

Ground state sign-changing solutions for a class of nonlinear fractional Schrödinger–Poisson system in R**³**

Chao Ji[1](http://orcid.org/0000-0002-2657-0509)

Received: 3 February 2018 / Accepted: 2 February 2019 / Published online: 13 February 2019 © Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract

In this paper, we are concerned with the existence of the least energy sign-changing solutions for the following fractional Schrödinger–Poisson system:

$$
\begin{cases}\n(-\Delta)^s u + V(x)u + \lambda \phi(x)u = f(x, u), & \text{in } \mathbb{R}^3, \\
(-\Delta)^t \phi = u^2, & \text{in } \mathbb{R}^3,\n\end{cases}
$$

where $\lambda \in \mathbb{R}^+$ is a parameter, *s*, $t \in (0, 1)$ and $4s + 2t > 3$, $(-\Delta)^s$ stands for the fractional Laplacian. By constraint variational method and quantitative deformation lemma, we prove that the above problem has one least energy sign-changing solution. Moreover, for any $\lambda > 0$, we show that the energy of the least energy sign-changing solutions is strictly larger than two times the ground state energy. Finally, we consider λ as a parameter and study the convergence property of the least energy sign-changing solutions as $\lambda \searrow 0$.

Keywords Fractional Schrödinger–Poisson system · Sign-changing solutions · Constraint variational method · Quantitative deformation lemma

Mathematics Subject Classification 35J61 · 58E30

1 Introduction

In this article, we are interested in the existence, energy property of the least energy signchanging solution u_λ and a convergence property of u_λ as $\lambda \searrow 0$ for the nonlinear fractional Schrödinger–Poisson system

$$
\begin{cases} (-\Delta)^s u + V(x)u + \lambda \phi(x)u = f(x, u), & \text{in } \mathbb{R}^3, \\ (-\Delta)^t \phi = u^2, & \text{in } \mathbb{R}^3. \end{cases}
$$
 (1.1)

where $\lambda > 0$ is a parameter, *s*, $t \in (0, 1)$ and $4s + 2t > 3$, $(-\Delta)^s$ stands for the fractional Laplacian and the potential $V(x)$ satisfies the following assumptions:

 \boxtimes Chao Ji jichao@ecust.edu.cn

¹ Department of Mathematics, East China University of Science and Technology, Shanghai 200237, China

(*V*₂) There exists $h > 0$ such that $\lim_{|y| \to \infty} \text{meas}(\{x \in B_h(y) : V(x) \le c\}) = 0$ for any $c > 0;$

where $B_h(y)$ denotes an open ball of \mathbb{R}^3 centered at y with radius $h > 0$, and meas(A) denotes the Lebesgue measure of set A . Condition (V_2) , which is weaker than the coercivity assumption: $V(x) \to \infty$ as $|x| \to \infty$, was originally introduced by Bartsch and Wang [\[1](#page-15-0)] to overcome the lack of compactness for the local elliptic equations and then was used by Pucci, Xia and Zhang [\[18](#page-16-0)] for the fractional Schrödinger–Kirchhoff type equations. Moreover, on the nonlinearity f , we assume that

- (*f*₁) $f: \mathbb{R}^3 \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function and $f(x, u) = o(|u|)$ as $u \to 0$ for $x \in \mathbb{R}^3$ uniformly;
- (f_2) For some $1 < p < 2_s^* 1$, there exits $C > 0$ such that

$$
|f(x, u)| \leq C(1+|u|^p),
$$

where $2_s^* = \frac{6}{3-2s}$; (f_3) $\lim_{u \to \infty} \frac{F(x, u)}{u^4} = +\infty$, where $F(x, u) = \int_0^u f(x, s) \, ds;$ (*f*₄) $\frac{f(x,t)}{|t|^3}$ is an increasing function of *t* on $\mathbb{R} \setminus \{0\}$ for a.e. $x \in \mathbb{R}^3$.

When $s = t = 1$, the system (1.1) reduces to the following Schrödinger–Poisson system

$$
\begin{cases}\n-\Delta u + V(x)u + \lambda \phi(x)u = f(x, u), & \text{in } \mathbb{R}^3, \\
-\Delta \phi = u^2, & \text{in } \mathbb{R}^3.\n\end{cases}
$$

This kind of system has a strong physical meaning. For instance, they appear in quantum mechanics models $[4,6]$ $[4,6]$ and in semiconductor theory $[2,3]$ $[2,3]$. For the research of Schrödinger– Poisson system, we may refer to [\[9](#page-16-3)[,10](#page-16-4)[,13](#page-16-5)[,19](#page-16-6)[,23](#page-16-7)].

In recent years, there has been a great deal works dealing with the nonlinear equations or systems involving fractional Laplacian, which arise in fractional quantum mechanics [\[11](#page-16-8)[,12\]](#page-16-9), physics and chemistry [\[14](#page-16-10)], obstacle problems [\[21](#page-16-11)], optimization and finance [\[8\]](#page-16-12) and so on. In the remarkable work of Caffarelli and Silvestre [\[5\]](#page-16-13), the authors express this nonlocal operator (−-)*^s* as a Dirichlet–Neumann map for a certain elliptic boundary value problem with local differential operators defined on the upper half space. This technique is a valid tool to deal with the equations involving fractional operators in the respects of regularity and variational methods. For some results on the fractional differential equations, we refer to [\[7](#page-16-14)[,16](#page-16-15)[,18](#page-16-0)[,25](#page-16-16)[,26\]](#page-16-17). Recently, using Caffarelli and Silvestre's method in [\[5](#page-16-13)] and variational method, in [\[22\]](#page-16-18), Teng studied the ground state for the fractional Schrödinger–Poisson system with critical Sobolev exponent. To the best of our knowledge, there are few papers which considered the least energy sign-changing solutions of system [\(1.1\)](#page-0-0). In [\[20](#page-16-19)], Combining constraint variational methods and quantitative deformation lemma, Shuai firstly studied the least energy sign-changing solutions for a class of Kirchhoff problems in bounded domain, where a stronger condition that $f \in C^1$ was assumed. In virtue of the fractional operator and Poisson equation which are included in [\(1.1\)](#page-0-0), our problem is more complicated and difficult.

Now, we recall some theory of the fractional Sobolev spaces. We firstly define the homogeneous fractional Sobolev space $\mathcal{D}^{\alpha,2}(\mathbb{R}^3)(\alpha \in (0,1))$ as follows

$$
\mathcal{D}^{\alpha,2}(\mathbb{R}^3) = \left\{ u \in L^{2^*_{\alpha}}(\mathbb{R}^3) : \frac{|u(x) - u(y)|}{|x - y|^{\frac{3}{2} + \alpha}} \in L^2(\mathbb{R}^3 \times \mathbb{R}^3) \right\}
$$

 \circledcirc Springer

which is the completion of $C_0^{\infty}(\mathbb{R}^3)$ under the norm

$$
||u||_{\mathcal{D}^{\alpha,2}(\mathbb{R}^3)} = ||(-\Delta)^{\frac{\alpha}{2}}u||_{L^2(\mathbb{R}^3)} = \Big(\iint_{\mathbb{R}^3 \times \mathbb{R}^3} \frac{|u(x) - u(y)|^2}{|x - y|^{3+2\alpha}} dxdy\Big)^{\frac{1}{2}}.
$$

The embedding $\mathcal{D}^{\alpha,2}(\mathbb{R}^3) \hookrightarrow L^{2^*_{\alpha}}$ is continuous and there exists a best constant $\mathcal{S}_{\alpha} > 0$ such that

$$
S_{\alpha} = \inf_{u \in \mathcal{D}^{\alpha,2}(\mathbb{R}^3)} = \frac{\int_{\mathbb{R}^3} |(-\Delta)^{\frac{\alpha}{2}} u|^2 dx}{\left(\int_{\mathbb{R}^3} |u(x)|^{2^*_{\alpha}} dx\right)^{\frac{2}{2^*_{\alpha}}}}.
$$
(1.2)

The fractional Sobolev space $H^{\alpha}(\mathbb{R}^{3})$ is defined by

$$
H^{\alpha}(\mathbb{R}^{3}) = \left\{ u \in L^{2}(\mathbb{R}^{3}) : \frac{|u(x) - u(y)|}{|x - y|^{\frac{3}{2} + \alpha}} \in L^{2}(\mathbb{R}^{3} \times \mathbb{R}^{3}) \right\},\
$$

endowed with the norm

$$
||u||_{H^{\alpha}(\mathbb{R}^3)} = \Big(\iint_{\mathbb{R}^3 \times \mathbb{R}^3} \frac{|u(x) - u(y)|^2}{|x - y|^{3 + 2\alpha}} dxdy + \int_{\mathbb{R}^3} |u|^2 dx\Big)^{\frac{1}{2}}.
$$

In this paper, we denote the fractional Sobolev space for (1.1) by

$$
H = \left\{ u \in H^{s}(\mathbb{R}^{3}) : \int_{\mathbb{R}^{3}} V(x)u^{2} dx < \infty \right\},\
$$

with the norm

$$
||u|| = \Big(\iint_{\mathbb{R}^3 \times \mathbb{R}^3} \frac{|u(x) - u(y)|^2}{|x - y|^{3+2s}} dxdy + \int_{\mathbb{R}^3} V(x)u^2 dx\Big)^{\frac{1}{2}}.
$$

In the sequel, we need the following embedding lemma which is a special case of Lemma 1 in [\[18\]](#page-16-0), so we omit its proof.

