∫
R3

V (x)(u−)
2
dx

+ λ

∫
R3

φt
u−(u−)

2
dx + λ

∫
R3

φt
u+(u−)

2
dx =

∫
R3

f (x, u−)u−dx . (2.5)

We show that (αu, βu) = (1, 1) is the unique pair of numbers such that αuu+ +βuu− ∈ Mλ.
Assume that (α̃u, β̃u) is another pair of numbers such that α̃uu+ + β̃uu− ∈ Mλ. By the
definition of Mλ, we have

α̃2
u

∫
R3

|(−�)
s
2 u+|2dx + α̃u β̃u

∫
R3

(−�)
s
2 u+(−�)

s
2 u−dx + α̃2

u

∫
R3

V (x)(u+)
2
dx

+ λα̃4
u

∫
R3

φt
u+(u+)

2
dx + λα̃2

u β̃
2
u

∫
R3

φt
u−(u+)

2
dx =

∫
R3

f (x, α̃uu
+)α̃uu

+dx, (2.6)

and

β̃2
u

∫
R3

|(−�)
s
2 u−|2dx + α̃u β̃u

∫
R3

(−�)
s
2 u+(−�)

s
2 u−dx + β̃2

u

∫
R3

V (x)(u−)
2
dx

+ λβ̃4
u

∫
R3

φt
u−(u−)

2
dx + λα̃2

u β̃
2
u

∫
R3

φt
u+(u−)

2
dx =

∫
R3

f (x, β̃uu
−)β̃uu

−dx . (2.7)

Without loss of generality, we may assume that 0 < α̃u ≤ β̃u . Then, from (2.6), we have

α̃2
u

∫
R3

|(−�)
s
2 u+|2dx + α̃2

u

∫
R3

(−�)
s
2 u+(−�)

s
2 u−dx + α̃2

u

∫
R3

V (x)(u+)
2
dx

+ λα̃4
u

∫
R3

φt
u+(u+)

2
dx + λα̃4

u

∫
R3

φt
u−(u+)

2
dx ≤

∫
R3

f (x, α̃uu
+)α̃uu

+dx .

Moreover, dividing the above inequality by α̃−4
u , we have

α̃−2
u

( ∫
R3

|(−�)
s
2 u+|2dx +

∫
R3

(−�)
s
2 u+(−�)

s
2 u−dx +

∫
R3

V (x)(u+)
2
dx

)

+ λ

∫
R3

φt
u+(u+)

2
dx + λ

∫
R3

φt
u−(u+)

2
dx ≤

∫
R3

f (x, α̃uu+)

α̃3
u

u+dx . (2.8)

By (2.8) and (2.4), one has

(α̃−2
u − 1)

( ∫
R3

|(−�)
s
2 u+|2dx +

∫
R3

(−�)
s
2 u+(−�)

s
2 u−dx +

∫
R3

V (x)(u+)
2
dx

)

≤
∫
R3

( f (x, α̃uu+)

(α̃uu+)3
− f (x, u+)

(u+)3

)
(u+)4dx . (2.9)
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1570 C. Ji

By ( f4) and (2.9), it implies that 1 ≤ α̃u ≤ β̃u . By (2.7) and the same method, we have that

(β̃−2
u − 1)

( ∫
R3

|(−�)
s
2 u−|2dx +

∫
R3

(−�)
s
2 u+(−�)

s
2 u−dx +

∫
R3

V (x)(u−)
2
dx

)

≥
∫
R3

( f (x, β̃uu−)

(β̃uu−)3
− f (x, u−)

(u−)3

)
(u−)4dx .

It is easy to see that β̃u ≤ 1. This together with 1 ≤ α̃u ≤ β̃u shows that α̃u = β̃u = 1.

Case 2 u /∈ Mλ.
Ifu /∈ Mλ, then there exists a pair of positive numbers (αu, βu) such thatαuu++βuu− ∈ Mλ.
Suppose that there exists another pair of positive numbers (α′

u, β
′
u) such that α

′
uu

+ +β ′
uu

− ∈
Mλ. Set v := αuu+ + βuu− and v′ := α′

uu
+ + β ′

uu
−, we have

α′
u

αu
v+ + β ′

u

βu
v− = α′

uu
+ + β ′

uu
− = v′ ∈ Mλ.

