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Abstract

We study the nonlinear Klein—-Gordon (NLKG) equation on a manifold M in the nonrela-
tivistic limit, namely as the speed of light ¢ tends to infinity. In particular, we consider a
higher-order normalized approximation of NLKG (which corresponds to the NLS at order
r = 1) and prove that when M is a smooth compact manifold or R?, the solution of the
approximating equation approximates the solution of the NLKG locally uniformly in time.
When M = R4, d > 2, we also prove that for » > 2 small radiation solutions of the order-
r normalized equation approximate solutions of the nonlinear NLKG up to times of order
O(c2=D). We also prove a global existence result uniform with respect to ¢ for the NLKG
equation on R3 with cubic nonlinearity for small initial data and Strichartz estimates for the
Klein-Gordon equation with potential on R3.

Keywords Nonrelativistic limit - Nonlinear Klein—Gordon equation - Birkhoff normal
form - Long-time behavior

Mathematics Subject Classification 37K55 - 70HO8 - 70K45 - 81Q05

1 Introduction

In this paper the nonlinear Klein—Gordon (NLKG) equation in the nonrelativistic limit,
namely as the speed of light ¢ tends to infinity, is studied. Formal computations going back
to the first half of the last century suggest that, up to corrections of order &(c~2), the system
should be described by the nonlinear Schrodinger (NLS) equation. Subsequent mathematical
results have shown that the NLS describes the dynamics over timescales of order 0'(1).
The nonrelativistic limit for the Klein-Gordon equation on R has been extensively studied
over more then 30 years, and essentially all the known results only show convergence of the
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solutions of NLKG to the solutions of the approximate equation for times of order £'(1). The
typical statement ensures convergence locally uniformly in time. In a first series of results
(see [35,42,57]) it was shown that, if the initial data are in a certain smoothness class, then
the solutions converge in a weaker topology to the solutions of the approximating equation.
These are informally called “results with loss of smoothness.” Although in this paper a longer
time convergence is proved, our results also fill in this group.

Some other results, essentially due to Machihara, Masmoudi, Nakanishi and Ozawa,
ensure convergence without loss of regularity in the energy space, again over timescales
of order 0'(1) (see [36,38,44]).

Concerning radiation solutions there is a remarkable result (see [43]) by Nakanishi, who
considered the complex NLKG in the defocusing case, in which it is known that all solutions
scatter (and thus the scattering operator exists), and proved that the scattering operator of the
NLKG equation converges to the scattering operator of the NLS. It is important to remark
that this result is not contained in the one proved here and does not contain it.

Recently Lu and Zhang in [34] proved a result which concerns the NLKG with a quadratic
nonlinearity. Here the problem is that the typical scale over which the standard approach
allows to control the dynamics is (¢ "), while the dynamics of the approximating equation
takes place over timescales of order &'(1). In that work the authors are able to use a normal
form transformation (in a spirit quite different from ours) in order to extend the time of
validity of the approximation over the £ (1) timescale. We did not try to reproduce or extend
that result.

In this paper we prove two kinds of results for the dynamics of NLKG: a global existence
result (see Theorem 1) which is uniform for sufficiently large values of ¢ > 0, and approx-
imation results (see Theorems 2 and 3) that allow to approximate solutions of NLKG by
solutions of suitable higher-order NLS equations. Approximation results are different in the
case where the equation lives on R¢ or in a compact manifold: When M is a smooth compact
manifold or RY the solution of NLS approximates the solution of the original equation locally
uniformly in time; when M = R d > 2,itis possible to prove that for » > 1 solutions of
the order-r normalized equation approximate solutions of the NLKG equation up to times of
order 0(c2—).

The present paper can be thought as an example in which techniques from canonical
perturbation theory are used together with results from the theory of dispersive equations in
order to understand the singular limit of Hamiltonian PDEs. In this context, the nonrelativistic
limit of the NLKG is a relevant example.

The issue of nonrelativistic limit has been studied also in the more general Maxwell—
Klein—Gordon system [10,39], in the Klein—-Gordon—Zakharov system [40,41], in the Hartree
equation [17] and in the pseudo-relativistic NLS [18]. However, all these results proved the
convergence of the solutions of the limiting system in the energy space ([17] studied also
the convergence in HX), locally uniformly in time; no information could be obtained about
the convergence of solutions for longer (in the case of NLKG, which means c-dependent)
timescales. On the other hand, in the recent [27], which studies the nonrelativistic limit of
the Vlasov—Maxwell system, the authors were able to prove a stability result for solutions
which lie in a neighborhood of stable equilibria of the system; this result is valid for times
which are polynomial in terms of the inverse of the speed of light, and does not exhibit loss
of smoothness.

Other examples of singular perturbation problems that have been studied either with
canonical perturbation theory or with multiscale analysis are the problem of the continu-
ous approximation of lattice dynamics (see, e.g., [6,51]) and the semiclassical analysis of
Schrodinger operators (see, e.g., [1,46]). In the framework of lattice dynamics, the timescale
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Dynamics of the nonlinear Klein—-Gordon equation in the nonrelativistic limit 905

covered by all known results is that typical of averaging theorems, which corresponds to our
0 (1) timescale. The methods developed in the present paper should allow to extend the time
of validity of those results.

The paper is organized as follows. In Sect. 2 we state the results of the paper, together with
examples and comments. In Sect. 3 we show Strichartz estimates for the linear KG equation
and for the KG equation with potential, as well as a global existence result uniform with
respect to ¢ for the cubic NLKG equation on R3. In Sect. 4 we state the main abstract result
of the paper. In Sect. 5 we present the proof of the abstract result, which is based on a Galerkin
cutoff technique, along with remarks and variant of the result. Next, in Sect. 6 we apply the
abstract theorem to the NLKG equation, making explicit computations of the normal form at
the first and at the second step. In Sect. 7 we deduce a result about the approximation of solu-
tions locally uniformly in time. In Sect. 8 we study the properties of the normalized equation,
namely its dispersive properties in the linear case and its well-posedness for solutions with
small initial data in the nonlinear case. In Sect. 9 we discuss the approximation for longer
timescales: In particular, to deduce the latter we exploit some dispersive properties of the
KG equation reported in Sect. 3. Finally, in “Appendix A” we report all technical lemmata
used in Birkhoff normal form estimates (the approach is essentially the same as in [2]), and
in “Appendix B” we prove some interpolation theory results for relativistic Sobolev spaces,
and we exploit them to deduce Strichartz estimates for the KG equation with potential.

2 Statement of the main results

The NLKG equation describes the motion of a spinless particle with mass m > 0. Consider
first the real NLKG
LA iy W LY S ()
2m2 T a7 2 ! " =5

where ¢ > 0 is the speed of light, 4 > 0 is the Planck constant, . € R,/ > 2, ¢ > 0.

In the following m = 1, h = 1. As anticipated above, one is interested in the behavior of
solutions as ¢ — oo.

First it is convenient to reduce Eq. (1) to a first-order system, by making the following
symplectic change variables

1 (V). 1/2 c 1/2
=) () ] e

where
(V)e i= (¢ = !, @
which reduces (1) to the form
/e N2/ e \12 A
=iy = (V) + 5 <W> ((V) ) (¥ + lﬂ)} ; 3)
which is Hamiltonian with Hamiltonian function given by
] ] vl e NPu+a "
HW,v¥) =(w,c<v>cw)+5/ <<V>c) 7 } dx. 4)
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To state our first result, introduce for any k € R and for any 1 < p < oo the following
relativistic Sobolev spaces

WEP @) = fu e L7 ull, 0 = e (V)Eullr < +oo], 5)
AFRY) = {u € L7 :lull s = e (V)gull 2 < +oo}, (6)

and remark that the energy space is %1/ %, Remark that for finite ¢ > 0 such spaces coincide
with the standard Sobolev spaces, while for ¢ = oo they are equivalent to the Lebesgue
spaces LP”.

In the following the notation a < b is used to mean: there exists a positive constant K
that does not depend on ¢ such that a < Kb.

We begin with a global existence result for the NLKG (3) in the cubic case, [ = 2, for
small initial data.

Theorem 1 Consider Eq. (3) with | = 2 on R3.
There exist e, > 0 and c, > 0 such that for any ¢ > cy, if the norm of the initial datum

Vo fulfills
ol 12 < &4 7
then the corresponding solution  (t) of (3) exists globally in time:
<
WOl oo 12 S W0l 102 (3)
We remark that the constant involved in the estimate (8) does not depend on c.

Remark 1 For finite ¢ this is the standard result for small amplitude solution, while for
¢ = oo it becomes the standard result for the NLS: Thus Theorem 1 interpolates between
these apparently completely different situations. Remark that the lack of a priori estimates
for the solutions of NLKG in the limit ¢ — oo was the main obstruction in order to obtain
global existence results uniform in ¢ in standard Sobolev spaces.

One is now interested in discussing the approximation of the solutions of NLKG with
NLS-type equations. Before giving the result we describe the general strategy we use to get
them.

Remark that Eq. (1) is Hamiltonian with Hamiltonian function (4). If one divides the
Hamiltonian by a factor ¢? (which corresponds to a rescaling of time) and expands in powers
of ¢~ 2 it takes the form

- 1 -

with a suitable function P.. One can notice that this Hamiltonian is a perturbation of i :=
(¥, ), which is the generator of the standard gauge transform and which in particular admits
a flow that is periodic in time. Thus the idea is to exploit canonical perturbation theory in
order to conjugate such a Hamiltonian system to a system in normal form, up to remainders
of order &(¢~%"), for any given r > 1.

The problem is that the perturbation P, has a vector field which is small only as an operator
extracting derivatives. One can Taylor expand P, and its vector field, but the number of
derivatives extracted at each order increases. This situation is typical in singular perturbation
problems. Problems of this kind have already been studied with canonical perturbation theory,
but the price to pay to get a normal form is that the remainder of the perturbation turns out
to be an operator that extracts a large number of derivatives.
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Dynamics of the nonlinear Klein—-Gordon equation in the nonrelativistic limit 907

In Sect. 6 the normal form equation is explicitly computed in the case r = 2:

) ) 1 3 2
—iYy = Y — EAllf + ZMI//I v
+ 61—2 [%Azlwr‘w + %A Q1P Ay + 2 A% + AV PY)) — %Azw} . (10)
namely a singular perturbation of a gauge-transformed NLS equation. If one, after a gauge
transformation, only considers the first-order terms, one has the NLS, for which radiation
solution exist (for example, in the defocusing case all solutions are of radiation type). For
higher-order NLS there are very few results (see, for example, [37]).

The standard way to exploit such a “singular” normal form is to use it just to construct
some approximate solution of the original system, and then to apply Gronwall lemma in order
to estimate the difference with a true solution with the same initial datum (see, for example,
[4D).

This strategy works also here, but it only leads to a control of the solutions over times of
order @(c?). When scaled back to the physical time, this allows to justify the approximation
of the solutions of NLKG by solutions of the NLS over timescales of order &' (1), on any
manifold admitting a Littlewood—Paley decomposition (such as Riemannian smooth compact
manifolds, or RY; see the introduction of [12] for the construction of Littlewood—Paley
decomposition on manifolds).

Theorem 2 Let M be a manifold which admits a Littlewood—Paley decomposition, and con-
sider Eq. (3) on M.

Fixr >1,R>0,k1 > 1,1 < p < +4oc. Then I kg = ko(r) > 0 with the following
properties: For any k > ki there exists c;  x,p,r > 1 such that for any ¢ > c; k. p,r, If

lVollktko,p < R

and there exists T = Ty k p > 0 such that the solution v, of the equation in normal form up
to order r (98) with the initial datum g satisfies

1 (Ollktko,p < 2R, for 0<t<T,

then

1
||W(t)_wr(t)||k,pscj» for 0<t<T. 1D
where W (t) is the solution of (3) with the initial datum .

A similar result has been obtained for the case M = T¢ by Faou and Schratz, who aimed
to construct numerical schemes which are robust in the nonrelativistic limit (see [23]; see
also [7,8] and to [9] for the numerical analysis of the nonrelativistic limit of the NLKG).

The idea one uses here in order to improve the timescale of the result is that of substituting
Gronwall lemma with a more sophisticated tool, namely dispersive estimates and the retarded
Strichartz estimate. This can be done, provided one can prove a dispersive or a Strichartz
estimate for the linearization of Eq. (3) on the approximate solution, uniformly in c.

In order to state our approximation result for the linear case, we consider the approximate
equation given by the Hamilton equations of the normal form truncated at order & (c~2"),
and let ¥, be a solution of such a linearized normal form equation.

Theorem3 Fixr > 1 and ky > 1. Then 3 kg = ko(r) > O such that for any k > ky, if
we denote by , the solution of the linearized normal equation (105) with the initial datum
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908 S. Pasquali

Yo € H 0 and by o the solution of the linear KG equation (12) with the same initial
datum, then there exists c* := ¢*(r, k) > 0 such that for any ¢ > c*

1 _
sup Y1) =YDl S =, TS0,
t€[0,T] c

This result has been proved in the case r = 1 in Appendix A of [14].
Next we consider the approximation of small radiation solutions of the NLKG equation.

Theorem 4 Consider (3) on RY d > 2 Letr > 1, and fix ky > 1. Assume that [ > 2
and r < %(l — 1). Then 3 ko = ko(r) > O such that for any k > ki and for any o > 0
the following holds: Consider the solution . of the normalized equation (98), with the
initial datum . o € Hktkoto+d/2 Then there exist a* = a*(d, 1, r) > 0 and there exists
c* == c*(r, k) > 1, such that for any o > o* and for any c > c*, if Y, o satisfies

1V oll grrorotan S €7,

then

1 _
sup () =Dl S = TS0,
tel0,T] : C

where Y (t) is the solution of (3) with the initial datum V, .

Remark 2 The assumption of existence of v/, up to times of order &(c>" D) is actually a
delicate matter. Equation (10), for example, is a quasilinear perturbation of a fourth-order
Schrodinger equation (4NLS). Even if we restrict to the case r = 2, the issues of global well-
posedness and scattering for solutions with large initial data for Eq. (10) have not been solved.
For solutions with small initial data, on the other hand, there are some papers dealing with
the local well-posedness of 4NLS (see, for example, [28]) and with global well-posedness
and scattering of 4NLS (see [50]). In Sec. 8.2 we prove the local well-posedness for times
of order ¢(c2" V) for solutions of the order-r normalized equation with small initial data
under the assumptions that/ > 2 and r < %(l —1).

Remark 3 Just to be explicit, we make some examples of Theorem 4. For M = R? and a
nonlinearity of order 2/, we can justify the approximation of small radiation solutions up to
times of order ﬁ(cz(’ _1)), forr <l —1.For M = R? and a nonlinearity of order 2/, we
can justify the approximation of small radiation solutions up to times of order &'(c2" 1),
forr < 3 —1).

There are some equations, namely the ones in which %(l — 1) < 2, in which we cannot
justify the approximation over long timescales (we mention, for example, the cubic NLKG
in 2, 3 and 4 dimensions, or the quintic NLKG in 2 dimensions).

There are other well-known solutions of NLS which would be interesting to study; indeed,
it is well known that in the case of mixed-type nonlinearity

iV =—Ay — (V1> = 1y v,

such an equation admits linearly stable solitary wave solutions; it can also be proved that the
standing waves of NLS can be modified in order to obtain standing wave solutions of the
normal form of order r, for any r. It would be of clear interest to prove that true solutions
starting close to such standing wave remain close to them for long times (remark that the
NLKG does not admit stable standing wave solutions, see [45]); in order to get such a result,
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Dynamics of the nonlinear Klein—-Gordon equation in the nonrelativistic limit 909

one should prove a Strichartz estimate for NLKG close to the approximate solution and
uniformly in c.

Before closing the subsection, a few technical comments are as follows: The first one is
that here we develop normal form in the framework of the spaces W7, while known results
in Galerkin averaging theory only allow to deal with the spaces H*. This is due to the fact that
the Fourier analysis is used in order to approximate the derivatives operators with bounded
operators. Thus the first technical step needed in order to be able to exploit dispersion is to
reformulate Galerkin averaging theory in terms of dyadic decompositions. This is done in
Theorem 7.

Second, the condition on r in Theorem 4 depends on the assumption in which we were
able to prove a well-posedness result for the normalized equation, which in turn depends on
the approach presented recently in [50]; we do not exclude that this technical condition could
be improved.

3 Dispersive properties of the Klein-Gordon equation

We briefly recall some classical notion of Fourier analysis on R?. Recall the definition of the
space of Schwartz (or rapidly decreasing) functions,

=1 f e C®RY,R)| sup (1+ |x|H)%?18P f(x)| < +o0, Va e N VB e N
xeRd

In the following (x) := (1 + |x|*)'/2. R
Now, forany f € . the Fourier transformof f, f : R? — R, is defined by the following
formula

F&) = @m) fR feoe9dx, g € R

where (-, -) denotes the scalar product in R4,
At the beginning we obtain Strichartz estimates for the linear equation
—iYy = c(V)ey, xeR% (12)

Proposition 1 Let d > 2. For any Schrodinger-admissible couples (p, q) and (r, s), namely
such that

2<p,r <00,
2

5 < d
=4S =aTy
2 n d d 2 n d . d
p q 2°r s 2
(p,q,d), (r,s,d) # (2, +00,2),
one has
i ite T
(Ve e “ Yo S et P 2 VY Yol 2, (13)
Lrrd
1_1 t 11,1 1 _1
H<V>LII 4 / i(t— ?)C F(S) dS < C;-;+T—;—l ’<v>[ s+1F (14)
0

LrLd Ly
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910 S. Pasquali

Remark 4 By choosing p = +o00 and ¢ = 2, we get the following a priori estimate for finite
energy solutions of (12),

“C1/2<V>3/2 fit eV)e 1/[0‘

S |2

~

L®L2 2

We also point out that, since the operators (V) and (V). commute, the above estimates in the
spaces L L1 extend to estimates in L Wf “ for any k > 0.

