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Abstract
We give an equivalent definition of compact locally conformally hyperkähler manifolds in
terms of the existence of a non-degenerate complex two-formwith natural properties. This is a
conformal analogue of Beauville’s theorem stating that a compact Kähler manifold admitting
a holomorphic symplectic form is hyperkähler
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1 Introduction

A complex manifold (M, J ) is called locally conformally Kähler (LCK for short) if it admits
a Hermitian metric g such that the two-form ω(X , Y ) := g(J X , Y ) satisfies the integrability
condition
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dω = θ ∧ ω

with respect to a closed one-form θ , called the Lee form.
It is then immediate that locally, the metric g is conformal to some local Kähler metrics

g′
U := e− fU g

∣
∣
U , where θ

∣
∣
U = d fU on an open set U .

An equivalent definition requires that the universal cover (M̃, J ) of (M, J ) admits a
Kähler metric with respect to which the deck group acts by holomorphic homotheties; see
[4]. This Kähler metric on M̃ , which is globally conformal with the pull-back of the LCK
metric g, is in fact obtained by gluing the pulled-back local Kähler metrics g′

U . Note that if θ

is not exact, then the universal cover of an LCK manifold admits strict homotheties and thus
is never compact.

There are many examples of LCKmanifolds: diagonal and non-diagonal Hopf manifolds,
Kodaira surfaces, Kato surfaces, some Oeljeklaus–Toma manifolds, etc. All complex sub-
manifolds of LCKmanifolds are LCK. See, for example, [4,12] and the bibliography therein.

The LCK condition is conformally invariant: if g is LCK with Lee form θ , then e f g is
LCKwith Lee form θ +d f . One may then speak about an LCK structure on (M, J ) given by
the couple ([g], [θ ]), where [ ] denotes conformal class, respectively, de Rham cohomology
class.

The complex structure J is parallel with respect to the Weyl connection D associated
with θ and [g], acting by Dg = θ ⊗ g. This implies that D is, in fact, obtained by gluing
the Levi-Civita connections of the local Kähler metrics g′

U , and therefore, the Levi-Civita
connection of the Kähler metric on M̃ is the pull-back of the Weyl connection on M .

The relation between theWeyl connection and the Levi-Civita connection is given by (see,
for example, [4]):

D = ∇g − 1

2
(θ ⊗ id + id ⊗ θ − g ⊗ θ�). (1.1)

On a compact LCK manifold, if the local Kähler metrics are Einstein, a well-known result
by Gauduchon, [5], says that they are in fact Ricci flat. In this case, the LCK metric g is
called Einstein–Weyl (see [11,13]) and has the property that in the conformal class of g there
exists a metric with parallel Lee form, unique up to homotheties, known in the literature as
Vaisman metric (see [5]).

A particular example of Einstein–Weyl metrics is given by the locally conformally hyper-
kähler (LCHK) ones. In this case, dimR M = 2n is a multiple of 4, and M admits a
hyperhermitian structure (I , J , K , g) such that all three Hermitian couples (g, I ), (g, J )

and (g, K ) are LCK with respect to the same Lee form θ . Again, this is a conformally invari-
ant notion. The Kähler metric of the universal cover has then holonomy included in Sp( n

2 ),
thus being Calabi–Yau. See, for example, [3,10,13,14]. The quaternionic Hopf manifold is
an important example. A complete list of compact, homogeneous LCHK manifolds is given
in [10].

One easily verifies that on compact LCHK manifolds, the two-form � := ωJ +√−1ωK

is non-degenerate of type (2,0) with respect to I , and produces a volume form by�
n
2 ∧�

n
2 =

c ·dvolg , for a positive constant c. Moreover,� satisfies the equation ∂� = θ0,1∧�, since it
satisfies the stronger one d� = θ ∧ �. The aim of this note is to prove that these conditions
are also sufficient to define an LCHK structure:

Theorem A Let (M, J , g) be a compact locally conformally Kähler manifold of real dimen-
sion 2n and let θ be the Lee form of g. Then g is locally conformally hyperkähler if and only
if there exists a non-degenerate (2, 0)-form � such that
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∂� = θ0,1 ∧ � and �
n
2 ∧ �

n
2 = c · dvolg,

where c ∈ R
>0, and dvolg is the volume form of g.