Lemma 1.1 *(i)* Suppose that (V_1) holds. Let $q \in [2, 2_s^*]$, then the embeddings

 $H \hookrightarrow H^s(\mathbb{R}^3) \hookrightarrow L^q(\mathbb{R}^3)$

are continuous, with $\min\{1, V_0\}$ $||u||^2_{H^s(\mathbb{R}^3)} \leq ||u||^2$ for all $u \in H$. In particular, there exists *a constant* $C_q > 0$ *such that*

$$
||u||_{L^{q}(\mathbb{R}^3)} \leq C_q ||u|| \text{ for all } u \in H.
$$

Moreover, if $q \in [1, 2^*_s)$ *, then the embedding* $H \hookrightarrow \hookrightarrow L^q(B_R)$ *is compact for any* $R > 0$ *. (ii) Suppose that* (*V*1)−(*V*2) *hold. Let q* ∈ [2, 2[∗] *^s*) *be fixed and* {*un*}*ⁿ be a bounded sequence in H, then there exists* u ∈ *H* ∩ $L^q(\mathbb{R}^{\tilde{N}})$ *such that, up to a subsequence,*

$$
u_n \to u \quad strongly \text{ in } L^q(\mathbb{R}^3) \text{ as } n \to \infty.
$$

Assume that *s*, *t* \in (0, 1), if $4s + 2t \ge 3$, there holds $2 \le \frac{12}{3+2t} \le \frac{6}{3-2s}$ and thus $H \hookrightarrow L^{\frac{12}{3+2t}}(\mathbb{R}^3)$ by Lemma [1.1.](#page-2-0) For $u \in H$, the linear functional $\mathcal{L}_u : \mathcal{D}^{t,2}(\mathbb{R}^3) \to \mathbb{R}$ is defined by

$$
\mathcal{L}_u(v) = \int_{\mathbb{R}^3} u^2 v \mathrm{d} x,
$$

 $\hat{\mathfrak{D}}$ Springer

the Hölder's inequality and [\(1.2\)](#page-2-1) implies that

$$
|\mathcal{L}_u(v)| \leq \Big(\int_{\mathbb{R}^3} |u(x)|^{\frac{12}{3+2t}} dx\Big)^{\frac{3+2t}{6}} \Big(\int_{\mathbb{R}^3} |v(x)|^{2^*_t} dx\Big)^{\frac{1}{2^*_t}} \leq C \|u\|^2 \|v\|_{\mathcal{D}^{t,2}(\mathbb{R}^3)}.
$$

By the Lax–Milgram theorem, there exists a unique $\phi_u^t \in \mathcal{D}^{t,2}(\mathbb{R}^3)$ such that

$$
\int_{\mathbb{R}^3} (-\Delta)^{\frac{t}{2}} u (-\Delta)^{\frac{t}{2}} v \mathrm{d}x = \int_{\mathbb{R}^3} u^2 v \mathrm{d}x, \quad \forall v \in \mathcal{D}^{t,2}(\mathbb{R}^3),
$$

that is ϕ^t_u is the weak solution of

$$
(-\Delta)^t \phi^t_u = u^2, \quad x \in \mathbb{R}^3
$$

and the representation formula holds

$$
\phi_u^t(x) = c_t \int_{\mathbb{R}^3} \frac{u^2(y)}{|x - y|^{3 - 2t}} dy, \quad x \in \mathbb{R}^3,
$$

which is called t-Riesz potential, where

$$
c_t = \pi^{-\frac{3}{2}} 2^{-2t} \frac{\Gamma(3 - 2t)}{\Gamma(t)}.
$$
\n(1.3)

In the sequel, we often omit the constant c_t for convenience in (1.3) . The properties of the function ϕ^t_u are given as follows.

Lemma 1.2 ([\[22\]](#page-16-18)) *If* $4s + 2t \geq 3$ *, then for any u* ∈ *H*^{*s*}(\mathbb{R}^3)*, we have*

- (1) $\phi^t_u : H^s(\mathbb{R}^3) \to \mathcal{D}^{t,2}(\mathbb{R}^3)$ *is continuous and maps bounded sets into bounded maps;* (2) $\int_{\mathbb{R}^3} \phi_u^t u^2 dx \leq \mathcal{S}_t^2 ||u||_{L^{\frac{12}{3+2t}}}^4$
- (3) $\phi_{\tau}^{t} = \tau^{2} \phi_{\tau}^{t}$ *for all* $\tau \in \mathbb{R}, \phi_{\tau}^{t}(\tau + y) = \phi_{\tau}^{t} (x + y)$;
- *(4)* $\phi_{u_{\theta}} = \theta^{2s}(\phi_{u}^{t})_{\theta}$ *for all* $\theta > 0$ *, where* $u_{\theta} = u(\frac{1}{\theta});$
- *(5) If* $u_n \rightharpoonup u$ *in* $H^s(\mathbb{R}^3)$ *, then* $\phi_{u_n}^t \rightharpoonup \phi_u^t$ *in* $\mathcal{D}^{t,2}(\mathbb{R}^3)$ *;*

(6) If
$$
u_n \to u
$$
 in $H^s(\mathbb{R}^3)$, then $\phi_{u_n}^t \to \phi_u^t$ in $\mathcal{D}^{t,2}(\mathbb{R}^3)$ and $\int_{\mathbb{R}^3} \phi_{u_n}^t u_n^2 dx \to \int_{\mathbb{R}^3} \phi_u^t u^2 dx$.

If we substitute ϕ^t_u in [\(1.1\)](#page-0-0), it leads to the following fractional Schrödinger equation

$$
(-\Delta)^s u + V(x)u + \lambda \phi_u^t u = f(x, u), \text{ in } \mathbb{R}^3,
$$
 (1.4)

whose solutions are the critical points of the functional $I_\lambda : H \to \mathbb{R}$ defined by

$$
I_{\lambda}(u) = \frac{1}{2} \int_{\mathbb{R}^{3}} (|(-\Delta)^{\frac{s}{2}} u|^{2} + V(x)u^{2}) dx + \frac{\lambda}{4} \int_{\mathbb{R}^{3}} \phi_{u}^{t} u^{2} dx - \int_{\mathbb{R}^{3}} F(x, u) dx
$$

where $F(x, u) = \int_0^u f(x, r) dr$. The functional $I_\lambda \in C^1(H, \mathbb{R})$ and for any $v \in H$

$$
\langle I'_{\lambda}(u),\varphi\rangle = \int_{\mathbb{R}^3} \Big((-\Delta)^{\frac{s}{2}} u (-\Delta)^{\frac{s}{2}} \varphi + V(x) u v \Big) dx + \lambda \int_{\mathbb{R}^3} \phi_u^t u \varphi dx - \int_{\mathbb{R}^3} f(x,u) \varphi dx.
$$

We call *u* a least energy sign-changing solution to problem (1.1) if *u* is a solution of problem (1.4) with $u^{\pm} \neq 0$ and

$$
I_{\lambda}(u) = \inf \{ I_{\lambda}(v) \mid v^{\pm} \neq 0, I_{\lambda}'(v) = 0 \},\
$$

where $v^+ = \max\{v(x), 0\}$ and $v^- = \min\{v(x), 0\}.$

For problem [\(1.4\)](#page-3-1), due to the effect of the nonlocal term ϕ_u^t and $(-\Delta)^s u$, that is

$$
\int_{\mathbb{R}^3} \left((-\Delta)^{\frac{s}{2}} u^+ (-\Delta)^{\frac{s}{2}} u^- \right) dx > 0 \text{ and } \int_{\mathbb{R}^3} \phi_u^t u^2 dx > \int_{\mathbb{R}^3} \phi_u^t (u^+)^2 + \int_{\mathbb{R}^3} \phi_u^t (u^-)^2
$$

for $u^{\pm} \neq 0$, a straightforward computation yields that

$$
I_{\lambda}(u) > I_{\lambda}(u^{+}) + I_{\lambda}(u^{-}),
$$

\n
$$
\langle I_{\lambda}'(u), u^{+}\rangle > \langle I_{\lambda}'(u^{+}), u^{+}\rangle, \text{ and } \langle I_{\lambda}'(u), u^{-}\rangle > \langle I_{\lambda}'(u^{-}), u^{-}\rangle.
$$
 (1.5)

So the methods to obtain sign-changing solutions of the local problems and to estimate the energy of the sign-changing solutions seem not suitable for our nonlocal one [\(1.4\)](#page-3-1). In order to get a sign-changing solution for problem [\(1.4\)](#page-3-1), we firstly try to seek a minimizer of the energy functional I_{λ} over the following constraint:

$$
\mathcal{M}_{\lambda} = \{ u \in H : u^{\pm} \neq 0, \langle I'_{\lambda}(u), u^+ \rangle = \langle I'_{\lambda}(u), u^- \rangle = 0 \}
$$

and then we show that the minimizer is a sign-changing solution of (1.4) . To show that the minimizer of the constrained problem is a sign-changing solution, we will use the quantitative deformation lemma and degree theory.

The following are the main results of this paper.

Theorem 1.1 *Let* $(f_1) - (f_4)$ *and* $(V_1) - (V_2)$ *hold. Then, for any* $\lambda > 0$ *, problem* [\(1.1\)](#page-0-0) *has a least energy sign-changing solution u*λ*, which has precisely two nodal domains.*

Let

$$
\mathcal{N}_{\lambda} := \{ u \in H \setminus \{0\} : \langle I'_{\lambda}(u), u \rangle = 0 \},\tag{1.6}
$$

and

$$
c_{\lambda} := \inf_{u \in \mathcal{N}_{\lambda}} I_{\lambda}(u). \tag{1.7}
$$

Let $u_{\lambda} \in H$ be a sign-changing solution of problem [\(1.4\)](#page-3-1), it is clear from [\(1.5\)](#page-4-0) and [\(1.6\)](#page-4-1) that $u^{\pm}_{\lambda} \notin \mathcal{N}_{\lambda}$.

Theorem 1.2 *Under the assumptions of Theorem [1.1,](#page-4-2)* $c_{\lambda} > 0$ *is achieved and* $I_{\lambda}(u_{\lambda}) > 2c_{\lambda}$ *, where u*^λ *is the least energy sign-changing solution obtained in Theorem [1.1.](#page-4-2) In particular,* $c_{\lambda} > 0$ *is achieved either by a nonpositive or a nonnegative function.*

It is clear that the energy of the sign-changing solution u_λ obtained in Theorem [1.1](#page-4-2) depends on λ . Furthermore, we give a convergence property of u_{λ} as $\lambda \searrow 0$, which reflects some relationship between $\lambda > 0$ and $\lambda = 0$ in problem [\(1.4\)](#page-3-1).

Theorem 1.3 *If the assumptions of Theorem [1.1](#page-4-2) hold, then for any sequence* $\{\lambda_n\}_n$ *with* $\lambda_n \searrow 0$ *as* $n \to \infty$ *, there exists a subsequence, still denoted by* $\{\lambda_n\}_n$ *, such that* $u_{\lambda_n} \to u_0$ *strongly in H as n* $\rightarrow \infty$ *, where u₀ is a least energy sign-changing solution of the problem*

$$
(-\Delta)^s u + V(x)u = f(x, u), \quad \text{in } \mathbb{R}^3,
$$
\n(1.8)

which has precisely two nodal domains.

This paper is organized as follows. In Sect. [2,](#page-5-0) we present some preliminary lemmas which are essential for this paper. In Sect. [3,](#page-10-0) we give the proofs of Theorems 1.1–1.3, respectively.

2 Some technical lemmas

We will use constraint minimization on \mathcal{M}_{λ} to look for a critical point of I_{λ} . For this, we start with this section by claiming that the set \mathcal{M}_{λ} is nonempty in *H*.

Lemma 2.1 *Assume that* $(f_1) - (f_4)$ *and* (V_1) *hold, if* $u \in H$ *with* $u^{\pm} \neq 0$ *, then there exists a unique pair* $(\alpha_u, \beta_u) \in \mathbb{R}_+ \times \mathbb{R}_+$ *such that* $\alpha_u u^+ + \beta_u u^- \in \mathcal{M}_\lambda$.