Proof We recall a result reported by D’ Ancona—Fanelli in [21] for the operator (V) := (V).

Lemma 1 Forall (p, q) Schrodinger-admissible exponents

. 1_1_1 .
16"V goll 1y oya = [)7T g

< 2.
oy = I90lliz

Now, the solution of Eq. (12) satisfies I/A/(t, &) = e"C@)L"l/A/o(S). We then define n := & /c,
in order to have that

o, n) =V (t, cn) = (1, £),

and in particular that ¢o (1) = Vo (&).
Since

(E)e =2+ [E2 = )1+ [E2/2, (15)
we get
bt,m) =" Eo(E /c)
= o Do)
="y (n)

if we set T := c2r. Now, by setting y := cx a simple scaling argument leads to

[N}

; 114 1.
Hd’<v>¢0HL5Lg S H(V)” a2 ¢0‘ $o

1 1
- »Tat
2 H(n)p ' L2

and since

Ho ol = [ ot dr

2k R d | R
/R<i> |¢o<ﬂ/c>|27§ = ira fR (€ Wo®) dt,

we get

: (16)

while on the other hand

Y(t,x) =0~ / 1, ) dE = @)™ / ) (1, en) dn
R4 R4

= @m)~ 7 ! / ¢ Gt ) dn = (et ),
RrRd
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Dynamics of the nonlinear Klein—-Gordon equation in the nonrelativistic limit 911

yields
Wllprg = et~V Nigll g (17)

Hence we can deduce (13); via a scaling argument, we can also deduce (14). ]

One important application of the Strichartz estimates for the free Klein—Gordon equation
is Theorem 1, namely a global existence result uniform with respect to c¢ for the NLKG
equation (3) on R? with cubic nonlinearity (/ = 2), for small initial data.

Proof (Theorem 1) 1t just suffices to apply Duhamel formula,

-3
1/f(t):e””vfwoJriiftei(H)ch <C>1/2 < ¢ )I/Z(Wﬂl_f) ,
22 Jo (V)e (V)e ]

and Proposition 1 with p = 400 and ¢ = 2, in order to get that

3

1/2 .
1V Ol 0 12 S 10l 12+ M [ {(Wf)) (w+w>} ,

/ ’
rrs
L'Ls

but by choosing r = +o00 and by exploiting Holder inequality and Sobolev embedding we
get

12 7P
||1/f(t)||L,oo;,/aC1/2 < 1Yol 12 + [( (VC> ) W+ lﬁ)}
‘ L2

e \ 12 7
S ol 12 + [((V) ) W+ w>}

2

c \1/2 B
((V)) W +v)
L3

e \12 .
((V)) W +¥)

L®LS

o\ 12 i
S ol 12 + ((V) ) W +v)

2
S ol 2 + W12y 17261l ey 1726

L7LS LLY

2
S ol e I, el i
and one can conclude by a standard continuation argument. O
We also give a formulation of the Kato—Ponce inequality for the relativistic Sobolev spaces.
Proposition2 Let f, g € ,V(Rd), andletc > 0,1 <r <oocand k > 0. Then

I1f &l kr N ”f”Wf“ gl + 1 flles IIgIIWCk.m, (18)
with
1 1 1 1 1

-—=—+—=—+—, 1<r,rg <+o0.
roor ry ry  rg

Remark 5 For ¢ = 1 Eq. (18) reduces to the classical Kato—Ponce inequality.
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Proof We follow an argument by Cordero and Zucco (see Theorem 2.3 in [19]).

We introduce the dilation operator S.(f)(x) := f(x/c), for any ¢ > 0.

Then we apply the classical Kato—Ponce inequality to the rescaled product S.(fg) =
Sc(f) Se(g),

ISe(fO llwer S WSe(Nwrrn 1Se@ L2 + 1Se (I Lrs | Se (@)l ykora 19)

where

1 1 1 1 1
—=— 4+ —=—+4+—, 1l<ry,r<+o.
r ri r r3.r4

Now, combining the commutativity property
(VS (HE) = 7S ((V)E Hrx),
with the equality ||Se(f)|lzr = ¢~ || f ||z, we can rewrite (19) as
KV @l SV Fllenliglin + 1 s (V) gl e

and this leads to the thesis. ]

We conclude with another dispersive result, which could be interesting in itself: by exploit-
ing the boundedness of the wave operators for the Schrodinger equation, we can deduce
Strichartz estimates for the KG equation with potential.

Theorem 5 Let ¢ > 1, and consider the operator

12 1/2

Hx) =c(?— A+ V) S (1+(V);2V) (20)
where V. € C(R3,R) is a potential such that
VI +VV@)I S ()77, xeR?,

for some B > 5, and that 0 is neither an eigenvalue nor a resonance for the operator

— A4V (x). Let (p, q) be a Schrodinger-admissible couple, and assume that g € (V);l/sz
is orthogonal to the bound states of —A + V (x). Then
i i P 1/2
(V) " e™ ol pppa S et 2 2 (V)™ Yol L2 (21

In order to prove Theorem 5 we recall Yajima’s result on wave operators [60] (where we
denote by P.(—A+ V) the projection onto the continuous spectrum of the operator —A+ V).

Theorem 6 Assume that

— 0 is neither an eigenvalue nor a resonance for —A + V;
— 13V (x)| < (x)7F for |a| < k, for some B > 5.

Consider the strong limits

Wi = 1E$w6i1(7A+V)eitAa Ogépi = t_l)iglooefitAeil(Afv)Pc(_A + V)

Then #y : L* — P.(—A+V)L? are isomorphic isometries which extend into isomorphisms
Wy WEP 5 P (—A 4+ V)WEP forall p € [1,400], with inverses Z.. Furthermore, for
any Borel function f(-) we have

F—=A+VIP(=A+ V) = Wo f(=D)Zs, f(—=A) = Z4 f(—A+ V)Pe(—A+ V).
(22)
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Dynamics of the nonlinear Klein—-Gordon equation in the nonrelativistic limit 913

Now, in the case ¢ = 1 one can derive Strichartz estimates for 7’ (x) from the Strichartz
estimates for the free KG equation, just by applying the aforementioned theorem by Yajima
inthe case k = 1 (since 1/p —1/q + 1/2 € [0, 5/6] for all Schrédinger-admissible couples
(p, @))- This was already proved in [5] (see Lemma 6.3). In the general case, this follows
from an interpolation theory argument, and we defer it to Appendix B.

4 Galerkin averaging method

Consider the scale of Banach spaces WP (M, C" x C") 5 (Y, ¥) (k > 1,1 < p < +o0,
n € No) endowed by the standard symplectic form. Having fixed k and p, and Uy, C wkp
open, we define the gradient of H € C*°(Uy, p, R) w.r.t. ¥ as the unique function s.t.
(VyH.h)=dgHh, Vhewtr,
so that the Hamiltonian vector field of a Hamiltonian function H is given by
Xy, ¥) = (iV]/-,H, —in).

The open ball of radius R and center O in Wk-P will be denoted by By, p(R).
Now, we call an admissible family of cutoff (pseudo-differential) operators a sequence
(7r;(D)) j=0, Where 7 (D) : W&P — WKP for any j > 0, such that

— forany j > 0 and for any f € Wk?
f=) mi(D)f:
Jj=z0
— for any j > 0 7;(D) can be extended to a self-adjoint operator on L2, and there exist
constants K1, Ko > 0 such that
172 1/2

K| Do lmyD il | <Uflle <Ko [ Do Imi 152 |

jz0 j=0

— forany j > 0, if we denote by I1;(D) := le=0 7;(D), there exist positive constants K’
(possibly depending on k and p) such that

I fllkp < K N fllep YfeWhr;

— there exist positive constants K|, K/ (possibly depending on k and p) and an increasing
and unbounded sequence (K ;) jeny C Ry such that
172
K/ fllwer < || D K351 (D) fI? < K5I fllywer- (23)

jeN
J Lp

Remark 6 Letk > 0, M be either RY or the d-dimensional torus T¢, and consider the Sobolev
space H* = H*(M). One can readily check that Fourier projection operators on H¥

TiY(x) == (2n)*d/2f ke **dk, j =1

J—1=lkl=j
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914 S. Pasquali

form an admissible family of cutoff operators. In this case we have
My (x) = 2m)~? / (ke *dk, N =0,
[k|I<N
and the constants (K ;) jen in (23) are given by K; := j.
Remark7 Letk > 0,1 < p < 400; we now introduce the Littlewood-Paley decomposition
on the Sobolev space wkp = wkP(R9) (see [56], Ch. 13.5).

In order to do this, define the cutoff operators in W*? in the following way: Start with a
smooth, radial nonnegative function ¢y : R? — R such that ¢g(¢) = 1 for |§] < 1 /2, and

¢0(&) = 0 for |&| > 1; then, define ¢ (€) := ¢o(§/2) — $o(&), and set
$;E) =12 7E), j=2. (24)
Then (¢;) j>0 is a partition of unity,
D i) =1.
j=0

Now, for each j € Nand each f € W52, we can define ¢;(D) f by
F@;(DYNIE) = ¢, f ().
It is well known that for p € (1, 400) the map @ : L?(R?) — LP (R, [?),
D(f) == (@j(D)f)jen,

maps L?(R?) isomorphically onto a closed subspace of L?(R?, %), and we have compati-
bility of norms ([56], Ch. 13.5, (5.45)-(5.46)),
1/2
Kl fllr < 19 oy = || Y 16;(D)fI? < Kyl fler,
jeN
LP

and similarly for the Wk.P_norm, i.e., for any k > 0 and p € (1, +00)

1/2
K pll fllwer < ||| Y 22%19(D) 12 < Ki pll fllyer- (25)
jeN I»
We then define the cutoff operator [Ty by
Oyy =) ¢;(D)Y. (26)

J<N

Hence, according to the above definition, the sequence (¢; (D)) j>¢ is an admissible family
of cutoff operators.

We point out that the Littlewood—Paley decomposition, along with equality (25), can be
extended to compact manifolds (see [13]), as well as to some particular noncompact manifolds
(see [12]).

Now we consider a Hamiltonian system of the form

H=hy+eh+¢F, 27
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where ¢ > 0 is a parameter. We fix an admissible family of cutoff operators (7 (D)) j>0 on
Wk-P(RY). We assume that

PER h( generates a linear periodic flow @ with period 27,
(pt+2n — @' Vi,

We also assume that @' is analytic from W¥? to itself for any k > 1, and for any
p € (1, 400);

INV for any k > 1, for any p € (1, +00), ®' leaves invariant the space II; Wk for any
j = 0. Furthermore, for any j > 0

(D)o ®' =P’ o i (D);
NF £ is in normal form, namely
hod! =h.

Next we assume that both the Hamiltonian and the vector field of both 4 and F admit an
asymptotic expansion in ¢ of the form

h~ /7y, F~Y 6T, (28)
izl izl
Xp~ Y el X Xp~ Y el Xy, (29)
j=>1 j=1

and that the following properties are satisfied

HVF There exists R* > 0 such that for any j > 1

e Xp; is analytic from Bis2j,p(R¥) to wk-r,
e Xp, is analytic from Bita(j—1),p(R¥) to wkp.

Moreover, for any » > 1 we have that

. . k’ .
° Xh*Z?ﬂ ei=lp; 18 analytic from By2¢-+1), p(R*) to W57,
. XF723:1 ei-1F; is analytic from By, ,(R*) to wkp,

The main result of this section is the following theorem.

Theorem7 Fixr > 1, R > 0,k; > 1, 1 < p < 4o0. Consider (27), and assume PER, INV
(with respect to the Littlewood—Paley decomposition), NF and HVFE. Then 3 kg = ko(r) > 0
with the following properties: For any k > ki there exists e, p < 1 such that for any
& < & k,p there exists %(r)
that

: By, p(R) = By, p(2R) analytic canonical transformation such

r
H, :=HoJ" =ho+ Zgjgj + &t g0,
j=1

where 2 are in normal form, namely

(2. ho} = 0, (30)
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and

sup 1 Xz, llwer < Ci,p,

Btk p (R)
sup [ Xpollwkr < Cr,p, 3D
Bitky,p(R)
sup |7 —id|lywrp < Cr.pe. (32)
Bi.p(R)

In particular, we have that
L) =, ¥) + (F) (B, ),
where (F1) (Y, ¥) == [57 Fi o &' (, )5k,

5 Proof of Theorem 7

We first make a Galerkin cutoff through the Littlewood—Paley decomposition (see [56], Ch.
13.5).
In order to do this, fix N € N, N > 1, and introduce the cutoff operators [Ty in wk-p by

My =) ¢,(D)Y,

J<N

where ¢ ; (D) are the operators we introduced in Remark 7.

We notice that by assumption INV the Hamiltonian vector field of i( generates a contin-
uous flow @’ which leaves [Ty WX invariant.
Now we set H = Hy , + %N + %, where

Hy,:=ho+ehy,+¢eFn,, (33)
r
hy ., ::Zé‘j_lhj’[v, hj’N ::thHN, (34)
j=1
r .
Fy,:= ZSJ_IF]"N, Fin:=Fjolly, 35)
j=1
and
r . r .
Hnri=ho+ Y elhj+) e Fj—Hy,, (36)
j=1 j=1
Bri=e|h=> e hj | +e|F=> &7'F;|. 37)
j=1 j=I

The system described by the Hamiltonian (33) is the one that we will put in normal form.

In the following we will use the notation a < b to mean: there exists a positive constant
K independent of N and R (but dependent on r, k and p), such thata < Kb.

We exploit the following intermediate results:
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Lemma?2 Forany k > ki and p € (1, 4+00) there exists By ,(R) C WkP st Vo >0,
N >0

- &

sup X, (W Wi S o (38)
Bito+2(r+1). p(R) 20(N+D)

sup X, (0, V)l S e (39)

Bitar+1y.p(R)

Proof We recall that Zy , = ho + >, elh; + i e/ Fj — Hy .
Now, |lid — Iy ||yt wio S 277 N+D since

1/2
dooeidyf| S| DD 127y
j=N+1 wk.p J=N+1 Ly
1/2
J=N+1 L

S 27 NEDY Fllykson,
hence

sup ”Xa//vr (Ws ‘(/_[)”Wkl’

VY €Bi2(r+1)+0,p (R)

S NdX s eitn+ Lo Brangesn, p Ry, Why 1 = TIN I L% By 110, (R). Beae 1))
< g2 O+,

The estimate of X4, follows from the hypothesis HVF. O

Lemma3 Let j > 1. Then for any k > ki +2(j — 1) and p € (1, +00) there exists
B p(R) C WP such that

_ o
sup 1 X,y (0, Wlp < K[, 25N,
B p(R)

7, F i—
sup 1 Xr; (U Wy < Kjy) 220707,
Bk,p(R)

where

, ]
K" = sup 11X, (0, ) le—2j.p-
By, p(R)

>

~.~

=3
Il

p = sup [[XF (¥, Wllk—2(j—1), p-
' By, p(R)
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Proof 1t follows from

1/2
sup [ n(DIXp ()| S sup || D 12" (D)Xpy ()
VEB, p(R) h<N Wk VEB, p(R) h<N
Lr
(40)
1/2
< 220N qup > MU0 (D)X py (0, 9 @1
Y EBy, p(R) h<N
< y
<22UDN sup 1 Xpy (W ) lk—2-1),p (42)
YEBy,p(R)
_ w(F) A2(j—-1N
=K ,2 , (43)
and similarly for Xp; . O

Next we have to normalize the system (33). In order to do this we need a slight refor-
mulation of Theorem 4.4 in [2]. Here we report a statement of the result adapted to our
context.

Lemma4 Letk > ki +2r, p € (1,+00), R > 0, and consider the system (33). Assume that
& < 27" and that

<K1£i;r) + Kg}f)) r22Nrg < 27% g~ IR, (44)

where

- ]
K57 = supsup X E (L ) k21,
l<j=r Yy €Byp(R)

0= sup sup 11X, (0 D) )
1<j=r y€Byp(R)

Then there exists an analytic canonical transformation 98(3\), : Bi,p(R) — B p(2R) such
that

_ ] -
sup |70 (0 ) = (. Dl < drr K2,
Bk.p(R/z)

and that puts (33) in normal form up to a small remainder,
Hy,o Ty =ho+ehy, +eZy +e %), (45)
with Z;\;) is in normal form, namely {ho y, ZI(\;)} =0, and

- F h F,
sup [1X o0 (W V)l < 42°V7 ¢ (rK,E,[;” + rK,E’I’)’)) 2Nt
By, p(R/2) v

=42k KD + K2 Re, (46)
sup X 00 (8, ¥k, p 47
Bip(R2) N
T
< 2e (KL + K 48)
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4T T !
« [? (29326E(KIE,I;J) + K]Ef;r))KIEf;,r)r224Nr8 + SK]Efl[;r) F22NT + SKIE,I;r) r22Nr) r]
(49)
The proof of Lemma 4 is postponed to “Appendix A.”