Since v ∈ Mλ, we obtain that αu = α′
u and βu = β ′

u , which implies that (αu, βu) is the
unique pair of numbers such that αuu+ + βuu− ∈ Mλ. The proof is completed. ��
Lemma 2.2 Assume that ( f1) − ( f4) and (V ) hold for a fixed u ∈ H with u± �= 0. If
〈I ′

λ(u), u+〉 ≤ 0 and 〈I ′
λ(u), u−〉 ≤ 0, then there exists a unique pair (αu, βu) ∈ (0, 1]×(0, 1]

such that 〈I ′
λ(αuu+ + βuu−), αuu+〉 = 〈I ′

λ(αuu+ + βuu−), βuu−〉 = 0.

Proof For u ∈ H with u± �= 0, by Lemma 2.2, we know that there exist αu and βu such that
αuu+ + βuu− ∈ Mλ. Without loss of generality, suppose that αu ≥ βu > 0. Moreover, we
have

α2
u

( ∫
R3

|(−�)
s
2 u+|2dx +

∫
R3

(−�)
s
2 u+(−�)

s
2 u−dx +

∫
R3

V (x)(u+)
2
dx

)

+ λα4
u

( ∫
R3

φt
u+(u+)

2
dx +

∫
R3

φt
u−(u+)

2
dx

)

≥ α2
u

∫
R3

|(−�)
s
2 u+|2dx + αuβu

∫
R3

(−�)
s
2 u+(−�)

s
2 u−dx + α2

u

∫
R3

V (x)(u+)
2
dx

+ λα4
u

∫
R3

φt
u+(u+)

2
dx + λα2

uβ
2
u

∫
R3

φt
u−(u+)

2
dx

=
∫
R3

f (x, αuu
+)αuu

+dx . (2.10)

Since 〈I ′
λ(u), u+〉 ≤ 0, it yields that∫
R3

|(−�)
s
2 u+|2dx +

∫
R3

(−�)
s
2 u+(−�)

s
2 u−dx +

∫
R3

V (x)(u+)
2
dx

+ λ

∫
R3

φt
u+(u+)

2
dx + λ

∫
R3

φt
u−(u+)

2
dx ≤

∫
R3

f (x, u+)u+dx . (2.11)

Combine (2.10) and (2.11), we have(
1

α2
u

− 1

)( ∫
R3

|(−�)
s
2 u+|2dx +

∫
R3

(−�)
s
2 u+(−�)

s
2 u−dx +

∫
R3

V (x)(u+)
2
dx

)

≥
∫
R3

( f (αuu+)

(αuu+)3
− f (u+)

(u+)3

)
(u+)4dx .
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If αu > 1, the left-hand side of this inequality is negative. But from ( f4), the right-hand side
of this inequality is positive, so have αu ≤ 1. The proof is thus complete. ��
Lemma 2.3 Forafixedu ∈ H with u± �= 0, then (αu, βu)obtained inLemma2.1 is the unique
maximum point of the function κ : R+ × R+ → R defined as κ(α, β) = Iλ(αu+ + βu−).

Proof From the proof of Lemma 2.1, we know that (αu, βu) is the unique critical point of κ

in R+ ×R+. By ( f3), we conclude that κ(α, β) → −∞ uniformly as |(α, β)| → ∞, so it is
sufficient to show that a maximum point cannot be achieved on the boundary of (R+,R+).
If we assume that (0, β̄) is a maximum point of κ with β̄ ≥ 0. Then, since

κ(α, β̄) = Iλ(αu
+ + β̄u−)

= 1

2

∫
R3

(
|(−�)

s
2 (αu+ + β̄u−)|2 + V (x)(αu+ + β̄u−)2

)
dx

+ λ

∫
R3

φt
αu++β̄u−(αu+ + β̄u−)2dx −

∫
R3

f (x, αu+ + β̄u−)(αu+ + β̄u−)dx

is an increasing function with respect to α if α is small enough, the pair (0, β̄) is not a
maximum point of κ in R+ × R+. The proof is now finished. ��

By Lemma 2.1, we define the minimization problem

mλ := inf
{
Iλ(u) : u ∈ Mλ

}
.