Proof Fixed an $u \in H$ with $u^{\pm} \neq 0$. We first establish the existence of α_u and β_u . Let

$$
g_{1}(\alpha, \beta) = \langle I'_{\lambda}(\alpha u^{+} + \beta u^{-}), \alpha u^{+} \rangle
$$

\n
$$
= \int_{\mathbb{R}^{3}} (-\Delta)^{\frac{s}{2}} (\alpha u^{+} + \beta u^{-}) (-\Delta)^{\frac{s}{2}} (\alpha u^{+}) dx + \alpha^{2} \int_{\mathbb{R}^{3}} V(x) (u^{+})^{2} dx
$$

\n
$$
+ \lambda \alpha^{2} \int_{\mathbb{R}^{3}} \phi_{\alpha u^{+} + \beta u^{-}}^{t} (u^{+})^{2} dx - \int_{\mathbb{R}^{3}} f(x, \alpha u^{+}) \alpha u^{+} dx
$$

\n
$$
= \alpha^{2} \int_{\mathbb{R}^{3}} |(-\Delta)^{\frac{s}{2}} u^{+}|^{2} dx + \alpha \beta \int_{\mathbb{R}^{3}} (-\Delta)^{\frac{s}{2}} u^{+} (-\Delta)^{\frac{s}{2}} u^{-} dx
$$

\n
$$
+ \alpha^{2} \int_{\mathbb{R}^{3}} V(x) (u^{+})^{2} dx + \lambda \alpha^{4} \int_{\mathbb{R}^{3}} \phi_{u^{+}}^{t} (u^{+})^{2} dx + \lambda \alpha^{2} \beta^{2} \int_{\mathbb{R}^{3}} \phi_{u^{-}}^{t} (u^{+})^{2} dx
$$

\n
$$
- \int_{\mathbb{R}^{3}} f(x, \alpha u^{+}) \alpha u^{+} dx, \qquad (2.1)
$$

and

$$
g_{2}(\alpha, \beta) = \langle I'_{\lambda}(\alpha u^{+} + \beta u^{-}), \beta u^{-} \rangle
$$

\n
$$
= \int_{\mathbb{R}^{3}} (-\Delta)^{\frac{s}{2}} (\alpha u^{+} + \beta u^{-}) (-\Delta)^{\frac{s}{2}} (\beta u^{-}) dx + \beta^{2} \int_{\mathbb{R}^{3}} V(x) (u^{-})^{2} dx
$$

\n
$$
+ \lambda \beta^{2} \int_{\mathbb{R}^{3}} \phi_{\alpha u^{+} + \beta u^{-}}^{t} (u^{-})^{2} dx - \int_{\mathbb{R}^{3}} f(x, \beta u^{-}) \beta u^{-} dx
$$

\n
$$
= \beta^{2} \int_{\mathbb{R}^{3}} |(-\Delta)^{\frac{s}{2}} u^{-}|^{2} dx + \alpha \beta \int_{\mathbb{R}^{3}} (-\Delta)^{\frac{s}{2}} u^{+} (-\Delta)^{\frac{s}{2}} u^{-} dx
$$

\n
$$
+ \beta^{2} \int_{\mathbb{R}^{3}} V(x) (u^{-})^{2} dx + \lambda \beta^{4} \int_{\mathbb{R}^{3}} \phi_{u^{-}}^{t} (u^{-})^{2} dx + \lambda \alpha^{2} \beta^{2} \int_{\mathbb{R}^{3}} \phi_{u^{+}}^{t} (u^{-})^{2} dx
$$

\n
$$
- \int_{\mathbb{R}^{3}} f(x, \beta u^{-}) \beta u^{-} dx.
$$
 (2.2)

By (f_1) and (f_3) , it is easy to see that $g_1(\alpha, \alpha) > 0$ and $g_2(\alpha, \alpha) > 0$ for $\alpha > 0$ small and $g_1(\beta, \beta)$ < 0 and $g_2(\beta, \beta)$ < 0 for $\beta > 0$ large. Thus, there exist $0 < r < R$ such that

$$
g_1(r,r) > 0
$$
, $g_2(r,r) > 0$, $g_1(R,R) < 0$, $g_2(R,R) < 0$. (2.3)

From (2.1) , (2.2) and (2.3) , we have

$$
g_1(r,\beta) > 0, g_1(\beta,R) < 0 \quad \forall \beta \in [r,R]
$$

and

$$
g_2(\alpha, r) > 0, g_2(\alpha, R) < 0 \quad \forall \alpha \in [r, R].
$$

By virtue of Miranda's Theorem [\[15\]](#page-16-20), there exists some point (α_u, β_u) with $r < \alpha_u, \beta_u < R$ such that $g_1(\alpha_u, \beta_u) = g_2(\alpha_u, \beta_u) = 0$. So $\alpha_u u^+ + \beta_u u^- \in \mathcal{M}_\lambda$.

Now, we prove the uniqueness of the pair (α_u, β_u) and consider two cases.

Case 1 $u \in \mathcal{M}_{\lambda}$.

If $u \in M_\lambda$, then $u^+ + u^- = u \in M_\lambda$. It means that

$$
\langle I'_{\lambda}(u), u^{+} \rangle = \langle I'_{\lambda}(u), u^{-} \rangle = 0,
$$

that is

$$
\int_{\mathbb{R}^3} |(-\Delta)^{\frac{s}{2}} u^+|^2 dx + \int_{\mathbb{R}^3} (-\Delta)^{\frac{s}{2}} u^+ (-\Delta)^{\frac{s}{2}} u^- dx + \int_{\mathbb{R}^3} V(x) (u^+)^2 dx \n+ \lambda \int_{\mathbb{R}^3} \phi_{u^+}^t (u^+)^2 dx + \lambda \int_{\mathbb{R}^3} \phi_{u^-}^t (u^+)^2 dx = \int_{\mathbb{R}^3} f(x, u^+) u^+ dx,
$$
\n(2.4)

and

$$
\int_{\mathbb{R}^3} |(-\Delta)^{\frac{s}{2}} u^-|^2 dx + \int_{\mathbb{R}^3} (-\Delta)^{\frac{s}{2}} u^+ (-\Delta)^{\frac{s}{2}} u^- dx + \int_{\mathbb{R}^3} V(x) (u^-)^2 dx \n+ \lambda \int_{\mathbb{R}^3} \phi_{u^-}^t (u^-)^2 dx + \lambda \int_{\mathbb{R}^3} \phi_{u^+}^t (u^-)^2 dx = \int_{\mathbb{R}^3} f(x, u^-) u^- dx.
$$
\n(2.5)

We show that $(\alpha_u, \beta_u) = (1, 1)$ is the unique pair of numbers such that $\alpha_u u^+ + \beta_u u^- \in \mathcal{M}_\lambda$. Assume that $(\tilde{\alpha}_u, \beta_u)$ is another pair of numbers such that $\tilde{\alpha}_u u^+ + \beta_u u^- \in \mathcal{M}_\lambda$. By the definition of \mathcal{M}_{λ} , we have

$$
\tilde{\alpha}_{u}^{2} \int_{\mathbb{R}^{3}} |(-\Delta)^{\frac{s}{2}} u^{+}|^{2} dx + \tilde{\alpha}_{u} \tilde{\beta}_{u} \int_{\mathbb{R}^{3}} (-\Delta)^{\frac{s}{2}} u^{+} (-\Delta)^{\frac{s}{2}} u^{-} dx + \tilde{\alpha}_{u}^{2} \int_{\mathbb{R}^{3}} V(x) (u^{+})^{2} dx \n+ \lambda \tilde{\alpha}_{u}^{4} \int_{\mathbb{R}^{3}} \phi_{u^{+}}^{t} (u^{+})^{2} dx + \lambda \tilde{\alpha}_{u}^{2} \tilde{\beta}_{u}^{2} \int_{\mathbb{R}^{3}} \phi_{u^{-}}^{t} (u^{+})^{2} dx = \int_{\mathbb{R}^{3}} f(x, \tilde{\alpha}_{u} u^{+}) \tilde{\alpha}_{u} u^{+} dx, (2.6)
$$

and

$$
\tilde{\beta}_{u}^{2} \int_{\mathbb{R}^{3}} |(-\Delta)^{\frac{s}{2}} u^{-}|^{2} dx + \tilde{\alpha}_{u} \tilde{\beta}_{u} \int_{\mathbb{R}^{3}} (-\Delta)^{\frac{s}{2}} u^{+} (-\Delta)^{\frac{s}{2}} u^{-} dx + \tilde{\beta}_{u}^{2} \int_{\mathbb{R}^{3}} V(x) (u^{-})^{2} dx \n+ \lambda \tilde{\beta}_{u}^{4} \int_{\mathbb{R}^{3}} \phi_{u^{-}}^{t} (u^{-})^{2} dx + \lambda \tilde{\alpha}_{u}^{2} \tilde{\beta}_{u}^{2} \int_{\mathbb{R}^{3}} \phi_{u^{+}}^{t} (u^{-})^{2} dx = \int_{\mathbb{R}^{3}} f(x, \tilde{\beta}_{u} u^{-}) \tilde{\beta}_{u} u^{-} dx. (2.7)
$$

Without loss of generality, we may assume that $0 < \tilde{\alpha}_u \le \beta_u$. Then, from [\(2.6\)](#page-6-0), we have

$$
\tilde{\alpha}_u^2 \int_{\mathbb{R}^3} |(-\Delta)^{\frac{s}{2}} u^+|^2 \mathrm{d}x + \tilde{\alpha}_u^2 \int_{\mathbb{R}^3} (-\Delta)^{\frac{s}{2}} u^+ (-\Delta)^{\frac{s}{2}} u^- \mathrm{d}x + \tilde{\alpha}_u^2 \int_{\mathbb{R}^3} V(x) (u^+)^2 \mathrm{d}x \n+ \lambda \tilde{\alpha}_u^4 \int_{\mathbb{R}^3} \phi_{u^+}^t (u^+)^2 \mathrm{d}x + \lambda \tilde{\alpha}_u^4 \int_{\mathbb{R}^3} \phi_{u^-}^t (u^+)^2 \mathrm{d}x \le \int_{\mathbb{R}^3} f(x, \tilde{\alpha}_u u^+) \tilde{\alpha}_u u^+ \mathrm{d}x.
$$

Moreover, dividing the above inequality by $\tilde{\alpha}_u^{-4}$, we have

$$
\tilde{\alpha}_{u}^{-2} \Big(\int_{\mathbb{R}^{3}} |(-\Delta)^{\frac{s}{2}} u^{+}|^{2} dx + \int_{\mathbb{R}^{3}} (-\Delta)^{\frac{s}{2}} u^{+} (-\Delta)^{\frac{s}{2}} u^{-} dx + \int_{\mathbb{R}^{3}} V(x) (u^{+})^{2} dx \Big) \n+ \lambda \int_{\mathbb{R}^{3}} \phi_{u^{+}}^{t} (u^{+})^{2} dx + \lambda \int_{\mathbb{R}^{3}} \phi_{u^{-}}^{t} (u^{+})^{2} dx \le \int_{\mathbb{R}^{3}} \frac{f(x, \tilde{\alpha}_{u} u^{+})}{\tilde{\alpha}_{u}^{3}} u^{+} dx.
$$
\n(2.8)