Remark 8 In the original notation of Theorem 4.4 in [2] we set

P =Whr,

he = ho,
h=cehy,,
f=¢Fny,
fi=r=g=0,

F =K.V,
Fo= K" ra?Nre.

Remark 9 Actually, Lemma 4 would also hold under a weaker smallness assumption on ¢: It
would be enough that ¢ < 272V and that
. K(FJ) 1 — 22Nr8r N K(h,r) 22N(1 _ 22Nr8r)
kpo 1 —22Ng k.p 122N
is satisfied. However, condition (50) is less explicit than (44), which allows us to apply
directly the scheme of [2]. The disadvantage of the stronger smallness assumption (44) is
that it holds for a smaller range of ¢, and that at the end of the proof it will force us to choose
a larger parameter o = 4r2. By using (50) and by making a more careful analysis, it may be
possible to prove Theorem 7 also by choosing o = 2r.

] <29 xR (50)

Now we conclude with the proof of Theorem 7.

Proof Now consider the transformation yg(j\), defined by Lemma 4, then

.
(T H=hy +Y elhjy +eZy + A + & Roa
j=1
where we recall that
k
& Roa = (TN) Pn.r +Ry).
(r)

By exploiting Lemma 4 we can estimate the vector field of %
2 and (275) we get

, while by using Lemma

_ & 8r+1
sup X spon (e D) lir < ( + ) 1)
Bk+d+2(r+l).p(R/2) o 2G(N+l) o + 2(1" + 1)

To get the result choose
ko =0 +2(r+1),
N =ro llogy(1/e) — 1,
o =4r%.

[m}
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Remark 10 The compatibility condition N > 1 and (44) lead to

e < [2’9e’1n’1R(K,$’) n K]gl],?r))flrflsz:lz’ =gy <2720/ <278
Remark 11 We point out the fact that Theorem 7 holds for the scale of Banach spaces
Wk'I’(M, C" x C"), where k > 1,1 < p < 400, n € Ny, and where M is a smooth
manifold on which the Littlewood—Paley decomposition can be constructed, for example,
a compact manifold (see sect. 2.1 in [13]), R?, or a noncompact manifold satisfying some
technical assumptions (see [12]).

If we restrict to the case p = 2, and we consider M as either R4 or the d-dimensional
torus T¢, we can prove an analogous result for Hamiltonians H (v, V) with (, ¥) € H* :=
W52Z(M, C x C). In the following we denote by By (R) the open ball of radius R and center
0 in H*. We recall that the Fourier projection operator on H* is given by

TiY(x) == (2n)—d/2/ Uk)e*Tdk, j > 1.

j-1=lk|<j

Theorem8 Fixr > 1, R > 0, k; > 1. Consider (27), and assume PER, INV (with respect
to Fourier projection operators), NF and HVF. Then 3 kg = ko(r) > 0 with the following
properties: For any k > kj there exists &, < 1 such that for any ¢ < &, there exists

ye(r) : Br(R) — By (2R) transformation s.t.

r
Ho:=HoZ" =hg+Y el 2+ 20,

j=1
where % are in normal form, namely
{Z}, hot =0, (52)
and
sup | Xgpollge < Ci, (53)
Bitky (R)
sup |7 —id|| g < Cre. (54)
Bi(R)

In particular, we have that
L) =, ¥) + (F) (b ),
where (Fi) (, §) i= [ Fj o ®' (Y, ) L.

The only technical difference between the proofs of Theorem 7 and the proof of Theorem
8 is that we exploit the Fourier cutoff operator

My (x) = / (ke * dk,
[k|<N

as in [3]. This in turn affects (38), which in this case reads

sup (1 Xy, (W )l S

Bk+a+2(r+1) (R)

&
—, 55
e (55)

and (51), for which we have to choose a bigger cutoff, N = ¢
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6 Application to the nonlinear Klein-Gordon equation
6.1 The real nonlinear Klein-Gordon equation

We first consider the Hamiltonian of the real nonlinear Klein—-Gordon equation with
power-type nonlinearity on a smooth manifold M (M is such that the Littlewood—Paley
decomposition is well defined; take, for example, a smooth compact manifold, or Rd). The
Hamiltonian is of the form
2 21
c 1 2 u
H(u,v) = — (v, —(u, (V A —, 56
(1, 0) = 5 (0, v) + 5 (i, (V)Z) + /21 (56)
where (V) := (¢? = )2, L e R, 1 > 2.
If we introduce the complex-valued variable

LD\ (e \"?
w:=ﬁ|:( c) u—1<<v>c> v:|, (57)

(the corresponding symplectic 2-form becomes idyr A dv), the Hamiltonian (56) in the
coordinates (¥, V) is

] _ A e \2y+g]”
HW, ) =(1/f,c<v>cw>+g/ [((WC) NG dx. (58)
If we rescale the time by a factor ¢2, the Hamiltonian takes the form (27), with & = CLZ and
H, ) = ho(y, ¥) + e h(Yr, ) + & F(Y, ), (59)

where
hor, ) = (¥, ¥, (60)
) = (1, (V) =) ) ~ 3o (Yoayaly) = Y e~ h ), (1)

jzl1 jzl1
21

o PN
FW. ) = 5 / [(m) (ww)} d 62)
A _
~ e / (W + ) dx

bty [ [+ DA+ D+t DA (04 9)") e
+0(%)
=Y & Fi. ), 63)

jzl1

where (a;);>1 and (b;) ;> are real coefficients, and F; (¢, V) is a polynomial function of
the variables 1 and ¢ (along with their derivatives) and which admits a bounded vector field
from a neighborhood of the origin in W¥+2U =17 to Wk? forany 1 < p < 4o0.

This description clearly fits the scheme treated in the previous section, and one can easily
check that assumptions PER, NF and HVF are satisfied. Therefore, we can apply Theorem 7
to the Hamiltonian (59).
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Remark 12 About the normal forms obtained by applying Theorem 7, we remark that in the
first step (case r = 1 in the statement of the theorem) the homological equation we get is of
the form

{x1, ho} + F1 = (F1), (64)
where Fi(y, ¥) = ﬁ f (¥ + ¥)? dx. Hence the transformed Hamiltonian is of the form
_ - 1 1, - - 1 -
Hi(¥, ¥) = ho(¥, ¥) + — [—5 (0. Av)+ (F1) (v, Ip)} +320W. ), (69)
where

20+1y

If we neglect the remainder and we derive the corresponding equation of motion for the
system, we get

. a2 ’
(F1) (¢, W)=7<l)/lx!f| dx. (66)

i = b+ | =2 Ay + o ()R (©7)
P2 241\ ’
which is the NLS, and the Hamiltonian which generates the canonical transformation is given
by
nw =0 3 L (? fw” I§id. (68)
’ 20+1] 0 12(1 -7

.....

Remark 13 Now we iterate the construction by passing to the case r = 2.
If we neglect the remainder of order ¢ %, we have that
o 1 1 1
HoZT =ho+f2h1+f4{xl,h1}+fh2
1
2

1 1
+L (F1)+ {X1,F1}+ {X1,{X1 ho}}-i- R (69)

1 1 1
=ho+ 2 [y + (F1)] + = [{Xl,h1}+h2+ s i} + E{Xl, (F1) — 1} + Fz] ,
(70)

where 11y (¥, ¥) = —1 (¥, Ay), and x; is of the form (68).
Now we compute the terms of order ¢L4

Ix1 .3h1 dx1 Ohy
1.} =dXp, = 2+ i—= —i—2-—
Y Ay AL

A 1 J2 R
:Tw/ > o ( .)(21—/>¢2’ I Ay dx
j=0,...,.21—1 JNJ

A 2N |-
g [| X (G| ave
j=1

A
_ 2l+31/A¢w2[ U AY Y dx
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1 21
2I+3lf Z l— ( )/(21 J)l/’zl i= le Ay

.....

— jyH I Ay dx, (71)

and since j # [ in the sum we have that

({1, i) = 0. (72)
Next,
=g (7. 4%0), (73)
{x1, F1}
= » e N 2—i=1g0 y 20— h h—1
s | j_o§1_1H<1>(21_1)w v [Z( i :|dx
J#l

22 U2\ . s — A—h—17h
| 2 (e [ Ger- e o
j: :

22 1 (2 _
= o 2 f< )( )[(21—J)h—](21 h)]/w‘” SRR gy
Jh=lo-1t TN
J#
)‘2 21—1 z 21 21—h 7 h—1
22432 2/1/’ (h>h1/f Yy dx
h=1
)\'2 1 2 . 20—j—17j 7201—1
+ o Y Dt W [ Rl A 2 R
j=0,a—1 " TN
J#l
)Lz 21—1 21
720—1 2l—h—1_7h
REEYTEET) 2/“# |:Z <h>(2l—h)1ﬁ v i| dx
h=0
e 1 (2
21 s 2l—j 7 j—1 21—1d 74
BEYESTE / '_122211_1.<j>]¢ 14 14 X, (74)
Jj=1,...
J#
(. FiY) = 22K (D) / [y 2D dx, (75)
1 1 [20\ /21 , _
K1) = 2 | 3 ij(j)(}l)[(zz—ph—](zz—h)] +161 %, (76)
Jj.h=1,..., 21—1
J#
jt+h=2l

where K (/) > 0 by the conditions on j and % in the sum.
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Then,
{x1, (F1)}
A2 21 1 [2 , e
=i22,+3,2<l)f > i ( .><2Z—J>lw2’ Tyt dx
j=0,...,21—1 JNJ
J#l
22 (21>/ 1 (21) 2A—j 7 j=11-171
— rp — ()it g dx
20432 ZE: —\ )V
A j=1.., 211 J\J
J#
_ M2 21 ) 31-1gl=1 4 yl=1731-1 4
T2i4312\ / v v vy x
21 3l—j—1.7 j+~1
+ > 2a(T) e | (77
j=1,...,21—1 J
J#
and since j # [ in the sum we have that
{x1, (F)}) = 0. (78)
Furthermore,

Fr= 2l /w PP AG + ) d
21+31

2[—1

A 2l -1 P -
=51 2 ( j ) / v (AY + AY) dx, (79)
j=0
A 2l -1 - 2l —1 - -
(Fy) = ﬁf< ; )w’*ll/f’Aer (z— | )Ww’*lm// dx
- (Zl . 1) / [y 2D (@AY + AP dx (80)
sz

Hence, up to a remainder of order O (%ﬁ) we have that

1 1,- A(2
H2=h0+ﬁ/[—§(w,m)+zml(l)m?f] dx

1 _ A (20—-1 ., - 1, -
+C—4/[A2K(l)|w|2<2’ ”*W( , )W“ 1)(wA¢+WAW)—§(¢,A2¢)] dx,

8D

which, by neglecting /¢ (that yields only a gauge factor) and by rescaling the time, leads to
the following equations of motion

1 A (21 1 1
1 A (21—1 _ )
t3 [TH ( } ) (llvf|2<"” Ay + (= DIy Py Ay + A(|w|2<l—‘)¢)):| ,

(82)
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which, for example, in the case of a cubic nonlinearity (/ = 2) reads
W= =AY+ A
=T 4
1751, 4 3 2 207 270y Lo
T3 @K [Pl 1/erE)»(le/fl Ay + Y Ay + A(Y | w>)—§A ¥|. (83)

To the author’s knowledge, Eq. (83) has never been studied before. It is the nonlinear
analogue of a linear higher-order Schrodinger equation that appears in [14,15] in the con-
text of semirelativistic equations. Indeed, the linearization of Eq. (83) is studied within the
framework of relativistic quantum field theory, as an approximation of nonlocal kinetic terms;
Carles, Lucha and Moulay studied the well-posedness of these approximations, as well as the
convergence of the equations as the order of truncation goes to infinity, in the linear case, also
when one takes into account the effects of some time-independent potentials (e.g., bounded
potentials, the harmonic oscillator potential and the Coulomb potential).

Remark 14 We point out that the case of the one-dimensional cubic defocusing NLKG is also
interesting, since for A = 1 the normalized equation at first step is the cubic defocusing NLS,
which is known to be integrable by the inverse scattering method. It would be interesting to
reach a better understanding of the one-dimensional normalized equation, even in the case
r=2.

Even though there is a one-dimensional integrable 4NLS equation related to the dynamics
of a vortex filament (see [52] and references therein),

j Loize - 3 3525 2 30 L
Wi+ Yo + ST — v [wxxxx WV + SY + WY+ (Y )mﬁ]
=0,veR (84)

apparently there is no obvious relation between the above equation and Eq. (83).

6.2 The complex nonlinear Klein-Gordon equation

Now we consider the Hamiltonian of the complex nonlinear Klein—Gordon equation with
power-type nonlinearity on a smooth manifold M (take, for example, a smooth compact
manifold, or R¥)

2 |21

c 1 |w
Hw, pu) = = (pu, puw) + 5 (w, (VZw) + 4 [ = (85)
where w : Rx M — C, (V) := (2 = M)V2, A eR, [ >2.
If we rewrite the Hamiltonian in terms of u := Re(w) and v := Im(w), we have
c? 1 5 5
H(u,v, py, py) = - Upus pu) + {pv, o)) + E(IWI +[Vul9)
2 2 25\
c u-+v
+3(u2+v2)+x/%. (86)

We consider by simplicity only the cubic case (/ = 2), but the argument may be readily
generalized to the other power-type nonlinearities.
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If we introduce the variables

R A 87
V= ( ' ) u—z(m) pl. 87
1 (V) \ /2 e\
S S S L A

(the corresponding symplectic 2-form becomes idy A dyr —id¢ A dg), the Hamiltonian (85)
in the coordinates (¥, ¢, ¥, ¢) reads

HW, ¢, 9, 6) = (¥, c<vw) + (8, c(V)eo) (89)

*is bl e ) gros s o

with corresponding equations of motion

—iy =c(V)e¥ + 3 [(w + U, o (U + w)) <¢ +é. w0+ ¢ >] W)

io =cVep+ 5[+ 0. G+ D)+ (o +6. 56+ D) 5 @+ D).
If we rescale the time by a factor ¢2, the Hamiltonian takes the form (27), with & = C—z, and

HW, ¢, 9, ¢) = Hi(Y, ¢, ¥, ¢) +eh(Y, ¢, ¥, ) +e FW, ¢, ¥, d),  (91)
where
Ho(yr, ¢, ¥, ) = (¥, ¥) + (. 8), (92)
hy, . 9. ¢) = (U, (c(V)e — ) ¥) — (. (c(V)e — ¢?) @)

~Y el ((uf a,«Afzp> + (qS, ajAf¢>)
j=1

= &/ (.9 ). ©3)
j=1
F ) §) == )< ) b )] o
Wb, v, ¢) = R/T [< (V) >+< "(V)e >] !
)\‘ _ -
~ 2 [+ T2+ 16 + 812 dx
+ O(s)
=: ZS'/_I Fi(Y. ¢, 9. 9), ©4)
jz1

where (a;);>1 are real coefficients, and F;(y, ¢, ¥, @) is a polynomial function of the
variables V, ¢, ¥, ¢ (along with their derlvatlves) and which admits a bounded vector field
from a neighborhood of the origin in Wk20-D.r (R4, C2 x C2?) to Wk-P(R?, C? x C2) for
any 1 < p < 4o00.

This description clearly fits the scheme treated in Sect.4 with n = 2, and one can easily
check that assumptions PER, NF and HVF are satisfied. Therefore, we can apply Theorem 7
to the Hamiltonian (91).
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Remark 15 About the normal forms obtained by applying Theorem 7, we remark that in the
first step (case r = 1 in the statement of the theorem) the homological equation we get is of
the form

{x1. hot + F1 = (F1), 95)

where F(y, V) = 1% I [|1/f + VP + o+ <§|2:|2 dx. Hence the transformed Hamiltonian is
of the form

1, -

i | . I
¢ V. 0) =ho(V. 6. V. ) + [—5 (W, Ay} + (6, Ad)) + (F1) (¥, ¢, ¥, ¢)]

L o 7
+ le@ (W! ¢7 wv ¢)7 (96)
where

(F) = 2= [60202 + 6625 + 80763 + 207 + 20°F]

A -
3 BV +107 +2w¢ — 79)°].
If we neglect the remainder and we derive the corresponding equations of motion for the
system, we get
—iyy =¥+ 5 {—3Av + 5 BUVE+ 18DV + 20 + v H)d}
o7
igr  =¢+ 5 {120+ 5BV +10D¢+ 2o + vV}

which is a system of two coupled NLS equations.

7 Dynamics

Now we want to exploit the result of the previous section in order to deduce some conse-
quences about the dynamics of the NLKG equation (3) in the nonrelativistic limit. Consider
the simplified system, that is, the Hamiltonian H, in the notations of Theorem 7, where we
neglect the remainder:

,
Hyimp :=ho+e(hy + (F1)) + Y _ &l (hj + Z)).
j=2

We recall that in the case of the NLKG the simplified system is actually the NLS (given by
ho + €(h1 + (F1))), plus higher-order normalized corrections. Now let 1, be a solution of

—i Y = Xny,, (), (98)
then ¥, (¢, x) := T (¥, (c*t, x)) solves

. Al e \'? e Nyt 1 .
Yo =ic(V)ea + 2 ((V)c) |:(<V>c> NG i| - ijmn*ﬁm Wa, Ya),

99)

that is, the NLKG plus a remainder of order ¢~ (in the following we will refer to Eq. (99)
as approximate equation, and to ¥, as the approximate solution of the original NLKG). We
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point out that the original NLKG and the approximate equation differ only by a remainder of
order ¢~%", which is evaluated on the approximate solution. This fact is extremely important:
indeed, if one can prove the smoothness of the approximate solution (which often is easier
to check than the smoothness of the solution of the original equation), then the contribution
of the remainder may be considered small in the nonrelativistic limit. This property is rather
general and has been already applied in the framework of normal form theory (see, for
example, [4]).