Lemma 2.4 Assume that ( f1)− ( f4) and (V1)− (V2) hold, then mλ > 0 can be achieved for
any λ > 0.

Proof For every u ∈ Mλ, we have 〈I ′
λ(u), u〉 = 0. From ( f1), ( f2), for any ε > 0, there

exists Cε > 0 such that

| f (x, u)u| ≤ εu2 + Cε |u|p+1 for all u ∈ R. (2.12)

By Sobolev embedding theorem, we get

‖u‖2 ≤
∫
R3

(
|(−�)

s
2 u|2 + V (x)u2

)
dx + λ

∫
R3

φt
uu

2dx =
∫
R3

f (x, u)udx

≤ ε

∫
R3

|u|2dx + Cε

∫
R3

|u|p+1dx

≤ C2ε‖u‖2 + C ′
ε‖u‖p+1. (2.13)

Pick ε = 1
2C2

. So there exists a constant γ > 0 such that ‖u‖2 > γ .
By ( f4), we have

f (x, u)u − 4F(x, u) ≥ 0,

then

Iλ(u) = Iλ(u) − 1

4
〈I ′

λ(u), u〉 ≥ ‖u‖2
4

≥ γ

4
. (2.14)

This implies that Iλ(u) is coercive in Mλ and mλ ≥ γ
4 > 0.

Let {un}n ⊂ Mλ be such that Iλ(un) → mλ. Then {un}n is bounded in H by (2.14).
Using Lemma 1.1, up to a subsequence, we have

u±
n ⇀u±

λ weakly in H ,
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u±
n → u±

λ strongly in Lq(R3), for q ∈ [2, 2∗
s ),

u±
n → u±

λ a.e. in R
3,

(−�)
s
2 u±

n → (−�)
s
2 u±

λ a.e. inR3. (2.15)

Moreover, the conditions ( f1), ( f2) and Lemma 1.1 imply that

lim
n→∞

∫
R3

f (x, u±
n )u±

n dx =
∫
R3

f (x, u±
λ )u±

λ dx,

lim
n→∞

∫
R3

F(x, u±
n )dx =

∫
R3

F(x, u±
λ )dx . (2.16)

Since un ∈ Mλ, we have 〈I ′
λ(un), u

±
n 〉 = 0, that is∫

R3
|(−�)

s
2 u+

n |2dx +
∫
R3

(−�)
s
2 u+

n (−�)
s
2 u−

n dx +
∫
R3

V (x)(u+
n )

2
dx

+ λ

∫
R3

φt
u+
n
(u+

n )
2
dx + λ

∫
R3

φt
u−
n
(u+

n )
2
dx =

∫
R3

f (x, u+
n )u+

n dx, (2.17)

and ∫
R3

|(−�)
s
2 u−

n |2dx +
∫
R3

(−�)
s
2 u+

n (−�)
s
2 u−

n dx +
∫
R3

V (x)(u−
n )

2
dx

+ λ

∫
R3

φt
u−
n
(u−

n )
2
dx + λ

∫
R3

φt
u+
n
(u−

n )
2
dx =

∫
R3

f (x, u−
n )u−

n dx . (2.18)

Similar to (2.12) and (2.13), we also have ‖u±
n ‖2 ≥ δ for all n ∈ N , where δ is a constant.

Since un ∈ Mλ, by (2.17) and (2.18) again, we have

δ ≤ ‖u±
n ‖2 <

∫
R3

f (x, u±
n )u±

n dx ≤ ε

∫
R3

|u±
n |2dx + Cε

∫
R3

|u±
n |p+1dx

≤ ε

V0

∫
R3

|u±
n |2dx + Cε

∫
R3

|u±
n |p+1dx .

