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Abstract
We study the nonlinear Klein–Gordon (NLKG) equation on a manifold M in the nonrela-
tivistic limit, namely as the speed of light c tends to infinity. In particular, we consider a
higher-order normalized approximation of NLKG (which corresponds to the NLS at order
r = 1) and prove that when M is a smooth compact manifold or R

d , the solution of the
approximating equation approximates the solution of the NLKG locally uniformly in time.
When M = R

d , d ≥ 2, we also prove that for r ≥ 2 small radiation solutions of the order-
r normalized equation approximate solutions of the nonlinear NLKG up to times of order
O(c2(r−1)). We also prove a global existence result uniform with respect to c for the NLKG
equation on R

3 with cubic nonlinearity for small initial data and Strichartz estimates for the
Klein–Gordon equation with potential on R

3.

Keywords Nonrelativistic limit · Nonlinear Klein–Gordon equation · Birkhoff normal
form · Long-time behavior

Mathematics Subject Classification 37K55 · 70H08 · 70K45 · 81Q05

1 Introduction

In this paper the nonlinear Klein–Gordon (NLKG) equation in the nonrelativistic limit,
namely as the speed of light c tends to infinity, is studied. Formal computations going back
to the first half of the last century suggest that, up to corrections of order O(c−2), the system
should be described by the nonlinear Schrödinger (NLS) equation. Subsequent mathematical
results have shown that the NLS describes the dynamics over timescales of order O(1).

The nonrelativistic limit for theKlein–Gordon equation onR
d has been extensively studied

over more then 30 years, and essentially all the known results only show convergence of the
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solutions of NLKG to the solutions of the approximate equation for times of orderO(1). The
typical statement ensures convergence locally uniformly in time. In a first series of results
(see [35,42,57]) it was shown that, if the initial data are in a certain smoothness class, then
the solutions converge in a weaker topology to the solutions of the approximating equation.
These are informally called “results with loss of smoothness.” Although in this paper a longer
time convergence is proved, our results also fill in this group.

Some other results, essentially due to Machihara, Masmoudi, Nakanishi and Ozawa,
ensure convergence without loss of regularity in the energy space, again over timescales
of order O(1) (see [36,38,44]).

Concerning radiation solutions there is a remarkable result (see [43]) by Nakanishi, who
considered the complex NLKG in the defocusing case, in which it is known that all solutions
scatter (and thus the scattering operator exists), and proved that the scattering operator of the
NLKG equation converges to the scattering operator of the NLS. It is important to remark
that this result is not contained in the one proved here and does not contain it.

Recently Lu and Zhang in [34] proved a result which concerns the NLKGwith a quadratic
nonlinearity. Here the problem is that the typical scale over which the standard approach
allows to control the dynamics is O(c−1), while the dynamics of the approximating equation
takes place over timescales of order O(1). In that work the authors are able to use a normal
form transformation (in a spirit quite different from ours) in order to extend the time of
validity of the approximation over the O(1) timescale. We did not try to reproduce or extend
that result.

In this paper we prove two kinds of results for the dynamics of NLKG: a global existence
result (see Theorem 1) which is uniform for sufficiently large values of c > 0, and approx-
imation results (see Theorems 2 and 3) that allow to approximate solutions of NLKG by
solutions of suitable higher-order NLS equations. Approximation results are different in the
case where the equation lives on R

d or in a compact manifold: When M is a smooth compact
manifold orR

d the solution of NLS approximates the solution of the original equation locally
uniformly in time; when M = R

d , d ≥ 2, it is possible to prove that for r > 1 solutions of
the order-r normalized equation approximate solutions of the NLKG equation up to times of
order O(c2(r−1)).

The present paper can be thought as an example in which techniques from canonical
perturbation theory are used together with results from the theory of dispersive equations in
order to understand the singular limit of Hamiltonian PDEs. In this context, the nonrelativistic
limit of the NLKG is a relevant example.

The issue of nonrelativistic limit has been studied also in the more general Maxwell–
Klein–Gordon system [10,39], in the Klein–Gordon–Zakharov system [40,41], in the Hartree
equation [17] and in the pseudo-relativistic NLS [18]. However, all these results proved the
convergence of the solutions of the limiting system in the energy space ([17] studied also
the convergence in Hk), locally uniformly in time; no information could be obtained about
the convergence of solutions for longer (in the case of NLKG, which means c-dependent)
timescales. On the other hand, in the recent [27], which studies the nonrelativistic limit of
the Vlasov–Maxwell system, the authors were able to prove a stability result for solutions
which lie in a neighborhood of stable equilibria of the system; this result is valid for times
which are polynomial in terms of the inverse of the speed of light, and does not exhibit loss
of smoothness.

Other examples of singular perturbation problems that have been studied either with
canonical perturbation theory or with multiscale analysis are the problem of the continu-
ous approximation of lattice dynamics (see, e.g., [6,51]) and the semiclassical analysis of
Schrödinger operators (see, e.g., [1,46]). In the framework of lattice dynamics, the timescale
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Dynamics of the nonlinear Klein–Gordon equation in the nonrelativistic limit 905

covered by all known results is that typical of averaging theorems, which corresponds to our
O(1) timescale. The methods developed in the present paper should allow to extend the time
of validity of those results.

The paper is organized as follows. In Sect. 2 we state the results of the paper, together with
examples and comments. In Sect. 3 we show Strichartz estimates for the linear KG equation
and for the KG equation with potential, as well as a global existence result uniform with
respect to c for the cubic NLKG equation on R

3. In Sect. 4 we state the main abstract result
of the paper. In Sect. 5 we present the proof of the abstract result, which is based on aGalerkin
cutoff technique, along with remarks and variant of the result. Next, in Sect. 6 we apply the
abstract theorem to the NLKG equation, making explicit computations of the normal form at
the first and at the second step. In Sect. 7 we deduce a result about the approximation of solu-
tions locally uniformly in time. In Sect. 8 we study the properties of the normalized equation,
namely its dispersive properties in the linear case and its well-posedness for solutions with
small initial data in the nonlinear case. In Sect. 9 we discuss the approximation for longer
timescales: In particular, to deduce the latter we exploit some dispersive properties of the
KG equation reported in Sect. 3. Finally, in “Appendix A” we report all technical lemmata
used in Birkhoff normal form estimates (the approach is essentially the same as in [2]), and
in “Appendix B” we prove some interpolation theory results for relativistic Sobolev spaces,
and we exploit them to deduce Strichartz estimates for the KG equation with potential.

2 Statement of themain results

The NLKG equation describes the motion of a spinless particle with mass m > 0. Consider
first the real NLKG

�
2

2mc2
utt − �

2

2m
Δu + mc2

2
u + λ|u|2(l−1)u = 0, (1)

where c > 0 is the speed of light, � > 0 is the Planck constant, λ ∈ R, l ≥ 2, c > 0.
In the following m = 1, � = 1. As anticipated above, one is interested in the behavior of

solutions as c → ∞.
First it is convenient to reduce Eq. (1) to a first-order system, by making the following

symplectic change variables

ψ := 1√
2

[( 〈∇〉c
c

)1/2

u − i

(
c

〈∇〉c
)1/2

v

]
, v = ut/c

2,

where
〈∇〉c := (c2 − Δ)1/2, (2)

which reduces (1) to the form

−iψt = c〈∇〉cψ + λ

2l

(
c

〈∇〉c
)1/2

[(
c

〈∇〉c
)1/2

(ψ + ψ̄)

]2l−1

, (3)

which is Hamiltonian with Hamiltonian function given by

H(ψ̄, ψ) = 〈
ψ̄, c〈∇〉cψ

〉+ λ

2l

∫ [(
c

〈∇〉c
)1/2

ψ + ψ̄√
2

]2l
dx . (4)
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To state our first result, introduce for any k ∈ R and for any 1 < p < ∞ the following
relativistic Sobolev spaces

W
k,p
c (R3) :=

{
u ∈ L p : ‖u‖

W
k,p
c

:= ‖c−k 〈∇〉kcu‖L p < +∞
}

, (5)

H k
c (R3) :=

{
u ∈ L2 : ‖u‖H k

c
:= ‖c−k 〈∇〉kcu‖L2 < +∞

}
, (6)

and remark that the energy space isH 1/2
c . Remark that for finite c > 0 such spaces coincide

with the standard Sobolev spaces, while for c = ∞ they are equivalent to the Lebesgue
spaces L p .

In the following the notation a � b is used to mean: there exists a positive constant K
that does not depend on c such that a ≤ Kb.

We begin with a global existence result for the NLKG (3) in the cubic case, l = 2, for
small initial data.

Theorem 1 Consider Eq. (3) with l = 2 on R
3.

There exist ε∗ > 0 and c∗ > 0 such that for any c > c∗, if the norm of the initial datum
ψ0 fulfills

‖ψ0‖H 1/2
c

≤ ε∗, (7)

then the corresponding solution ψ(t) of (3) exists globally in time:

‖ψ(t)‖
L∞
t H

1/2
c

� ‖ψ0‖H 1/2
c

. (8)

We remark that the constant involved in the estimate (8) does not depend on c.

Remark 1 For finite c this is the standard result for small amplitude solution, while for
c = ∞ it becomes the standard result for the NLS: Thus Theorem 1 interpolates between
these apparently completely different situations. Remark that the lack of a priori estimates
for the solutions of NLKG in the limit c → ∞ was the main obstruction in order to obtain
global existence results uniform in c in standard Sobolev spaces.

One is now interested in discussing the approximation of the solutions of NLKG with
NLS-type equations. Before giving the result we describe the general strategy we use to get
them.

Remark that Eq. (1) is Hamiltonian with Hamiltonian function (4). If one divides the
Hamiltonian by a factor c2 (which corresponds to a rescaling of time) and expands in powers
of c−2 it takes the form

〈ψ, ψ̄〉 + 1

c2
Pc(ψ, ψ̄) (9)

with a suitable function Pc. One can notice that this Hamiltonian is a perturbation of h0 :=
〈ψ, ψ̄〉, which is the generator of the standard gauge transform andwhich in particular admits
a flow that is periodic in time. Thus the idea is to exploit canonical perturbation theory in
order to conjugate such a Hamiltonian system to a system in normal form, up to remainders
of order O(c−2r ), for any given r ≥ 1.

The problem is that the perturbation Pc has a vector fieldwhich is small only as an operator
extracting derivatives. One can Taylor expand Pc and its vector field, but the number of
derivatives extracted at each order increases. This situation is typical in singular perturbation
problems. Problems of this kind have already been studiedwith canonical perturbation theory,
but the price to pay to get a normal form is that the remainder of the perturbation turns out
to be an operator that extracts a large number of derivatives.
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Dynamics of the nonlinear Klein–Gordon equation in the nonrelativistic limit 907

In Sect. 6 the normal form equation is explicitly computed in the case r = 2:

−iψt = c2ψ − 1

2
Δψ + 3

4
λ|ψ |2ψ

+ 1

c2

[
51

8
λ2|ψ |4ψ + 3

16
λ
(
2|ψ |2 Δψ + ψ2Δψ̄ + Δ(|ψ |2ψ̄)

)− 1

8
Δ2ψ

]
, (10)

namely a singular perturbation of a gauge-transformed NLS equation. If one, after a gauge
transformation, only considers the first-order terms, one has the NLS, for which radiation
solution exist (for example, in the defocusing case all solutions are of radiation type). For
higher-order NLS there are very few results (see, for example, [37]).

The standard way to exploit such a “singular” normal form is to use it just to construct
some approximate solution of the original system, and then to apply Gronwall lemma in order
to estimate the difference with a true solution with the same initial datum (see, for example,
[4]).

This strategy works also here, but it only leads to a control of the solutions over times of
order O(c2). When scaled back to the physical time, this allows to justify the approximation
of the solutions of NLKG by solutions of the NLS over timescales of order O(1), on any
manifold admitting a Littlewood–Paley decomposition (such as Riemannian smooth compact
manifolds, or R

d ; see the introduction of [12] for the construction of Littlewood–Paley
decomposition on manifolds).

Theorem 2 Let M be a manifold which admits a Littlewood–Paley decomposition, and con-
sider Eq. (3) on M.