Now let ¥ be a solution of the NLKG equation (3) with the initial datum o, and let
8 := ¥ — Y, be the error between the solution of the approximate equation and the original
one. One can check that § fulfills

. _ _ - 1 -
§=1ic(V)ed +[P(Wa+8,Ya+8) — P(Ya, Ya)] + CTer)*gm Wa (1), Ya (1)),

) 2 e \12 c \Vyitv 2-1
o W)zi(mc) [((W) ;; } ' (1o

§=ic(V)ed+dP(Ya ()8 + O + 0 <%) ;
C

where

Thus we get

- r 1
8(1) = e'tetVlegy + f Ve d P (Y, (5))8(s)ds + O(8%) + € <7> .o
0 c
By applying Gronwall inequality to (101) we obtain

Proposition3 Fixr > 1, R > 0, ki > 1,1 < p < 4o00. Then 3 kg = ko(r) > 0
with the following properties: For any k > ki there exists ¢; k. p g > 1 such that for any
¢ > Clrk,p R If we assume that

IVollktko,p < R
and that there exists T = T,y , > 0 such that the solution of (98) satisfies
¥ Ollktko.p < 2R, for 0=t <T,
then
18 llk.p < Crpe™ . for 0<1<T. (102)

Remark 16 If werestrictto p = 2,andto M = T¢, the above result is actually a reformulation
of Theorem 3.2 in [23]. We also remark that the time interval [0, 7'] in which estimate (102)
is valid is independent of c.

Remark 17 By exploiting estimate (32) about the canonical transformation, Proposition 3
leads immediately to a proof of Theorem 2.

In order to study the evolution of the error between the approximate solution and the
solution of the NLKG over longer (namely, c-dependent) timescales, we observe that the
error is described by

§(t) =i c(V)ed(t) +dP(Ya(1)8(1); (103)
t

8(t) = &"MVegy + / Ve g Py, (5))8(s)ds, (104)
0
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up to a remainder which is small, if we assume the smoothness of v/,,.

Equation (103) in the context of dispersive PDEs is known as semirelativistic spinless
Salpeter equation with a time-dependent potential. This system was introduced as a first
order in time analogue of the KG equation for the Lorentz covariant description of bound
states within the framework of relativistic quantum field theory, and, despite the nonlocality
of its Hamiltonian, some of its properties have already been studied. (See [55] for a study
from a physical point of view; for a more mathematical approach, see [33] and the more
recent works [14,15], which are closer to the spirit of our approximation.)

It seems reasonable to estimate the solution of Eq.(103) by studying and by exploiting
its dispersive properties, and this will be the aim of the following sections. From now on we
will consider only the case M = RY ford > 2.

8 Properties of the normal form equation
8.1 Linear case

Now letr > 1,d > 2.1In[14,15] the authors proved that the linearized normal form system,
namely the one that corresponds (up to a rescaling of time by a factor ¢2) to

—iVr = Xngryr_, ein, (V).
vr(0) = vo, (105)

admits a unique solution in L% (R) H*+%0 (R) (this is a simple application of the properties of
the Fourier transform), and by a perturbative argument they also proved the global existence
also for the higher oder Schrodinger equation with a bounded time-independent potential.

Moreover, by following the arguments of Theorem 4.1 in [31] and Lemma 4.3 in [14] one
obtains the following dispersive estimates and local-in-time Strichartz estimates for solutions
of the linearized normal form equation (105).

Proposition4 (Fig. 1) Letr > 1 and d > 2, and denote by %, (t) the evolution operator of
(105) at the time ¢*t (¢ = 1, t > 0). Then one has the following local-in-time dispersive
estimate

a(1-1) _ _
||%,(z)||L1(RdHLm(Rd)5c< ')|t| e 0 < | < b, (106)

On the other hand, %.(t) is unitary on L*(RY).
Now introduce the following set of admissible exponent pairs:

Ay :={(p,q) : (1/p, 1/q) lies in the closed quadrilateral ABCD} , 107)

()

1
a

03 ot
04
03
02
01
¢
0

00
[} 02 04 06 [ 10 »

1
»

Fig. 1 Set of admissible exponents A, for different values of r: a r = 1 (this is the Schrodinger case); b
r=2cr=11
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where
1
T
2r—1 1
T = —, ——i——:
r—1 T

Then for any (p, q) € Ar\{(2,2), 1, 1), (v, 00)}

_Ly(1_1 _d(1_1
”%(I)HLP(Rd)—)L‘i(R") < cd(l r)(l’ ‘1>|t| 2r<‘1 I'), 0< |t < cZ(rfl)’ (108)
Letr > 1 and d > 2: In the following lemma (p, ¢) is called an order-r admissible pair
when2 < p,q < 4ooforr >2(2 <gq <2d/(d—2)forr =1),and
2 d d
-4 — = —. (109)
p rq 2r
Proposition5 Letr > 1 and d > 2, and denote by %, (t) the evolution operator of (105) at

the time ¢t (¢ > 1,t > 0). Let (p, q) and (a, b) be order-r admissible pairs, then for any
T < 20D

d(1-1)(1-1 -1y
||%r(f)¢0||L11([0,T])Lq(Rd) 50( '>(2 q)||¢0||L2(Rd)=C( '>” ||¢0||L2(]Rd), (110)

t
H/(; %(t - T)¢(t)dt S/ C( )2”( )”¢”L” [0, T])Lb/(Rd) (111)

LP([0,T]LY (RY)

8.2 Well-posedness of higher-order nonlinear Schrédinger equations with small
data

Here we discuss the local well-posedness of

—iY = A, ¥ + P(OXW)jaj<20—1)s (08P wj<20—1)), t €1, x eRI, (112)
¥ (0, x) = Yo(x), (113)
wherer > 2,1 :=[0,T], T > 0,

, .
A/
— 2 _
Ac,r =cC Z 20-D° c>1,
Jj=1

and P is an analytic function at the origin of the form

P(2) = Z aﬂzﬁ, lag| < K" 1z « 1, (114)
m+1<|B|<M

where M > m > 2, m, M € N.

We will exploit this result during the proof of Theorem 4. We will adapt an argument of
[50] in order to show the local well-posedness of equation for data with small norm in the
so-called modulation spaces.

Modulation spaces M;,’ q (s € R,0 < p,g < +00) were introduced by Feichtinger,
and they can be seen as a variant of Besov spaces, in the sense that they allow to perform a
frequency decomposition of operators, and to study their properties with respect to lower and
higher frequencies. This spaces were recently used in order to prove global well-posedness
and scattering for small data for nonlinear dispersive PDEs, especially in the case of derivative
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nonlinearities (see, for example, [50,58,59]). We refer to [49] for a survey about modulation
spaces and nonlinear evolution equations.

We define the norm on modulation spaces via the following decomposition: Let o : R? —
R be a function such that

supp(0) C [=3/4.3/417,
and consider a function sequence (0 )z satisfying

ok() =0 (- =k, (115)
d o) =1, VEeR. (116)

kezd
Denote by
Yy = {(0k)rezd : (Ok)rezasatisfies (115)—(116)}.
Let (0k)eze € %4, and define the frequency-uniform decomposition operators
Ok = F o 7, (117)

where by . we denote the Fourier transform on R4, then we define the modulation spaces
M IS, q (RY) via the following norm,

1/q

1 Wars, , raty = Z (kYO f 11D , seR,0<p,g<+o0. (118)
kezd

Actually, in our application we will always be interested in the spaces M]S7 l(Rd) withs € R
and p > 1. We just mention some properties of modulation spaces.

Proposition 6 Lets, s1,s2 € Rand 1 < p, p1, pa < +00.

M, (R?) is a Banach space;

SR c My | (RY) € 7' RY);

Z(R?) is dense in M;’I(Rd);

if s < sy and p1 < py, then M;'l,l C M;ZZ’I;

MY (RY) € L®[RY) N LP(RY);
lett(p) = max (0,d(1 — 1/p),d/p)andsi > sr+1(p), then WS-P(RY) C M;%I(Rd);
let s1 > s9, then M;{I(Rd) C WP (RY).

N kR -

The last two properties are not trivial and have been proved in [32].
We also introduce other spaces which are often used in this context: the anisotropic
Lebesgue space L7172

X5 (X)) jist?
1 F 1l rip2 =l -1
in:(x_/')_,'#-f L"'lv----xi—lv"i+lv---~"d1t(RL xD) L!:,vl (®) ’
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and, for any Banach space X, the spaces l[ljs (X) and lgsi(X),

1l = 2 00 15k fllx, (119)
kezd
— d._ d gl = . ;
1y ) = kZZd R0 flx Zf o= {kez Ikl = max 1K1, kil >c}.
€4
(120)

For simplicity, we write [[;(X) = /1’ (X) and M3 = M5 (RY).
Proposition7 Letd > 2, m > 2, m > 4r/d ands > 2(r — 1) + 1/m.

(i) There exist co > 1 and 8¢ = So(d,m,r) > 0 such that for any ¢ > cp, for any
8 > 8¢ and for any yro € Mil with ||V ||M§ =< c? Eq. (112) admits a unique solution

¥ € CU M3 ) N\ D, where T =T(|[Vollug ) = O =YY, and

2(r—1) d
§ : § : -6
||¢||D = ||80[1//|| Ls—r+1/2 ;00,2 1,s .y m,00 Ls+1/m ro0y2~y2+m S c .
a=0 il=1 H lD.i,(: (in:(xj)j7éi,r)ml|] (Lx,-:{xj-)j#ij)ml[l (Lt L,rﬂLz,,v )

(121)

(i) Moreover, if s > so(d) :=d +2 + % then there exists 51 = 81(d, m, r) > 0 such that
for any ¢ > co, for any § > 81 and for any Yy € M5,1 with ||1ﬁ0||A,1.2\-1 <c P Eq.(112)
admits a unique solution y € C(I, H*), where T = T(||¢0||M5 1) = 02—y, and

I @llgs Se™d, 1] < A0, (122)

From the above proposition and from the embedding H***4/2 c M3 | for any o > 0
we can deduce

Corollary1 Letd > 2,1 > 2, r < %(l —Dands > 2(r — 1) + ﬁ Then there exist
co > 1,80 = 8o(d,l,r) > 0and §1 = 61(d,l,r) > 0 such that for any ¢ > co, for any
8 > max (8o, 81), for any o > 0 and for any yo € H* /2 with Yol yssosap < ¢
the normal form equation for (56) admits a unique solution ¥ € C([0, T1], Hstotd/2yn p,
where T = T (||Yoll gs+o+ar2) = O, and (121) holds. Furthermore, we have that
Ve LOO(I)HS+U+d/2(Rd), and

9 (O ssoran S8, |t < 07D, (123)

Since the nonlinearity in Eq. (112) involves derivatives, this could cause a loss of deriva-
tives as long as we rely only on energy estimates, on dispersive estimates or on Strichartz
estimates. In order to overcome such a problem, we study the time decay of the operator
U (t) := e''4er its local smoothing property, Strichartz estimates with [J;-decomposition
and maximal function estimates in the framework of frequency-uniform localization.

The rest of this subsection is devoted to the proof of Proposition 7. For convenience, we
will always use the following function sequence (0%) <z« to define modulation spaces.

Lemma5 Let (ni)rez € 21, and assume that supp(ni) C [k — 2/3, k 4+ 2/3]. Consider
ok (&) =y (E) - g Ga)e k= (k... kg) € 29, (124)

then (0y)yezd € Y.
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For convenience, we also write

Gox= Y ok, 60k= ) Dhw, keZ, (125)
o<1 o<1
and one can check that

Goxox = o, 6ok =0y, k e Z°%. (126)

We also write .« f (¢, x) := fot X-(t — 1) f (7, x)dr.

8.2.1 Time decay

Now, the time decay of the operator % (¢) is known (see (106)), but now we are interested in
its frequency-localized version, and we want to consider lower, medium and higher frequency
separately. For simplicity we discuss the case r = 2, and we defer to the end of this section
a remark about the case r > 2. So, consider

4
‘ . it |s|27ﬁ>
U (1) = e''he2 = & 7 e ( <)z

)

and write & = ¢ 2. It is known that the time decay of %4(t) is determined by the critical
points of P(|€]) = |£|> — e|£|*. Notice that P'y(R) = 4R(e'/?R + %)(31/216 - %),
the singular points of P; are & = 0 and the points of the sphere &€ = (2¢)~!/2. To handle
these points, we exploit Littlewood—Paley decomposition, van der Corput lemma and some
properties of the Fourier transform of radial functions.

Indeed, it is known that the Fourier transform of a radial function f is radial,

FfE) =2m / FRORTHRIENT D202 (RIEDR,
0

where J,, is the order m Bessel function,

(R/2)™

Im(R) = T(m+1/2)71/2

1
/ RA =2 1241, m > —1)2.
—1
By following the computations in [50] we obtain that
oo . -
Ff(s) = Kdn/ F(R)R e RS p(Rs)AR
0
0 .
+Kﬂ{/ F(R)R RS h(Rs)dR, Kg > 0, (127)
0

(k) —d=l g
WO R)| < Kg(1+R)™ 7 %, vk =>o0. (128)

Now we make a Littlewood—Paley decomposition of the frequencies: Choose p a smooth
cutoff function equal to 1 in the unit ball and equal to 0 outside the ball of radius 2, write
$o=p()—p2),¢;()=F '¢o(27/).F, j € Z, and consider

Mo =Y $;(DY%hnYo+ Y ¢;(DY2hto+ Y ¢;(D)Y% ()0

ljl<K j<—K =K
=: P= W)Yo + P< %) Yo + P> % (D)o, (129)
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where
1
K :=K() = 10— Eﬂog2 e]. (130)

Notice that the singular point R = 0 is in the support set of .% (P= %, (t)v0). Roughly
speaking, if j < —K, the dominant term in P>(R) is R?, while if j > K the dominant term
in P,(R) is e R*; hence, by (106)

I P~ 25(t) ol oo S 11742 1ol 1, (131)
1P~ () yollLee S P17 oll 1, 0 < |t] S 2 (132)

The time decay estimate for P— %, (t)yo is more difficult, since P>»(R) has a singular
pointin R = Ry := (2&)~!/2, which corresponds to the sphere || = R; in the support set
of .7 (P— % (t)y0). We notice that also the point that satisfies P)'(R) = 0, R = (6e)~1/2,
corresponds to a sphere & = R; contained in the support set of .7 (P~ % (t)Y); we shall
use this fact later.

In order to handle the singular point R, we perform another decomposition around the
sphere |€] = R;. Denote 6p(-) = p(2=K) — p@K+D.) then P = Z16p.F; write
P = 77 '€ — R1).Z, we get

Y i (DYUs ()0 =Y P_Pi %(t) o (133)

ljl=K keZ
By Young’s inequality
|P=Pc 2ol S 17" (500c081 = RO PED) [ixyoll . (134)
Moreover,

771 (5 0u(lg] — Ry 1PED)

(127) °° : e
= Kqm / R¥'6 p(R)$(R — Ry)e P BO~IRNIp(R|x|)dR
0

o0
+ Kdn/ R¥71G p(R)pr (R — Ry)e 1 P2RO+RIX (R Ix)dR
0
=: Ap(|x]) + Br(|x]).
In order to estimate Ay (s) we rewrite it as
o) Ry . . —
Ax(s) = Ky (/ +/ ) R¥T16 p(R)r(R — R)e PR~k p(Re)dR  (135)
R 0
= AP (s) + AP (s). (136)

We begin by estimating A,El): Notice that A,(cl) (s) for k > K + 2; hence, we can assume
that k < K + 2. By a change of variables we obtain

. 2
A/((l)(s) R:Rl=+2k” Zdeﬂ'e_iR'S / F((T)eitZZk&Pz(U)dU,
12
F(o) := (R +250)"7'6 p(Ry + 2X0) o (o) (R + 2X0)s),

6P (0) = 2% ¢t Py (R + 2%0) — 2kos).
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N

One can check that
|6 Py (0)| = |4(Ry + 2%0) 2R + 2F0)oe — ik

Lets > 1;if s <« 2%t /e, then

[F™ (@) <1, Ym>1, [6P)/(0) Se, 6P (0)]

e<l
Sel2 6P (o) Se, 6P, (@) <1, Vm=>4

while for s >> 2kt /¢
e<l
[F™ (@) <1, Ym=>1, 6P, (@) < 1, Vm > 1.