Using the boundedness of {un}n , there is C2 > 0 such that

δ ≤ εC2 + Cε

∫
R3

|u±
n |p+1dx .

Choosing ε = δ/(2C2), we get ∫
R3

|u±
n |p+1dx ≥ δ

2C̄
. (2.19)

where C̄ is a positive constant, in fact, C̄ = C δ
2C2

.

By (2.19) and Lemma 1.1 (ii), we get∫
R3

|u±
λ |p+1dx ≥ δ

2C̄
.

Thus, u±
λ �= 0. From Lemma 2.1, there exists αuλ , βuλ > 0 such that

ūλ := αuλu
+
λ + βuλu

−
λ ∈ Mλ.
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Now, we show that αuλ , βuλ ≤ 1. By (2.15), (2.17), the weak semicontinuity of norm, Fatou’s
Lemma and Lemma 1.2, we have∫

R3
|(−�)

s
2 u+

λ |2dx +
∫
R3

(−�)
s
2 u+

λ (−�)
s
2 u−

λ dx +
∫
R3

V (x)(u+
λ )

2
dx

+ λ

∫
R3

φt
u+

λ

(u+
λ )

2
dx + λ

∫
R3

φt
u−

λ

(u+
λ )

2
dx ≤

∫
R3

f (x, u+
λ )u+

λ dx . (2.20)

From (2.20) and Lemma 2.2, we have αuλ ≤ 1. Similarly, βuλ ≤ 1. The condition ( f4)
implies that H(u) := u f (x, u) − 4F(x, u) is a nonnegative function, increasing in |u|, so
we have

mλ ≤Iλ(ūλ) = Iλ(ūλ) − 1

4
〈I ′

λ(ūλ), ūλ〉

= 1

4
‖ūλ‖2 + 1

4

∫
R3

(
f (ūλ)ūλ − 4F(ūλ)

)
dx

= 1

4
‖αuλu

+
λ ‖2 + 1

4
‖βuλu

−
λ ‖2

+ αuλβuλ

2

∫
R3

(−�)
s
2 u+

λ (−�)
s
2 u−

λ dx

+ 1

4

∫
R3

(
f (αuλu

+
λ )αuλu

+
λ − 4F(x, αuλu

+
λ )

)
dx

+ 1

4

∫
R3

(
f (x, βuλu

−
λ )βuλu

−
λ − 4F(x, βuλu

−
λ )

)
dx

≤ 1

4
‖u+

λ ‖2 + 1

4
‖u−

λ ‖2 + 1

2

∫
R3

(−�)
s
2 u+

λ (−�)
s
2 u−

λ dx

+ 1

4

∫
R3

(
f (x, u+

λ )u+
λ − 4F(x, u+

λ )
)
dx + 1

4

∫
R3

(
f (x, u−

λ )u−
λ − 4F(x, u−

λ )
)
dx

≤ lim inf
n→∞

[
Iλ(un) − 1

4
〈I ′

λ(un), un〉
]

= mλ.

We then conclude that αuλ = βuλ = 1. Thus, ūλ = uλ and Iλ(uλ) = mλ. ��

3 Proof of main results

In this section, we are devoted to proving our main results.

Proof of Theorem 1.1 We firstly prove that the minimizer uλ for the minimization problem is
indeed a sign-changing solution of problem (1.4), that is, I ′

λ(uλ) = 0. For it, we will use the
quantitative deformation lemma.

It is clear that I ′
λ(uλ)u

+
λ = 0 = I ′

λ(uλ)u
−
λ . From Lemma 2.2, for any (α, β) ∈ R+ × R+

and (α, β) �= (1, 1),

Iλ(αu
+
λ + βu−

λ ) < Iλ(u
+
λ + u−

λ ) = mλ.

If I ′
λ(uλ) �= 0, then there exist δ > 0 and κ > 0 such that

‖I ′
λ(v)‖ ≥ κ for all ‖v − uλ‖ ≤ 3δ.