Remark 1.1 Note that the existence of a non-degenerate (2, 0)-form implies that the real
dimension is a multiple of 4.

Remark 1.2 A (2, 0)-form � satisfying ∂� = θ0,1 ∧ � can be regarded as a holomorphic
two-form valued in the line bundle (L = M × C, ∂L = ∂ − θ0,1∧).

Theorem A can be viewed as a conformal version of the celebrated Beauville’s theorem
stating that a compact Kähler manifold, admitting a holomorphic symplectic form is hyper-
kähler, [1]. Our proof follows the line of Beauville’s, which is to use the holonomy principle.
The strategy is to move to the universal cover M̃ , which has a Kähler metric g̃ and also a
non-degenerate holomorphic two-form �̃, as we shall see in the sequel. If we were able to
prove that �̃ is g̃-parallel, from the holonomy principle, we would get precisely that g is
LCHK. Since there is no analogue of Yau’s theorem for LCK metrics, which is in fact the
main difficulty in adapting Beauville’s result to the LCK setting, the rather strong condition

�
n
2 ∧ �

n
2 = c · dvolg is meant to prove that on M̃ , g̃ is actually Ricci flat, replacing thus

a Yau-like result. The advantage is that with a Ricci-flat metric, the Weitzenböck formula
applied on M̃ to �̃ simplifies and amounts to (∇ g̃)∗g̃ ∇ g̃�̃ = 0. As M̃ is not compact, one
has to make a long detour to interpret this relation on the compact manifold M and ultimately
conclude that �̃ is in fact g̃-parallel, and thus, g is LCHK.

Remark 1.3 Note that the parallelism of �̃ further gives on M the relation d� = θ ∧ �.
A complex manifold admitting a non-degenerate (2, 0)-form ω such that a closed one-form
θ ∈ �1(M,C) exists and dω = θ ∧ ω is called complex locally conformally symplectic
(CLCS). The Lee form θ can be real or complex. CLCS manifolds first appeared in [8,
Section 5], motivated by the examples of even-dimensional leaves of the natural generalized
foliation of a complex Jacobi manifold. Similarly, real LCS structures also appear as leaves
of real Jacobi manifolds.

Remark 1.4 A generalization of Beauville’s theorem, but in a different sense, namely when
the manifold is compact Kähler, but admits a twisted holomorphic form, is presented in [6].

2 Proof of Theorem A

The following lemmas will be used in the proof.

Lemma 2.1 Let (M, J , g) be an LCK manifold endowed with a non-degenerate (2, 0)-form

� such that ∂� = θ0,1 ∧ � and �
n
2 ∧ �

n
2 = c · dvolg, where θ is the Lee form of g, c ∈ R+

and dvolg is the volume form of g. Then g is Einstein–Weyl.

Proof Let M̃ be the universal cover of M , endowed with the complex structure J̃ = π∗ J ,
where π : M̃ → M . Let π∗θ = d f and let g̃ be the Kähler metric given by e− f π∗g. Denote
by �̃ := e− f π∗�. This is a holomorphic two-form, as a consequence of ∂� = θ0,1 ∧ �.

Moreover, �̃
n
2 ∧ �̃

n
2 = c · dvolg̃ , since dvolg̃ = e−n f dvolg .

Let K̃ be the canonical bundle of M̃ . The metric g̃ induces a natural Hermitian product h̃
on K̃ which verifies the relation α∧∗β̄ = h̃(α, β) dvolg̃ . Note that because n is even, ∗β = β
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(see [9, Exercise 18.2.1]); thus, h̃(�̃
n
2 , �̃

n
2 ) = c. The curvature form of the Chern connection

associated with h̃ is on the one hand i ∂∂ log det(g̃i j ), where det g̃i j = det g̃( ∂
∂zi

, ∂
∂z j

), and on

the other hand, it is −i ∂∂ log h̃(�̃
n
2 , �̃

n
2 ) = 0. Since i ∂∂ log det(g̃i j ) is the local expression

of the Ricci form ρ(X , Y ) = Ricg̃( J̃ X , Y ), we conclude that g̃ is Ricci flat, and hence, g is
Einstein–Weyl. 
�
Remark 2.2 In particular, if M is compact, there exists in the conformal class of g a Vaisman
metric, unique up to homotheties, as shown in [5, Théorème 3 (ii)].