Fix r ≥ 1, R > 0, k1  1, 1 < p < +∞. Then ∃ k0 = k0(r) > 0 with the following
properties: For any k ≥ k1 there exists cl,r ,k,p,R  1 such that for any c > cl,r ,k,p,R, if

‖ψ0‖k+k0,p ≤ R

and there exists T = Tr ,k,p > 0 such that the solution ψr of the equation in normal form up
to order r (98) with the initial datum ψ0 satisfies

‖ψr (t)‖k+k0,p ≤ 2R, for 0 ≤ t ≤ T ,

then

‖ψ(t) − ψr (t)‖k,p � 1

c2
, for 0 ≤ t ≤ T . (11)

where ψ(t) is the solution of (3) with the initial datum ψ0.

A similar result has been obtained for the case M = T
d by Faou and Schratz, who aimed

to construct numerical schemes which are robust in the nonrelativistic limit (see [23]; see
also [7,8] and to [9] for the numerical analysis of the nonrelativistic limit of the NLKG).

The idea one uses here in order to improve the timescale of the result is that of substituting
Gronwall lemmawith amore sophisticated tool, namely dispersive estimates and the retarded
Strichartz estimate. This can be done, provided one can prove a dispersive or a Strichartz
estimate for the linearization of Eq. (3) on the approximate solution, uniformly in c.

In order to state our approximation result for the linear case, we consider the approximate
equation given by the Hamilton equations of the normal form truncated at order O(c−2r ),
and let ψr be a solution of such a linearized normal form equation.

Theorem 3 Fix r ≥ 1 and k1  1. Then ∃ k0 = k0(r) > 0 such that for any k ≥ k1, if
we denote by ψr the solution of the linearized normal equation (105) with the initial datum
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908 S. Pasquali

ψ0 ∈ Hk+k0 and by ψ the solution of the linear KG equation (12) with the same initial
datum, then there exists c∗ := c∗(r , k) > 0 such that for any c > c∗

sup
t∈[0,T ]

‖ψ(t) − ψr (t)‖Hk
x

� 1

c2
, T � c2(r−1).

This result has been proved in the case r = 1 in Appendix A of [14].
Next we consider the approximation of small radiation solutions of the NLKG equation.

Theorem 4 Consider (3) on R
d , d ≥ 2. Let r > 1, and fix k1  1. Assume that l ≥ 2

and r < d
2 (l − 1). Then ∃ k0 = k0(r) > 0 such that for any k ≥ k1 and for any σ > 0

the following holds: Consider the solution ψr of the normalized equation (98), with the
initial datum ψr ,0 ∈ Hk+k0+σ+d/2. Then there exist α∗ := α∗(d, l, r) > 0 and there exists
c∗ := c∗(r , k) > 1, such that for any α > α∗ and for any c > c∗, if ψr ,0 satisfies

‖ψr ,0‖Hk+k0+σ+d/2 � c−α,

then

sup
t∈[0,T ]

‖ψ(t) − ψr (t)‖Hk
x

� 1

c2
, T � c2(r−1),

where ψ(t) is the solution of (3) with the initial datum ψr ,0.

Remark 2 The assumption of existence of ψr up to times of order O(c2(r−1)) is actually a
delicate matter. Equation (10), for example, is a quasilinear perturbation of a fourth-order
Schrödinger equation (4NLS). Even if we restrict to the case r = 2, the issues of global well-
posedness and scattering for solutionswith large initial data for Eq. (10) have not been solved.
For solutions with small initial data, on the other hand, there are some papers dealing with
the local well-posedness of 4NLS (see, for example, [28]) and with global well-posedness
and scattering of 4NLS (see [50]). In Sec. 8.2 we prove the local well-posedness for times
of order O(c2(r−1)) for solutions of the order-r normalized equation with small initial data
under the assumptions that l ≥ 2 and r < d

2 (l − 1).

Remark 3 Just to be explicit, we make some examples of Theorem 4. For M = R
2 and a

nonlinearity of order 2l, we can justify the approximation of small radiation solutions up to
times of order O(c2(r−1)), for r < l − 1. For M = R

3 and a nonlinearity of order 2l, we
can justify the approximation of small radiation solutions up to times of order O(c2(r−1)),
for r < 3

2 (l − 1).
There are some equations, namely the ones in which d

2 (l − 1) ≤ 2, in which we cannot
justify the approximation over long timescales (we mention, for example, the cubic NLKG
in 2, 3 and 4 dimensions, or the quintic NLKG in 2 dimensions).

There are other well-known solutions of NLSwhich would be interesting to study; indeed,
it is well known that in the case of mixed-type nonlinearity

iψt = −Δψ − (|ψ |2 − |ψ |4)ψ,

such an equation admits linearly stable solitary wave solutions; it can also be proved that the
standing waves of NLS can be modified in order to obtain standing wave solutions of the
normal form of order r , for any r . It would be of clear interest to prove that true solutions
starting close to such standing wave remain close to them for long times (remark that the
NLKG does not admit stable standing wave solutions, see [45]); in order to get such a result,
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Dynamics of the nonlinear Klein–Gordon equation in the nonrelativistic limit 909

one should prove a Strichartz estimate for NLKG close to the approximate solution and
uniformly in c.

Before closing the subsection, a few technical comments are as follows: The first one is
that here we develop normal form in the framework of the spacesWk,p , while known results
in Galerkin averaging theory only allow to deal with the spaces Hk . This is due to the fact that
the Fourier analysis is used in order to approximate the derivatives operators with bounded
operators. Thus the first technical step needed in order to be able to exploit dispersion is to
reformulate Galerkin averaging theory in terms of dyadic decompositions. This is done in
Theorem 7.

Second, the condition on r in Theorem 4 depends on the assumption in which we were
able to prove a well-posedness result for the normalized equation, which in turn depends on
the approach presented recently in [50]; we do not exclude that this technical condition could
be improved.

3 Dispersive properties of the Klein–Gordon equation

We briefly recall some classical notion of Fourier analysis on R
d . Recall the definition of the

space of Schwartz (or rapidly decreasing) functions,

S :=
{
f ∈ C∞(Rd , R)| sup

x∈Rd
(1+ |x |2)α/2|∂β f (x)| < +∞, ∀α ∈ N

d ,∀β ∈ N
d

}
.

In the following 〈x〉 := (1+ |x |2)1/2.
Now, for any f ∈ S the Fourier transform of f , f̂ : R

d → R, is defined by the following
formula

f̂ (ξ) := (2π)−d/2
∫
Rd

f (x)e−i〈x,ξ〉dx, ∀ξ ∈ R
d ,

where 〈·, ·〉 denotes the scalar product in R
d .

At the beginning we obtain Strichartz estimates for the linear equation

−i ψt = c〈∇〉c ψ, x ∈ R
d . (12)

Proposition 1 Let d ≥ 2. For any Schrödinger-admissible couples (p, q) and (r , s), namely
such that

2 ≤ p, r ≤ ∞,

2 ≤ q, s ≤ 2d

d − 2
,

2

p
+ d

q
= d

2
,
2

r
+ d

s
= d

2
,

(p, q, d), (r , s, d) �= (2,+∞, 2),

one has ∥∥∥∥〈∇〉
1
q − 1

p
c eit c〈∇〉c ψ0

∥∥∥∥
L p
t L

q
x

� c
1
q − 1

p− 1
2 ‖〈∇〉1/2c ψ0‖L2 , (13)

∥∥∥∥〈∇〉
1
q − 1

p
c

∫ t

0
ei(t−s) c〈∇〉c F(s) ds

∥∥∥∥
L p
t L

q
x

� c
1
q − 1

p+ 1
s − 1

r −1
∥∥∥∥〈∇〉

1
r − 1

s +1
c F

∥∥∥∥
Lr

′
t Ls′

x

. (14)
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910 S. Pasquali

Remark 4 By choosing p = +∞ and q = 2, we get the following a priori estimate for finite
energy solutions of (12),∥∥∥c1/2〈∇〉1/2c eit c〈∇〉c ψ0

∥∥∥
L∞
t L2

x

�
∥∥∥c1/2〈∇〉1/2c ψ0

∥∥∥
L2

.

We also point out that, since the operators 〈∇〉 and 〈∇〉c commute, the above estimates in the
spaces L p

t L
q
x extend to estimates in L p

t W
k,q
x for any k ≥ 0.

Proof We recall a result reported by D’Ancona–Fanelli in [21] for the operator 〈∇〉 := 〈∇〉1.
Lemma 1 For all (p, q) Schrödinger-admissible exponents

‖eiτ 〈∇〉 φ0‖
L p

τ W
1
q − 1

p − 1
2 ,q

y

=
∥∥∥〈∇〉 1

q − 1
p− 1

2 eit 〈∇〉 φ0

∥∥∥
L p

τ Lq
y

≤ ‖φ0‖L2
y
.

Now, the solution of Eq. (12) satisfies ψ̂(t, ξ) = eic〈ξ〉ct ψ̂0(ξ). We then define η := ξ/c,
in order to have that

φ̂(c2t, η) := ψ̂(t, cη) = ψ̂(t, ξ),

and in particular that φ̂0(η) = ψ̂0(ξ).
Since

〈ξ 〉c =
√
c2 + |ξ |2 = c

√
1+ |ξ |2/c2, (15)

we get

φ̂(t, η) = eit c
2〈ξ/c〉φ̂0(ξ/c)

= ei tc
2 〈η〉φ̂0(η)

= ei τ 〈η〉φ̂0(η)

if we set τ := c2t . Now, by setting y := cx a simple scaling argument leads to

‖eiτ 〈∇〉 φ0‖L p
τ Lq

y
�
∥∥∥〈∇〉 1

p− 1
q + 1

2 φ0

∥∥∥
L2

=
∥∥∥〈η〉 1

p− 1
q + 1

2 φ̂0

∥∥∥
L2

and since

‖ 〈η〉k φ̂0‖2L2 =
∫
Rd

〈η〉2k |φ̂0(η)|2 dη

=
∫
Rd

〈
ξ

c

〉2k
|φ̂0(η/c)|2 dξ

cd
= 1

c2k+d

∫
Rd

〈ξ 〉2kc |ψ̂0(ξ)|2 dξ,

we get

‖ 〈η〉 1
p− 1

q + 1
2 φ̂0‖L2 = 1

c
d
2− 1

q + 1
p+ 1

2

∥∥∥∥〈∇〉
1
p− 1

q + 1
2

c ψ0

∥∥∥∥
L2

, (16)

while on the other hand

ψ(t, x) = (2π)−d/2
∫
Rd

ei〈ξ,x〉 ψ̂(t, ξ) dξ = (2π)−d/2
∫
Rd

ei〈η,cx〉 ψ̂(t, cη) cddη

= (2π)−d/2 cd
∫
Rd

ei〈η,cx〉 φ̂(c2t, η) dη = cd φ(c2t, cx),
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Dynamics of the nonlinear Klein–Gordon equation in the nonrelativistic limit 911

yields

‖ψ‖L p
t L

q
x

= cd− d/q− 2/p ‖φ‖L p
τ L

q
y
. (17)

Hence we can deduce (13); via a scaling argument, we can also deduce (14). ��
One important application of the Strichartz estimates for the free Klein–Gordon equation

is Theorem 1, namely a global existence result uniform with respect to c for the NLKG
equation (3) on R

3 with cubic nonlinearity (l = 2), for small initial data.

Proof (Theorem 1) It just suffices to apply Duhamel formula,

ψ(t) = eitc∇cψ0 + i
λ

22

∫ t

0
ei(t−s)c∇c

(
c

〈∇〉c
)1/2

[(
c

〈∇〉c
)1/2

(ψ + ψ̄)

]3
,

and Proposition 1 with p = +∞ and q = 2, in order to get that

‖ψ(t)‖
L∞
t H

1/2
c

� ‖ψ0‖H 1/2
c

+ c1/s−1/r

∥∥∥∥∥∥∇1/r−1/s
c

[(
c

〈∇〉c
)1/2

(ψ + ψ̄)

]3∥∥∥∥∥∥
Lr

′
t Ls′

x

,

but by choosing r = +∞ and by exploiting Hölder inequality and Sobolev embedding we
get

‖ψ(t)‖
L∞
t H

1/2
c

� ‖ψ0‖H 1/2
c

+
∥∥∥∥∥∥
[(

c

〈∇〉c
)1/2

(ψ + ψ̄)

]3∥∥∥∥∥∥
L1
t L2

x

� ‖ψ0‖H 1/2
c

+
∥∥∥∥∥∥
[(

c

〈∇〉c
)1/2

(ψ + ψ̄)

]2∥∥∥∥∥∥
L1
t L3

x

∥∥∥∥∥
(

c

〈∇〉c
)1/2

(ψ + ψ̄)

∥∥∥∥∥
L∞
t L6

x

� ‖ψ0‖H 1/2
c

+
∥∥∥∥∥
(

c

〈∇〉c
)1/2

(ψ + ψ̄)

∥∥∥∥∥
2

L2
t L6

x

∥∥∥∥∥
(

c

〈∇〉c
)1/2

(ψ + ψ̄)

∥∥∥∥∥
L∞
t L6

x

� ‖ψ0‖H 1/2
c

+ ‖ψ‖2
L2
t W

−1/2,6
c

‖ψ‖
L∞
t W

−1/2,6
c

� ‖ψ0‖H 1/2
c

+ ‖ψ‖2
L2
t W

−1/3,6
c

‖ψ‖
L∞
t H

1/2
c

,

and one can conclude by a standard continuation argument. ��

Wealso give a formulation of theKato–Ponce inequality for the relativistic Sobolev spaces.