Let D := ( 12 ,
3
2 ) × ( 12 ,

3
2 ) and g(α, β) := αu+

λ + βu−
λ . From Lemma 2.3, we also have

m̄λ := max
∂D

(Iλ ◦ g) < mλ.
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For ε := min{(mλ − m̄λ)/2, κδ/8} and S := B(uλ, δ), there is a deformation η such that

(a) η(1, u) = u if u /∈ I−1
λ ([mλ − 2ε,mλ + 2ε]) ∩ S2δ;

(b) η(1, Imλ+ε
λ ∩ S) ⊂ Imλ−ε

λ ;
(c) Iλ(η(1, u))) ≤ Iλ(u) for all u ∈ H .

See [24] for more details. It is clear that

max
(α,β)∈D̄

Iλ(η(1, g(α, β)))) < mλ.

Now we prove that η(1, g(D)) ∩ Mλ �= ∅ which contradicts the definition of mλ. Let us
define h(α, β) = η(1, g(α, β))) and

�0(α, β) :=
(
I ′
λ(g(α, β))u+

λ , I ′
λ(g(α, β))u−

λ

)
=

(
I ′
λ(αu

+
λ + βu−

λ )u+
λ , I ′

λ(αu
+
λ + βu−

λ )u−
λ

)
,

�1(α, β) :=
( 1

α
I ′
λ(h(α, β))h+(α, β),

1

β
I ′
λ(h(α, β))h−(α, β)

)
.

Lemma 2.1 and the degree theory imply that deg(�0, D, 0) = 1. It follows from that g = h
on ∂D. Consequently, we obtain

deg(�1, D, 0) = deg(�0, D, 0) = 1.

Thus, �1(α0, β0) = 0 for some (α0, β0) ∈ D, so that

η(1, g(α0, β0))) = h(α0, β0) ∈ Mλ,

which is a contradiction. From this, uλ is a critical point of Iλ, and moreover, it is a sign-
changing solution for problem (1.4).

Now we prove that uλ has exactly two nodal domains. By contradiction, we assume that
uλ has at least three nodal domains�1, �2,�3. Without loss generality, we may assume that
uλ ≥ 0 a.e. in �1, uλ ≤ 0 a.e. in �2. Set

uλi := χ�i uλ, i = 1, 2, 3,

where

χ�i =
{
1 x ∈ �i ,

0 x ∈ R
3 \ �i .

So supp(uλ1) ∩ supp(uλ2) = ∅, uλi �= 0 and 〈I ′(uλ), uλi 〉 = 0 for i = 1, 2, 3. Assume that
v := uλ1 + uλ2 , then v+ = uλ1 and v− = uλ2 , i.e., v

± �= 0. By Lemma 2.1, there is a unique
pair (αv, βv) of positive numbers such that

αvv
+ + βvv

+ ∈ Mλ,

so we have

I (αvuλ1 + βvuλ2) ≥ mλ.

From 〈I ′(uλ), uλi 〉 = 0 for i = 1, 2, 3, we have

〈I ′(v), v±〉 < 0.
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By Lemma 2.2, we know that (αv, βv) ∈ (0, 1] × (0, 1]. Since

0 = 1

4
〈I ′

λ(uλ), uλ3〉 = 1

4
‖uλ3‖2 + 1

4

∫
R3

(−�)
s
2 uλ1(−�)

s
2 uλ3dx

+ 1

4

∫
R3

(−�)
s
2 uλ2(−�)

s
2 uλ3dx

+ λ

4

∫
R3

φt
uλ1

uλ3
2dx + λ

4

∫
R3

φt
uλ2

uλ3
2dx + λ

4

∫
R3

φt
uλ3

uλ3
2dx

− 1

4

∫
R3

f (x, uλ3)uλ3dx

≤ 1

4
‖uλ3‖2 + 1

4

∫
R3

(−�)
s
2 uλ1(−�)

s
2 uλ3dx + 1

4

∫
R3

(−�)
s
2 uλ2(−�)

s
2 uλ3dx

+ λ

4

∫
R3

φt
uλ1

uλ3
2dx + λ

4

∫
R3

φt
uλ2

uλ3
2dx + λ

4

∫
R3

φt
uλ3

uλ3
2dx −

∫
R3

F(x, uλ3)dx

< Iλ(uλ3) + +1

4

∫
R3

(−�)
s
2 uλ1(−�)

s
2 uλ3dx + 1

4

∫
R3

(−�)
s
2 uλ2(−�)

s
2 uλ3dx

+ λ

4

∫
R3

φt
uλ1

uλ3
2dx + λ

4

∫
R3

φt
uλ2

uλ3
2dx .