Integrating by parts we get

AL )
2
= 2k(22kt)_NKdJTeiR”[ e"’ZZk&PZ(“)i <7~ ! i (~ 1 i (~F(U) ))) do.
12 do \ o Py (o) do \ 6 P)(0) do \ 6P/ (o)

Therefore,
(137)

1A ()] < 28 %V,

If s ~ 2%t /¢, we apply van der Corput lemma,
2

AP©1 £ 2@ 07 [, Fe)o
1/2

128
(<)2k(22kt)71/zsf(d71)/2 < ok (22K p)=d/2,@d=1)/2

Moreover, we can check that |A,(€1)(s)| < 2k hence, for s > 1
(138)

1 e<l
|A](< )(S)| < 2k min(1, (22]‘;)*‘1/2)'
If s < 1, we rewrite A,(Cl) in the following form

2
AD(s) = Zdene—lRlsf Fi(o)elt PrRi+20) g
12
Fi(0) := (Ri + 2°0)?716 p(Ry + 2°0)o (0)h(Ry + 2k 0)s)e ™27,
Again integrating by parts, we obtain
1A ()] < 28 min(1, 2%1)~9/2). (139)

Now we estimate A,(cz). We notice that Ry € supp(¢x(R; —-)) ifand only ifk € {2, —1};
when k ¢ {—2, —1}, one can repeat the above argument and show that
(140)

1A ()] < 26 min(1, 2%1) =),
Letk € {—2, —1}.If s < t or s > t we have by integration by parts that
|AP(s)] S min(1,+7V), VN eN.
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On the other hand, if s ~ ¢t we can use van der Corput lemma and obtain

|A](<2)(s)| < (13 -d=1)/2 < t_%‘*%.

Therefore, for k € {—2, —1} we have

142 ()] S min (1,67556). (141)
Combining (140) and (141) we can deduce that
142 ()] < 2 min (1, (22kt)—%+%) . (142)

If we sum up all the Ay for k < K + 2 we finally conclude that for any d > 2
I P= 25(t) Yol oo S e min([e| =472, 217420 [yl 1. (143)

Remark 18 1In the general case r > 2, we have to determine critical points for the polynomial

Pr(R) =) (~=1)/*1el 1R, (144)
j=1

namely the roots of the polynomial

r r
P(R) = (=)l 12jRY ™ = R [ Y (=) le/ 712 RUD | (145)
j=1 j=1
Besides the trivial value R = 0, which we deal as in the case » = 2, one should rely on lower
and upper bounds to determine the other (if any) real roots. For a lower bound, we rely on

a well-known corollary of Rouché theorem from complex analysis, and we obtain that the
other roots satisfy

2
max (2, > 2j8/—‘)
2
max (2, 2r Z;;g) 8-/)
e<1/2 2 e<1/Cr) :

%

max(2, 4re)

For what concerns an upper bound, we exploit an old result by Fujiwara [24], and we get that
the roots satisfy

2jei=1\ 0D
R < max (2(r—1) )

I<j=<r—1 2re1
1
T -r
<2(r—1) max |- £20-D
I<j<r—1\r
e<l _
ke

for some K, > 0.
Hence, in the case r > 2, if ¢ sufficiently small (depending on r), then the polynomial
P’, has critical points (apart from 0) which have modulus between 1 and & (e V2 (a similar
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argument works also for the polynomial P/), and this affects the medium-frequency decay
of % (t). In any case, we can deal with this problem as in the case r = 2, and we get

1P % ()Yl < el 1ol 1, (146)
| P= % (1) ol oo < e min(le] =42, [¢] =4/ >TV0) [y 11, (147)
1P~ %ol < Pl F ol 0 < il S 2D, (148)

8.2.2 Smoothing estimates

As already pointed out, one needs smoothing estimates to ensure the well-posedness of Eq.
(112) because of the presence of derivatives in the nonlinearity. Again, we first consider the
case r = 2, and then we mention the results for r > 2.

Proposition 8 Forany k = (ki, ..., kq) € Z% with |k;| = |k|so and |ki| = ¢

3/2
[P mow| . S elTevole. (149)
xi:(x]-)j#_,ut
Proof 1t suffices to consider the case i = 1. For convenience, we write Z = (z1, ..., 2Zd)-
Then,
3/2 i 1
| mow| .. = H [ @t 5 gy ereinag,
x,-;(xj)j#l-,t L?‘;Lél
< H / My EDIE 2 D F o) @) fdg | =L
L® L2
X1 TE

Now, we estimate L: If k; >

2 ¢, then &) > 0 for & € supp(n,). Hence, by changing variable,
6 = Py(|§]), we get

-1

) ) 1 2
LS / iy (E10)E10)Y 2.7 (o) (€ (0™ ~£71(0) (2"% — 1)
LeL2
X TEr
2\
< | (E1(0)810) 2.7 (Y0) (6 (0)) (272 - 1)
LjLE
€2\ R Y
1/2 1/2
< i EDE 2 F W) ©) <272 - 1) <272 - 1) g/
L¢
g2\
= |, (ENELF (o) (€) (2—2 — 1) < clvoli 2
C 12
3
The proof for the case k| < —c is similar. O
By duality we have the following
Proposition 9 Forany k = (ky, ..., kq) € 74 with kil = |kloo and |ki| 2 ¢
|Tka% s f | e 2 < DD Fll 2 (150)

-"ii(xj)j;éivt
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Now consider the inhomogeneous Cauchy problem

=iy = Aca¥ + f(t,x), ¥(0,x)=0. (151)
Proposition 10 For any k = (ky, ..., kq) € Z¢ with |k;| = |k|eo and |k;| > ¢
|O%o3 wHLm SOk £l 12 . (152)
Xis X])j#l Yis (k/ j#it

Proof 1Tt suffices to consider i = 1. We write

1
V=2 rgw(/t,xf)(f, £).
We have
82 | 512 ar
WY =7 Fixf. (153)

“EPy(E) -
We want to show that

o mEDE

: 7 < Hﬂ’l F
T,%‘ P2(|$|)+6‘2—T t,xf ~ %‘1 ﬂkl(fl) X1

X1 g,[

172’
LXI Lé,t

which, by Young’s inequality, is equivalent to show that

L o(®)E

7o Pt 1| oy

sup
x1,7.§j (j#D

We prove (154): First, notice that when |k|| = |k|xo, then |§]] ~ |&| for & € supp(ok).
We split the argument according to the cases T —c? > Oand T —c2? < 0.Inthecase t —c2 > 0

o1 ok (§)E}
§oP(E)+er—1

lki1Ze
< 1.

~

ki+3/4 2
§/ *dél
k—3/4 &P

When 7 — ¢2 < 0 we set 7 := n(c) = c( -5 j) > 0, in order to write

2 2
P2(|$|)+c2—r:<%+rz>< i +n +c>

L o ®E ok (€)E}
SRR (B + o) (5 +m+c)

O'k(é%)sl

2 0 2 2 :
(%+%+m> (—%—%+n+c>

When |£|> > c(m2 + ¢), we can treat the problem as before.
Next, we consider the case |& 12 < c(r2 + ¢). Let

2
2= AG, t,0% = '5' + 1,

2
2. B(é,r,c)2 = (ﬁ —12—c>

sup
x1,7.8; (j#D

Hence

=7 (155)
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then
. G
&1 (gp l&12
= +Tz) (—7 +t2+C>
_ & &1
=7 — i, (&)

&2 2 py &
trap-

12

¢ -1 & 1 1

=57 T (B— TR My (1)
= + A o2 o2

=1411.

We estimate only 7, as the argument of /7 is similar. First we write

_E ’—1 77k1 (El) E >—1 r/k](%‘l)B .
27 g2 27 & 2 :
e 2 (a- ) (B4 m)

Since f{ll (1/&) is the function sgn (&), we have that /1 is bounded uniformly with respect
to ¢. For I, it suffices to show

I =

1
¢B sup 9{11 <1.
x|

2
(5-) (£ +2)

Since |7 (e (&) < 1y

1+E?°
1 1 1
cB |7 SceB | 7! T —
: & & 2 -4, DA a2
(B=Fn) (T +a g c Ll
L “
CzB -1 1 -1 1
~ A2 £ £ 1 £24-2
A Bl |0 a1,
1 c?
<SB| 7' o Ll B
B—n L A b

Finally, we observe that in general the solution i of (151) may not vanish at r = 0.
However, by Parseval’s identity

V(0,x) = (1, X)=0 = K/I%(S)gi(f)(s,X)ds,

for some K > 0, and if we combine it with (150), we have that [ 25 (1)dZ ¥ (0, x) € L?.
Hence, by (149)

oY1) ==y (1) — my©,) =i /1 Ut — 1) f(r)dr (156)

is the solution of (151), and it satisfies (152). ]
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Lemma6 Foranyo € Rand k € 72 with |k;| > 4,

10 DY, WIILPI 2 S (ki)? 18 ll 1.2 . (157)
Gj)j#n! X0 j10t

If we replace Dfi by 97, the above inequality holds for all k € z4.

Proof See the proof of Lemma 3.4 in [58]. One can check that both sides of (157) are
equivalent for |k;| > 4. m]

By combining (152), (150) and (157) we obtain

Proposition 11 For any k = (ky, ..., kq) € Z% with |k;| = |k|so = ¢ we have
|05 o f ez SUOflpre (158)
i) jiot i) jied
| c (ki)' 1Oz, (159)
i

Remark 19 For the case r > 2 we replace (149), (150), (152), (158) and (159) with

oo P L ST 0w, (160)
i 0j) k!
1
100, 4 f | e S € NORD P Fll 2 (161)
i3 () jaiof
[ I (S R (162)
L, ) it X3 ) jatiot
|2 Darr| L SIBfpe (163)
x (x )j# t Xis (X /?H'l
[Da2 D r| S k2 OS2 o (169
LLy S0 jtiok

Remark 20 We point out the fact that we have worked out smoothing estimates only in the
higher frequencies. As in [50], only these smoothing estimates are needed in order to discuss
the well-posedness of (112).

8.2.3 Strichartz estimates

By exploiting (110) we can deduce Strichartz estimates for solutions of (112) combined with
[x-decomposition operators.

Proposition12 Letr > 1,d > 2,¢c > 1,t > 0. Let (p, q) and (a, b) be order-r admissible
pairs. Then forany0 < T < =Y and for any k € 74 with |k| 2 K (K = K(c) is defined
in (130))

1

d(1-1)(%
10k %: (l)¢0||Lp([0T)Lq(Rd)N ( r)<2

)
)

Q=

) ||Dk¢0||L2(Rd)
1-

\:\_.

= c( 27| IDkoll 2wy (165)
< (=) (+4)

t
HDk/ U (t — )¢ (r)dr
0

||Dk¢||La (o, TJ)LI’/ (R)*
(166)

Lr(10,T])L4 (Rd)
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Dynamics of the nonlinear Klein—-Gordon equation in the nonrelativistic limit 941

Furthermore, by (106) we have that

_1
0% e <7077 00020 0 <11y < 20D,
and by following closely the argument in Section 5 of [59] we can deduce

Proposition 13 Letr > 1,d > 2, ¢ > 1. Let (p, q) be a Schrodinger-admissible pair, then

1-1)2r _
1% OVols wrgo.ryis) (=) Wollmg,. 0<T S0, (167)

(-1)% (168)

”‘Q{rf”llljx(Lf'([O,T])Lﬁ)ﬁlll:f(L}’O([O,T])L%) Se ' ||fHIID'S(Ll”([O,T])L‘i’(Rd))'

8.2.4 Maximal function estimates

In this subsection we study the maximal function estimates for the semigroup %; (¢) and the
integral operator f(; %, (t — 1) - dt in anisotropic Lebesgue spaces. To do this, we will need
the time decay properties proved in Sec. 8.2.1. As always, we first prove results for the case
r = 2, and then we write the modification for the general case.

Lemma7 [. Letq > 2, % < g < 400 and k € Z¢ with |k| > K(c), then
1B Z@Ovollpzee S )V Dol e, 0 < lt| S Vi=1,....d.
(169)
2. Letq>2, 5 <q <+ocoandk € Z¢ with |k| < K (c), then

10k 2 () Yol a0 S Oeoll 2, Vi=1,....d. (170)

i) kit
Proof Clearly it suffices to show the thesis for i = 1; recall that for any x = (x1,...,xq) €
R? we denote ¥ = (xa, ..., xg). By a standard TT* argument, (169) is equivalent to
y
/ P88 it @PED) o () < ()2 171
RA Lq/2,_o’o ~
XI;X.
If |k| Z K (c), then
—1 it(c2+ Py (€| (132) d)2 j—d |, —d/4 2
|7 RN g @)l S WP R, 0 < ] S ¢ (172)

on the other hand
IOk %)) 7 orll L, SNk F oxllper2 S 1. (173)
If we combine (172) and (173), we obtain
T2 F o] S P+ R )T 0 < i) S (174)
Now, if |x;| 2 1+ |z (k)>, by integrating by parts we get
B0 F ol S ¢ ()72 (175)
If x| S 14 k)3, by (174) we can deduce

—d/4

k2% 7 o] < ¢ (1+ | k)7 (176)
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942 S. Pasquali

Combining (175) and (176) we have

_ _ _1\—d/4
sup k2 () F ol S % ) 4 e (L Il )T ar
X,t

from which, by taking the Lﬁl/ % norm on both sides, we obtain (171). The proof for the case

lk| < K(c) is similar. O
Lemma8 Letq >2, 5 < g < 400 and k € Z¢ with |k;| Z K (c)?, then
Ik 2 f 0. S P ) VO 12 L0< St Vi=1,....d
Xii () ot 1) kit
(178)

Proof 1t suffices to prove the case i = 1. Recall that the solution of (151) is of the form

1
-1
24 Py(E) -t
hence, its frequency localization can be written as

1
ek 2+ P (&) —

For convenience, we introduce the following regions

E12{1—62§—C2/4},
e[t ()
p=1—c/4=<1—c" <Z|§ — +1

2
e ()

and we make the following decomposition

ﬁt.xf§

Uy = - (Zixle (T, 8).

(@4_1—2(0’1) 1/2 +a>( 172 +(1) (é,T)EEl,
4 Paeh -t = (L +nen) (L4 nen+c), Enek.  a79
2 _
—(%—%) +(5c2—r) (&, 7) € E3,
where a = a(c, &, 1) := (2(c, T) — |.§|2/c + )12, We denote
Oegi =7 258D (5 o e, i=1,23

T562+Pz(|$|)—t

First, we estimate Uy /1. Set o ng, (§1) = nglo Nk, +1(§1). First we notice that

xe, (€, 7) xe, (€, 7)

A+ P(E)—1 Q2na(c, T) +¢) (@ + 12 (c, r))

Xxe, (€, 7) 1 1
2 2 51 + 51
a2ty(c, 1) +0) —m“‘a m—}—a

3
=) Ajc.§.1)
j=I
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According to the above decomposition, we can rewrite [ ¢ as

Ux ¥t

£ o\x 12
e C RS

_yxe B, 0(A = Gy (ac'’?))
Y

(Z1xLk (T, 8)

3
=Y T ixm E DA E TG M (ac' ) (T D (T, 6)
j=1

+ 7} xg, (€, 1)1 — G (ac'/?)
W2 Pa(E) — T
=1 +I+ 1 +1V.

(Z1 Uk (T, 8)

Casek; 2 K (¢)?: First, we estimate II. Let & o be as in (125), then

eitr+i()‘c,§) - (‘J)~ o - ~ o 1
= f S (er;fc) Gop @3, e OO, )(E, 1)el/2eim—mac
I xR B

x sgn(xy — yl)dédy]dr.

1/2

By changing variable, &, = ¢'/?a(c, &, 7), and by setting & pi (§) = 6oy (é)&nkl (&1), we

obtain
o o .
1 < ‘deI sen(ey — yl)/en(c PN 18+ B 5 o ()T T O + Pa(lED. r)ds‘,

and by applying (169) we get

Mg / dyi

[ e B Dy )0 T (¢ + Pacel, |
L9

SN

< P2 )V / 16 px ()T £ (31, (2 + Pa(lE]), Dllzzdy

(I50)<(I57) an 1/g-3/2
cc k) I8 fllpre (180)
X]3%,

Since k1 > 0, III has the same upper bound as in (180).
Now we estimate /V: First notice that

= / dy, / R 5o BT T On ) E. 1) K (x1 — 1. . B)E,

Zu|51 ’7k1+l(‘§1)6’ix1§1
2+ Py(E) -t

By Young’s inequality for convolutions, Holder’s inequality and Minkowski’s inequality we
have

K(x1,a,8) = xg, (&, )(1 — G, (ac'’?))

1.

1Vl < H [ 160:@®OF0RIE D K = w10 Bl an

LY
< 18 fIILl.z_tII5U;(§)K(x1,a,§)||Lq,z_
X13X,

xp:é.T
< 10k f”L;ﬁf,J&UIE(E)K(le“v é)lngoLgLfgl-
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Integrating by parts it follows that

||O~‘O'/;(§)K(X1, a, S)HLE-.’OL%LZI
1

S D e G 01 = g (ac )] (@ + Pa(lED = ) 2. (18D
007 j O

Noticing that | — ac!/?| > ¢!/? > 1 in the support set of (1 — &y, (aCl/z))X‘gl_k”Ej;anl
(2 + P(I€]) — 1)~ we can deduce from (179) that there is no singularity if we integrate
(181), and this gives

160R @K 1@ E)ll ez, S Pl 72,
Now we estimate /: We begin by setting

u|<1 it (§1)e™18!