Proposition 2 Let f , g ∈ S (Rd), and let c > 0, 1 < r < ∞ and k ≥ 0. Then

‖ f g‖
W k,r

c
� ‖ f ‖

W
k,r1
c

‖g‖Lr2 + ‖ f ‖Lr3 ‖g‖W k,r4
c

, (18)

with

1

r
= 1

r1
+ 1

r2
= 1

r3
+ 1

r4
, 1 < r1, r4 < +∞.

Remark 5 For c = 1 Eq. (18) reduces to the classical Kato–Ponce inequality.
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912 S. Pasquali

Proof We follow an argument by Cordero and Zucco (see Theorem 2.3 in [19]).
We introduce the dilation operator Sc( f )(x) := f (x/c), for any c > 0.
Then we apply the classical Kato–Ponce inequality to the rescaled product Sc( f g) =

Sc( f ) Sc(g),

‖Sc( f g)‖Wk,r � ‖Sc( f )‖Wk,r1 ‖Sc(g)‖Lr2 + ‖Sc( f )‖Lr3 ‖Sc(g)‖Wk,r4 , (19)

where

1

r
= 1

r1
+ 1

r2
= 1

r3
+ 1

r4
, 1 < r1, r4 < +∞.

Now, combining the commutativity property

〈∇〉k Sc( f )(x) = c−k Sc(〈∇〉kc f )(x),

with the equality ‖Sc( f )‖Lr = c−d/r‖ f ‖Lr , we can rewrite (19) as

‖〈∇〉k( f g)‖Lr � ‖〈∇〉k f ‖Lr1 ‖g‖Lr2 + ‖ f ‖Lr3 ‖〈∇〉kg‖Lr4 ,
and this leads to the thesis. ��

Weconcludewith another dispersive result, which could be interesting in itself: by exploit-
ing the boundedness of the wave operators for the Schrödinger equation, we can deduce
Strichartz estimates for the KG equation with potential.

Theorem 5 Let c ≥ 1, and consider the operator

H (x) := c
(
c2 − Δ + V (x)

)1/2 = H0
(
1+ 〈∇〉−2

c V
)1/2

, (20)

where V ∈ C(R3, R) is a potential such that

|V (x)| + |∇V (x)| � 〈x〉−β , x ∈ R
3,

for some β > 5, and that 0 is neither an eigenvalue nor a resonance for the operator
−Δ+V (x). Let (p, q) be a Schrödinger-admissible couple, and assume thatψ0 ∈ 〈∇〉−1/2

c L2

is orthogonal to the bound states of −Δ + V (x). Then

‖〈∇〉
1
q − 1

p
c eitH (x)ψ0‖L p

t L
q
x

� c
1
q − 1

p− 1
2 ‖〈∇〉1/2c ψ0‖L2 . (21)

In order to prove Theorem 5 we recall Yajima’s result on wave operators [60] (where we
denote by Pc(−Δ+V ) the projection onto the continuous spectrum of the operator−Δ+V ).

Theorem 6 Assume that

– 0 is neither an eigenvalue nor a resonance for −Δ + V ;
– |∂αV (x)| � 〈x〉−β for |α| ≤ k, for some β > 5.

Consider the strong limits

W± := lim
t→±∞ eit(−Δ+V )eitΔ, Z± := lim

t→±∞ e−i tΔeit(Δ−V )Pc(−Δ + V ).

ThenW± : L2 → Pc(−Δ+V )L2 are isomorphic isometries which extend into isomorphisms
W± : Wk,p → Pc(−Δ + V )Wk,p for all p ∈ [1,+∞], with inverses Z±. Furthermore, for
any Borel function f (·) we have
f (−Δ + V )Pc(−Δ + V ) = W± f (−Δ)Z±, f (−Δ) = Z± f (−Δ + V )Pc(−Δ + V )W±.

(22)
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Dynamics of the nonlinear Klein–Gordon equation in the nonrelativistic limit 913

Now, in the case c = 1 one can derive Strichartz estimates for H (x) from the Strichartz
estimates for the free KG equation, just by applying the aforementioned theorem by Yajima
in the case k = 1 (since 1/p− 1/q + 1/2 ∈ [0, 5/6] for all Schrödinger-admissible couples
(p, q)). This was already proved in [5] (see Lemma 6.3). In the general case, this follows
from an interpolation theory argument, and we defer it to Appendix B.

4 Galerkin averagingmethod

Consider the scale of Banach spaces Wk,p(M, C
n × C

n) � (ψ, ψ̄) (k ≥ 1, 1 < p < +∞,
n ∈ N0) endowed by the standard symplectic form. Having fixed k and p, andUk,p ⊂ Wk,p

open, we define the gradient of H ∈ C∞(Uk,p, R) w.r.t. ψ̄ as the unique function s.t.〈
∇ψ̄ H , h̄

〉
= dψ̄ Hh̄, ∀h ∈ Wk,p,

so that the Hamiltonian vector field of a Hamiltonian function H is given by

XH (ψ, ψ̄) =
(
i∇ψ̄ H , −i∇ψ H

)
.

The open ball of radius R and center 0 in Wk,p will be denoted by Bk,p(R).
Now, we call an admissible family of cutoff (pseudo-differential) operators a sequence

(π j (D)) j≥0, where π j (D) : Wk,p → Wk,p for any j ≥ 0, such that

– for any j ≥ 0 and for any f ∈ Wk,p

f =
∑
j≥0

π j (D) f ;

– for any j ≥ 0 π j (D) can be extended to a self-adjoint operator on L2, and there exist
constants K1, K2 > 0 such that

K1

⎛
⎝∑

j≥0

‖π j (D) f ‖2L2

⎞
⎠

1/2

≤ ‖ f ‖L2 ≤ K2

⎛
⎝∑

j≥0

‖π j (D) f ‖2L2

⎞
⎠

1/2

;

– for any j ≥ 0, if we denote by Π j (D) :=∑ j
l=0 πl(D), there exist positive constants K ′

(possibly depending on k and p) such that

‖Π j f ‖k,p ≤ K ′ ‖ f ‖k,p ∀ f ∈ Wk,p;
– there exist positive constants K ′′

1 , K
′′
2 (possibly depending on k and p) and an increasing

and unbounded sequence (K j ) j∈N ⊂ R+ such that

K ′′
1 ‖ f ‖Wk,p ≤

∥∥∥∥∥∥∥
⎡
⎣∑

j∈N
K 2k

j |π j (D) f |2
⎤
⎦
1/2
∥∥∥∥∥∥∥
L p

≤ K ′′
2 ‖ f ‖Wk,p . (23)

Remark 6 Let k ≥ 0,M be eitherR
d or the d-dimensional torusT

d , and consider the Sobolev
space Hk = Hk(M). One can readily check that Fourier projection operators on Hk

π jψ(x) := (2π)−d/2
∫
j−1≤|k|≤ j

ψ̂(k)eik·xdk, j ≥ 1
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914 S. Pasquali

form an admissible family of cutoff operators. In this case we have

ΠNψ(x) := (2π)−d/2
∫
|k|≤N

ψ̂(k)eik·xdk, N ≥ 0,

and the constants (K j ) j∈N in (23) are given by K j := j .

Remark 7 Let k ≥ 0, 1 < p < +∞; we now introduce the Littlewood–Paley decomposition
on the Sobolev space Wk,p = Wk,p(Rd) (see [56], Ch. 13.5).

In order to do this, define the cutoff operators in Wk,p in the following way: Start with a
smooth, radial nonnegative function φ0 : R

d → R such that φ0(ξ) = 1 for |ξ | ≤ 1/2, and
φ0(ξ) = 0 for |ξ | ≥ 1; then, define φ1(ξ) := φ0(ξ/2) − φ0(ξ), and set

φ j (ξ) := φ1(2
1− jξ), j ≥ 2. (24)

Then (φ j ) j≥0 is a partition of unity, ∑
j≥0

φ j (ξ) = 1.

Now, for each j ∈ N and each f ∈ Wk,2, we can define φ j (D) f by

F (φ j (D) f )(ξ) := φ j (ξ) f̂ (ξ).

It is well known that for p ∈ (1,+∞) the map Φ : L p(Rd) → L p(Rd , l2),

Φ( f ) := (φ j (D) f ) j∈N,

maps L p(Rd) isomorphically onto a closed subspace of L p(Rd , l2), and we have compati-
bility of norms ([56], Ch. 13.5, (5.45)–(5.46)),

K ′
p‖ f ‖L p ≤ ‖Φ( f )‖L p(Rd ,l2) :=

∥∥∥∥∥∥∥
⎡
⎣∑

j∈N
|φ j (D) f |2

⎤
⎦
1/2
∥∥∥∥∥∥∥
L p

≤ Kp‖ f ‖L p ,

and similarly for the Wk,p-norm, i.e., for any k > 0 and p ∈ (1,+∞)

K ′
k,p‖ f ‖Wk,p ≤

∥∥∥∥∥∥∥
⎡
⎣∑

j∈N
22 jk |φ j (D) f |2

⎤
⎦
1/2
∥∥∥∥∥∥∥
L p

≤ Kk,p‖ f ‖Wk,p . (25)

We then define the cutoff operator ΠN by

ΠNψ :=
∑
j≤N

φ j (D)ψ. (26)

Hence, according to the above definition, the sequence (φ j (D)) j≥0 is an admissible family
of cutoff operators.

We point out that the Littlewood–Paley decomposition, along with equality (25), can be
extended to compactmanifolds (see [13]), aswell as to someparticular noncompactmanifolds
(see [12]).

Now we consider a Hamiltonian system of the form

H = h0 + ε h + ε F, (27)
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Dynamics of the nonlinear Klein–Gordon equation in the nonrelativistic limit 915

where ε > 0 is a parameter. We fix an admissible family of cutoff operators (π j (D)) j≥0 on
Wk,p(Rd). We assume that

PER h0 generates a linear periodic flow Φ t with period 2π ,

Φ t+2π = Φ t ∀t .
We also assume that Φ t is analytic from Wk,p to itself for any k ≥ 1, and for any
p ∈ (1,+∞);

INV for any k ≥ 1, for any p ∈ (1,+∞), Φ t leaves invariant the space Π jWk,p for any
j ≥ 0. Furthermore, for any j ≥ 0

π j (D) ◦ Φ t = Φ t ◦ π j (D);
NF h is in normal form, namely

h ◦ Φ t = h.

Next we assume that both the Hamiltonian and the vector field of both h and F admit an
asymptotic expansion in ε of the form

h ∼
∑
j≥1

ε j−1h j , F ∼
∑
j≥1

ε j−1Fj , (28)

Xh ∼
∑
j≥1

ε j−1Xh j , XF ∼
∑
j≥1

ε j−1XFj , (29)

and that the following properties are satisfied

HVF There exists R∗ > 0 such that for any j ≥ 1

• Xh j is analytic from Bk+2 j,p(R∗) to Wk,p;
• XFj is analytic from Bk+2( j−1),p(R∗) to Wk,p .

Moreover, for any r ≥ 1 we have that

• Xh−∑r
j=1 ε j−1h j

is analytic from Bk+2(r+1),p(R∗) to Wk,p;

• XF−∑r
j=1 ε j−1Fj

is analytic from Bk+2r ,p(R∗) to Wk,p .

The main result of this section is the following theorem.