From ( f4), we have

mλ ≤ Iλ(αvuλ1 + βvuλ2)

= Iλ(αvuλ1 + βvuλ2) − 1

4
〈I ′

λ(αvuλ1 + βvuλ2), αvuλ1 + βvuλ2〉

= ‖αvuλ1 + βvuλ2‖2
4

+
∫
R3

(1
4
f (x, αvuλ1)αvuλ1 − F(x, αvuλ1)

)
dx

+
∫
R3

(1
4
f (x, βvuλ2)βvuλ2 − F(x, βvuλ2)

)
dx

≤ ‖uλ1‖2 + ‖uλ2‖2
4

+ 1

2

∫
R3

(−�)
s
2 uλ1(−�)

s
2 uλ1dx

+
∫
R3

(1
4
f (x, uλ1)uλ1 − F(x, uλ1)

)
dx +

∫
R3

(1
4
f (x, uλ2)uλ2 − F(x, uλ2)

)
dx

= Iλ(uλ1) + Iλ(uλ2) +
∫
R3

(−�)
s
2 uλ1(−�)

s
2 uλ2dx + 1

4

∫
R3

(−�)
s
2 uλ3(−�)

s
2 uλ1dx

+ 1

4

∫
R3

(−�)
s
2 uλ3(−�)

s
2 uλ2dx + λ

4

∫
R3

φt
uλ2

uλ1
2dx + λ

4

∫
R3

φt
uλ3

uλ1
2dx

+ λ

4

∫
R3

φt
uλ1

uλ2
2dx + λ

4

∫
R3

φt
uλ3

uλ2
2dx

< Iλ(uλ1) + Iλ(uλ2) + Iλ(uλ3) +
∫
R3

(−�)
s
2 uλ1(−�)

s
2 uλ2dx

+
∫
R3

(−�)
s
2 uλ1(−�)

s
2 uλ3dx +

∫
R3

(−�)
s
2 uλ2(−�)

s
2 uλ3dx + λ

4

∫
R3

φt
uλ2

uλ1
2dx

+ λ

4

∫
R3

φt
uλ3

uλ1
2dx + λ

4

∫
R3

φt
uλ1

uλ2
2dx + λ

4

∫
R3

φt
uλ3

uλ2
2dx
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+ λ

4

∫
R3

φt
uλ1

uλ3
2dx + λ

4

∫
R3

φt
uλ2

uλ3
2dx

= Iλ(uλ) = mλ,

which is impossible, so uλ has exactly two nodal domains. ��
Proof of Theorem 1.2 Similar to the proof of Lemma2.4, for eachλ > 0,we can get a vλ ∈ Nλ

such that Iλ(vλ) = cλ > 0, where Nλ and cλ are defined by (1.5) and (1.6), respectively.
Moreover, the critical points of Iλ on Nλ are the critical points of Iλ in H . Thus, vλ is a
ground state solution of problem (1.4).

From Theorem 1.1, we know that problem (1.4) has a least energy sign-changing solution
uλ which changes sign only once. Suppose that uλ = u+

λ + u−
λ . As the proof of Step 1 in

Lemma 2.1, there is a unique αu+
λ

> 0 such that

αu+
λ
u+

λ ∈ Nλ.

Similarly, there exists a unique βu−
λ

> 0, such that

βu−
λ
u−

λ ∈ Nλ.