By (2.8) and (2.4) , one has

$$
(\tilde{\alpha}_u^{-2} - 1) \Big(\int_{\mathbb{R}^3} |(-\Delta)^{\frac{s}{2}} u^+|^2 dx + \int_{\mathbb{R}^3} (-\Delta)^{\frac{s}{2}} u^+ (-\Delta)^{\frac{s}{2}} u^- dx + \int_{\mathbb{R}^3} V(x) (u^+)^2 dx \Big) \leq \int_{\mathbb{R}^3} \Big(\frac{f(x, \tilde{\alpha}_u u^+)}{(\tilde{\alpha}_u u^+)^3} - \frac{f(x, u^+)}{(u^+)^3} \Big) (u^+)^4 dx.
$$
 (2.9)

 $\hat{2}$ Springer

By (f_4) and (2.9) , it implies that $1 \leq \tilde{\alpha}_u \leq \beta_u$. By (2.7) and the same method, we have that

$$
(\tilde{\beta}_{u}^{-2} - 1) \Big(\int_{\mathbb{R}^{3}} |(-\Delta)^{\frac{s}{2}} u^{-}|^{2} dx + \int_{\mathbb{R}^{3}} (-\Delta)^{\frac{s}{2}} u^{+} (-\Delta)^{\frac{s}{2}} u^{-} dx + \int_{\mathbb{R}^{3}} V(x) (u^{-})^{2} dx \Big) \newline \geq \int_{\mathbb{R}^{3}} \Big(\frac{f(x, \tilde{\beta}_{u} u^{-})}{(\tilde{\beta}_{u} u^{-})^{3}} - \frac{f(x, u^{-})}{(u^{-})^{3}} \Big) (u^{-})^{4} dx.
$$

It is easy to see that $\beta_u \le 1$. This together with $1 \le \tilde{\alpha}_u \le \beta_u$ shows that $\tilde{\alpha}_u = \beta_u = 1$.

Case 2 $u \notin M_\lambda$.

If $u \notin M_\lambda$, then there exists a pair of positive numbers (α_u, β_u) such that $\alpha_u u^+ + \beta_u u^- \in M_\lambda$. Suppose that there exists another pair of positive numbers (α'_u, β'_u) such that $\alpha'_u u^+ + \beta'_u u^- \in$ \mathcal{M}_{λ} . Set $v := \alpha_u u^+ + \beta_u u^-$ and $v' := \alpha'_u u^+ + \beta'_u u^-$, we have

$$
\frac{\alpha'_u}{\alpha_u}v^+ + \frac{\beta'_u}{\beta_u}v^- = \alpha'_u u^+ + \beta'_u u^- = v' \in \mathcal{M}_{\lambda}.
$$

Since $v \in M_\lambda$, we obtain that $\alpha_u = \alpha'_u$ and $\beta_u = \beta'_u$, which implies that (α_u, β_u) is the unique pair of numbers such that $\alpha_{\mu}u^{+} + \beta_{\mu}u^{-} \in \mathcal{M}_{\lambda}$. The proof is completed.

Lemma 2.2 *Assume that* $(f_1) - (f_4)$ *and* (V) *hold for a fixed* $u \in H$ *with* $u^{\pm} \neq 0$ *. If* $\langle I'_{\lambda}(u), u^{+} \rangle \leq 0$ and $\langle I'_{\lambda}(u), u^{-} \rangle \leq 0$, then there exists a unique pair $(\alpha_{u}, \beta_{u}) \in (0, 1] \times (0, 1]$ $\langle I'_{\lambda}(\alpha_{u}u^{+} + \beta_{u}u^{-}), \alpha_{u}u^{+}\rangle = \langle I'_{\lambda}(\alpha_{u}u^{+} + \beta_{u}u^{-}), \beta_{u}u^{-}\rangle = 0.$

Proof For $u \in H$ with $u^{\pm} \neq 0$, by Lemma [2.2,](#page-7-0) we know that there exist α_u and β_u such that $\alpha_u u^+ + \beta_u u^- \in \mathcal{M}_\lambda$. Without loss of generality, suppose that $\alpha_u \ge \beta_u > 0$. Moreover, we have

$$
\alpha_{u}^{2} \Big(\int_{\mathbb{R}^{3}} |(-\Delta)^{\frac{5}{2}} u^{+}|^{2} dx + \int_{\mathbb{R}^{3}} (-\Delta)^{\frac{5}{2}} u^{+} (-\Delta)^{\frac{5}{2}} u^{-} dx + \int_{\mathbb{R}^{3}} V(x) (u^{+})^{2} dx \Big) \n+ \lambda \alpha_{u}^{4} \Big(\int_{\mathbb{R}^{3}} \phi_{u^{+}}^{t} (u^{+})^{2} dx + \int_{\mathbb{R}^{3}} \phi_{u^{-}}^{t} (u^{+})^{2} dx \Big) \n\geq \alpha_{u}^{2} \int_{\mathbb{R}^{3}} |(-\Delta)^{\frac{5}{2}} u^{+}|^{2} dx + \alpha_{u} \beta_{u} \int_{\mathbb{R}^{3}} (-\Delta)^{\frac{5}{2}} u^{+} (-\Delta)^{\frac{5}{2}} u^{-} dx + \alpha_{u}^{2} \int_{\mathbb{R}^{3}} V(x) (u^{+})^{2} dx \n+ \lambda \alpha_{u}^{4} \int_{\mathbb{R}^{3}} \phi_{u^{+}}^{t} (u^{+})^{2} dx + \lambda \alpha_{u}^{2} \beta_{u}^{2} \int_{\mathbb{R}^{3}} \phi_{u^{-}}^{t} (u^{+})^{2} dx \n= \int_{\mathbb{R}^{3}} f(x, \alpha_{u} u^{+}) \alpha_{u} u^{+} dx.
$$
\n(2.10)

Since $\langle I'_{\lambda}(u), u^{+} \rangle \leq 0$, it yields that

$$
\int_{\mathbb{R}^3} |(-\Delta)^{\frac{s}{2}} u^+|^2 dx + \int_{\mathbb{R}^3} (-\Delta)^{\frac{s}{2}} u^+ (-\Delta)^{\frac{s}{2}} u^- dx + \int_{\mathbb{R}^3} V(x) (u^+)^2 dx \n+ \lambda \int_{\mathbb{R}^3} \phi_{u^+}^t (u^+)^2 dx + \lambda \int_{\mathbb{R}^3} \phi_{u^-}^t (u^+)^2 dx \le \int_{\mathbb{R}^3} f(x, u^+) u^+ dx.
$$
\n(2.11)

Combine (2.10) and (2.11) , we have

$$
\left(\frac{1}{\alpha_u^2} - 1\right) \left(\int_{\mathbb{R}^3} |(-\Delta)^{\frac{s}{2}} u^+|^2 dx + \int_{\mathbb{R}^3} (-\Delta)^{\frac{s}{2}} u^+ (-\Delta)^{\frac{s}{2}} u^- dx + \int_{\mathbb{R}^3} V(x) (u^+)^2 dx \right) \n\geq \int_{\mathbb{R}^3} \left(\frac{f(\alpha_u u^+)}{(\alpha_u u^+)^3} - \frac{f(u^+)}{(u^+)^3} \right) (u^+)^4 dx.
$$

If $\alpha_{\mu} > 1$, the left-hand side of this inequality is negative. But from (f_4) , the right-hand side of this inequality is positive, so have $\alpha_u \leq 1$. The proof is thus complete.

Lemma 2.3 *For a fixed* $u \in H$ *with* $u^{\pm} \neq 0$ *, then* (α_u, β_u) *obtained in Lemma [2.1](#page-5-4) is the unique maximum point of the function* $\kappa : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}$ *defined as* $\kappa(\alpha, \beta) = I_\lambda(\alpha u^+ + \beta u^-)$ *.*

Proof From the proof of Lemma [2.1,](#page-5-4) we know that (α_{u}, β_{u}) is the unique critical point of κ in $\mathbb{R}_+ \times \mathbb{R}_+$. By (f_3) , we conclude that $\kappa(\alpha, \beta) \to -\infty$ uniformly as $|(\alpha, \beta)| \to \infty$, so it is sufficient to show that a maximum point cannot be achieved on the boundary of $(\mathbb{R}_+, \mathbb{R}_+)$. If we assume that $(0, \bar{\beta})$ is a maximum point of κ with $\bar{\beta} \geq 0$. Then, since

$$
\kappa(\alpha, \beta) = I_{\lambda}(\alpha u^{+} + \beta u^{-})
$$

= $\frac{1}{2} \int_{\mathbb{R}^{3}} \left(|(-\Delta)^{\frac{5}{2}} (\alpha u^{+} + \bar{\beta} u^{-})|^{2} + V(x) (\alpha u^{+} + \bar{\beta} u^{-})^{2} \right) dx$
+ $\lambda \int_{\mathbb{R}^{3}} \phi_{\alpha u^{+} + \bar{\beta} u^{-}}^{t} (\alpha u^{+} + \bar{\beta} u^{-})^{2} dx - \int_{\mathbb{R}^{3}} f(x, \alpha u^{+} + \bar{\beta} u^{-}) (\alpha u^{+} + \bar{\beta} u^{-}) dx$

is an increasing function with respect to α if α is small enough, the pair $(0, \bar{\beta})$ is not a maximum point of κ in $\mathbb{R}_+ \times \mathbb{R}_+$. The proof is now finished.

By Lemma [2.1,](#page-5-4) we define the minimization problem

$$
m_{\lambda} := \inf \Big\{ I_{\lambda}(u) : u \in \mathcal{M}_{\lambda} \Big\}.
$$

Lemma 2.4 *Assume that* $(f_1) - (f_4)$ *and* $(V_1) - (V_2)$ *hold, then* $m_\lambda > 0$ *can be achieved for* $any \lambda > 0$.