Remark 2.3 Note that if instead of g we consider the metric g1 = e f g with its corresponding
Lee form θ1 = θ +d f , then taking �1 = e f �, we still obtain a non-degenerate form of type

(2, 0) satisfying ∂�1 = θ
0,1
1 ∧ �1 and �

n
2
1 ∧ �1

n
2 = c · dvolg1 ; therefore, the statement of

Lemma 2.1 is conformally invariant.

Lemma 2.4 Let h be the Hermitian structure induced by g on �
2,0
C

M (that is, h(ω, η) =
g(ω, η)). The Weyl connection D on M satisfies Dh = −2θ ⊗ h.

Proof This is because the Hermitian structure h̃ induced by g̃ on �
2,0
C

M̃ is given by e2 f π∗h.
Then π∗ D = ∇ g̃ (see [4]) implies that π∗ D(e2 f π∗h) = 0, which yields (π∗ D)(π∗h) =
−2π∗θ ⊗ π∗h and our relation follows. 
�

The next computation may be interesting for its own sake, not only for the present proof:

Lemma 2.5 The adjoint operator with respect to g of the Weyl connection D in (1.1), seen
as a differential operator acting on �

2,0
C

M, is given by:

D∗(η ⊗ σ) = (δgη)σ − Dη�σ + 2η(θ�)σ,

where η ⊗ σ ∈ �(�1
C

⊗ �
2,0
C

).

Proof In order to find an explicit expression of D∗, we use the same method as in the proof
of [9, Lemma 20.1]. Since there is no risk of confusion, in the following computation we
shall denote equally by h the Hermitian structure on �1

C
⊗ �

2,0
C

M . Note that this h is the
product of the Hermitian structure induced by g on �1

C
M and h defined in Lemma 2.4.

Let s be a (2, 0)-form on M and consider a ∇g-parallel frame {ei } at a point x ∈ M . We
perform the following computations at x . Define the one-form α(X) := h(η(X)σ, s). Then,
using Lemma 2.4 and the fact that θ is real, we derive:

−δgα =
2n
∑

i=1

ei (α(ei )) =
2n
∑

i=1

ei (h(η(ei )σ, s))

=
2n
∑

i=1

(Dei h)(η(ei )σ, s) + h(Dei (η(ei )σ ), s) + h(η(ei )σ, Dei s)

=
2n
∑

i=1

(−2θ(ei )h(η(ei )σ, s) + h(ei (η(ei ))σ, s) + h(η(ei )Dei σ, s)) + h(η ⊗ σ, Ds)

= h(Dη�σ − (δgη)σ, s) + h(η ⊗ σ, Ds − 2θ ⊗ s).

After integration on M , this implies:
∫

M
h(η ⊗ σ, Ds − 2θ ⊗ s)dvolg =

∫

M
h(−Dη�σ + (δgη)σ, s)dvolg,
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and hence, the adjoint of D − 2θ⊗ acts as follows:

(D − 2θ⊗)∗(η ⊗ σ) = (δgη)σ − Dη�σ.

Then D∗ = (D − 2θ⊗)∗ + 2(θ⊗)∗, which gives:

D∗(η ⊗ σ) = (δgη)σ − Dη�σ + 2η(θ�)σ. (2.1)


�
We proceed with the proof of Theorem A.
In terms of holonomy, the metric g is LCHK if and only if the holonomy of g̃ on M̃ is

contained in Sp( n
2 ), which is equivalent to g̃ being hyperkähler. According to the holonomy

principle (see, for example, [1, Page 758]), this is equivalent to the existence of a complex
structure J̃ on M̃ , with respect to which g̃ is Kähler and a holomorphic, non-degenerate
two-form �̃, parallel with respect to the Levi-Civita connection ∇ g̃ of g̃. These turn out to
be J̃ and �̃ from the proof of Lemma 2.1. As we already saw that �̃ is holomorphic, the
non-trivial part is to prove:

Lemma 2.6 �̃ is g̃-parallel.