Moreover, Lemma 2.2 implies that αu+
λ
, βu−

λ
∈ (0, 1]. Therefore, by Lemma 2.3, we obtain

that

2cλ ≤ Iλ(αu+
λ
u+

λ ) + Iλ(βu−
λ
u−

λ ) ≤ Iλ(αu+
λ
u+

λ + βu−
λ
u−

λ ) ≤ Iλ(u
+
λ + u−

λ ) = mλ

that is Iλ(uλ) ≥ 2cλ. It follows that cλ > 0 which cannot be achieved by a sign-changing
function. This completes the proof. ��

Now, we prove Theorem 1.3. In the following, we regard λ > 0 as a parameter in problem
(1.4). We shall study the convergence property of uλ as λ ↘ 0.

Proof of Theorem 1.3 For any λ > 0, let uλ ∈ H be the least energy sign-changing solution
of problem (1.1) obtained in Theorem 1.1, which has exactly two nodal domains.

Step 1 We show that, for any sequence {λn}n with λn ↘ 0 as n → ∞, {uλn }n is bounded in
H .

Choose a nonzero functionϕ ∈ C∞
0 (R3)withϕ± �= 0.By ( f3) and ( f4), for anyλ ∈ [0, 1],

there exists a pair (θ1, θ2) ∈ (R+ × R+), which does not depend on λ, such that

〈I ′
λ(θ1ϕ

+ + θ2ϕ
−), θ1ϕ

+〉 < 0 that 〈I ′
λ(θ1ϕ

+ + θ2ϕ
−), θ2ϕ

−〉 < 0.

Then, in view of Lemmas 2.1 and Lemma 2.2, for any λ ∈ [0, 1], there is a unique pair
(αϕ(λ), βϕ(λ)) ∈ (0, 1] × (0, 1] such that ϕ̄ := αϕ(λ)θ1ϕ

+ + βϕ(λ)θ2ϕ
− ∈ Mλ. Thus, for

all λ ∈ [0, 1], we have
Iλ(uλ) ≤ Iλ(ϕ̄) = Iλ(ϕ̄) − 1

4
〈I ′

λ(ϕ̄), ϕ̄〉

= ‖ϕ̄‖2
4

+
∫
R3

(1
4
f (x, ϕ̄)ϕ̄ − F(x, ϕ̄)

)
dx

≤ ‖ϕ̄‖2
4

+
∫
R3

(
C3|ϕ̄|2 + C4|ϕ̄|p+1

)
dx

≤ ‖θ1ϕ+‖2
4

+ ‖θ2ϕ−‖2
4

+ 1

2

∫
R3

(−�)
s
2 (θ1ϕ

+)(−�)
s
2 (θ2ϕ

−)dx
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+
∫
R3

(
C3|θ1ϕ+|2 + C4|θ1ϕ+|p+1 + C3|θ2ϕ−|2 + C4|θ2ϕ−|p+1

)
dx

= C0.

Moreover, for n large enough, we obtain

C0 + 1 ≥ Iλn (uλn ) = Iλn (uλn ) − 1

4
〈I ′

λn
(uλn ), uλn 〉 ≥ 1

4
‖uλn‖2.

So {uλn}n is bounded in H .
Step 2 The problem has a sign-changing solution u0.
By step 1 and Lemma 1.1, there exists a subsequence of {λn}n , up to a subsequence and

u0 ∈ H such that

uλn⇀u0 weakly in H ,

uλn → u0 strongly in Lq(R3) for q ∈ [2, 2∗
s ),

uλn → u0 a.e. in R
3. (3.1)

Since uλn is the least energy sign-changing solution of (1.4) with λ = λn , then we have∫
R3

(
(−�)

s
2 uλn (−�)

s
2 v + V (x)uλnv

)
dx + λn

∫
R3

φt
uλn

uλnvdx =
∫
R3

f (x, uλn )vdx .

for all v ∈ C∞
0 (R3). From (3.1), we get that∫

R3

(
(−�)

s
2 u0(−�)

s
2 v + V (x)u0v

)
dx =

∫
R3

f (x, u0)vdx,

for all v ∈ C∞
0 (R3). So u0 is a weak solution of (1.7). From a similar argument of the proof

in Lemma 2.4, we know that u±
0 �= 0.