Theorem 7 Fix r ≥ 1, R > 0, k1  1, 1 < p < +∞. Consider (27), and assume PER, INV
(with respect to the Littlewood–Paley decomposition), NF and HVF. Then ∃ k0 = k0(r) > 0
with the following properties: For any k ≥ k1 there exists εr ,k,p � 1 such that for any

ε < εr ,k,p there exists T
(r)

ε : Bk,p(R) → Bk,p(2R) analytic canonical transformation such
that

Hr := H ◦ T (r)
ε = h0 +

r∑
j=1

ε jZ j + εr+1 R(r),

where Z j are in normal form, namely

{Z j , h0} = 0, (30)
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916 S. Pasquali

and

sup
Bk+k0,p(R)

‖XZ j ‖Wk,p ≤ Ck,p,

sup
Bk+k0,p(R)

‖XR (r)‖Wk,p ≤ Ck,p, (31)

sup
Bk,p(R)

‖T (r)
ε − id‖Wk,p ≤ Ck,p ε. (32)

In particular, we have that

Z1(ψ, ψ̄) = h1(ψ, ψ̄) + 〈F1〉 (ψ, ψ̄),

where 〈F1〉 (ψ, ψ̄) := ∫ 2π
0 F1 ◦ Φ t (ψ, ψ̄) dt

2π .

5 Proof of Theorem 7

We first make a Galerkin cutoff through the Littlewood–Paley decomposition (see [56], Ch.
13.5).

In order to do this, fix N ∈ N, N  1, and introduce the cutoff operators ΠN in Wk,p by

ΠNψ :=
∑
j≤N

φ j (D)ψ,

where φ j (D) are the operators we introduced in Remark 7.
We notice that by assumption INV the Hamiltonian vector field of h0 generates a contin-

uous flow Φ t which leaves ΠNWk,p invariant.
Now we set H = HN ,r +RN ,r +Rr , where

HN ,r := h0 + ε hN ,r + ε FN ,r , (33)

hN ,r :=
r∑
j=1

ε j−1h j,N , h j,N := h j ◦ ΠN , (34)

FN ,r :=
r∑
j=1

ε j−1Fj,N , Fj,N := Fj ◦ ΠN , (35)

and

RN ,r := h0 +
r∑
j=1

ε j h j +
r∑
j=1

ε j Fj − HN ,r , (36)

Rr := ε

⎛
⎝h −

r∑
j=1

ε j−1h j

⎞
⎠+ ε

⎛
⎝F −

r∑
j=1

ε j−1Fj

⎞
⎠ . (37)

The system described by the Hamiltonian (33) is the one that we will put in normal form.
In the following we will use the notation a � b to mean: there exists a positive constant

K independent of N and R (but dependent on r , k and p), such that a ≤ Kb.
We exploit the following intermediate results:
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Lemma 2 For any k ≥ k1 and p ∈ (1,+∞) there exists Bk,p(R) ⊂ Wk,p s.t. ∀ σ > 0,
N > 0

sup
Bk+σ+2(r+1),p(R)

‖XR N ,r (ψ, ψ̄)‖Wk,p � ε

2σ(N+1)
, (38)

sup
Bk+2(r+1),p(R)

‖XR r (ψ, ψ̄)‖Wk,p � εr+1. (39)

Proof We recall that RN ,r = h0 +∑r
j=1 ε j h j +∑r

j=1 ε j Fj − HN ,r .

Now, ‖id − ΠN‖Wk+σ,p→Wk,p � 2−σ(N+1), since

∥∥∥∥∥∥
∑

j≥N+1

φ j (D) f

∥∥∥∥∥∥
Wk,p

�

∥∥∥∥∥∥∥
⎡
⎣ ∑

j≥N+1

|2 jkφ j (D) f |2
⎤
⎦
1/2
∥∥∥∥∥∥∥
L p

� 2−σ(N+1)

∥∥∥∥∥∥∥
⎡
⎣ ∑

j≥N+1

|2 j(k+σ)φ j (D) f |2
⎤
⎦
1/2
∥∥∥∥∥∥∥
L p

� 2−σ(N+1)‖ f ‖Wk+σ,p ,

hence

sup
ψ∈Bk+2(r+1)+σ,p(R)

‖XR N ,r (ψ, ψ̄)‖Wk,p

� ‖dX∑r
j=1 ε j (h j+Fj )

‖L∞(Bk+2(r+1),p(R),Wk,p)‖id − ΠN‖L∞(Bk+2(r+1)+σ,p(R),Bk+2(r+1),p)

� ε 2−σ(N+1).

The estimate of XR r follows from the hypothesis HVF. ��

Lemma 3 Let j ≥ 1. Then for any k ≥ k1 + 2( j − 1) and p ∈ (1,+∞) there exists
Bk,p(R) ⊂ Wk,p such that

sup
Bk,p(R)

‖Xh j,N (ψ, ψ̄)‖k,p ≤ K (h)
j,k,p2

2 j N ,

sup
Bk,p(R)

‖XFj,N (ψ, ψ̄)‖k,p ≤ K (F)
j,k,p2

2( j−1)N ,

where

K (h)
j,k,p := sup

Bk,p(R)

‖Xh j (ψ, ψ̄)‖k−2 j,p,

K (F)
j,k,p := sup

Bk,p(R)

‖XFj (ψ, ψ̄)‖k−2( j−1),p.
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Proof It follows from

sup
ψ∈Bk,p(R)

∥∥∥∥∥∥
∑
h≤N

φh(D)XFj,N (ψ, ψ̄)

∥∥∥∥∥∥
Wk,p

� sup
ψ∈Bk,p(R)

∥∥∥∥∥∥∥
⎡
⎣∑
h≤N

|2hkφh(D)XFj,N (ψ, ψ̄)|2
⎤
⎦
1/2
∥∥∥∥∥∥∥
L p

(40)

≤ 22( j−1)N sup
ψ∈Bk,p(R)

∥∥∥∥∥∥∥
⎡
⎣∑
h≤N

|2h[k−2( j−1)]φh(D)XFj,N (ψ, ψ̄)|2
⎤
⎦
1/2
∥∥∥∥∥∥∥
L p

(41)

� 22( j−1)N sup
ψ∈Bk,p(R)

‖XFj,N (ψ, ψ̄)‖k−2( j−1),p (42)

= K (F)
j,k,p 2

2( j−1)N , (43)

and similarly for Xh j,N . ��
Next we have to normalize the system (33). In order to do this we need a slight refor-

mulation of Theorem 4.4 in [2]. Here we report a statement of the result adapted to our
context.

Lemma 4 Let k ≥ k1 + 2r , p ∈ (1,+∞), R > 0, and consider the system (33). Assume that
ε < 2−4Nr , and that (

K (F,r)
k,p + K (h,r)

k,p

)
r22Nrε < 2−9e−1π−1R, (44)

where

K (F,r)
k,p := sup

1≤ j≤r
sup

ψ∈Bk,p(R)

‖XFj (ψ, ψ̄)‖k−2( j−1),p,

K (h,r)
k,p := sup

1≤ j≤r
sup

ψ∈Bk,p(R)

‖Xh j (ψ, ψ̄)‖k−2 j,p.

Then there exists an analytic canonical transformation T
(r)

ε,N : Bk,p(R) → Bk,p(2R) such
that

sup
Bk,p(R/2)

‖T (r)
ε,N (ψ, ψ̄) − (ψ, ψ̄)‖Wk,p ≤ 4πr K (F,r)

k,p 22Nrε,

and that puts (33) in normal form up to a small remainder,

HN ,r ◦ T
(r)

ε,N = h0 + εhN ,r + εZ (r)
N + εr+1R

(r)
N , (45)

with Z (r)
N is in normal form, namely {h0,N , Z (r)

N } = 0, and

sup
Bk,p(R/2)

‖X
Z (r)
N

(ψ, ψ̄)‖k,p ≤ 4 22Nr ε
(
r K (F,r)

k,p + r K (h,r)
k,p

)
r22Nr K (F,r)

k,p

= 4r2K (F,r)
k,p (K (F,r)

k,p + K (h,r)
k,p )24N Rε, (46)

sup
Bk,p(R/2)

‖X
R (r)

N
(ψ, ψ̄)‖k,p (47)

≤ 28e
T

R
(K (F,r)

k,p + K (F,r)
k,p )r22Nr (48)

123



Dynamics of the nonlinear Klein–Gordon equation in the nonrelativistic limit 919

×
[
4T

R

(
2932e

T

R
(K (F,r)

k,p + K (F,r)
k,p )K (F,r)

k,p r224Nrε + 5K (h,r)
k,p r22Nr + 5K (F,r)

k,p r22Nr
)
r

]r
(49)

The proof of Lemma 4 is postponed to “Appendix A.”

Remark 8 In the original notation of Theorem 4.4 in [2] we set

P = Wk,p,

hω = h0,

ĥ = εhN ,r ,

f = εFN ,r ,

f1 = r = g ≡ 0,

F = K (F,r)
k,p r22Nr ε,

F0 = K (h,r)
k,p r22Nr ε.

Remark 9 Actually, Lemma 4 would also hold under a weaker smallness assumption on ε: It
would be enough that ε < 2−2N , and that

ε

[
K (F,r)
k,p

1− 22Nrεr

1− 22N ε
+ K (h,r)

k,p
22N (1− 22Nrεr )

1− 22N ε

]
< 2−9e−1π−1R (50)

is satisfied. However, condition (50) is less explicit than (44), which allows us to apply
directly the scheme of [2]. The disadvantage of the stronger smallness assumption (44) is
that it holds for a smaller range of ε, and that at the end of the proof it will force us to choose
a larger parameter σ = 4r2. By using (50) and by making a more careful analysis, it may be
possible to prove Theorem 7 also by choosing σ = 2r .

Now we conclude with the proof of Theorem 7.

Proof Now consider the transformation T
(r)

ε,N defined by Lemma 4, then

(T
(r)

ε,N )∗H = h0 +
r∑
j=1

ε j h j,N + εZ (r)
N + εr+1R

(r)
N + εrRGal

where we recall that

εrRGal :=
(
T

(r)
ε,N

)∗
(RN ,r +Rr ).

By exploiting Lemma 4 we can estimate the vector field of R(r)
N , while by using Lemma

2 and (275) we get

sup
Bk+σ+2(r+1),p(R/2)

‖XRGal (ψ, ψ̄)‖Wk,p �
(

ε

2σ(N+1)
+ εr+1

σ + 2(r + 1)

)
. (51)

To get the result choose

k0 = σ + 2(r + 1),

N = rσ−1 log2(1/ε) − 1,

σ = 4r2.

��
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Remark 10 The compatibility condition N ≥ 1 and (44) lead to

ε ≤
[
2−9e−1π−1R(K (F,r)

k,p + K (h,r)
k,p )−1r−12−2r

] σ
2r =: εr ,k,p ≤ 2−2σ/r ≤ 2−8r .

Remark 11 We point out the fact that Theorem 7 holds for the scale of Banach spaces
Wk,p(M, C

n × C
n), where k ≥ 1, 1 < p < +∞, n ∈ N0, and where M is a smooth

manifold on which the Littlewood–Paley decomposition can be constructed, for example,
a compact manifold (see sect. 2.1 in [13]), R

d , or a noncompact manifold satisfying some
technical assumptions (see [12]).

If we restrict to the case p = 2, and we consider M as either R
d or the d-dimensional

torus T
d , we can prove an analogous result for Hamiltonians H(ψ, ψ̄)with (ψ, ψ̄) ∈ Hk :=

Wk,2(M, C ×C). In the following we denote by Bk(R) the open ball of radius R and center
0 in Hk . We recall that the Fourier projection operator on Hk is given by

π jψ(x) := (2π)−d/2
∫
j−1≤|k|≤ j

ψ̂(k)eik·xdk, j ≥ 1.

Theorem 8 Fix r ≥ 1, R > 0, k1  1. Consider (27), and assume PER, INV (with respect
to Fourier projection operators), NF and HVF. Then ∃ k0 = k0(r) > 0 with the following
properties: For any k ≥ k1 there exists εr ,k � 1 such that for any ε < εr ,k there exists

T
(r)

ε : Bk(R) → Bk(2R) transformation s.t.