Proof For every $u \in M_\lambda$, we have $\langle I'_{\lambda}(u), u \rangle = 0$. From $(f_1), (f_2)$, for any $\epsilon > 0$, there exists $C_{\epsilon} > 0$ such that

$$
|f(x, u)u| \le \epsilon u^2 + C_{\epsilon} |u|^{p+1} \quad \text{for all } u \in \mathbb{R}.
$$
 (2.12)

By Sobolev embedding theorem, we get

$$
||u||^{2} \leq \int_{\mathbb{R}^{3}} \left(|(-\Delta)^{\frac{s}{2}} u|^{2} + V(x)u^{2} \right) dx + \lambda \int_{\mathbb{R}^{3}} \phi_{u}^{t} u^{2} dx = \int_{\mathbb{R}^{3}} f(x, u)u dx
$$

\n
$$
\leq \epsilon \int_{\mathbb{R}^{3}} |u|^{2} dx + C_{\epsilon} \int_{\mathbb{R}^{3}} |u|^{p+1} dx
$$

\n
$$
\leq C_{2} \epsilon ||u||^{2} + C'_{\epsilon} ||u||^{p+1}. \tag{2.13}
$$

Pick $\epsilon = \frac{1}{2C_2}$. So there exists a constant $\gamma > 0$ such that $||u||^2 > \gamma$. By (f_4) , we have

$$
f(x, u)u - 4F(x, u) \ge 0,
$$

then

$$
I_{\lambda}(u) = I_{\lambda}(u) - \frac{1}{4} \langle I'_{\lambda}(u), u \rangle \ge \frac{\|u\|^2}{4} \ge \frac{\gamma}{4}.
$$
 (2.14)

This implies that $I_\lambda(u)$ is coercive in \mathcal{M}_λ and $m_\lambda \geq \frac{\gamma}{4} > 0$.

Let $\{u_n\}_n \subset \mathcal{M}_\lambda$ be such that $I_\lambda(u_n) \to m_\lambda$. Then $\{u_n\}_n$ is bounded in *H* by [\(2.14\)](#page-8-0). Using Lemma [1.1,](#page-2-0) up to a subsequence, we have

$$
u_n^{\pm} \to u_{\lambda}^{\pm} \quad \text{weakly in } H,
$$

 $\circled{2}$ Springer

$$
u_n^{\pm} \to u_{\lambda}^{\pm} \text{ strongly in } L^q(\mathbb{R}^3), \text{ for } q \in [2, 2_s^*),
$$

\n
$$
u_n^{\pm} \to u_{\lambda}^{\pm} \text{ a.e. in } \mathbb{R}^3,
$$

\n
$$
(-\Delta)^{\frac{s}{2}} u_n^{\pm} \to (-\Delta)^{\frac{s}{2}} u_{\lambda}^{\pm} \text{ a.e. in } \mathbb{R}^3.
$$
\n(2.15)

Moreover, the conditions (f_1) , (f_2) and Lemma [1.1](#page-2-0) imply that

$$
\lim_{n \to \infty} \int_{\mathbb{R}^3} f(x, u_n^{\pm}) u_n^{\pm} dx = \int_{\mathbb{R}^3} f(x, u_\lambda^{\pm}) u_\lambda^{\pm} dx,
$$

$$
\lim_{n \to \infty} \int_{\mathbb{R}^3} F(x, u_n^{\pm}) dx = \int_{\mathbb{R}^3} F(x, u_\lambda^{\pm}) dx.
$$
(2.16)

Since $u_n \in \mathcal{M}_\lambda$, we have $\langle I'_{\lambda}(u_n), u_n^{\pm} \rangle = 0$, that is

$$
\int_{\mathbb{R}^3} |(-\Delta)^{\frac{s}{2}} u_n^+|^2 dx + \int_{\mathbb{R}^3} (-\Delta)^{\frac{s}{2}} u_n^+ (-\Delta)^{\frac{s}{2}} u_n^- dx + \int_{\mathbb{R}^3} V(x) (u_n^+)^2 dx \n+ \lambda \int_{\mathbb{R}^3} \phi_{u_n^+}^t (u_n^+)^2 dx + \lambda \int_{\mathbb{R}^3} \phi_{u_n^-}^t (u_n^+)^2 dx = \int_{\mathbb{R}^3} f(x, u_n^+) u_n^+ dx,
$$
\n(2.17)

and

$$
\int_{\mathbb{R}^3} |(-\Delta)^{\frac{s}{2}} u_n^{-}|^2 dx + \int_{\mathbb{R}^3} (-\Delta)^{\frac{s}{2}} u_n^{+} (-\Delta)^{\frac{s}{2}} u_n^{-} dx + \int_{\mathbb{R}^3} V(x) (u_n^{-})^2 dx \n+ \lambda \int_{\mathbb{R}^3} \phi_{u_n^{-}}^t (u_n^{-})^2 dx + \lambda \int_{\mathbb{R}^3} \phi_{u_n^{+}}^t (u_n^{-})^2 dx = \int_{\mathbb{R}^3} f(x, u_n^{-}) u_n^{-} dx.
$$
\n(2.18)

Similar to [\(2.12\)](#page-8-1) and [\(2.13\)](#page-8-2), we also have $||u_n^{\pm}||^2 \ge \delta$ for all $n \in N$, where δ is a constant. Since $u_n \in \mathcal{M}_{\lambda}$, by [\(2.17\)](#page-9-0) and [\(2.18\)](#page-9-1) again, we have

$$
\delta \le ||u_n^{\pm}||^2 < \int_{\mathbb{R}^3} f(x, u_n^{\pm}) u_n^{\pm} dx \le \epsilon \int_{\mathbb{R}^3} |u_n^{\pm}|^2 dx + C_{\epsilon} \int_{\mathbb{R}^3} |u_n^{\pm}|^{p+1} dx
$$

$$
\le \frac{\epsilon}{V_0} \int_{\mathbb{R}^3} |u_n^{\pm}|^2 dx + C_{\epsilon} \int_{\mathbb{R}^3} |u_n^{\pm}|^{p+1} dx.
$$

Using the boundedness of $\{u_n\}_n$, there is $C_2 > 0$ such that

$$
\delta \leq \epsilon C_2 + C_{\epsilon} \int_{\mathbb{R}^3} |u_n^{\pm}|^{p+1} dx.
$$

Choosing $\epsilon = \delta/(2C_2)$, we get

$$
\int_{\mathbb{R}^3} |u_n^{\pm}|^{p+1} dx \ge \frac{\delta}{2\bar{C}}.
$$
\n(2.19)

where *C* is a positive constant, in fact, $C = C_{\frac{\delta}{2C_2}}$.

By (2.19) and Lemma [1.1](#page-2-0) (ii), we get

$$
\int_{\mathbb{R}^3} |u_\lambda^{\pm}|^{p+1} dx \ge \frac{\delta}{2\bar{C}}.
$$

Thus, $u^{\pm}_{\lambda} \neq 0$. From Lemma [2.1,](#page-5-4) there exists $\alpha_{u_{\lambda}}, \beta_{u_{\lambda}} > 0$ such that

$$
\bar{u}_{\lambda} := \alpha_{u_{\lambda}} u_{\lambda}^{+} + \beta_{u_{\lambda}} u_{\lambda}^{-} \in \mathcal{M}_{\lambda}.
$$

 \bigcirc Springer

Now, we show that $\alpha_{u_\lambda}, \beta_{u_\lambda} \leq 1$. By [\(2.15\)](#page-9-3), [\(2.17\)](#page-9-0), the weak semicontinuity of norm, Fatou's Lemma and Lemma [1.2,](#page-3-2) we have

$$
\int_{\mathbb{R}^3} |(-\Delta)^{\frac{s}{2}} u_{\lambda}^+|^2 dx + \int_{\mathbb{R}^3} (-\Delta)^{\frac{s}{2}} u_{\lambda}^+ (-\Delta)^{\frac{s}{2}} u_{\lambda}^- dx + \int_{\mathbb{R}^3} V(x) (u_{\lambda}^+)^2 dx \n+ \lambda \int_{\mathbb{R}^3} \phi_{u_{\lambda}^+}^t (u_{\lambda}^+)^2 dx + \lambda \int_{\mathbb{R}^3} \phi_{u_{\lambda}^-}^t (u_{\lambda}^+)^2 dx \le \int_{\mathbb{R}^3} f(x, u_{\lambda}^+) u_{\lambda}^+ dx.
$$
\n(2.20)

From [\(2.20\)](#page-10-1) and Lemma [2.2,](#page-7-0) we have $\alpha_{u_{\lambda}} \leq 1$. Similarly, $\beta_{u_{\lambda}} \leq 1$. The condition (f₄) implies that $H(u) := uf(x, u) - 4F(x, u)$ is a nonnegative function, increasing in |u|, so we have

$$
m_{\lambda} \leq I_{\lambda}(\bar{u}_{\lambda}) = I_{\lambda}(\bar{u}_{\lambda}) - \frac{1}{4} \langle I_{\lambda}'(\bar{u}_{\lambda}), \bar{u}_{\lambda} \rangle
$$

\n
$$
= \frac{1}{4} ||\bar{u}_{\lambda}||^{2} + \frac{1}{4} \int_{\mathbb{R}^{3}} \left(f(\bar{u}_{\lambda})\bar{u}_{\lambda} - 4F(\bar{u}_{\lambda}) \right) dx
$$

\n
$$
= \frac{1}{4} ||\alpha_{u_{\lambda}} u_{\lambda}^{+}||^{2} + \frac{1}{4} ||\beta_{u_{\lambda}} u_{\lambda}^{-}||^{2}
$$

\n
$$
+ \frac{\alpha_{u_{\lambda}} \beta_{u_{\lambda}}}{2} \int_{\mathbb{R}^{3}} (-\Delta)^{\frac{5}{2}} u_{\lambda}^{+} (-\Delta)^{\frac{5}{2}} u_{\lambda}^{-} dx
$$

\n
$$
+ \frac{1}{4} \int_{\mathbb{R}^{3}} \left(f(\alpha_{u_{\lambda}} u_{\lambda}^{+}) \alpha_{u_{\lambda}} u_{\lambda}^{+} - 4F(x, \alpha_{u_{\lambda}} u_{\lambda}^{+}) \right) dx
$$

\n
$$
+ \frac{1}{4} \int_{\mathbb{R}^{3}} \left(f(x, \beta_{u_{\lambda}} u_{\lambda}^{-}) \beta_{u_{\lambda}} u_{\lambda}^{-} - 4F(x, \beta_{u_{\lambda}} u_{\lambda}^{-}) \right) dx
$$

\n
$$
\leq \frac{1}{4} ||u_{\lambda}^{+}||^{2} + \frac{1}{4} ||u_{\lambda}^{-}||^{2} + \frac{1}{2} \int_{\mathbb{R}^{3}} (-\Delta)^{\frac{5}{2}} u_{\lambda}^{+} (-\Delta)^{\frac{5}{2}} u_{\lambda}^{-} dx
$$

\n
$$
+ \frac{1}{4} \int_{\mathbb{R}^{3}} \left(f(x, u_{\lambda}^{+}) u_{\lambda}^{+} - 4F(x, u_{\lambda}^{+}) \right) dx + \frac{1}{4} \int_{\mathbb{R}^{3}} \left(f(x, u_{\lambda}^{-}) u_{\lambda}^{-} - 4F(x, u_{\lambda}^{-}) \right) dx
$$

\n
$$
\leq \liminf_{n \to \
$$

We then conclude that $\alpha_{u_{\lambda}} = \beta_{u_{\lambda}} = 1$. Thus, $\bar{u}_{\lambda} = u_{\lambda}$ and $I_{\lambda}(u_{\lambda}) = m_{\lambda}$.