Step 3The problem (1.7) has a least energy sign-changing solution v0, and there is a unique
pair (αλn , βλn ) ∈ R

+×R
+ such thatαλnv0

++βλnv0
− ∈ Mλ.Moreover, (αλn , βλn ) → (1, 1)

as n → ∞.
Via a similar argument in the proof of Theorem 1.1, there is a least energy sign-changing

solution v0 for problem (1.7) with two nodal domain, so we have∫
R3

|(−�)
s
2 v0

+|2dx +
∫
R3

(−�)
s
2 v0

+(−�)
s
2 v0

−dx +
∫
R3

V (x)(v0
+)

2
dx

=
∫
R3

f (x, v0
+)v0

+dx, (3.2)

and ∫
R3

|(−�)
s
2 v0

−|2dx +
∫
R3

(−�)
s
2 v0

+(−�)
s
2 v0

−dx +
∫
R3

V (x)(v−
0 )

2
dx

=
∫
R3

f (x, v0
−)v0

−dx . (3.3)

By Lemma 2.1, there exits an unique pair of (αλn , βλn ) such that αλnv0
+ + βλnv0

− ∈ Mλ.
So we have

α2
λn

∫
R3

|(−�)
s
2 v0

+|2dx + αλnβλn

∫
R3

(−�)
s
2 v0

+(−�)
s
2 v0

−dx

+ α2
λn

∫
R3

V (x)(v0
+)

2
dx
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+ λnα
4
λn

∫
R3

φt
v0+(v0

+)
2
dx + λnα

2
λn

β2
λn

∫
R3

φt
v0−(v0

+)
2
dx

=
∫
R3

f (x, αλnv0
+)αλnv0

+dx, (3.4)

and

β2
λn

∫
R3

|(−�)
s
2 v0

−|2dx + αλnβλn

∫
R3

(−�)
s
2 v0

+(−�)
s
2 v0

−dx + β2
λn

∫
R3

V (x)(v−
0 )

2
dx

+ λnβ
4
λn

∫
R3

φt
v0−(v0

−)
2
dx + λnα

2
λn

β2
λn

∫
R3

φt
v0+(v0

−)
2
dx

=
∫
R3

f (x, βλnv0
−)βλnv0

−dx . (3.5)

From ( f3) and λn → 0 as n → ∞, we get that the sequences {αλn } and {βλn } are bounded.
Assume that αλn → α0 and βλn → β0 as n → ∞. From (2.16), (3.4) and (3.5), we have

α2
0

∫
R3

|(−�)
s
2 v0

+|2dx + α0β0

∫
R3

(−�)
s
2 v0

+(−�)
s
2 v0

−dx + α2
0

∫
R3

V (x)(v0
+)

2
dx

=
∫
R3

f (x, α0v0
+)α0v0

+dx, (3.6)

and

β2
0

∫
R3

|(−�)
s
2 v0

−|2dx + α0β0

∫
R3

(−�)
s
2 v0

+(−�)
s
2 v0

−dx + β2
0

∫
R3

V (x)(v−
0 )

2
dx

=
∫
R3

f (x, β0v0
−)β0v0

−dx . (3.7)

Moreover, by ( f3) and ( f4), we know that f (x,s)
|s|3 is nondecreasing in |s|. So from (3.2), (3.3),

(3.6), (3.7), we obtain that (α0, β0) = (1, 1).
Now, we complete the proof of Theorem 1.3. We only need to show that u0 obtained in

step 2 is a least energy sign-changing solution of problem (1.7). By Lemma 2.3, we have

I0(v0) ≤ I0(u0) ≤ lim
n→∞Iλn (uλn ) = lim

n→∞Iλn (u
+
λn

+ u−
λn

)

≤ lim
n→∞Iλn (αλnv0

+ + βλnv0
−)

= I0(v0).

This show thatu0 is a least energy sign-changing solution of problem (1.7)which has precisely
two nodal domains. We complete the proof of Theorem 1.3. ��
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