Hr := H ◦ T (r)
ε = h0 +

r∑
j=1

ε jZ j + εr+1 R(r),

where Z j are in normal form, namely

{Z j , h0} = 0, (52)

and

sup
Bk+k0 (R)

‖XR (r)‖Hk ≤ Ck, (53)

sup
Bk (R)

‖T (r)
ε − id‖Hk ≤ Ck ε. (54)

In particular, we have that

Z1(ψ, ψ̄) = h1(ψ, ψ̄) + 〈F1〉 (ψ, ψ̄),

where 〈F1〉 (ψ, ψ̄) := ∫ 2π
0 F1 ◦ Φ t (ψ, ψ̄) dt

2π .

The only technical difference between the proofs of Theorem 7 and the proof of Theorem
8 is that we exploit the Fourier cutoff operator

ΠNψ(x) :=
∫
|k|≤N

ψ̂(k)eik·xdk,

as in [3]. This in turn affects (38), which in this case reads

sup
Bk+σ+2(r+1)(R)

‖XR N ,r (ψ, ψ̄)‖Hk � ε

Nσ
, (55)

and (51), for which we have to choose a bigger cutoff, N = ε−rσ .
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6 Application to the nonlinear Klein–Gordon equation

6.1 The real nonlinear Klein–Gordon equation

We first consider the Hamiltonian of the real nonlinear Klein–Gordon equation with
power-type nonlinearity on a smooth manifold M (M is such that the Littlewood–Paley
decomposition is well defined; take, for example, a smooth compact manifold, or R

d ). The
Hamiltonian is of the form

H(u, v) = c2

2
〈v, v〉 + 1

2

〈
u, 〈∇〉2cu

〉 + λ

∫
u2l

2l
, (56)

where 〈∇〉c := (c2 − Δ)1/2, λ ∈ R, l ≥ 2.
If we introduce the complex-valued variable

ψ := 1√
2

[( 〈∇〉c
c

)1/2

u − i

(
c

〈∇〉c
)1/2

v

]
, (57)

(the corresponding symplectic 2-form becomes idψ ∧ dψ̄), the Hamiltonian (56) in the
coordinates (ψ, ψ̄) is

H(ψ̄, ψ) = 〈
ψ̄, c〈∇〉cψ

〉+ λ

2l

∫ [(
c

〈∇〉c
)1/2

ψ + ψ̄√
2

]2l
dx . (58)

If we rescale the time by a factor c2, the Hamiltonian takes the form (27), with ε = 1
c2
, and

H(ψ, ψ̄) = h0(ψ, ψ̄) + ε h(ψ, ψ̄) + ε F(ψ, ψ̄), (59)

where

h0(ψ, ψ̄) = 〈
ψ̄, ψ

〉
, (60)

h(ψ, ψ̄) = 〈
ψ̄,
(
c〈∇〉c − c2

)
ψ
〉 ∼∑

j≥1

ε j−1
〈
ψ̄, a jΔ

jψ
〉
=:
∑
j≥1

ε j−1h j (ψ, ψ̄), (61)

F(ψ, ψ̄) = λ

2l+1l

∫ [(
c

〈∇〉c
)1/2

(ψ + ψ̄)

]2l
dx (62)

∼ λ

2l+1l

∫
(ψ + ψ̄)2ldx

+ εb2

∫ [
(ψ + ψ̄)2l−1Δ(ψ + ψ̄) + . . . + (ψ + ψ̄)Δ

((
ψ + ψ̄

)2l−1
)]

dx

+ O(ε2)

=:
∑
j≥1

ε j−1 Fj (ψ, ψ̄), (63)

where (a j ) j≥1 and (b j ) j≥1 are real coefficients, and Fj (ψ, ψ̄) is a polynomial function of
the variables ψ and ψ̄ (along with their derivatives) and which admits a bounded vector field
from a neighborhood of the origin in Wk+2( j−1),p to Wk,p for any 1 < p < +∞.

This description clearly fits the scheme treated in the previous section, and one can easily
check that assumptions PER, NF and HVF are satisfied. Therefore, we can apply Theorem 7
to the Hamiltonian (59).
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Remark 12 About the normal forms obtained by applying Theorem 7, we remark that in the
first step (case r = 1 in the statement of the theorem) the homological equation we get is of
the form

{χ1, h0} + F1 = 〈F1〉 , (64)

where F1(ψ, ψ̄) = λ
2l+1l

∫
(ψ + ψ̄)2ldx . Hence the transformed Hamiltonian is of the form

H1(ψ, ψ̄) = h0(ψ, ψ̄) + 1

c2

[
−1

2

〈
ψ̄,Δψ

〉+ 〈F1〉 (ψ, ψ̄)

]
+ 1

c4
R(1)(ψ, ψ̄), (65)

where

〈F1〉 (ψ, ψ̄) = λ

2l+1l

(
2l

l

)∫
|ψ |2l dx . (66)

If we neglect the remainder and we derive the corresponding equation of motion for the
system, we get

− iψt = ψ + 1

c2

[
−1

2
Δψ + λ

2l+1

(
2l

l

)
|ψ |2(l−1)ψ

]
, (67)

which is the NLS, and the Hamiltonian which generates the canonical transformation is given
by

χ1(ψ, ψ̄) = λ

2l+1l

∑
j=0,...,2l

j �=l

1

i 2(l − j)

(
2l

j

)∫
ψ2l− j ψ̄ jdx . (68)

Remark 13 Now we iterate the construction by passing to the case r = 2.
If we neglect the remainder of order c−6, we have that

H ◦ T (1) = h0 + 1

c2
h1 + 1

c4
{χ1, h1} + 1

c4
h2

+ 1

c2
〈F1〉 + 1

c4
{χ1, F1} + 1

2c4
{χ1, {χ1, h0}} + 1

c4
F2 (69)

= h0 + 1

c2
[h1 + 〈F1〉]+ 1

c4

[
{χ1, h1} + h2 + {χ1, F1} + 1

2
{χ1, 〈F1〉 − F1} + F2

]
,

(70)

where h1(ψ, ψ̄) = − 1
2

〈
ψ̄,Δψ

〉
, and χ1 is of the form (68).

Now we compute the terms of order 1
c4
.

{χ1, h1} = dχ1Xh1 = ∂χ1

∂ψ
· i ∂h1

∂ψ̄
− i

∂χ1

ψ̄

∂h1
∂ψ

= − λ

2l+3l

∫ ⎡
⎢⎢⎣ ∑

j=0,...,2l−1
j �=l

1

l − j

(
2l

j

)
(2l − j)ψ2l− j−1ψ̄ j

⎤
⎥⎥⎦ Δψ dx

+ λ

2l+3l

∫ ⎡
⎢⎢⎣ ∑

j=1,...,2l
j �=l

1

l − j

(
2l

j

)
jψ2l− j ψ̄ j−1

⎤
⎥⎥⎦ Δψ̄ dx

= − λ

2l+3l

∫
Δψ ψ2l−1 + Δψ̄ ψ̄2l−1 dx
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− λ

2l+3l

∫ ∑
j=1,...,2l−1

j �=l

1

l − j

(
2l

j

)∫
(2l − j)ψ2l− j−1ψ̄ j Δψ

− jψ2l− j ψ̄ j−1 Δψ̄ dx, (71)

and since j �= l in the sum we have that

〈{χ1, h1}〉 = 0. (72)

Next,

h2 = −1

8

〈
ψ̄,Δ2ψ

〉
, (73)

{χ1, F1}

= λ2

22l+3l2

∫ ⎡
⎢⎢⎣ ∑

j=0,...,2l−1
j �=l

1

l − j

(
2l

j

)
(2l − j)ψ2l− j−1ψ̄ j

⎤
⎥⎥⎦
[

2l∑
h=1

(
2l

h

)
hψ2l−hψ̄h−1

]
dx

− λ2

22l+3l2

∫ ⎡
⎢⎢⎣ ∑

j=1,...,2l
j �=l

1

l − j

(
2l

j

)
jψ l− j ψ̄ j−1

⎤
⎥⎥⎦
[
2l−1∑
h=0

(
2l

h

)
(2l − h)ψ2l−h−1ψ̄h

]
dx

= λ2

22l+3l2
∑

j,h=1,...,2l−1
j �=l

1

l − j

(
2l

j

)(
2l

h

)
[(2l − j)h − j(2l − h)]

∫
ψ4l− j−h−1ψ̄ j+h−1 dx

+ λ2

22l+3l2
2
∫

ψ2l−1

[
2l∑
h=1

(
2l

h

)
hψ2l−hψ̄h−1

]
dx

+ λ2

22l+3l2
2l
∫ ⎡
⎢⎢⎣ ∑

j=0,...,2l−1
j �=l

1

l − j

(
2l

j

)
(2l − j)ψ2l− j−1ψ̄ j

⎤
⎥⎥⎦ ψ̄2l−1 dx

+ λ2

22l+3l2
2
∫

ψ̄2l−1

[
2l−1∑
h=0

(
2l

h

)
(2l − h)ψ2l−h−1ψ̄h

]
dx

− λ2

22l+3l2
2l
∫ ⎡
⎢⎢⎣ ∑

j=1,...,2l
j �=l

1

l − j

(
2l

j

)
jψ2l− j ψ̄ j−1

⎤
⎥⎥⎦ψ2l−1 dx, (74)

〈{χ1, F1}〉 = λ2K (l)
∫

|ψ |2(2l−1) dx, (75)

K (l) := 1

22l+3l2

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎝

∑
j,h=1,...,2l−1

j �=l
j+h=2l

1

l − j

(
2l

j

)(
2l

h

)
[(2l − j)h − j(2l − h)]

⎞
⎟⎟⎟⎟⎟⎠+ 16l

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (76)

where K (l) > 0 by the conditions on j and h in the sum.
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Then,

{χ1, 〈F1〉}

= λ2

22l+3l2

(
2l

l

)∫ ∑
j=0,...,2l−1

j �=l

1

l − j

(
2l

j

)
(2l − j)l ψ2l− j−1ψ̄ jψ l ψ̄ l−1 dx

− λ2

22l+3l2

(
2l

l

)∫ ∑
j=1,...,2l

j �=l

1

l − j

(
2l

j

)
jl ψ2l− j ψ̄ j−1ψ l−1ψ̄ l dx

= λ2

22l+3l2

(
2l

l

)⎡⎢⎢⎣
(
2l

l

)
2
∫

ψ3l−1ψ̄ l−1 + ψ l−1ψ̄3l−1 dx

+
∑

j=1,...,2l−1
j �=l

2l

(
2l

j

)∫
ψ3l− j−1ψ̄ j+l−1 dx

⎤
⎥⎥⎦ , (77)

and since j �= l in the sum we have that

〈{χ1, 〈F1〉}〉 = 0. (78)

Furthermore,

F2 = λ

2l+3l
2l
∫

(ψ + ψ̄)2l−1 Δ(ψ + ψ̄) dx

= λ

2l+2

2l−1∑
j=0

(
2l − 1

j

)∫
ψ2l− j−1ψ̄ j (Δψ + Δψ̄) dx, (79)

〈F2〉 = λ

2l+2

∫ (
2l − 1

l

)
ψ l−1ψ̄ lΔψ +

(
2l − 1

l − 1

)
ψ l ψ̄ l−1Δψ̄ dx

= λ

2l+2

(
2l − 1

l

)∫
|ψ |2(l−1)(ψ̄Δψ + ψΔψ̄) dx (80)

Hence, up to a remainder of order O
(

1
c6

)
, we have that

H2 = h0 + 1

c2

∫ [
−1

2

〈
ψ̄,Δψ

〉+ λ

2l+1l

(
2l

l

)
|ψ |2l

]
dx

+ 1

c4

∫ [
λ2K (l)|ψ |2(2l−1) + λ

2l+2

(
2l − 1

l

)
|ψ |2(l−1)(ψ̄Δψ + ψΔψ̄) − 1

8

〈
ψ̄,Δ2ψ

〉]
dx,

(81)

which, by neglecting h0 (that yields only a gauge factor) and by rescaling the time, leads to
the following equations of motion

−iψt = −1

2
Δψ + λ

2l+1

(
2l

l

)
|ψ |2(l−1)ψ + 1

c2

[
−1

8
Δ2ψ + λ2K (l) (2l − 1)|ψ |4(l−1)ψ

]

+ 1

c2

[
λ

2l+2

(
2l − 1

l

)(
l|ψ |2(l−1) Δψ + (l − 1)|ψ |2(l−2)ψ2Δψ̄ + Δ(|ψ |2(l−1)ψ̄)

)]
,

(82)
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which, for example, in the case of a cubic nonlinearity (l = 2) reads

−iψt = −1

2
Δψ + 3

4
λ|ψ |2ψ

+ 1

c2

[
51

8
λ2|ψ |4ψ + 3

16
λ
(
2|ψ |2 Δψ + ψ2Δψ̄ + Δ(|ψ |2ψ̄)

)− 1

8
Δ2ψ

]
. (83)

To the author’s knowledge, Eq. (83) has never been studied before. It is the nonlinear
analogue of a linear higher-order Schrödinger equation that appears in [14,15] in the con-
text of semirelativistic equations. Indeed, the linearization of Eq. (83) is studied within the
framework of relativistic quantumfield theory, as an approximation of nonlocal kinetic terms;
Carles, Lucha andMoulay studied the well-posedness of these approximations, as well as the
convergence of the equations as the order of truncation goes to infinity, in the linear case, also
when one takes into account the effects of some time-independent potentials (e.g., bounded
potentials, the harmonic oscillator potential and the Coulomb potential).