3 Proof of main results

In this section, we are devoted to proving our main results.

Proof of Theorem [1.1](#page-4-2) We firstly prove that the minimizer u_λ for the minimization problem is indeed a sign-changing solution of problem [\(1.4\)](#page-3-1), that is, $I'_{\lambda}(u_{\lambda}) = 0$. For it, we will use the quantitative deformation lemma.

It is clear that $I'_{\lambda}(u_{\lambda})u_{\lambda}^{+} = 0 = I'_{\lambda}(u_{\lambda})u_{\lambda}^{-}$. From Lemma [2.2,](#page-7-0) for any $(\alpha, \beta) \in \mathbb{R}_{+} \times \mathbb{R}_{+}$ and $(\alpha, \beta) \neq (1, 1)$,

$$
I_{\lambda}(\alpha u_{\lambda}^{+}+\beta u_{\lambda}^{-})
$$

If $I'_{\lambda}(u_{\lambda}) \neq 0$, then there exist $\delta > 0$ and $\kappa > 0$ such that

$$
||I'_{\lambda}(v)|| \geq \kappa \quad \text{for all } ||v - u_{\lambda}|| \leq 3\delta.
$$

Let $D := (\frac{1}{2}, \frac{3}{2}) \times (\frac{1}{2}, \frac{3}{2})$ and $g(\alpha, \beta) := \alpha u_{\lambda}^+ + \beta u_{\lambda}^-$. From Lemma [2.3,](#page-8-3) we also have $\bar{m}_{\lambda} := \max_{\partial D} (I_{\lambda} \circ g) < m_{\lambda}.$

 $\hat{\mathfrak{D}}$ Springer

For $\epsilon := \min\{(m_{\lambda} - \bar{m}_{\lambda})/2, \kappa \delta/8\}$ and $S := B(u_{\lambda}, \delta)$, there is a deformation η such that

- (*a*) $\eta(1, u) = u$ if $u \notin I_{\lambda}^{-1}([m_{\lambda} 2\epsilon, m_{\lambda} + 2\epsilon]) \cap S_{2\delta}$; (*b*) $\eta(1, I_\lambda^{m_\lambda+\epsilon} \cap S) \subset I_\lambda^{m_\lambda-\epsilon};$
- (c) $I_{\lambda}(\eta(1, u)) \leq I_{\lambda}(u)$ for all $u \in H$.

See [\[24\]](#page-16-21) for more details. It is clear that

$$
\max_{(\alpha,\beta)\in\bar{D}} I_{\lambda}(\eta(1,g(\alpha,\beta)))) < m_{\lambda}.
$$

Now we prove that $\eta(1, g(D)) \cap \mathcal{M}_\lambda \neq \emptyset$ which contradicts the definition of m_λ . Let us define $h(\alpha, \beta) = \eta(1, g(\alpha, \beta))$ and

$$
\Psi_0(\alpha, \beta) := \left(I'_\lambda(g(\alpha, \beta))u_\lambda^+, I'_\lambda(g(\alpha, \beta))u_\lambda^-\right)
$$

=
$$
\left(I'_\lambda(\alpha u_\lambda^+ + \beta u_\lambda^-)u_\lambda^+, I'_\lambda(\alpha u_\lambda^+ + \beta u_\lambda^-)u_\lambda^-\right),
$$

$$
\Psi_1(\alpha, \beta) := \left(\frac{1}{\alpha} I'_\lambda(h(\alpha, \beta))h^+(\alpha, \beta), \frac{1}{\beta} I'_\lambda(h(\alpha, \beta))h^-(\alpha, \beta) \right).
$$

Lemma [2.1](#page-5-4) and the degree theory imply that deg(Ψ_0 , *D*, 0) = 1. It follows from that $g = h$ on ∂ *D*. Consequently, we obtain

$$
\deg(\Psi_1, D, 0) = \deg(\Psi_0, D, 0) = 1.
$$

Thus, $\Psi_1(\alpha_0, \beta_0) = 0$ for some $(\alpha_0, \beta_0) \in D$, so that

$$
\eta(1, g(\alpha_0, \beta_0))) = h(\alpha_0, \beta_0) \in \mathcal{M}_{\lambda},
$$

which is a contradiction. From this, u_{λ} is a critical point of I_{λ} , and moreover, it is a signchanging solution for problem [\(1.4\)](#page-3-1).

Now we prove that u_{λ} has exactly two nodal domains. By contradiction, we assume that u_{λ} has at least three nodal domains Ω_1 , Ω_2 , Ω_3 . Without loss generality, we may assume that $u_{\lambda} \geq 0$ a.e. in $\Omega_1, u_{\lambda} \leq 0$ a.e. in Ω_2 . Set

$$
u_{\lambda_i} := \chi_{\Omega_i} u_{\lambda}, \quad i = 1, 2, 3,
$$

where

$$
\chi_{\Omega_i} = \begin{cases} 1 & x \in \Omega_i, \\ 0 & x \in \mathbb{R}^3 \setminus \Omega_i. \end{cases}
$$

So supp $(u_{\lambda_1}) \cap \text{supp}(u_{\lambda_2}) = \emptyset$, $u_{\lambda_i} \neq 0$ and $\langle I'(u_{\lambda}), u_{\lambda_i} \rangle = 0$ for $i = 1, 2, 3$. Assume that $v := u_{\lambda_1} + u_{\lambda_2}$, then $v^+ = u_{\lambda_1}$ and $v^- = u_{\lambda_2}$, i.e., $v^{\pm} \neq 0$. By Lemma [2.1,](#page-5-4) there is a unique pair (α_v, β_v) of positive numbers such that

$$
\alpha_v v^+ + \beta_v v^+ \in \mathcal{M}_{\lambda},
$$

so we have

$$
I(\alpha_v u_{\lambda_1} + \beta_v u_{\lambda_2}) \geq m_\lambda.
$$

From $\langle I'(u_{\lambda}), u_{\lambda_i} \rangle = 0$ for $i = 1, 2, 3$, we have

$$
\langle I'(v), v^{\pm} \rangle < 0.
$$

By Lemma [2.2,](#page-7-0) we know that $(\alpha_v, \beta_v) \in (0, 1] \times (0, 1]$. Since

$$
0 = \frac{1}{4} \langle I'_{\lambda}(u_{\lambda}), u_{\lambda 3} \rangle = \frac{1}{4} ||u_{\lambda 3}||^{2} + \frac{1}{4} \int_{\mathbb{R}^{3}} (-\Delta)^{\frac{s}{2}} u_{\lambda 1} (-\Delta)^{\frac{s}{2}} u_{\lambda 3} dx + \frac{1}{4} \int_{\mathbb{R}^{3}} (-\Delta)^{\frac{s}{2}} u_{\lambda 2} (-\Delta)^{\frac{s}{2}} u_{\lambda 3} dx + \frac{\lambda}{4} \int_{\mathbb{R}^{3}} \phi_{u_{\lambda 1}}^{t} u_{\lambda 3}^{2} dx + \frac{\lambda}{4} \int_{\mathbb{R}^{3}} \phi_{u_{\lambda 2}}^{t} u_{\lambda 3}^{2} dx + \frac{\lambda}{4} \int_{\mathbb{R}^{3}} \phi_{u_{\lambda 3}}^{t} u_{\lambda 3}^{2} dx - \frac{1}{4} \int_{\mathbb{R}^{3}} f(x, u_{\lambda 3}) u_{\lambda 3} dx \leq \frac{1}{4} ||u_{\lambda 3}||^{2} + \frac{1}{4} \int_{\mathbb{R}^{3}} (-\Delta)^{\frac{s}{2}} u_{\lambda 1} (-\Delta)^{\frac{s}{2}} u_{\lambda 3} dx + \frac{1}{4} \int_{\mathbb{R}^{3}} (-\Delta)^{\frac{s}{2}} u_{\lambda 2} (-\Delta)^{\frac{s}{2}} u_{\lambda 3} dx + \frac{\lambda}{4} \int_{\mathbb{R}^{3}} \phi_{u_{\lambda 1}}^{t} u_{\lambda 3}^{2} dx + \frac{\lambda}{4} \int_{\mathbb{R}^{3}} \phi_{u_{\lambda 2}}^{t} u_{\lambda 3}^{2} dx + \frac{\lambda}{4} \int_{\mathbb{R}^{3}} \phi_{u_{\lambda 3}}^{t} u_{\lambda 3}^{2} dx - \int_{\mathbb{R}^{3}} F(x, u_{\lambda 3}) dx < I_{\lambda}(u_{\lambda 3}) + + \frac{1}{4} \int_{\mathbb{R}^{3}} (-\Delta)^{\frac{s}{2}} u_{\lambda 1} (-\Delta)^{\frac{s}{2}} u_{\lambda 3} dx + \frac{1}{4} \int_{\mathbb{R}^{3}} (-\Delta)^{\frac{s}{2}} u_{\lambda 2} (-\Delta)^{\frac{s}{2}} u_{\lambda 3} dx + \
$$

From (f_4) , we have

$$
m_{\lambda} \leq I_{\lambda}(\alpha_{v}u_{\lambda_{1}} + \beta_{v}u_{\lambda_{2}})
$$

\n
$$
= I_{\lambda}(\alpha_{v}u_{\lambda_{1}} + \beta_{v}u_{\lambda_{2}}) - \frac{1}{4}\langle I_{\lambda}'(\alpha_{v}u_{\lambda_{1}} + \beta_{v}u_{\lambda_{2}}), \alpha_{v}u_{\lambda_{1}} + \beta_{v}u_{\lambda_{2}} \rangle
$$

\n
$$
= \frac{\|\alpha_{v}u_{\lambda_{1}} + \beta_{v}u_{\lambda_{2}}\|^{2}}{4} + \int_{\mathbb{R}^{3}} \left(\frac{1}{4}f(x, \alpha_{v}u_{\lambda_{1}})\alpha_{v}u_{\lambda_{1}} - F(x, \alpha_{v}u_{\lambda_{1}})\right)dx
$$

\n
$$
+ \int_{\mathbb{R}^{3}} \left(\frac{1}{4}f(x, \beta_{v}u_{\lambda_{2}})\beta_{v}u_{\lambda_{2}} - F(x, \beta_{v}u_{\lambda_{2}})\right)dx
$$