Proof Since ∇ g̃ = π∗ D, the equality ∇ g̃�̃ = 0 is equivalent to

D� = θ ⊗ �. (2.2)

This is a conformally invariant relation on M : for any smooth f on M , we have

D(e f �) = (θ + d f ) ⊗ e f �.

Thus, by the compactness of M , Lemma 2.1, Remarks 2.2 and 2.3, we may suppose without
loss of generality that g is a Vaisman metric. In this case, the Lee form is harmonic, has
constant norm, and moreover, we can choose the Vaisman metric with the Lee form of norm
1. We shall use these facts in the following computations.

We apply theWeitzenböck formula to the holomorphic form �̃. According to [9] (see The-
orem 20.2 and the beginning of the proof of Theorem 20.5), as g̃ is Ricci flat (by Lemma 2.1)
the curvature term vanishes identically and the Weitzenböck formula reduces to:

(∇ g̃)∗̃∇ g̃ �̃ = 0 (2.3)

where we denote by ∗̃ the adjoint with respect to g̃. However, M̃ is not compact andwe cannot
deduce by integration that∇ g̃�̃ = 0. Instead, we show in the sequel that (2.3) can be read on
the compact manifold M and by using integration on M we shall deduce the g̃-parallelism
of �̃.

For simplicity, from now on we write ∇ for ∇ g̃ . By [9, Lemma 20.1],

∇∗̃∇�̃ =
2n
∑

i=1

∇∇ fi fi �̃ − ∇ fi ∇ fi �̃, (2.4)

where { fi } is a local g̃—orthonormal frame. We may choose fi = e
f
2 π∗ei , where {ei } is a

local g—orthonormal frame on M . Then (2.4) implies

∇∗̃∇�̃ =
2n
∑

i=1

e f
(

∇∇π∗ei
π∗ei �̃ − ∇π∗ei ∇π∗ei �̃

)

,
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1546 L. Ornea, A. Otiman

and hence,
2n
∑

i=1

∇∇π∗ei
π∗ei �̃ − ∇π∗ei ∇π∗ei �̃ = 0.

Writing now �̃ = e− f π∗�, the above relation gives:

0 =
2n
∑

i=1

e− f (∇∇π∗ei
π∗ei π

∗� − ∇π∗ei ∇π∗ei π
∗� − π∗θ(∇π∗ei π

∗ei )π
∗�

+ 2π∗θ(π∗ei )∇π∗ei π
∗� − (π∗θ(π∗ei ))

2π∗� + π∗ei (π
∗θ(π∗ei ))π

∗�).

(2.5)

As ∇ = π∗ D, (2.5) descends on M to the following equality:

2n
∑

i=1

DDei ei � − Dei Dei � − θ(Dei ei )� + 2θ(ei )Dei � − (θ(ei ))
2� + ei (θ(ei ))� = 0.

(2.6)

We notice that
∑2n

i=1(θ(ei ))
2� = ‖θ‖2g� = �. Using that θ is harmonic, ‖θ‖g = 1 and

(1.1), we get:

0 = −δgθ =
2n
∑

i=1

ei (θ(ei )) − θ(∇g
ei ei ) =

2n
∑

i=1

(ei (θ(ei )) − θ(Dei ei )) + n − 1.

Consequently, (2.6) is rewritten as:

2n
∑

i=1

DDei ei � − Dei Dei � + 2θ(ei )Dei � = n�. (2.7)

The goal is to prove that ∇�̃ = 0, that is D� = θ ⊗ �. Hence, if we define D := D − θ ⊗,
we need to show that D� = 0. If D∗ is the adjoint of D, as M is compact, D� = 0 will
follow from: ∫

M
h(D∗D�,�)dvolg = 0.

We compute now D∗D�. By Lemma 2.5,

D∗� = D∗ − (θ⊗)∗ (2.8)

D∗D� = D∗(D� − θ ⊗ �) = D∗ D� − D∗(θ ⊗ �).