Remark 14 We point out that the case of the one-dimensional cubic defocusing NLKG is also
interesting, since for λ = 1 the normalized equation at first step is the cubic defocusing NLS,
which is known to be integrable by the inverse scattering method. It would be interesting to
reach a better understanding of the one-dimensional normalized equation, even in the case
r = 2.

Even though there is a one-dimensional integrable 4NLS equation related to the dynamics
of a vortex filament (see [52] and references therein),

iψt + ψxx + 1

2
|ψ |2ψ − ν

[
ψxxxx + 3

2
|ψ |2ψxx + 3

2
ψ2
x ψ̄ + 3

8
|ψ |4ψ + 1

2
(|ψ |2)xxψ

]
= 0, ν ∈ R (84)

apparently there is no obvious relation between the above equation and Eq. (83).

6.2 The complex nonlinear Klein–Gordon equation

Now we consider the Hamiltonian of the complex nonlinear Klein–Gordon equation with
power-type nonlinearity on a smooth manifold M (take, for example, a smooth compact
manifold, or R

d )

H(w, pw) = c2

2
〈pw, pw〉 + 1

2

〈
w, 〈∇〉2cw

〉 + λ

∫ |w|2l
2l

, (85)

where w : R × M → C, 〈∇〉c := (c2 − Δ)1/2, λ ∈ R, l ≥ 2.
If we rewrite the Hamiltonian in terms of u := Re(w) and v := Im(w), we have

H(u, v, pu, pv) = c2

2
(〈pu, pu〉 + 〈pv, pv〉) + 1

2
(|∇u|2 + |∇v|2)

+ c2

2
(u2 + v2) + λ

∫
(u2 + v2)l

2l
. (86)

We consider by simplicity only the cubic case (l = 2), but the argument may be readily
generalized to the other power-type nonlinearities.
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If we introduce the variables

ψ := 1√
2

[( 〈∇〉c
c

)1/2

u − i

(
c

〈∇〉c
)1/2

pu

]
, (87)

φ := 1√
2

[( 〈∇〉c
c

)1/2

v + i

(
c

〈∇〉c
)1/2

pv

]
, (88)

(the corresponding symplectic 2-form becomes idψ ∧dψ̄ − idφ∧dφ̄), the Hamiltonian (85)
in the coordinates (ψ, φ, ψ̄, φ̄) reads

H(ψ, φ, ψ̄, φ̄) = 〈
ψ̄, c〈∇〉cψ

〉+ 〈φ̄, c〈∇〉cφ
〉

(89)

+ λ

16

∫
M

[〈
ψ + ψ̄,

c

〈∇〉c (ψ + ψ̄)

〉
+
〈
φ + φ̄,

c

〈∇〉c (φ + φ̄)

〉]2
dx, (90)

with corresponding equations of motion⎧⎪⎪⎨
⎪⎪⎩
−iψt = c〈∇〉cψ + 1

4

[〈
ψ + ψ̄, c

〈∇〉c (ψ + ψ̄)
〉
+
〈
φ + φ̄, c

〈∇〉c (φ + φ̄)
〉]

c
〈∇〉c (ψ + ψ̄),

iφt = c〈∇〉cφ + 1
4

[〈
ψ + ψ̄, c

〈∇〉c (ψ + ψ̄)
〉
+
〈
φ + φ̄, c

〈∇〉c (φ + φ̄)
〉]

c
〈∇〉c (φ + φ̄).

If we rescale the time by a factor c2, the Hamiltonian takes the form (27), with ε = 1
c2
, and

H(ψ, φ, ψ̄, φ̄) = H0(ψ, φ, ψ̄, φ̄) + ε h(ψ, φ, ψ̄, φ̄) + ε F(ψ, φ, ψ̄, φ̄), (91)

where

H0(ψ, φ, ψ̄, φ̄) = 〈
ψ̄, ψ

〉+ 〈φ̄, φ
〉
, (92)

h(ψ, φ, ψ̄, φ̄) = 〈
ψ̄,
(
c〈∇〉c − c2

)
ψ
〉− 〈φ̄,

(
c〈∇〉c − c2

)
φ
〉

∼
∑
j≥1

ε j−1
(〈

ψ̄, a jΔ
jψ
〉
+
〈
φ̄, a jΔ

jφ
〉)

=:
∑
j≥1

ε j−1(h j (ψ, φ, ψ̄, φ̄)), (93)

F(ψ, φ, ψ̄, φ̄) = λ

16

∫
T

[〈
ψ + ψ̄,

c

〈∇〉c (ψ + ψ̄)

〉
+
〈
φ + φ̄,

c

〈∇〉c (φ + φ̄)

〉]2
dx,

∼ λ

16

∫ [|ψ + ψ̄ |2 + |φ + φ̄|2]2 dx
+ O(ε)

=:
∑
j≥1

ε j−1 Fj (ψ, φ, ψ̄, φ̄), (94)

where (a j ) j≥1 are real coefficients, and Fj (ψ, φ, ψ̄, φ̄) is a polynomial function of the
variables ψ , φ, ψ̄ , φ̄ (along with their derivatives) and which admits a bounded vector field
from a neighborhood of the origin in Wk+2( j−1),p(Rd , C

2 × C
2) to Wk,p(Rd , C

2 × C
2) for

any 1 < p < +∞.
This description clearly fits the scheme treated in Sect. 4 with n = 2, and one can easily

check that assumptions PER, NF and HVF are satisfied. Therefore, we can apply Theorem 7
to the Hamiltonian (91).
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Remark 15 About the normal forms obtained by applying Theorem 7, we remark that in the
first step (case r = 1 in the statement of the theorem) the homological equation we get is of
the form

{χ1, h0} + F1 = 〈F1〉 , (95)

where F1(ψ, ψ̄) = λ
16

∫ [|ψ + ψ̄ |2 + |φ + φ̄|2]2 dx . Hence the transformed Hamiltonian is
of the form

H1(ψ, φ, ψ̄, φ̄) = h0(ψ, φ, ψ̄, φ̄) + 1

c2

[
−1

2

(〈
ψ̄,Δψ

〉+ 〈φ̄, Δφ
〉)+ 〈F1〉 (ψ, φ, ψ̄, φ̄)

]

+ 1

c4
R(1)(ψ, φ, ψ̄, φ̄), (96)

where

〈F1〉 = λ

16

[
6ψ2ψ̄2 + 6φ2φ̄2 + 8ψψ̄φφ̄ + 2ψ2φ2 + 2ψ̄2φ̄2]

= λ

8

[
3(|ψ |2 + |φ|2)2 + 2(ψφ − ψ̄φ̄)2

]
.

If we neglect the remainder and we derive the corresponding equations of motion for the
system, we get⎧⎪⎨

⎪⎩
−iψt = ψ + 1

c2
{− 1

2Δψ + λ
4

[
3(|ψ |2 + |φ|2)ψ + 2(ψφ + ψ̄φ̄)φ̄

]}
,

iφt = φ + 1
c2
{− 1

2Δφ + λ
4

[
3(|ψ |2 + |φ|2)φ + 2(ψφ + ψ̄φ̄)ψ̄

]}
,

(97)

which is a system of two coupled NLS equations.

7 Dynamics

Now we want to exploit the result of the previous section in order to deduce some conse-
quences about the dynamics of the NLKG equation (3) in the nonrelativistic limit. Consider
the simplified system, that is, the Hamiltonian Hr in the notations of Theorem 7, where we
neglect the remainder:

Hsimp := h0 + ε(h1 + 〈F1〉) +
r∑
j=2

ε j (h j + Z j ).

We recall that in the case of the NLKG the simplified system is actually the NLS (given by
h0 + ε(h1 + 〈F1〉)), plus higher-order normalized corrections. Now let ψr be a solution of

−i ψ̇r = XHsimp (ψr ), (98)

then ψa(t, x) := T (r)(ψr (c2t, x)) solves

ψ̇a = ic〈∇〉cψa + λ

2l

(
c

〈∇〉c
)1/2

[(
c

〈∇〉c
)1/2

ψa + ψ̄a√
2

]2l−1

− 1

c2r
XT (r)∗R (r) (ψa, ψ̄a),

(99)

that is, the NLKG plus a remainder of order c−2r (in the following we will refer to Eq. (99)
as approximate equation, and to ψa as the approximate solution of the original NLKG). We
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point out that the original NLKG and the approximate equation differ only by a remainder of
order c−2r , which is evaluated on the approximate solution. This fact is extremely important:
indeed, if one can prove the smoothness of the approximate solution (which often is easier
to check than the smoothness of the solution of the original equation), then the contribution
of the remainder may be considered small in the nonrelativistic limit. This property is rather
general and has been already applied in the framework of normal form theory (see, for
example, [4]).

Now let ψ be a solution of the NLKG equation (3) with the initial datum ψ0, and let
δ := ψ − ψa be the error between the solution of the approximate equation and the original
one. One can check that δ fulfills

δ̇ = ic〈∇〉cδ + [P(ψa + δ, ψ̄a + δ̄) − P(ψa, ψ̄a)] + 1

c2r
XT (r)∗R (r) (ψa(t), ψ̄a(t)),

where

P(ψ, ψ̄) = λ

2l

(
c

〈∇〉c
)1/2

[(
c

〈∇〉c
)1/2

ψ + ψ̄√
2

]2l−1

. (100)

Thus we get

δ̇ = i c〈∇〉cδ + dP(ψa(t))δ + O(δ2) + O

(
1

c2r

)
;

δ(t) = eitc〈∇〉cδ0 +
∫ t

0
ei(t−s)c〈∇〉c d P(ψa(s))δ(s)ds + O(δ2) + O

(
1

c2r

)
. (101)

By applying Gronwall inequality to (101) we obtain

Proposition 3 Fix r ≥ 1, R > 0, k1  1, 1 < p < +∞. Then ∃ k0 = k0(r) > 0
with the following properties: For any k ≥ k1 there exists cl,r ,k,p,R  1 such that for any
c > cl,r ,k,p,R, if we assume that

‖ψ0‖k+k0,p ≤ R

and that there exists T = Tr ,k,p > 0 such that the solution of (98) satisfies

‖ψr (t)‖k+k0,p ≤ 2R, for 0 ≤ t ≤ T ,

then

‖δ(t)‖k,p ≤ Ck,p c
−2r , for 0 ≤ t ≤ T . (102)

Remark 16 Ifwe restrict to p = 2, and toM = T
d , the above result is actually a reformulation

of Theorem 3.2 in [23]. We also remark that the time interval [0, T ] in which estimate (102)
is valid is independent of c.

Remark 17 By exploiting estimate (32) about the canonical transformation, Proposition 3
leads immediately to a proof of Theorem 2.

In order to study the evolution of the error between the approximate solution and the
solution of the NLKG over longer (namely, c-dependent) timescales, we observe that the
error is described by

δ̇(t) = i c〈∇〉cδ(t) + dP(ψa(t))δ(t); (103)

δ(t) = eitc〈∇〉cδ0 +
∫ t

0
ei(t−s)c〈∇〉c d P(ψa(s))δ(s)ds, (104)
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up to a remainder which is small, if we assume the smoothness of ψa .
Equation (103) in the context of dispersive PDEs is known as semirelativistic spinless

Salpeter equation with a time-dependent potential. This system was introduced as a first
order in time analogue of the KG equation for the Lorentz covariant description of bound
states within the framework of relativistic quantum field theory, and, despite the nonlocality
of its Hamiltonian, some of its properties have already been studied. (See [55] for a study
from a physical point of view; for a more mathematical approach, see [33] and the more
recent works [14,15], which are closer to the spirit of our approximation.)