(21 (e, r)+6)("”' + (e, r))

Je1.a B) = xp, B, 0)F i, (@c'/?) / 4. (182)

One can check that
1= [ an [ D60 @OTOn IE DI~ 1.0, Bt
Similar to the estimate of 1V, by Young’s, Holder’s and Minkowski’s inequalities we obtain
1lae S e PI0S 02 150k@ 1o Dl 21,

By integration by parts we get

xg, G, 1) (ac?) / (|x i )“
J < l [ — + dé;.
70 @ 9IS @Qre. 1) + o+l g3 i (D i
Therefore,
150k E)J (1, @ Ol 1211,
1 = ~ 1/2 1 2 —1
< X, (€, T)& g, (ac'’?) N <|x i N ) 183
”\s-?ﬁsg;, (2rz<c,r>+c>(1+|x1|)§) & nlen) - (189

L?

and noticing that lac'’? — k1| < 20 in the support set of &y, (ac'’?), we can deduce that
2n(c, 1)+ ¢ 2 k%, and finally we obtain

150k@) T (1@ )l gepzrg, < il . (184)

The proof for the case k < —K (¢)? is similar. Furthermore, in the estimate of [y Yrp and
Uk ¥3 we can check that there is no singularity in (2 + Py(Jg]) — ©) ! for |&1| = ¢'/? and
(&, ) € E; U E3. Hence one can argue as in (182)—(184) and conclude. ]

2,00

. (xj)j#zt — Lx1,(x,-),-¢z,t‘ In the next lemma

In the last lemma we proved that [ .7 : L

2,00
we show that (.« : sz et Lxl,(xj)j;éz,['
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Lemma9 Letq >2, % < g < +o0, k € Z¢ with |ki| 2 cand h,i € {1, ... d} with h # i,
then

10k o £l oo < M2 gy PV D £l 1 , 0<tfSet (185)

’ ~
X3 (Xj) j£pst Xp () it

Proof 1t clearly suffices to consider the case h = 1,i = 2 and k, = c. The proof goes along
the same line of that of (178), and we will only prove in detail the parts that are different.
For convenience, we denote 6§ = (&1, &3, ..., &7). We introduce the following regions

F, = {‘L’ — < —02/4},
~ 12
Fzz{—c2/45r—c25|65|2(—'U§ +1)},

=12
Fzz{r—czzwsﬁ(—'ai' +1)},
C

and we make the following decomposition
2 ~
EL 4 ne,0) (-0 +a) (S +4a) Geo el
2 2 ~
F+ ) -1 = (Lt e ) (L +ne ), GeeF, (36
2
—(EE-5) + (3¢ -1). 66,7 € Fs,

denote
- 1 xr(0&, 1)
k6 = F ) 20> 2
KOV =T s T Pl — 1

We estimate [J; 6, since by definition of the regions IF; the estimate of the other terms
follow more easily, like in the last Lemma.
Set 61k, (§2) = nglo Niky+1 (§2). First we notice that

(Z: U ), 8), i=1,2,3.

XFy (&Ss T) XFy (55, t)

A+ PED =T (2ny(c.1) +0) (@ + (e, r))

xr, (0§, T) 1 1
22 : 3 T
Cue. D+ \-Sz+b Sz +b
3
=:ZBJ-(C,$,T).
j=1

According to the above decomposition, we can rewrite L ¥ as

U oy
3
=) T xw (5E, DB (E, D0k, (be' ) (Fi T f)(3,€)
J=1

4 7! xr, (GE, T)(1 — &niy (be'/2))
e 2+ Py(E) -t
=1+ 010+HII+1V.

(F1xLk (T, 8)
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The estimates of 11 and III follow in the same way as for (178) by exchanging the roles of
&1 and &. Now we estimate /: Set

XE, (6§, )50 (GE)G iy (be'/?

m(, 7) = 26(215(c. 7) + ©) ’

(187)

and notice that 2ty (c, 7) + ¢ = k% in the support set of m; hence, for sufficiently large ¢, we
have

XF, 00k (§)
m(, ) S 1/(74,
and therefore,
bl vz, pwen S k2| 2. (188)
2 53 3

Now, since by Young’s, Holder’s and Minkowski’s inequalities we have
| Fe amE OF a0k Dligaee S 1Fg gm @ D Fralk Dllpg oy,

S Mm@ ) (F O HI

Le oL
< ”m”LézLé,msd, ?11/ a2 | F x Ok f”LooL(Zsj)j#2 .
s ”m”Léngs,...,sd,rLg?/(qiz) 15k f”L'lQL%Xj)i#I” (189)
we can deduce that
||1||L<1<>° S k| 2|0k fIILl Z (190)

Now we estimate IV: Set

Xrs (0§, f)mfk(é)(l 01k, (D))
2+ P(E) —t

and notice that .# (f) is the solution of the inhomogeneous equation

mi(§, 1) = L AM(f) = T imiE (T f), (191)

=iy = Aca¥ — Fimi(E, 1) + P2(ED) — T)(Fin f).
Applying (159) (recall that ky 2> ¢), we have
(Pl S PNt (F) o2

d/2 —3/2
< el /||f||L1 2

()25
= RSl 2 (192)
2T jt
Next, for (¢, t) € supp(my),
) GEDEFs
e+ P(lED) —7] 2 ¢ (k) |kl (193)

By %l < L+ nle, 1)

2+ P2(IE]) — T| 2 (¢ + 1a(c, 1)), (€, T) € supp(my), (194)
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while for |&f‘ pe %(c + (¢, T)) we can exploit the fact that k|~ = |kz| = ¢ to obtain again
that

2+ Pa(IE]) — T| 2 (¢ + 12(c, 1)), (€, T) € supp(my), (195)
and by combining (191) with (194)—(195) we obtain

m ,T) S C )
‘ (K2l + ¢ + 12, )32
which gives
~ S clkal ™ 1
Imellzy g2, 1 Selkal (197)
Therefore, from(191) and (189) we can deduce
It ()l 2o S elhal ™ N g2 - (198)
xRt () 2t
For any ¢ > 2 we obtain by interpolation between (192) and (198)
1+d(l—l) —3/241)
(Ol Sc 32 k| Nfllpr z2 ; (199)
X15X,1 X2 ("j)j;ﬂvt
and replacing f by Ui f in (199), we finally obtain
11
s e Ty PP
X13X,1 X (Xj)j,-éz-’
m}
If we collect (178) and (185), we can deduce
Lemma 10 Letq > 2, % <q <400,k € 74 with kil = cand h,i € {1,...,d}, then
Ik 83 2 f I .20 S ) PO Sl e L0 <l SR (200)
! i) jathet () k!
Remark 21 1In the general case r > 2 we have
1. Letg > 2, 47’ <q <4ooandk € 74 with |k| 2 K(c), then
d(1-1
I8 % @Opolles  Se (=2) @y 3ol 2.
xi3 () jotis
0< | <Y vi=1,...,d. (201)

2. Letg =2, % < g < +ooand k € Z¢ with |k| < K (c), then

10k % wollaes  Se® IOl Vi=1d Q02)

i) ki

3. Letq 22, % < g < +ooand k € Z¢ with |k;| > K(c)> andi € {1, ..., d}, then

r—l+4d(1-1 _ _

10k 5 £l 000 <c ( r><k,-> TGO £ 02 , 0<t| SHh.
.xl-i(xj)j#;,t xi;(x]-)j#l-,t

(203)
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4. Letq =2, % < g < 400,k € Z? with |k;| > cand h,i € {1,...,d} with h # i, then

10k 7 f 1] .o

Xps(xj) jsthot

C1ad(1-1
< 1+d(1-1) (k)= O f e

xj3 () oot

, 0< [t <D (204)

5. Letin,%’ <q§+oo,k€ZdWith|k,~|zcandh,i ef{l,...,d}, then

15 33"Vt £l oo

Xps(xj) j£hot

_ _1
< 1+d(1-1) (ki) =3/ O, e L 0< i <D (205)

Xiiofj)j#i*t

8.2.5 Proof of the local well-posedness

In this subsection we use smoothing estimates, Strichartz estimates and maximal function
estimates in order to prove Proposition 7. In order to do so, it seems necessary to estimate
norms in which partial derivatives and anisotropic Lebesgue spaces have different directions,

for example || 831 Uy o f ;200 with |k|so = |k3|. As usual, we show results for the case
x2;(x/-)j#2.r
r = 2, and then we point out the modifications for the case r > 2.

Lemma 11 Leti,l,m € {1,...,d}, 1 < p,q, < 400. Assume that k = (ky, ..., kg) with
|kloo = lkm| Z ¢, then

Ok 92 I, pa < |10k 92 P . 206
10g X,fIILWj)#N S Ik me||Lx[;(x,>_/.#,, (206)
Proof
2
O 82 < 7 (2
” k ax[f”L)]:_‘fi(x_)_#_r ~ Z &1,Em %.7 nkl+hl(€:l)nkm+lm(§m)
B 100+ im0 <1 " LI(R?)
x [|0 82 P
{7 xmfllej)j#,
2
S N8k dx, fllpra .
i) it
m]

Lemma 12 1. Let (a, b) be order-2 admissible, i € {1,...,d}, g > 2, % < g < +oo and
k € 2% with |k|eo = K(c), then

~

d 2
15 9 e £l oo S 2T (Jkloo)* VT £

Xi3 () oot

Lapys 0<ltl S (207)
t =x

2. Let (a, b) be Schrodinger-admissible, i € {1, ...,d}, then

10605 flligrs S ¢ TP (kloo) P I0kfllp2 o 0<fel S (208)
’ i) i

||Dk8fi<;zi2f||Loo.(2 ) S ko) IO Ly O <11 SR (209)
xl-;.xj i X
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Proof Denote
L(f ) = / (Dk / %(r—r)f(r)dr,wm) dar.

By duality and the maximal function estimate (169)

VR (=S

Dk+l/%2(t — )y (nde

X175 o<l Lzl LE‘}
IO gy D0 | WDk = DY@ty
" o<1
(169)
2 el Va0, flle;LLtllwllL;Lg,
so by duality we obtain
Hmk [wa-nr@e] <P winio,,, . 210)
L,”OL.% L/"l Li,t
Therefore, by duality, Strichartz estimates (166) and (210)
|Z(f, )] < ‘Dk f%(—r)f(r)dr . Uy /%(—tWO)dI .
LX LX
S i (= P @11

which implies (207) for ¢ > 2 or a > 2. In the case a = ¢ = 2, (207) can be directly
deduced from (169). Furthermore, by (168), (157) and (159) we get

L@ ) S TP (o) 12 |||:|kf||L)lcﬁ(Xj » Alr 1l (212)

and we can deduce (208); by exchanging f and v, we get (209). O

We now summarize the results we will use in order to prove the local well-posedness of

(112): We omit the proof, it follows from the results of the previous subsections, together
with (206).

Proposition 14 Letd > 2, 8/d < p < +00,2 < q < +00, ¢ > 8/d, k € Z¢ with
lkloo = |ki| = ¢, h,i,l €{1,...,d). Then

3/2
ol mow|, . S elTvole, 213)
L.ri:(xj-)j#i.t
18 Za@ywollgs | S e I0olz. 0 <l S ¢, (214)
s ki
_4
I 2ol e 20,200 S PP | Tioll 2. 0 <] < (215)
1007 2 1l .2 ST £ll12 , (216)
X1 ) jogit X3 () jtiol
10k 82 5 £l .00 S M2 () VY O £ 1 L 0<f S (217)
xpi (X)) jo£p ot Xi3 () jtiol
_4
1505l e 2te S €70 )P0 flle L 0< il SE (218)
oo i) ki
4
||Dka§,%f||Lw,g) tsc”ww (ki) IO f Nl eomrain, 0 <ltl S (219)
) ki -
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dy 2 A 241 2
([ 3x,»<272f||L‘1 o S TR ()2 |0, Fllgesmasps 0 <t S e
j#io! X
(220)
8
< P
15 2 fll e 2240 S €7D I fll peprasn. (221)

For the case r > 2 we have the following results

Remark22 1. Let (a, b) be order-r admissible, i € {1,...,d},q > 2, %’ < q < +oo and
k € 79 with |k|ss = K (c), then

~

1) 2

_1 _ 2r
10k 8% £l s < A0=0H0=0)% gy o, £ 0< 1] S,

() oot Ly
(222)
2. Let (a, b) be Schrodinger-admissible, i € {1, ..., d}, then
106327V fllgare S 270 (Ikloo) =2 10k £l 1.2 . 0<t] S0h
‘I Xjjtiot
(223)
105 o fllpea S T o) T ND Sy O <l S €2,
"l \f, ,#, t X
(224)

Proposition 15 Letd > 2, 4r/d < p < +00, 2 < q < +00, ¢ > 4r/d, k € Z% with
lkloo = kil Z ¢, h,i,l €{1,...,d}. Then

HD i P, (t)on s < Dol 2, (225)
X s(x; )j# N3

d(1-1 -
10 % ol o | S (=5) (Ve Oyl 2, 0 < 11 £ 20D, (226)
i
N2

4(r—1) _
IO O30l oo 2y 20140 S PP Dol 2y 0 < 1] S 070 (227)

[m P SISl (228)
Lgitepy i X ji!
— —1+d(1-1
10k 85Dty f | oo < 02 g3 IOk flle
Xp () jh ot L )it
0 <] <20, (229)
— 1+7
NO03 ™D 8y Fll oo 2y 2000 S €7 TP (ki) T2 O ] 12 ,
[ e i3 () jstio!
0<|t] <D (230)
062V fll e S T () I 2
xl (x; )j#t Lm
1x
0<t] £, 231)
d 2 40—1)?
10 32(r I)W f||quo < C§+4p+2(rr*T)+4p(p+2(r717)) <ki>2(r—1)+l/q 10 £l 20-D4p »
i)yt L 2= TFD
1.x
0 < |t] <D, (232)
< 8(r—1)2
. (p+2(r—1))
N0k 2 fll oo o 20-04r S €70 ([mr f||L22<;:})++pp- (233)

1,x
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Dynamics of the nonlinear Klein—-Gordon equation in the nonrelativistic limit 951

For convenience, we state some technical results related to nonlinear mapping estimates.
Fori=1,...,dand N € N we set

Bﬂ%:[@“%””UM)e@%”:muQ@W“”JQMchL
B = [k, k™) e @Y max (KL k1) S e

Lemmal13 Lets >0, N >3,i € {l,...,d}, then

Z e Y1 -+ -0y ¥v

B,(.Al” s (12 )
Oie 7y () 200t
N
S Vol a1 00,2 Igll~d 1 7 N-1c0 . (234)
(12=:l ‘ ﬁ”:'ZD”-C(L*h'("/)/#h”)ﬂ:ll_[ d AL SLEL R
pa
Proof See proof of Lemma 3.1 in [50]. O

Lemma 14 Let N > landi € {1, ...,d}, and assume that 1 < p,q, p1,q1,---» PN, gN <
400 satisfy

1 1 1 1 1
—=— et —, = — e —,
P P1 PN 4 q1 4qN
then
N
3 O v+ O ¥ SN Y TG0 villaipr (239
B B i=1
i,2 l[‘:l,i,L-(L? Lf) i,2
Proof See proof of Lemma 3.3 in [50]. O

Lemma 15 Lets >0, N > landi € {1, ...,d}, andassumethat1 < p,q, p1,q1,.-., PN,
gn < o0 satisfy

1 1 1 1 1 1
—=—+ —, —=— et —,
p P1 PN q q1 qN
then
N
d
H%~WW@wm5NITW%ﬁﬂwy (236)
i=1
Proof See proof of Lemma 8.2 in [59]. O

Proof (Proposition 7, part (i), case r = 2) Since the nonlinearity contains terms of the form
(8?1//)’3 with o] < 2, |8| > m + 1, we introduce the space

3 d
Di={vyes ylp= > > 0%y Sc™t,

lel<2 I=1i,j=1
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952 S. Pasquali

where

(O] -
pr () = ||¢||llm.i;;+1/2+1/nz(Loo,z )

s ) it
P W) =Wl e,
D( «\‘[:(X./‘)j#,f)
(@) —
P W) = I ltsstim ey 24m,-

and for some &y > 0 that we will choose later.
Since |[¥|lp = ||¥|lp, without loss of generality we can assume that the nonlinearity
contain only terms of the form

PP @y P92y = Wy L wp,

where R := |B| = fo + [B1| + B2, |ai| = i (i = 1,2).
To prove the first part of Proposition 7 we will show that the map

F:.:D— D,
V(1) > By +ichP ((aﬁw)mza (3?¢)|a|52)

is a contraction mapping.
First, we have that by Proposition 14

d 4
,+7
2 @) Yollp S c2 ™ mendD I|1//o||M;+13+l/m.

Now, for the estimate of pfi) (magj F)(,j=1,...,d)itsuffices to estimate pfl) (zsz%za)‘fl F):
Indeed, by (206)

1 1
pi (hdG F) S py (hig F).
Using frequency-uniform decomposition, we write

(W ---Pg) = Z e (Cgy ¥ -+ - Oywy WR) + Z (O 1 -+ - O PR).
8" %
By exploiting (216) and (234) for the first sum and (219) and (236) for the second sum we
obtain

,01(1)(%2 Ay, (W1 -+ ¥R)) S Z Oy 1 -+ - 0w PR
B

1,1 ll,sﬂ'+l/2+l/m L1,2
O1e X1, j£10t

14+
+c Rl Z Loy Y1 -+ - Oew) YR
IB(R) R
b l|]jyl L)

£

I+ —A—+d
Sc TR Ry R,
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Dynamics of the nonlinear Klein—-Gordon equation in the nonrelativistic limit 953

Next, we estimate p" (a4 (¥ - - - Wg)) and p§" (@A (¥ - - - Wr)). By (221) and (220) we
have

3
dy 2 4 8
>0 W) S T 0y g
j=2 Zl,s+1/m( )

T+m
Ly

236) 4, 2 8
< et tamen Ry K

Then we consider pél)(sz{z 8)%] (@1 ---WR)): We have

(1) 2 < 2 oo
Py (A W) S| D+ ) Ik (Bl
kezd kezd
|k|oozc |k|oo,§C

=:1I[+1V.
Again by (220) and (236) we obtain

1A% 5 c2 " m+2 T m(m+2) ||lI/1 . lI/R” 2im
JLs+1/m (Ltl,;—m)
d 2 4
< rtantEmry Ry |R.