\n
$$
\leq \frac{\|u_{\lambda_{1}}\|^{2} + \|u_{\lambda_{2}}\|^{2}}{4} + \frac{1}{2} \int_{\mathbb{R}^{3}} (-\Delta)^{\frac{5}{2}}u_{\lambda_{1}}(-\Delta)^{\frac{5}{2}}u_{\lambda_{1}}dx
$$

\n
$$
+ \int_{\mathbb{R}^{3}} \left(\frac{1}{4}f(x, u_{\lambda_{1}})u_{\lambda_{1}} - F(x, u_{\lambda_{1}})\right)dx + \int_{\mathbb{R}^{3}} \left(\frac{1}{4}f(x, u_{\lambda_{2}})u_{\lambda_{2}} - F(x, u_{\lambda_{2}})\right)dx
$$

\n
$$
= I_{\lambda}(u_{\lambda_{1}}) + I_{\lambda}(u_{\lambda_{2}}) + \int_{\mathbb{R}^{3}} (-\Delta)^{\frac{5}{2}}u_{\lambda_{1}}(-\Delta)^{\frac{5}{2}}u_{\lambda_{2}}dx + \frac{1}{4} \int_{\mathbb{R}^{3}} (-\Delta)^{\frac{5}{2}}u_{\lambda_{3}}(-\Delta)^{\frac{5}{2}}u_{\lambda_{1}}dx
$$

\n
$$
+ \frac{1}{4} \int_{\mathbb{R}^{3}} (-\Delta)^{\frac
$$

² Springer

+
$$
\frac{\lambda}{4} \int_{\mathbb{R}^3} \phi_{u_{\lambda_1}}^t u_{\lambda_3}^2 dx + \frac{\lambda}{4} \int_{\mathbb{R}^3} \phi_{u_{\lambda_2}}^t u_{\lambda_3}^2 dx
$$

= $I_{\lambda}(u_{\lambda}) = m_{\lambda}$,

which is impossible, so u_{λ} has exactly two nodal domains.

Proof of Theorem [1.2](#page-4-3) Similar to the proof of Lemma [2.4,](#page-8-4) for each $\lambda > 0$, we can get a $v_{\lambda} \in \mathcal{N}_{\lambda}$ such that $I_\lambda(v_\lambda) = c_\lambda > 0$, where \mathcal{N}_λ and c_λ are defined by [\(1.5\)](#page-4-0) and [\(1.6\)](#page-4-1), respectively. Moreover, the critical points of I_λ on \mathcal{N}_λ are the critical points of I_λ in *H*. Thus, v_λ is a ground state solution of problem [\(1.4\)](#page-3-1).

From Theorem [1.1,](#page-4-2) we know that problem (1.4) has a least energy sign-changing solution *u*_λ which changes sign only once. Suppose that $u_\lambda = u_\lambda^+ + u_\lambda^-$. As the proof of Step 1 in Lemma [2.1,](#page-5-4) there is a unique $\alpha_{u^+_\lambda} > 0$ such that

$$
\alpha_{u_\lambda^+} u_\lambda^+ \in \mathcal{N}_\lambda.
$$

Similarly, there exists a unique $\beta_{u_{\lambda}^-} > 0$, such that

$$
\beta_{u_{\lambda}^-} u_{\lambda}^- \in \mathcal{N}_{\lambda}.
$$

Moreover, Lemma [2.2](#page-7-0) implies that $\alpha_{u_\lambda^+}$, $\beta_{u_\lambda^-} \in (0, 1]$. Therefore, by Lemma [2.3,](#page-8-3) we obtain that

$$
2c_{\lambda} \leq I_{\lambda}(\alpha_{u_{\lambda}^{+}}u_{\lambda}^{+}) + I_{\lambda}(\beta_{u_{\lambda}^{-}}u_{\lambda}^{-}) \leq I_{\lambda}(\alpha_{u_{\lambda}^{+}}u_{\lambda}^{+} + \beta_{u_{\lambda}^{-}}u_{\lambda}^{-}) \leq I_{\lambda}(u_{\lambda}^{+} + u_{\lambda}^{-}) = m_{\lambda}
$$

that is $I_{\lambda}(u_{\lambda}) \geq 2c_{\lambda}$. It follows that $c_{\lambda} > 0$ which cannot be achieved by a sign-changing function. This completes the proof function. This completes the proof.

Now, we prove Theorem [1.3.](#page-4-4) In the following, we regard $\lambda > 0$ as a parameter in problem [\(1.4\)](#page-3-1). We shall study the convergence property of u_{λ} as $\lambda \searrow 0$.

Proof of Theorem [1.3](#page-4-4) For any $\lambda > 0$, let $u_{\lambda} \in H$ be the least energy sign-changing solution of problem (1.1) obtained in Theorem [1.1,](#page-4-2) which has exactly two nodal domains.

Step 1 We show that, for any sequence $\{\lambda_n\}_n$ with $\lambda_n \searrow 0$ as $n \to \infty$, $\{u_{\lambda_n}\}_n$ is bounded in *H*.

Choose a nonzero function $\varphi \in C_0^{\infty}(\mathbb{R}^3)$ with $\varphi^{\pm} \neq 0$. By (f_3) and (f_4) , for any $\lambda \in [0, 1]$, there exists a pair $(\theta_1, \theta_2) \in (\mathbb{R}_+ \times \mathbb{R}_+)$, which does not depend on λ , such that

$$
\langle I'_{\lambda}(\theta_1\varphi^+ + \theta_2\varphi^-), \theta_1\varphi^+ \rangle < 0 \quad \text{that} \quad \langle I'_{\lambda}(\theta_1\varphi^+ + \theta_2\varphi^-), \theta_2\varphi^- \rangle < 0.
$$

Then, in view of Lemmas 2.1 and Lemma [2.2,](#page-7-0) for any $\lambda \in [0, 1]$, there is a unique pair $(\alpha_{\varphi}(\lambda), \beta_{\varphi}(\lambda)) \in (0, 1] \times (0, 1]$ such that $\bar{\varphi} := \alpha_{\varphi}(\lambda)\theta_1\varphi^+ + \beta_{\varphi}(\lambda)\theta_2\varphi^- \in \mathcal{M}_{\lambda}$. Thus, for all $\lambda \in [0, 1]$, we have

$$
I_{\lambda}(u_{\lambda}) \leq I_{\lambda}(\bar{\varphi}) = I_{\lambda}(\bar{\varphi}) - \frac{1}{4} \langle I'_{\lambda}(\bar{\varphi}), \bar{\varphi} \rangle
$$

\n
$$
= \frac{\|\bar{\varphi}\|^{2}}{4} + \int_{\mathbb{R}^{3}} \left(\frac{1}{4} f(x, \bar{\varphi}) \bar{\varphi} - F(x, \bar{\varphi}) \right) dx
$$

\n
$$
\leq \frac{\|\bar{\varphi}\|^{2}}{4} + \int_{\mathbb{R}^{3}} \left(C_{3} |\bar{\varphi}|^{2} + C_{4} |\bar{\varphi}|^{p+1} \right) dx
$$

\n
$$
\leq \frac{\|\theta_{1}\varphi^{+}\|^{2}}{4} + \frac{\|\theta_{2}\varphi^{-}\|^{2}}{4} + \frac{1}{2} \int_{\mathbb{R}^{3}} (-\Delta)^{\frac{5}{2}} (\theta_{1}\varphi^{+})(-\Delta)^{\frac{5}{2}} (\theta_{2}\varphi^{-}) dx
$$

$$
+\int_{\mathbb{R}^3} \left(C_3 |\theta_1 \varphi^+|^2 + C_4 |\theta_1 \varphi^+|^{p+1} + C_3 |\theta_2 \varphi^-|^2 + C_4 |\theta_2 \varphi^-|^{p+1} \right) dx
$$

= C_0 .

Moreover, for *n* large enough, we obtain

$$
C_0+1\geq I_{\lambda_n}(u_{\lambda_n})=I_{\lambda_n}(u_{\lambda_n})-\frac{1}{4}\langle I'_{\lambda_n}(u_{\lambda_n}),u_{\lambda_n}\rangle\geq \frac{1}{4}\|u_{\lambda_n}\|^2.
$$

So $\{u_{\lambda n}\}_n$ is bounded in *H*.

Step 2 The problem has a sign-changing solution *u*0.

By step 1 and Lemma [1.1,](#page-2-0) there exists a subsequence of $\{\lambda_n\}_n$, up to a subsequence and $u_0 \in H$ such that

$$
u_{\lambda_n} \to u_0 \text{ weakly in } H,
$$

\n
$$
u_{\lambda_n} \to u_0 \text{ strongly in } L^q(\mathbb{R}^3) \text{ for } q \in [2, 2_s^*),
$$

\n
$$
u_{\lambda_n} \to u_0 \text{ a.e. in } \mathbb{R}^3.
$$
\n(3.1)

Since u_{λ_n} is the least energy sign-changing solution of [\(1.4\)](#page-3-1) with $\lambda = \lambda_n$, then we have

$$
\int_{\mathbb{R}^3} \Big((-\Delta)^{\frac{s}{2}} u_{\lambda_n} (-\Delta)^{\frac{s}{2}} v + V(x) u_{\lambda_n} v \Big) dx + \lambda_n \int_{\mathbb{R}^3} \phi_{u_{\lambda_n}}^t u_{\lambda_n} v dx = \int_{\mathbb{R}^3} f(x, u_{\lambda_n}) v dx.
$$

for all $v \in C_0^{\infty}(\mathbb{R}^3)$. From [\(3.1\)](#page-14-0), we get that

$$
\int_{\mathbb{R}^3} \Big((-\Delta)^{\frac{s}{2}} u_0 (-\Delta)^{\frac{s}{2}} v + V(x) u_0 v \Big) dx = \int_{\mathbb{R}^3} f(x, u_0) v dx,
$$

for all $v \in C_0^{\infty}(\mathbb{R}^3)$. So u_0 is a weak solution of [\(1.7\)](#page-4-5). From a similar argument of the proof in Lemma [2.4,](#page-8-4) we know that $u_0^{\pm} \neq 0$.

Step 3 The problem [\(1.7\)](#page-4-5) has a least energy sign-changing solution v_0 , and there is a unique $\text{pair}(\alpha_{\lambda_n}, \beta_{\lambda_n}) \in \mathbb{R}^+ \times \mathbb{R}^+ \text{ such that } \alpha_{\lambda_n} v_0^+ + \beta_{\lambda_n} v_0^- \in \mathcal{M}_\lambda. \text{ Moreover, } (\alpha_{\lambda_n}, \beta_{\lambda_n}) \to (1, 1)$ as $n \to \infty$.