It seems reasonable to estimate the solution of Eq. (103) by studying and by exploiting
its dispersive properties, and this will be the aim of the following sections. From now on we
will consider only the case M = R

d for d ≥ 2.

8 Properties of the normal form equation

8.1 Linear case

Now let r ≥ 1, d ≥ 2. In [14,15] the authors proved that the linearized normal form system,
namely the one that corresponds (up to a rescaling of time by a factor c2) to

−iψ̇r = Xh0+∑r
j=1 ε j h j

(ψr ),

ψr (0) = ψ0, (105)

admits a unique solution in L∞(R)Hk+k0(Rd) (this is a simple application of the properties of
the Fourier transform), and by a perturbative argument they also proved the global existence
also for the higher oder Schrödinger equation with a bounded time-independent potential.

Moreover, by following the arguments of Theorem 4.1 in [31] and Lemma 4.3 in [14] one
obtains the following dispersive estimates and local-in-time Strichartz estimates for solutions
of the linearized normal form equation (105).

Proposition 4 (Fig. 1) Let r ≥ 1 and d ≥ 2, and denote by Ur (t) the evolution operator of
(105) at the time c2t (c ≥ 1, t > 0). Then one has the following local-in-time dispersive
estimate

‖Ur (t)‖L1(Rd )→L∞(Rd ) � c
d
(
1− 1

r

)
|t |−d/(2r), 0 < |t | � c2(r−1). (106)

On the other hand, Ur (t) is unitary on L2(Rd).
Now introduce the following set of admissible exponent pairs:

Δr := {(p, q) : (1/p, 1/q) lies in the closed quadrilateral ABCD} , (107)

Fig. 1 Set of admissible exponents Δr for different values of r: a r = 1 (this is the Schrödinger case); b
r = 2; c r = 11
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where

A =
(
1

2
,
1

2

)
, B =

(
1,

1

τr

)
, C = (1, 0), D =

(
1

τr ′
, 0

)
,

τr = 2r − 1

r − 1
,

1

τr
+ 1

τr ′
= 1.

Then for any (p, q) ∈ Δr \ {(2, 2), (1, τr ), (τr ′,∞)}

‖Ur (t)‖L p(Rd )→Lq (Rd ) � c
d
(
1− 1

r

)(
1
p− 1

q

)
|t |− d

2r

(
1
q − 1

p

)
, 0 < |t | � c2(r−1), (108)

Let r ≥ 1 and d ≥ 2: In the following lemma (p, q) is called an order-r admissible pair
when 2 ≤ p, q ≤ +∞ for r ≥ 2 (2 ≤ q ≤ 2d/(d − 2) for r = 1), and

2

p
+ d

rq
= d

2r
. (109)

Proposition 5 Let r ≥ 1 and d ≥ 2, and denote by Ur (t) the evolution operator of (105) at
the time c2t (c ≥ 1, t > 0). Let (p, q) and (a, b) be order-r admissible pairs, then for any
T � c2(r−1)

‖Ur (t)φ0‖L p([0,T ])Lq (Rd ) � c
d
(
1− 1

r

)(
1
2− 1

q

)
‖φ0‖L2(Rd ) = c

(
1− 1

r

)
2r
p ‖φ0‖L2(Rd ), (110)∥∥∥∥

∫ t

0
Ur (t − τ)φ(τ)dτ

∥∥∥∥
L p([0,T ])Lq (Rd )

� c

(
1− 1

r

)
2r
(
1
p+ 1

a

)
‖φ‖La′ ([0,T ])Lb′ (Rd )

. (111)

8.2 Well-posedness of higher-order nonlinear Schrödinger equations with small
data

Here we discuss the local well-posedness of

−iψt = Ac,rψ + P((∂α
x ψ)|α|≤2(r−1), (∂

α
x ψ̄)|α|≤2(r−1)), t ∈ I , x ∈ R

d , (112)

ψ(0, x) = ψ0(x), (113)

where r ≥ 2, I := [0, T ], T > 0,

Ac,r = c2 −
r∑
j=1

Δ j

c2( j−1)
, c ≥ 1,

and P is an analytic function at the origin of the form

P(z) =
∑

m+1≤|β|<M

aβ z
β, |aβ | ≤ K |β|, |z| � 1, (114)

where M > m ≥ 2, m, M ∈ N.
We will exploit this result during the proof of Theorem 4. We will adapt an argument of

[50] in order to show the local well-posedness of equation for data with small norm in the
so-called modulation spaces.

Modulation spaces Ms
p,q (s ∈ R, 0 < p, q < +∞) were introduced by Feichtinger,

and they can be seen as a variant of Besov spaces, in the sense that they allow to perform a
frequency decomposition of operators, and to study their properties with respect to lower and
higher frequencies. This spaces were recently used in order to prove global well-posedness
and scattering for small data for nonlinear dispersive PDEs, especially in the case of derivative
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Dynamics of the nonlinear Klein–Gordon equation in the nonrelativistic limit 931

nonlinearities (see, for example, [50,58,59]). We refer to [49] for a survey about modulation
spaces and nonlinear evolution equations.

We define the norm onmodulation spaces via the following decomposition: Let σ : R
d →

R be a function such that

supp(σ ) ⊂ [−3/4, 3/4]d ,

and consider a function sequence (σk)k∈Zd satisfying

σk(·) = σ(· − k), (115)∑
k∈Zd

σk(ξ) = 1, ∀ξ ∈ R
d . (116)

Denote by

Yd := {(σk)k∈Zd : (σk)k∈Zd satisfies (115)−(116)}.

Let (σk)k∈Zd ∈ Yd , and define the frequency-uniform decomposition operators

�k := F−1σkF , (117)

where by F we denote the Fourier transform on R
d , then we define the modulation spaces

Ms
p,q(R

d) via the following norm,

‖ f ‖Ms
p,q (Rd ) :=

⎛
⎝∑

k∈Zd

〈k〉sq ‖�k f ‖qp
⎞
⎠

1/q

, s ∈ R, 0 < p, q < +∞. (118)

Actually, in our application we will always be interested in the spaces Ms
p,1(R

d) with s ∈ R

and p > 1. We just mention some properties of modulation spaces.

Proposition 6 Let s, s1, s2 ∈ R and 1 < p, p1, p2 < +∞.

1. Ms
p,1(R

d) is a Banach space;

2. S (Rd) ⊂ Ms
p,1(R

d) ⊂ S ′(Rd);

3. S (Rd) is dense in Ms
p,1(R

d);

4. if s2 ≤ s1 and p1 ≤ p2, then Ms1
p1,1

⊆ Ms2
p2,1

;

5. M0
p,1(R

d) ⊆ L∞(Rd) ∩ L p(Rd);

6. let τ(p) = max (0, d(1− 1/p), d/p)and s1 > s2+τ(p), thenWs1,p(Rd) ⊂ Ms2
p,1(R

d);

7. let s1 ≥ s2, then Ms1
p,1(R

d) ⊂ Ws2,p(Rd).

The last two properties are not trivial and have been proved in [32].
We also introduce other spaces which are often used in this context: the anisotropic

Lebesgue space L p1,p2
xi ;(x j ) j �=i ,t

,

‖ f ‖L p1,p2
xi ;(x j ) j �=i ,t

:=
∥∥∥∥‖ f ‖L p2

x1,...,xi−1,xi+1,...,xd ,t (R
d−1×I )

∥∥∥∥
L
p1
xi (R)

,
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and, for any Banach space X , the spaces l1,s� (X) and l1,s�,i (X),

‖ f ‖l1,s� (X)
:=

∑
k∈Zd

〈k〉s ‖�k f ‖X , (119)

‖ f ‖l1,s�,i,c
(X)

:=
∑
k∈Zd

i

〈k〉s ‖�k f ‖X , Z
d
i :=

{
k ∈ Z

d : |ki | = max
1≤ j≤d

|k j |, |ki | > c

}
.

(120)

For simplicity, we write l1�(X) = l1,0� (X) and Ms
p,1 = Ms

p,1(R
d).

Proposition 7 Let d ≥ 2, m ≥ 2, m > 4r/d and s > 2(r − 1) + 1/m.

(i) There exist c0 > 1 and δ0 = δ0(d,m, r) > 0 such that for any c ≥ c0, for any
δ > δ0 and for any ψ0 ∈ Ms

2,1 with ‖ψ0‖Ms
2,1

≤ c−δ Eq. (112) admits a unique solution

ψ ∈ C(I , Ms
2,1) ∩ D, where T = T (‖ψ0‖Ms

2,1
) = O(c2(r−1)), and

‖ψ‖D =
2(r−1)∑
α=0

d∑
i,l=1

‖∂α
xlψ‖

l1,s−r+1/2
�,i,c

(L∞,2
xi ;(x j ) j �=i ,t

)∩l1,s� (Lm,∞
xi ;(x j ) j �=i ,t

)∩l1,s+1/m
� (L∞

t L2
x∩L2+m

t,x )
� c−δ.

(121)

(ii) Moreover, if s ≥ s0(d) := d + 2 + 1
2 , then there exists δ1 = δ1(d,m, r) > 0 such that

for any c ≥ c0, for any δ > δ1 and for any ψ0 ∈ Ms
2,1 with ‖ψ0‖Ms

2,1
≤ c−δ Eq. (112)

admits a unique solution ψ ∈ C(I , Hs), where T = T (‖ψ0‖Ms
2,1

) = O(c2(r−1)), and

‖ψ(t)‖Hs � c−δ, |t | � c2(r−1). (122)

From the above proposition and from the embedding Hs+σ+d/2 ⊂ Ms
2,1 for any σ > 0

we can deduce

Corollary 1 Let d ≥ 2, l ≥ 2, r < d
2 (l − 1) and s > 2(r − 1) + 1

2(l−1) . Then there exist
c0 > 1, δ0 = δ0(d, l, r) > 0 and δ1 = δ1(d, l, r) > 0 such that for any c ≥ c0, for any
δ > max(δ0, δ1), for any σ > 0 and for any ψ0 ∈ Hs+σ+d/2 with ‖ψ0‖Hs+σ+d/2 ≤ c−δ

the normal form equation for (56) admits a unique solution ψ ∈ C([0, T ], Hs+σ+d/2)∩ D,
where T = T (‖ψ0‖Hs+σ+d/2) = O(c2(r−1)), and (121) holds. Furthermore, we have that
ψ ∈ L∞(I )Hs+σ+d/2(Rd), and

‖ψ(t)‖Hs+σ+d/2 � c−δ, |t | � c2(r−1). (123)

Since the nonlinearity in Eq. (112) involves derivatives, this could cause a loss of deriva-
tives as long as we rely only on energy estimates, on dispersive estimates or on Strichartz
estimates. In order to overcome such a problem, we study the time decay of the operator
Ur (t) := eit Ac,r , its local smoothing property, Strichartz estimates with �k-decomposition
and maximal function estimates in the framework of frequency-uniform localization.

The rest of this subsection is devoted to the proof of Proposition 7. For convenience, we
will always use the following function sequence (σk)k∈Zd to define modulation spaces.

Lemma 5 Let (ηk)k∈Z ∈ Y1, and assume that supp(ηk) ⊂ [k − 2/3, k + 2/3]. Consider
σk(ξ) := ηk1(ξ1) . . . ηkd (ξd), k = (k1, . . . , kd) ∈ Z

d , (124)

then (σk)k∈Zd ∈ Yd .
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For convenience, we also write

σ̃ σk =
∑

‖l‖∞≤1

σk+l , σ̃�k =
∑

‖l‖∞≤1

�k+l , k ∈ Z
d , (125)

and one can check that

σ̃ σkσk = σk, σ̃�k ◦ �k = �k, k ∈ Z
d . (126)

We also write Ar f (t, x) := ∫ t
0 Ur (t − τ) f (τ, x)dτ .