Furthermore, we have that

ms{ > ++ > ||kaa§1(wl...wR)||inl._o&)_ .
kezd kezd v

= GiI(Y) + - Ga(y).
Using the frequency-uniform decomposition, (217), (234) and (235) we have that
Gi(p) S RIS, i=1,.d,
therefore
1S MRy K

Finally, we estimate pél)(;z{g Bfl_ (@1 ...Wg)). It suffices to consider the case i = 1: By
(168) and (157) we have

10k 437, Flpgopansion S P () 10k 1 2o
and by (218) and (207) we obtain
P (e 02 (W - W) S i Ry R
Collecting all estimates, we have
1F @ < TR ol yoam + T T SRRy,

m+1<R<M
(237)
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and for ¢ > 1 sufficiently large we can conclude by a standard contraction mapping argument
(see, for example, the proof of Theorem 1.1 in [16]), by choosing

8 > do(d 2) d + 4 ! + 3d + 2 + 8 + h
> ,m2) i =max | -+ —, — + — -
0%, 2 mm4+2m 2m mm+2) mm+2) md
(238)
O

Remark 23 By arguing in the same way for the general case r > 2 we end up with the
condition

8 > 8o(d, m,r) (239)
. 1 4r r—1 3d 2rm+8@r—1>* 4@ —1)7
'_max<d(17;>+mz(m+2(r—l))’ m T T im0y T )

(240)

Remark 24 The quantity 8o(d, [, r) defined in Corollary 1 is actually the right-hand side of
(240) with m replaced by 2(I — 1).

In order to prove the second part of Proposition 7 we will exploit another contraction
mapping argument, like in the proof of Theorem 1 in [28] (which in turn is based on the
proof of Theorem 4.1 of [30]). In the following, we denote by a (Q), 7« a fixed family of
nonoverlapping cubes of size R such that RY = | J o Qa-

Lemma 16 Letd > 2 and r > 2, then the following estimates hold.

— (Local smoothing, homogeneous case)

1/2
sup (/ / |D§‘“2%(r>¢o(x)|2drdx) S TRV ol 2, (241)
Qq /R

aeZd
12
STIRE Y </ /Il/f(t,x)Izdtdx> :(242)
2 wezd N Q1

— (Local smoothing, inhomogeneous case) the solution of the inhomogeneous Cauchy prob-
lem

D [ w4~ o e. e
1

— iV, =Ac, ¥+ f(t,x), tel,xeR?

such that Yo = 0 satisfies

sup 103" DY 20,200 S TV RTYED D D 2oz 243

d
a el aezd

— (Maximal function estimate) For any s > d + % we have

172 1
(/R sup I%r(l)l/fo(x)lzdx> < 0D o, (244)

4L e2r=1

Proof (sketch) The proof in the case r = 2 can be obtained simply by rescaling Lemma 3,
Lemma 4, Lemma 5 and Lemma 6 of [28]. The proof in the case r > 2 can be obtained by
considering the operator %, (¢) and 7 (t) instead of % (t) and <% (¢). ]
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Dynamics of the nonlinear Klein—-Gordon equation in the nonrelativistic limit 955

Proof (Proposition 7, part (ii), case r = 2) We will prove the result only for s = s, since the
general case follows from commutator estimates. For simplicity, we only deal with the case

P((%Y)q)<2, (3% ) <) = 2 W Rpor v

More precisely, we fix a positive constant v < 1/3, and we define the space Z ? of all function
¢ : I x R — C such that the following three conditions hold

@l oo rymso < ™2, (245)

1/2
sup <// 1080 (t, x)| dxdt) <71, (246)

1B1= so+1/2“€Z"

2
(sup sup [Dip(1, ) ) <c (247)
tel xeQ,
We want to show that the map
78— 78,
Y (t) > U)o + i P(OXY)|a<2, OV ) ja1<2)

is a contraction mapping.
We can observe that for any g € 74 with | Bl =s0 — %

OF O3 W o W o7 v) = L 07 W 03w oy W+ 05w 0L 0% v oy W+ 07 v o w ol oy v
Y
+R<(3 I'b‘)2,<h/|<5() 1/2)

Now, for any ¥ € Za we have

1/2
sup (// 108y (1, x)|2dxdt>

1Bl= S0+1/2°‘€Zd

1/2
S D sw (/ / |%z(r)afwo(x)|2dxdr)
1 o

|Bl=so+1/2 ® €2

A INA

Iﬁ\—so+1/2°‘EZd

/%(r—r)aﬂ( Y2y o2 gy

2 1/2
dxdt)
(241),(242)

S eTPlollg +2TVED N Z D 108089 059 08 Wl 20,2y

|Bol=s0—3/2 j.k,m=1 qez7d
12
+ 62/ 1Dy R ¥)2<iyi<so—172) I 2dt
0

S T3 Yol o + TV ED

172
sup (/f |8’31//|2dxdt) Z sup sup |D21//|2

1Bol= so+1/2 aeZ? g 1€l ¥€Qa
+ AT sup ¥ 11375
tel
Cl—5T1/3 +C2T1/(4d)TvC—25 +62TC_35 < TV, (248)

@ Springer



956 S. Pasquali

where in the last inequality we have chosen § >> 1 such that
AT V3 L 20 pl/Ed) | 27381y < = (20D, (249)

s
Next, we have that for any ¢ € Zj

¥ llzoecrymso < 1Yol aso +SUP/ %t — T)d2 Y () 0 ¥ (0) 97, W ()| 2dT
te

=+ sup

tel
(242)

S Iollmso + T sup 107, (1) 93, ¥ (1) 5, ¥ (D)l 2
tel :

12
ey ( [ [iprP@E v afmwa))ﬁdrdx)
Ou J1

aezZd
3
S Iollmso + Tsup [¥l° 4,
tel H3*

- 12
te X D (/Q /I|D§°_3/28§,1/f(t)a v(1) o ll/f(t)IZdtdx>

j.kom=1qe7d

1/2
e Z (/Q /1 |R(D’)‘/W)25|)’\5S0—1/2|2dtdx>

aeZd

< Noll o +T||w||3

Dﬁ/Z/ %z(t—r)D;ofa/zdfjw(r) 92 (1) 2 ()
’ L

d
(I)H7+2

1/2
+c sup (// |8ﬂ1//| dxdt) Z sup sup |D)%w|2

IBl= 50+1/2"‘€Zd el xeo,
+ T2 o0y o
S ol + (T + TV 4 eTve™?
S, (250)
where in the last inequality we have chosen § >> 1 such that

1

(T + T2 e ™ 41Vl =2 < 5 T= o). (251)
Then, we have that for any i € Z‘IS
12
2 2
sup sup Dy (2, x)|
wezd tel xeQy
T<c2r=D (244) 1
~ dl1-1
< 1¥ollmso + ¢ ( ’)TIIIPIISLOO(I)HSO
1
< ol gso + ¢ W(3) g
<, (252)
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where in the last inequality we have chosen § >> 1 such that

_1y_
A1=1)=20 <1, T=0crDy, (253)

Finally, if for any ¢ € Z‘; we set Ar(¢) as the maximum between the three following
quantities,

> sup sup [DIy(r. x)P,
wezd tel xeQqy

Al Loo(rymiso s
1/2
0T sup (/[ 108, x)|2dxdt> ,
I81= so+1/2“€Z"
we can observe that for any ¢, ¢o € Z?
AT(F($1) = F($2)) < KTV Ar(¢1 — o),

where K is a positive constant which does not depend on ¢. Hence if we choose § > 1 such
that (251), (249), (253) and

KT ¢ < (254)

0| —

hold true, we can conclude. O

9 Long-time approximation

Now we study the evolution of the error between the approximate solution ,, namely the
solution of (99), and the original solution ¥ of (3) for long (that means, c-dependent) time
intervals. First we prove a result for the linear case, then we consider the approximation of
small radiation solutions in the nonlinear case, and finally we make some remarks about the
approximation of standing waves and soliton solutions.

9.1 Linear case

Fix r > 1, and take {9 € H k+ko  where ko > 0 and k > 1 are the ones in Theorem 7.
Now, we want to estimate the space—time norm of the error § = ¥ — ¥,. In the linear
case we can observe that § satisfies

. 1 -
§=ic(V)ed+ ijq(r)*g(w(wa(t)v Va()). (255)

Proof (Theorem3) By applying the Strichartz estimate (14) (choose p = +00, ¢ = 2,r =
+00, s = 2), together with estimate (31) for the vector field of the remainder 2", estimate
(32) for the canonical transformation .7 "), and estimate (108) (choose p = ¢ = 2), we can
deduce Theorem 3. O

9.2 The nonlinear case: radiation solutions

Now, assume that we want to recover the approach of Sect. 9.1 to approximate radiation
solutions of the NLKG equation for long (c-dependent) timescales.
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958 S. Pasquali

We pursue such a program by a perturbative argument, considering a small radiation
solution ¥, = 1,44, of the normalized system (98) that exists up to times of order & (cz(’ -y,
r>1.

As an application of Proposition 1, we consider the following case. Fix r > 1,leto > 0
and let ¥, = 1,44 be a radiation solution of (98), namely such that

Nrad,0 = Nraq(0) € HETRoTotd/2(Rdy, (256)

where kg > 0 and k > 1 are the ones in Theorem 7.
Let §(¢) be a solution of (103); then, by Duhamel formula

8(t) := U (1,080 = e'"Vesy + / e 1=9Ved P (Y, ()% (s, 0)8ods. (257)
0

Now fix T < ¢20~D; we want to estimate the local-in-time norm in the space
L°([0, T]) H*(R?) of the error §(1).

By (13) we can estimate the first term. We can estimate the second term by (14): Hence
for any (p, g¢) Schrodinger-admissible exponents

t
H/’HUXVW%dp@%@»SQMS
0

L®([0,T]) HE
111 1_1

,,,,, +1
Sca r (V) 1 2dP(w“O)ﬁ(0”Lqurpw&W

1

1.1 1 1_1.1
St PO T AP (rad (DS Lyt o ke
1 ’ X

1.1
TP W) = AP Uraa COBON oy

=1, +11,,
but recalling (100) one has that

1 1 1
g2

A
< A

SR oNRI -1

1_1_1 ¢ 1/2 2(1-1)
w2 |:<(V)~> (nrud+f)rm]):| 8(1)

L qo.rywke’

Now fix a real number p €]0, 1[, and choose

p=2+p, (258)

2d 4d +2d 8
g=—" bomap ——
2d —4 +dp

— — 259
dp—4  2d+dp—4 (259)

1 1 1

we get (since [(c/(V))T 7 2|,y 0 < 1)

20-1)

1/2
) (n,~ad(c2r)+ﬁmd(c2z>)} (1)

2
k= rana-n [((WC

2’% k.q'
L, ([0, T Wy
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Now, since by Holder inequality

2(1-1)

e \ 12
[( ) (nmd(czr>+ﬁmd(c2z>>} 8(1)

(V) 2L ,
‘ L, " qo.rywte

c 172 2(1-1)
=< |:( V) ) (nrad(czt) + ﬁrad(czt)):| ”5(1‘)”1‘;’“([0]])1-11;,
¢ [T kd(14p/2)
' ([0, TTYWy

and by Sobolev product theorem (recall that / > 2, and that k >> 1) we can deduce that

¢ 1/2 5 . 5
(V) (Mrad (c“t) + Nraa(ct))
¢ Lf‘m (qo.TY WA/

T ¢ 1/2
/0 [( m) (nmd<c2r>+ﬁmd(c2r>)}

oy 201
” Nrad(€7t) + Mraa(c™t) ” 20-1(2-25) kd(+p/2)
([0.Tywy

2(-1)

1
20-0(2-1%) | C%)
dr

Wf‘d( 1+p/2)

IA

1

but since by Proposition 6 we have that for any o > 0

20-1(2— 1% 20-1)(2— £
L0 g o 5 2070 ””)GO,TDMS(HP/z),l,X
20-1(2— &
oL, ( ””)([O,T])Mé‘,],x
2(0-1)(2— 2
oL, ( '*”)qo,T])H!:*"*”’/2

> LX([0, TYHET /2,

we have that
2(1—-1)

20-1)(2— 2~
L ( Hp)([O,T])W;"d(H'p/Z)

L 2(1-1)
< T2p 2
~ 17radll L2°([0, T HEHo /2 (260)

177aall

but by Corollary 1 the right-hand side of (260) is finite and does not depend on ¢ > 1 for

I1rad.0ll ik tosar2 S, (261)
—1
« > max (50(d, 1,r),81(d, 1, r), h) = o*(d, 1, ). (262)

where ¢ > ¢ is sufficiently large, and where §o(d, [, ) and 61 (d, [, r) are defined in Corollary
1.

Furthermore, via (32) one can show that there exists ¢, x > 0 sufficiently large such that
for ¢ > ¢,y the term I 1> can be bounded by }2 b.

This means that we can estimate the L ([0, T]) H* norm of the error only for a small
(with respect to ¢) radiation solution, which is the statement of Proposition 16.

To summarize, we get the following result.

Proposition 16 Consider (58)onR?, d > 2. Letr > 1, andfixk, > 1. Assume thatl > 2 and
r< %(1—1). Then3ky = ko(r) > Osuch that forany k > ky and for any o > O the following
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holds: Consider the solution 1,44 of (98) with the initial datum 1yqq,0 € HFthotot+d/2(Rd)y
and call § the difference between the solution of the approximate equation (99) and the
original solution of the Hamilton equation for (58). Assume that 8y := 5(0) satisfies

1
1ol < -

Then there exist o := a*(d, l, r) > 0 and there exists c* := c*(r, k) > 1, such that for any
a > o and for any ¢ > c*, if nyqq.0 satisfies

17rad,0ll grrkororar S c

then

1
sup 18l S —. T S0,
1€[0,T] tooc

By exploiting (32) and Proposition 16, we obtain Theorem 4.

9.3 The nonlinear case: standing waves solutions

Now we consider the approximation of another important type of solutions, the so-called
standing waves solutions.

The issue of (in)stability of standing waves and solitons has a long history: For the NLS
equation and the NLKG the orbital stability of standing waves has been discussed first in
[53]; for the NLS, the orbital stability of one soliton solutions has been treated in [26], while
the asymptotic stability has been discussed in [20] for one soliton solutions, and in [48] and
[47] for N-solitons. For the higher-order Schrédinger equation we mention [37], which deals
with orbital stability of standing waves for fourth-order NLS-type equations. For the NLKG
equation, the instability of solitons and standing waves has been studied in [29,45,54].

As for the case of radiation solution, we should fix » > 1, and consider a standing wave
solution v, of (98), namely of the form

Yr (1, x) = €', (x), (263)
where € R, and n,, € .7 (R?) solves
—WNw = XH;;mp(ﬂw)-

Remark 25 Of course the existence of a standing wave for the simplified equation (98) is a
far from trivial question. For » = 1 [26] deals with the NLS equation; for r > 2, [37] deals
with the one-dimensional fourth-order NLS-type equation.

We also point out that in the case of a standing wave solution, if §(¢) satisfies (103), then
by Duhamel formula

§=ic(V)es(t) + dP(Wa(t), Ya(1))8(1).

Since
201

P! —itop y _ ol=1/2 (C>l/2 ( ¢ >1/2R "n.,)
e Nw,e€ Nw) = V). V). ele Nw ,
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we have that

2(1-1
-\ itw 1-1/2 ¢ c \'"? - itw —ito],
dP(Nw, Nw)e" “h =2 ). . cos(wt)ne €"“h + e ""“h),

and by setting § = e~/#, one gets

. o \2 o TR
—ih = (c(V)e + @)h + 2712 cos> =D (wr) <<V> ) [((W ) nw} (h+ e 21?h)

(264)
+ [dP(Wals), Ya(5)) = AP (s ) ] . (265)

Equation (264) is a Salpeter spinless equation with a periodic time-dependent potential;
therefore, in order to get some information about the error, one would need the corresponding
Strichartz estimates for Eq. (264). Unfortunately, in the literature of dispersive estimates there
are only few results for PDEs with time-dependent potentials, and the majority of them is of
perturbative nature; for the Schrodinger equation, we mention [22,25], in which Strichartz
estimates are proved in a nonperturbative framework.

Remark 26 By using Proposition 3 one can show that the NLKG can be approximated by the
simplified equation (3) locally uniformly in time, up to an error of order &(c~").

Remark 27 One could ask whether one could get a similar result for more general (in par-
ticular, moving) soliton solution of (98). Apart from the issue of existence and stability for
such solutions, one can check that, provided that a moving soliton solution for (98) exists,
then the error 6(#) must solve a (264)-type equation, namely a spinless Salpeter equation
with a time-dependent moving potential. Unfortunately, since Eq. (264), unlike KG, is not
manifestly covariant, one cannot apparently reduce to an analogue equation, and once again
one cannot justify the approximation over the &(1) timescale.

Acknowledgements The author would like to thank Professor Dario Bambusi, for introducing him to the
problem and for many valuable discussions and suggestions.

A Proof of Lemma 4

In order to normalize system (33), we used an adaptation of Theorem 4.4 in [2]. The result
is based on the method of Lie transform that we will recall in the following.