Via a similar argument in the proof of Theorem [1.1,](#page-4-2) there is a least energy sign-changing solution v_0 for problem [\(1.7\)](#page-4-5) with two nodal domain, so we have

$$
\int_{\mathbb{R}^3} |(-\Delta)^{\frac{s}{2}} v_0|^2 dx + \int_{\mathbb{R}^3} (-\Delta)^{\frac{s}{2}} v_0^+ (-\Delta)^{\frac{s}{2}} v_0^- dx + \int_{\mathbb{R}^3} V(x) (v_0^+)^2 dx
$$
\n
$$
= \int_{\mathbb{R}^3} f(x, v_0^+) v_0^+ dx, \tag{3.2}
$$

and

$$
\int_{\mathbb{R}^3} |(-\Delta)^{\frac{s}{2}} v_0^-|^2 dx + \int_{\mathbb{R}^3} (-\Delta)^{\frac{s}{2}} v_0^+ (-\Delta)^{\frac{s}{2}} v_0^- dx + \int_{\mathbb{R}^3} V(x) (v_0^-)^2 dx
$$

=
$$
\int_{\mathbb{R}^3} f(x, v_0^-) v_0^- dx.
$$
 (3.3)

By Lemma [2.1,](#page-5-4) there exits an unique pair of $(\alpha_{\lambda_n}, \beta_{\lambda_n})$ such that $\alpha_{\lambda_n} v_0^+ + \beta_{\lambda_n} v_0^- \in \mathcal{M}_\lambda$. So we have

$$
\alpha_{\lambda_n}^2 \int_{\mathbb{R}^3} |(-\Delta)^{\frac{s}{2}} v_0^+|^2 dx + \alpha_{\lambda_n} \beta_{\lambda_n} \int_{\mathbb{R}^3} (-\Delta)^{\frac{s}{2}} v_0^+ (-\Delta)^{\frac{s}{2}} v_0^- dx + \alpha_{\lambda_n}^2 \int_{\mathbb{R}^3} V(x) (v_0^+)^2 dx
$$

 $\hat{\mathfrak{D}}$ Springer

+
$$
\lambda_n \alpha_{\lambda_n}^4 \int_{\mathbb{R}^3} \phi_{v_0^+}^t (v_0^+)^2 dx + \lambda_n \alpha_{\lambda_n}^2 \beta_{\lambda_n}^2 \int_{\mathbb{R}^3} \phi_{v_0^-}^t (v_0^+)^2 dx
$$

= $\int_{\mathbb{R}^3} f(x, \alpha_{\lambda_n} v_0^+) \alpha_{\lambda_n} v_0^+ dx,$ (3.4)

and

$$
\beta_{\lambda_n}^2 \int_{\mathbb{R}^3} |(-\Delta)^{\frac{s}{2}} v_0^-|^2 dx + \alpha_{\lambda_n} \beta_{\lambda_n} \int_{\mathbb{R}^3} (-\Delta)^{\frac{s}{2}} v_0^+ (-\Delta)^{\frac{s}{2}} v_0^- dx + \beta_{\lambda_n}^2 \int_{\mathbb{R}^3} V(x) (v_0^-)^2 dx \n+ \lambda_n \beta_{\lambda_n}^4 \int_{\mathbb{R}^3} \phi_{v_0^-}^t (v_0^-)^2 dx + \lambda_n \alpha_{\lambda_n}^2 \beta_{\lambda_n}^2 \int_{\mathbb{R}^3} \phi_{v_0^+}^t (v_0^-)^2 dx \n= \int_{\mathbb{R}^3} f(x, \beta_{\lambda_n} v_0^-) \beta_{\lambda_n} v_0^- dx.
$$
\n(3.5)

From (*f*₃) and $\lambda_n \to 0$ as $n \to \infty$, we get that the sequences $\{\alpha_{\lambda_n}\}$ and $\{\beta_{\lambda_n}\}$ are bounded. Assume that $\alpha_{\lambda_n} \to \alpha_0$ and $\beta_{\lambda_n} \to \beta_0$ as $n \to \infty$. From [\(2.16\)](#page-9-4), [\(3.4\)](#page-15-3) and [\(3.5\)](#page-15-4), we have

$$
\alpha_0^2 \int_{\mathbb{R}^3} |(-\Delta)^{\frac{s}{2}} v_0 + |^2 \mathrm{d}x + \alpha_0 \beta_0 \int_{\mathbb{R}^3} (-\Delta)^{\frac{s}{2}} v_0 + (-\Delta)^{\frac{s}{2}} v_0 - \mathrm{d}x + \alpha_0^2 \int_{\mathbb{R}^3} V(x) (v_0 + |^2 \mathrm{d}x
$$

=
$$
\int_{\mathbb{R}^3} f(x, \alpha_0 v_0 + \alpha_0 v_0 + \mathrm{d}x, \qquad (3.6)
$$

and

$$
\beta_0^2 \int_{\mathbb{R}^3} |(-\Delta)^{\frac{s}{2}} v_0^-|^2 dx + \alpha_0 \beta_0 \int_{\mathbb{R}^3} (-\Delta)^{\frac{s}{2}} v_0^+ (-\Delta)^{\frac{s}{2}} v_0^- dx + \beta_0^2 \int_{\mathbb{R}^3} V(x) (v_0^-)^2 dx
$$

=
$$
\int_{\mathbb{R}^3} f(x, \beta_0 v_0^-) \beta_0 v_0^- dx.
$$
 (3.7)

Moreover, by (f_3) and (f_4) , we know that $\frac{f(x,s)}{|s|^3}$ is nondecreasing in |*s*|. So from [\(3.2\)](#page-14-1), [\(3.3\)](#page-14-2), [\(3.6\)](#page-15-5), [\(3.7\)](#page-15-6), we obtain that $(\alpha_0, \beta_0) = (1, 1)$.

Now, we complete the proof of Theorem [1.3.](#page-4-4) We only need to show that u_0 obtained in step 2 is a least energy sign-changing solution of problem [\(1.7\)](#page-4-5). By Lemma [2.3,](#page-8-3) we have

$$
I_0(v_0) \leq I_0(u_0) \leq \lim_{n \to \infty} I_{\lambda_n}(u_{\lambda_n}) = \lim_{n \to \infty} I_{\lambda_n}(u_{\lambda_n}^+ + u_{\lambda_n}^-)
$$

$$
\leq \lim_{n \to \infty} I_{\lambda_n}(\alpha_{\lambda_n} v_0^+ + \beta_{\lambda_n} v_0^-)
$$

$$
= I_0(v_0).
$$

This show that u_0 is a least energy sign-changing solution of problem (1.7) which has precisely two nodal domains. We complete the proof of Theorem [1.3.](#page-4-4)

Acknowledgements Chao Ji is supported by Shanghai Natural Science Foundation (18ZR1409100), NSFC (No. 11301181) and China Postdoctoral Science Foundation.

References

- 1. Bartsch, T., Wang, Z.Q.: Existence and multiplicity results for some superlinear elliptic problems on R*^N* . Commun. Partial Differ. Equ. **20**, 1725–1741 (1995)
- 2. Benci, V., Fortunato, D.: An eigenvalue problem for the Schrödinger–Maxwell equations. Topol. Methods Nonlinear Anal. **11**, 283–293 (1998)
- 3. Benci, V., Fortunato, D.: Solitary waves of nonlinear Klein–Gordon equation coupled with Maxwell equations. Rev. Math. Phys. **14**, 409–420 (2002)
- 4. Benguria, R., Brezis, H., Lieb, E.H.: The Thoms-Fermi-von Weizsäcker theory of atoms and molecules. Commun. Math. Phys. **79**, 167–180 (1981)
- 5. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. **32**, 1245–1260 (2007)
- 6. Catto, I., Lions, P.L.: Binding of atoms and stability of molecules in Hartree and Thomas-Fermi theories. Part 1: a necessary and sufficient condition for the stability of general molecular system. Commun. Partial Differ. Equ. **17**, 1051–1110 (1992)
- 7. Chang, X.J., Wang, Z.Q.: Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity. Nonlinearity **26**, 479–494 (2013)
- 8. Cont, R., Tankov, P.: Financial Modeling with Jump Processes. Financial Mathematics Series. Chapman Hall/CRC, Boca Raton (2004)
- 9. Ianni, I., Vaira, G.: On concentration of positive bound states for the Schrödinger–Poisson system with potentials. Adv. Nonlinear Stud. **8**, 573–595 (2008)
- 10. Jiang, Y.S., Zhou, H.S.: Bound states for a stationary nonlinear Schrödinger–Poisson system with signchanging potential in \mathbb{R}^3 . Acta Math. Sci. **29**, 1095–1104 (2009)
- 11. Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A **268**, 298–305 (2000)
- 12. Laskin, N.: Fractional Schrödinger equations. Phys. Rev. **66**, 56–108 (2002)
- 13. Li, G.B., Peng, S.J., Yan, S.S.: Infinitely many positive solutions for the nonlinear Schrödinger–Poisson system. Commun. Contemp. Math. **12**, 1069–1092 (2010)
- 14. Metzler, R., Klafter, J.: The random walls guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. **339**, 1–77 (2000)
- 15. Miranda, C.: Un'osservazione su un teorema di Brouwer. Boll. Unione Mat. Ital. **3**, 5–7 (1940)
- 16. Molica Bisci, G., Rădulescu, V.: Ground state solutions of scalar field fractional for Schrödinger equations. Calc. Var. Partial Differ. Equ. **54**, 2985–3008 (2015)
- 17. Molica Bisci, G., Rădulescu, V., Servadei, R.: Variational Methods for Nonlocal Fractional Problems. Cambridge University Press, Cambridge (2016)
- 18. Pucci, P., Xia, M.Q., Zhang, B.L.: Multiple solutions for nonhomogeneous Schrödinger–Kirchhoff type equations involving the fractional p-Laplacian in R*^N* . Calc. Var. Partial Differ. Equ. **54**, 2785–2806 (2015)
- 19. Ruiz, D.: The Schrödinger–Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. **237**, 655–674 (2006)
- 20. Shuai, W.: Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains. J. Differ. Equ. **259**, 1256–1274 (2015)
- 21. Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. **60**, 67–112 (2007)
- 22. Teng, K.M.: Existence of ground state solutions for the nonlinear fractional Schrödinger–Poisson system with critical Sobolev exponent. J. Differ. Equ. **261**, 3061–3106 (2016)
- 23. Wang, Z.P., Zhou, H.S.: Sign-changing solutions for the nonlinear Schrödinger–Poisson system in \mathbb{R}^3 . Calc. Var. Partial Differ. Equ. **52**, 927–943 (2015)
- 24. Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)
- 25. Zhang, X., Zhang, B.L., Xiang, M.Q.: Ground states for fractional Schrödinger equations involving a critical nonlinearity. Adv. Nonlinear Anal. **5**, 293–314 (2016)
- 26. Zhang, X., Zhang, B.L., Repovš, D.: Existence and symmetry of solutions for critical fractional Schrödinger equations with bounded potentials. Nonlinear Anal. **142**, 48–68 (2016)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.