Relation (2.8) and the fact that θ is harmonic of g-norm 1 yield:

D∗(θ ⊗ �) = (δgθ)� − Dθ�� + � = � − Dθ��. (2.9)

The first term is equal to:

D∗ D � =
2n
∑

i=1

D∗(ei ⊗ Dei �) =
2n
∑

i=1

(δgei )Dei � − Dei Dei � + ei (θ�)Dei �,

where {ei } is the dual frame to {ei }. But (1.1) implies:

δgei =
2n
∑

k=1

−ek(e
i (ek)) + ei (∇g

ek ek) =
2n
∑

k=1

g(Dek ek, ei ) + (1 − n)θ(ei ),

123
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and thus:

D∗ D� =
2n
∑

i=1

(
2n
∑

k=1

g(Dek ek, ei )Dei � + (1 − n)θ(ei )Dei � − Dei Dei �

)

+ Dθ��

=
2n
∑

i=1

(DDei ei � − Dei Dei �) + (2 − n)Dθ��. (2.10)

Combining (2.10) and (2.9), we arrive at:

D∗D� =
2n
∑

i=1

(DDei ei � − Dei Dei �) + (3 − n)Dθ�� − �,

which, together with (2.7), leads to the final result:

D∗D� = (n − 1)(� − Dθ��). (2.11)

Integrating (2.11) on M , we find:
∫

M
h(D�,D�)dvolg =

∫

M
h(D∗D�,�)dvolg

= (n − 1)

(∫

M
h(�,�)dvolg −

∫

M
h(Dθ��,�)dvolg

)

.

(2.12)

In particular, the above equality proves that
∫

M h(Dθ��,�)dvolg is a real number.Moreover,

∫

M
(Dθ�h)(�,�)dvolg =

∫

M
θ�(h(�,�))dvolg

−
∫

M
h(Dθ��,�)dvolg −

∫

M
h(�, Dθ��)dvolg.

(2.13)

The first integral in the right-hand side vanishes, since by Stokes’ formula and the fact that
θ� is Killing (see [4]) we have:

∫

M
θ�(h(�,�))dvolg =

∫

M
Lθ� (h(�,�)dvolg) −

∫

M
h(�,�)Lθ�dvolg = 0. (2.14)

Using once more Lemma 2.4, ‖θ‖g = 1, (2.13) and (2.14), we derive:

−2
∫

M
h(�,�)dvolg =

∫

M
(Dθ�h)(�,�)dvolg

= −2Re
∫

M
h(Dθ��,�)dvolg = −2

∫

M
h(Dθ��,�)dvolg,

which, together with (2.12), implies that
∫

M
h(D�,D�)dvolg = 0,

and thus D� = 0, completing the proof. 
�
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3 Final remarks

From the above proof, we see that Theorem A can be reformulated in the following way, in
terms of non-compact Kähler manifolds:

Theorem B Let (M, J , g) be a non-compact Kähler–Ricci-flat manifold, endowed with a
non-degenerate holomorphic two-form � and the action of a cocompact discrete group �

such that for any γ ∈ �, γ ∗g = cγ g and γ ∗� = cγ �, where cγ are positive real numbers,
not all of them equal to 1. Then g is hyperkähler.

As an application, we obtain the following corollary concerning holomorphic contact
structures, whichwe explainmore in detail below (see also [7] for other constructions relating
holomorphic contact structures on Kähler manifolds and holomorphic symplectic forms on
cones over Sasakian manifolds). We recall that by a holomorphic contact structure on a
complex manifold M , we understand a codimension 1 holomorphic sub-bundle of T 1,0M ,
which is maximally non-integrable.

Corollary 3.1 Let (X , J , g) be a compact Kähler–Einstein manifold and S the S1 principal
bundle corresponding to − c1(X)

I , where I is the largest positive integer such that c1(X)
I is

an integral class. We consider the action of Z on R
>0 × S given by n · (t, s) = (2nt, s). If

on R
>0 × S there exists a non-degenerate holomorphic two-form � such that n∗� = 22n�,

then X carries a holomorphic contact structure.

Proof In [2], it is proved that assuming without loss of generality that g is normalized by
Ricg = 2(n + 1)g, then R>0 × S carries a conical Kähler–Ricci-flat metric g̃ = dt2 + t2gS

(where gS is a Riemannian metric of S) which under the action of Z behaves as n∗g̃ = 22n g̃.
Thenwe are in the situation described inTheoremBandweobtain that g̃ is in fact hyperkähler.
By [2, Section 2], we conclude that M carries a holomorphic contact structure. 
�
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