Letk > kj and p € (1, +00) be fixed.

Given an auxiliary function x analytic on WX?, we consider the auxiliary differential
equation

Y =iVx (W, ¥) = X, (¥, %) (266)
and denote by Cb§( its time-7 flow. A simple application of Cauchy inequality gives

Lemma 17 Let x and its symplectic gradient be analytic in By, ,(R). Fix 8 < R, and assume
that

sup  [1X, (¥, ¥)llk.p < 8.
B (R—5)
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Then, if we consider the time-t flow CD; of Xy we have that for |t| < 1

sup L) — Pl < sup IX, (W Dl -

By, p (R—0) By, p(R—0)
Definition 1 The map @ := @ )1( will be called the Lie transform generated by x.

Remark 28 Given G analytic on WX 7, consider the differential equation

¥ =Xc(, ¥, (267)
where by X we denote the vector field of G. Now define
P*G(p,9) =G oW, V).
In the new variables (¢, ¢) defined by (v, ¥) = @ (¢, ) Eq.(267) is equivalent to
¢ = XorG(®, p). (268)
Using the relation
L@ty = @) (x.6)
dr X X ’ ’

we formally get

o0
D G = Z Gy, (269)
=0
Go =G, (270)
1
G = T{X’ G-}, =1 271)

In order to estimate the terms appearing in (269) we exploit the following results

Lemma 18 Let R > 0, and assume that x, G are analytic on By ,(R).
Then, for any d € (0, R) we have that {x, G} is analytic on By (R — d), and

- 2
sup X6y (. Wllkp S - (272)
By, (R—d)

Lemma 19 Let R > 0, and assume that x, G are analytic on By, ,(R). Let] > 1, and consider
G as defined in (269); for any d € (0, R), we have that G is analytic on By, ,(R — d), and

_ 20\!
sup ||Xc,(w,w>||k,p§(—€). 273)

By »(R—d) d

Proof Fix [, and denote § := d/I. We look for a sequence C,(,f) such that

sup X6, (. Wk, SCP, m <.
By, p(R—m8)
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By (272) we can define the sequence

[ -
= sup IX6W, V).,

Bk,])(R)
O_ 20 7
Co' = 5, Cm=1 SUP X (W ) llk.p
m By, p(R)
= 2Ll sp 1% Dl
dm "1 Bip(R) o P
One has
I
o L2 - -
Cl=5\7 suw Xy, Wlkp| sup [ XcW, Yllk,p.
N\dg
kp(R) By p(R)
and by using the inequality I/ < /!e! we can conclude. O

Remark29 Let k > ki, p € (1, +00), and assume that x, F are analytic on By ,(R). Fix
d € (0, R), and assume also that

sup |1 X, (W, )l p < d/3,

By, p(R)
Then for |f] < 1
sup (1 X (@) r—r (¥, W,y = sup X Fow, —F (¥, Wik, p (274)
By, p(R—d) By p(R—d)
272) 5 _ _
< = sup [ Xy, Yllk,p sup IXF@r, ¥)llk.p-

By p(R) B, p(R)
(275)

Lemma20 Letk > ki, p € (1, +00), and assume that G is analytic on By ,(R), and that
hg satisfies PER. Then there exists x analytic on By, ,,(R) and Z analytic on By, ,(R) with Z
in normal form, namely {ho, Z} = 0, such that

{ho,x} + G = Z. (276)

Furthermore, we have the following estimates on the vector fields

sup Xz, V)llkp < sup X6, ¥) k. p, 277
Bip(R) Bip(R)
sup I Xy (W, Wllep S sup I1X6 (@, ¥k, p- (278)
Bip(R) Bip(R)

Proof One can check that the solution of (276) is

- 1 (T _ _
xW,¥) = ;/0 1 [G(@ (Y, ) — Z(@' (W, ¥))] dt,
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with T = 27. Indeed,

- d -
{ho, x}(Y, ¥) = - X (@ (Y, ¥))
S |s=0
1 2

d - -
t—  [G@ T W, ) = Z(@ (Y, )] dr

T2 o dsis=0
1 [ d P L
5 U [G@' (¥, ¥)) — Z(®' (¢, ¥))] dt

=27‘[0

1 . o
= - [16@' W9 —12@' W IN],

1 2 _ B
- Z/(; [G(@' (Y. ¥) — Z(D' (. )] dt

=G, ¥) = Z(, ).
Finally, (277) follows from the fact that

_ 1 T _
Xy (Y, ¥) = ;/0 107" o Xg_z(®' (Y, Y)dt

by applying property (25). O

Lemma21 Letk > ki, p € (1, +00), and assume that G is analytic on By ,(R), and that hg
satisfies PER. Let x be analytic on By, ,(R), and assume that it solves (276). For any | > 1
denote by hy | the functions defined recursively as in (269) from hy. Then for any d € (0, R)
one has that hy ; is analytic on By ,(R — d), and

!
. . 5 .
sup ([ Xng, (¥, Y)llk,p =2 sup (X, ¥)lk,p (d Sup)IIXX(IP, I/f)llk,p) .

By, p(R—d) By p(R) By p(R
(279)
Proof By using (276) one gets that g1 = Z — G is analytic on By ,(R). Then by exploiting
(275) one gets the result. O

Lemma22 Letk; > 1, p € (1, +00), R > 0, m > 0, and consider the Hamiltonian
H™ (Y, ¥) = ho(p, ) + eh(Y, ) + 2" (W, ) + " F (9, 9). (280)
Assume that hq satisfies PER and INV, that h satisfies NF, and that

sup (| X; (W, ¥)lix.p < Fo,
Bip(R)

sup 1 X po (¥, Yllk.p < F.
Bk,p(R)

Fix§ < R/(m + 1), and assume also that ZM qre analytic on By p(R — md), and that

sup 1 Xz0 W, V)l = 0,

B, p(R—m8)
m—1
sup ([ Xz (W, Wllep < F Y &KL, m>1,
By, p(R—m8) izo
sup [ Xpon (W, Wl p < F K, m=1, (281)
By, p(R—m8)
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with K == £ (18F + 5Fp).
Then, if eK; < 1/2 there exists a canonical transformation %(m) analytic on By ,(R —
(m + 1)8) such that

sup |7 WL 9) — (U V) llk,p < 2me™ T, (282)
Bk,,,(R—m:S)

HHD .= g o 70 has the form (280) and satisfies (281) with m replaced by m + 1.

Proof The key point of the lemma is to look for %(m) as the time-one map of the Hamiltonian
vector field of an analytic function ¢”*!y,,. Hence consider the differential equation

W) = Xenety,, (. D); (283)

by standard theory we have that, if || X m+1 ou 1 Bip (R—mé) is sufficiently small and (v, Vo) €
By, p(R — (m + 1)), then the solution of (283) exists for |¢| < 1. Therefore, we can define

Z,ig : By,p(R — (m +1)8) — By (R —md), and in particular the corresponding time-one
map %(m) = 9,,{7 »» which is an analytic canonical transformation, " !-close to the identity.
We have

(MDY (ho + eh + 2™ + " TVFM™) = by 4 gh + £ 2™
+ 8m+1 I:{Xm, hO} + F(m)]
+ (ho 0 FIHD _p _gmtiy ho}) +elho ™D _j (284)

+e (Z(m) 0 g m+h) _ Z(m)) 4 gmtl (F(m) o gm+l) _ F(m)) . (285)

It is easy to see that the first three terms are already normalized, that the term in the second
line is the nonnormalized part of order m+1 that will vanish through the choice of a suitable
Xm» and that the last lines contains all the terms of order higher than m+1.

Now we want to determine y,, in order to solve the so-called homological equation

{Xms ho} + F™ = Zy11,

with Z,,11 in normal form. The existence of y,, and Z,, is ensured by Lemma 20, and by
applying (277) and the inductive hypothesis we get

sup || Xy, (¥, 1ﬁ)llk,p <2nF, (286)
By p(R—ms)
sup (| Xz, (¥, 1/_f)||k,p <2mF. (287)
By p(R—m8)

Now define Z+D .= 7z0m) 4 gm Zm+1, and notice that by Lemma 17 we can deduce the
estimate of X ;1) on By, ,(R— (m+1)8) and (282) atlevel m + 1. Next, set "2 F D .=
(286) + (287). Then we can use (275) and (279), in order to get
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sup 11X 2 ponsy (W, ) Ik, p (288)
By, p(R—(m+1)8)

10 5 5 ml 5 )
<|—¢&"K]'eF+ ~¢Fy+ ~¢F E &K+ =eFe"K" g™ sup 1 X 5, (W, ) Ik, p
8 ‘ d 5 4 T8 ’ Br.p(R—m$ '
i=0 k,p( )

10 5 5 ' 5
=" +? (88’"1<;"F+ ; 0+8F28’K_§+8Fs’"1<;") sup 11X, (W, Ik p-

i=0 Bk_,,(Rme)
(289)
If m = 0, then the third term is not present, and (289) reads
- » (15 5 2
sup N Xpro (W, W)lk,p <& | —F+ - F ) 2nF < &K F.
By (R—5) 8 8
If m > 1, we exploit the smallness condition ¢ Ky < 1/2, and (289) reads
T 13 5 m yp-m m+2 m+1
sup 1 X gmt2 poneny (Y, Y |lk,p < ?SF + gsFo 2meF "K' =¢ FK"™".
Bk.])(R_(’n+1)8)
[m}

Now fix R > 0.

Proof (Lemma 4) The Hamiltonian (33) satisfies the assumptions of Lemma 22 with m = 0,
Fy , in place of FO and hy  in place offz, F = K,g;r) r22NT By = K,Eh;) r22NT(For
simplicity we will continue to denote by F and Fj the last two quantities.) So we apply

Lemma 22 with § = R/4, provided that
57 (18F + 5Fy)e < .
— &< =,
R " =2

which is true due to (44). Hence there exists an analytic canonical transformation 98(2 :
Bi.p(3R/4) — B p(R) with

sup 1N W) — (W ) lkp < 27 F e,

By ,(3R/4)
such that
Hy,o Ty =ho+ehy, +eZy + 2%y, (290)
z\ = (Fn.,), (291)

82%’1(\}) = 2FM

= (hoo 7 — ho— el hol) +elhn.r 0 TN — ) +e (23 0 73 - 7))

+ &% (Fys o TN = Fu ). (292)
sup || X oW, Wy < Fo+ F =: 6 Fo, (293)
Be,G3R/4)  NrTEN P
_ 8 -
sup X oy (¥, Yllk,p = - (I8F +5F)F =:6 F. (294)
Bi,GR/4) N R
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Again (290) satisfies the assumptions of Lemma 22 with m = 0, and hy , + Zj(vl) and %f\})
in place of F(© and h.

Now fix § := §(R) = %, and apply r times Lemma 22; we get an Hamiltonian of the
form (45), such that

sup  [1X 00 (W, ¥)llkp <26 F, (295)
By, p(R/2) N
sup  [IX o)W, )l <GF. (296)
By, p(R/2) N
O

B Interpolation theory for relativistic Sobolev spaces

In this section we show an analogue of Theorem 6.4.5 (7) in [11] for the relativistic Sobolev
spaces ”//Ck’p, keR,1 < p < +oo. We recall that

wor (R3) = {u € LP : full iy == e (Veuller < +oo} . keR, 1<p<+oo.

In order to state the main result of this section, we exploit notations and well-known results
coming from complex interpolation theory. (See [11] for a detailed introduction to this topic.)

In order to study the relativistic Sobolev spaces, we have to recall the notion of Fourier
multipliers.

Definition2 Let I < p < +o0, and p € .%’. We call p a Fourier multiplier on L? (RY) if
the convolution (Z ~!p) x f € LP(R?) forall f € LP(RY), and if

sup  [[(F'p) * fllLr < +o00. (297)
I llLp=1

The linear space of all such p is denoted by M), and is endowed with the above norm (297).

One can check that for any p € (1, +00) one has M, = M, (where 1/p +1/p" = 1),
and that by Parseval’s formula M, = L°°. Furthermore, by Riesz—Thorin theorem one gets
that for any p € M), N M, and for any 6 € (0, 1)

1-6 6

+ —. (298)
Po P1

In particular, one can deduce that || - ||y, decreases with p € (1, 2], and that M, C M, for
anyl < p<gqg <2

1
1-60 0
< _
||IO||M,, = ”’OHMpO”p“Mp]’ p =

More generally, if Hy and H; are Hilbert spaces, one can introduce a similar definition of
Fourier multiplier. We use the notation .’ (Hy, H;) in order to denote the space of all linear
continuous maps from . (R4, Hy) to Hj.

Definition3 Let 1 < p < +o0, let Hy and H; be two Hilbert spaces, and consider p €
' (Hy, Hy). We call p a Fourier multiplier if the convolution (ﬂ_lp) x f € LP(H)) for
all f € L?(Hp), and if

sup  1(Z o) fllrm,) < +oo. (299)
Il agy=1

The linear space of all such p is denoted by M, (Hyp, H}), and is endowed with the above
norm (299).
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Next we recall Mihlin multiplier theorem (Theorem 6.1.6 in [11]).

Theorem 9 Let Hy and Hy be Hilbert spaces, and assume that p : R? — L(Hy, H}) be such
that

E1ID® p &)l Lro, 1) < K, VE € R Jal < L
for some integer L > d /2. Then p € M,(Hy, Hy) forany 1 < p < 400, and

||,0||M,, <CpK, 1<p<+oo.

Now, recall the Littlewood—Paley functions (¢;) j>o defined in (24), and introduce the
maps ¢ :." — %" and & : " — ' via formulas

(JIHj=¢jxf, j=0, (300)
Pgi= G¢j*gj. j=0, (301)
j=0

where g = (gj)j=0 with g; € . for all j, and
odo == o + ¢1,
opji=¢j1+¢; +djr1, j=1.

One can check that o 7 f = fVf € .7/ sinced¢jx¢p; = ¢; forall j. We then introduce
for ¢ > 1 and k > 0 the space

lf’k =1())jez : ck Z(CZ + |j|2)k|Zj|2 < 400
JEL

Theorem10 Letc > 1,k >0, 1 < p < 4+00. Then (V)IC‘LP is a retract opr(lg’k), namely
that the operators

I WEP — LP 2R
P LPE2R) — P
satisfy & o ¢ =idon “//Ck’p.
Proof First we show that ¢ : ch’p — Lp(lg ’k) is bounded.
Since ¢ f = (F 'x.) * #kf, where
(Xc®)j = (@ + EP)F2¢;8). j=0

JEf = FTNE+ EPY ),

we have that for any o € N¢

Xe 2k = ke Xe jl) = Ba
1D X @)l g by < €1 D QI HMID (xe®)j) < K
j=0
because the sum consists of at most two nonzero terms for each &. Thus ¢ €
M p(%k’p ,L? (13 ’k)) by Mihlin multiplier theorem.
On the other hand, consider &2 : Lp(lcz’k) — ch’p.
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Since /f o Pg = (F18.) % &(k), Where
8 = (8))j>0;
g = 2% gj)j=0.
Se(8)g =Y 27K + 5P 59 E)g;.

Jj=0
we have that for any a € N¢
1/2
E1 1D 8o oy < €1 | D@D +1€1) 56, | < K
Jj=0

because the sum consists of at most four nonzero terms for each &. Thus & ¢
M,(L? (ZZ ’k), %k,p ) by Mihlin multiplier theorem, and we can conclude. ]

Corollary 2 Let 6 € (0, 1), and assume that ko, ky > 0 (ko # k1) and po, p1 € (1, +00)
satisfy

k= (1—0)ko+ 0k,
1 1-6 @
JRE— + —.

P po P

Then (W00, Wl Py = WP,

The previous corollary, combined with the classical 3 lines theorem (Lemma 1.1.2in[11]),
immediately leads us to the following Proposition.

Proposition 17 Let kg # ki, 1 < p < 400, and assume that T : ch(),p — cho’p has norm
My, and that T : %kl’p — chl’P has norm M. Then

T 5P - w5, k= (1 —0)ko + ki,

with norm M < Mé_er.
Now we conclude with the proof of Theorem 5.

Proof (Theorem 5) Estimates (21) clearly follow from Proposition 1 if we can prove that for
any « and for any ¢ € [2, 6]

VY # e (V) llLa—ra S, (302)
{V)e Z(V) *llLasrs S 1. (303)
Indeed in this case one would have
IV O P A+ VIl g = V)P e Faypoll g
but

1/g—1 1 1/g—1 i
V)TV e Ve ol o S V)T Ve iyl
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hence

a—1 A 1_1_1 1/2
(V)T O P (— A+ VYol s St PRV 2ol

1_1_1 1/2
S o IV 2ol 2

To prove (303) we first show that it holds for « = 2k, k € N. We argue by induction. The
case k = 0 is true by Theorem 6. Now, suppose that (303) holds for « = 2(k — 1), then

l(c? = A 2(c* — A Lo ra
= [l(c* = A)(c* — )2 (P — ) (e = A) N pes
<@ = 2 (r = A (P - A e
= AP = (@ = )T D — A e
<@ = ) 2 — A (P = AL
ol Yl R Y L AN () Rl Y
1= A = A2, (@@ = AP = ) Y s

<N = A Mpaors + 1 = AP = A Npamre S 1,

since
2 @ = Dl § o < (@416
’ Pl @vigp? -
Similarly we can show (303) for « = —2k, k € N. By Proposition 17 one can extend the
result to any o € R via interpolation theory. O
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