8.2.1 Time decay

Now, the time decay of the operatorUr (t) is known (see (106)), but now we are interested in
its frequency-localized version, andwewant to consider lower, medium and higher frequency
separately. For simplicity we discuss the case r = 2, and we defer to the end of this section
a remark about the case r > 2. So, consider

U2(t) = eit Ac,2 = eic
2t F−1e

it

(
|ξ |2− |ξ |4

c2

)
F ,

and write ε = c−2. It is known that the time decay of U2(t) is determined by the critical
points of P2(|ξ |) = |ξ |2 − ε|ξ |4. Notice that P ′

2(R) = 4R(ε1/2R + 1√
2
)(ε1/2R − 1√

2
),

the singular points of P2 are ξ = 0 and the points of the sphere ξ = (2ε)−1/2. To handle
these points, we exploit Littlewood–Paley decomposition, van der Corput lemma and some
properties of the Fourier transform of radial functions.

Indeed, it is known that the Fourier transform of a radial function f is radial,

F f (ξ) = 2π
∫ ∞

0
f (R)Rd−1(R|ξ |)−(d−2)/2 Jd−2

2
(R|ξ |)dR,

where Jm is the order m Bessel function,

Jm(R) = (R/2)m

Γ (m + 1/2)π1/2

∫ 1

−1
ei Rt (1− t2)m−1/2dt, m > −1/2.

By following the computations in [50] we obtain that

F f (s) = Kdπ

∫ ∞

0
f (R)Rd−1e−i Rs h̄(Rs)dR

+ Kdπ

∫ ∞

0
f (R)Rd−1ei Rsh(Rs)dR, Kd > 0, (127)

|h(k)(R)| ≤ Kd(1+ R)−
d−1
2 −k, ∀k ≥ 0. (128)

Now we make a Littlewood–Paley decomposition of the frequencies: Choose ρ a smooth
cutoff function equal to 1 in the unit ball and equal to 0 outside the ball of radius 2, write
φ0 = ρ(·) − ρ(2·), φ j (·) = F−1φ0(2− j ·)F , j ∈ Z, and consider

U2(t)ψ0 =
∑
| j |≤K

φ j (D)U2(t)ψ0 +
∑
j<−K

φ j (D)U2(t)ψ0 +
∑
j>K

φ j (D)U2(t)ψ0

=: P= U2(t)ψ0 + P< U2(t)ψ0 + P> U2(t)ψ0, (129)
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where

K := K (ε) = 10− 1

2
 log2 ε!. (130)

Notice that the singular point R = 0 is in the support set of F (P= U2(t)ψ0). Roughly
speaking, if j < −K , the dominant term in P2(R) is R2, while if j > K the dominant term
in P2(R) is εR4; hence, by (106)

‖P< U2(t)ψ0‖L∞ � |t |−d/2‖ψ0‖L1 , (131)

‖P> U2(t)ψ0‖L∞ � cd/2|t |−d/4‖ψ0‖L1 , 0 < |t | � c2. (132)

The time decay estimate for P= U2(t)ψ0 is more difficult, since P2(R) has a singular
point in R = R1 := (2ε)−1/2, which corresponds to the sphere |ξ | = R1 in the support set
of F (P= U2(t)ψ0). We notice that also the point that satisfies P ′′

2 (R) = 0, R = (6ε)−1/2,
corresponds to a sphere ξ = R2 contained in the support set of F (P= U2(t)ψ0); we shall
use this fact later.

In order to handle the singular point R1, we perform another decomposition around the
sphere |ξ | = R1. Denote σ̃ ρ(·) = ρ(2−K ·) − ρ(2(K+1)·), then P= = F−1σ̃ ρF ; write
Pk = F−1φk(|ξ | − R1)F , we get∑

| j |≤K

φ j (D)U2(t)ψ0 =
∑
k∈Z

P=Pk U2(t)ψ0 (133)

By Young’s inequality

‖P=Pk U2(t)ψ0‖L∞ � ‖F−1
(
σ̃ ρφk(|ξ | − R1)e

−i t P2(|ξ |)
)
‖L∞‖ψ0‖L1 . (134)

Moreover,

F−1
(
σ̃ ρφk(|ξ | − R1)e

−i t P2(|ξ |)
)

(127)= Kdπ

∫ ∞

0
Rd−1σ̃ ρ(R)φk(R − R1)e

−i t P2(R)−i R|x |h̄(R|x |)dR

+ Kdπ

∫ ∞

0
Rd−1σ̃ ρ(R)φk(R − R1)e

−i t P2(R)+i R|x |h(R|x |)dR
=: Ak(|x |) + Bk(|x |).

In order to estimate Ak(s) we rewrite it as

Ak(s) = Kdπ

(∫ ∞

R1

+
∫ R1

0

)
Rd−1σ̃ ρ(R)φk(R − R1)e

−i t P2(R)−i Rs h̄(Rs)dR (135)

=: A(1)
k (s) + A(2)

k (s). (136)

We begin by estimating A(1)
k : Notice that A(1)

k (s) for k > K + 2; hence, we can assume
that k ≤ K + 2. By a change of variables we obtain

A(1)
k (s)

R=R1+2kσ= 2k Kdπe
−i R1s

∫ 2

1/2
F(σ )eit2

2k σ̃ P2(σ )dσ,

F(σ ) := (R1 + 2kσ)d−1σ̃ ρ(R1 + 2kσ)φ0(σ )h̄((R1 + 2kσ)s),

σ̃ P2(σ ) := (22k t)−1(t P2(R1 + 2kσ) − 2kσ s).
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One can check that

|σ̃ P2
′(σ )| =

∣∣∣4(R1 + 2kσ)(2R1 + 2kσ)σε − s

t2k

∣∣∣ .
Let s  1; if s � 2k t/ε, then

|F (m)(σ )| � 1, ∀m ≥ 1, |σ̃ P2
′(σ )| � ε, |σ̃ P2

′′(σ )|

� ε1/2, |σ̃ P2
′′′(σ )| � ε, |σ̃ P2

(m)(σ )|
ε≤1
� 1, ∀m ≥ 4

while for s  2k t/ε

|F (m)(σ )| � 1, ∀m ≥ 1, |σ̃ P2
(m)(σ )|

ε≤1
� 1, ∀m ≥ 1.

Integrating by parts we get

A(1)
k (s)

= 2k(22k t)−N Kdπe
i R1s

∫ 2

1/2
eit2

2k σ̃ P2(σ ) d

dσ

(
1

σ̃ P2 ′(σ )
· · · d

dσ

(
1

σ̃ P2 ′(σ )

d

dσ

(
F(σ )

σ̃ P2 ′(σ )

)))
dσ.

Therefore,

|A(1)
k (s)| � 2k(22k t)−N . (137)

If s ∼ 2k t/ε, we apply van der Corput lemma,

|A(1)
k (s)| � 2k(22k t)−1/2

∫ 2

1/2
|∂σ F(σ )|dσ

(128)
� 2k(22k t)−1/2s−(d−1)/2 � 2k(22k t)−d/2ε(d−1)/2.

Moreover, we can check that |A(1)
k (s)| � 2k ; hence, for s  1

|A(1)
k (s)|

ε≤1
� 2k min(1, (22k t)−d/2). (138)

If s � 1, we rewrite A(1)
k in the following form

A(1)
k (s) = 2k Kdπe

−i R1s
∫ 2

1/2
F1(σ )eit P2(R1+2kσ)dσ,

F1(σ ) := (R1 + 2kσ)d−1σ̃ ρ(R1 + 2kσ)φ0(σ )h̄((R1 + 2kσ)s)e−i2kσ s .

Again integrating by parts, we obtain

|A(1)
k (s)| � 2k min(1, (22k t)−d/2). (139)

Nowwe estimate A(2)
k . We notice that R2 ∈ supp(φk(R1−·)) if and only if k ∈ {−2,−1};

when k /∈ {−2,−1}, one can repeat the above argument and show that

|A(2)
k (s)| � 2k min(1, (22k t)−d/2). (140)

Let k ∈ {−2,−1}. If s � t or s  t we have by integration by parts that

|A(2)
k (s)| � min(1, t−N ), ∀N ∈ N.
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On the other hand, if s ∼ t we can use van der Corput lemma and obtain

|A(2)
k (s)| � t−1/3s−(d−1)/2 � t−

d
2+ 1

6 .

Therefore, for k ∈ {−2,−1} we have
|A(2)

k (s)| � min
(
1, t−

d
2+ 1

6

)
. (141)

Combining (140) and (141) we can deduce that

|A(2)
k (s)| � 2k min

(
1, (22k t)−

d
2+ 1

6

)
. (142)

If we sum up all the Ak for k ≤ K + 2 we finally conclude that for any d ≥ 2

‖P= U2(t)ψ0‖L∞ � cmin(|t |−d/2, |t |−d/2+1/6)‖ψ0‖L1 . (143)

Remark 18 In the general case r > 2, we have to determine critical points for the polynomial

Pr (R) =
r∑
j=1

(−1) j+1ε j−1R2 j , (144)

namely the roots of the polynomial

P ′
r (R) =

r∑
j=1

(−1) j+1ε j−12 j R2 j−1 = R

⎛
⎝ r∑

j=1

(−1) j+1ε j−12 j R2( j−1)

⎞
⎠ . (145)

Besides the trivial value R = 0, which we deal as in the case r = 2, one should rely on lower
and upper bounds to determine the other (if any) real roots. For a lower bound, we rely on
a well-known corollary of Rouché theorem from complex analysis, and we obtain that the
other roots satisfy

R ≥ 2

max
(
2,
∑r

j=1 2 jε
j−1
)

≥ 2

max
(
2, 2r

∑r−1
j=0 ε j

)
ε≤1/2≥ 2

max(2, 4rε)

ε�1/(2r)≥ 1.

For what concerns an upper bound, we exploit an old result by Fujiwara [24], and we get that
the roots satisfy

R ≤ max
1≤ j≤r−1

(
2(r − 1)

2 jε j−1

2rεr−1

) 1
2( j−1)

≤ 2(r − 1) max
1≤ j≤r−1

(
j

r

) 1
2( j−1)

ε
j−r

2( j−1)

ε≤1≤ Krε
−1/2

for some Kr > 0.
Hence, in the case r > 2, if ε sufficiently small (depending on r ), then the polynomial

P ′
r has critical points (apart from 0) which have modulus between 1 andO(ε−1/2) (a similar
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Dynamics of the nonlinear Klein–Gordon equation in the nonrelativistic limit 937

argument works also for the polynomial P ′′
r ), and this affects the medium-frequency decay

of Ur (t). In any case, we can deal with this problem as in the case r = 2, and we get

‖P< Ur (t)ψ0‖L∞ � |t |−d/2‖ψ0‖L1 , (146)

‖P= Ur (t)ψ0‖L∞ � cmin(|t |−d/2, |t |−d/2+1/6)‖ψ0‖L1 , (147)

‖P> Ur (t)ψ0‖L∞ � cd/2|t |− d
2r ‖ψ0‖L1 , 0 < |t | � c2(r−1). (148)

8.2.2 Smoothing estimates

As already pointed out, one needs smoothing estimates to ensure the well-posedness of Eq.
(112) because of the presence of derivatives in the nonlinearity. Again, we first consider the
case r = 2, and then we mention the results for r > 2.

Proposition 8 For any k = (k1, . . . , kd) ∈ Z
d with |ki | = |k|∞ and |ki | � c∥∥∥�k D

3/2
xi U2(t)ψ0

∥∥∥
L∞,2
xi ;(x j ) j �=i ,t

� c‖�kψ0‖L2 . (149)

Proof It suffices to consider the case i = 1. For convenience, we write z̄ = (z1, . . . , zd).
Then,∥∥∥�k D

3/2
xi U2(t)ψ0

∥∥∥
L∞,2
xi ;(x j ) j �=i ,t

=
∥∥∥∥
∫

σk(ξ)|ξ1|3/2eit P2(|ξ |)F (ψ0)(ξ)eix1ξ1dξ1

∥∥∥∥
L∞
x1
L2

ξ̄ ,t

�
∥∥∥∥
∫

ηk1(ξ1)|ξ1|3/2eit P2(|ξ |)F (ψ0)(ξ)eix1ξ1dξ1

∥∥∥∥
L∞
x1
L2

ξ̄ ,t

=: L.

Now, we estimate L: If k1 � c, then ξ1 > 0 for ξ ∈ supp(ηk1). Hence, by changing variable,
θ = P2(|ξ |), we get

L �
∥∥∥∥∥
∫

ηk1(ξ1(θ))ξ1(θ)3/2eitθF (ψ0)(ξ(θ))eix1ξ1(θ) 1

2
ξ−1
1 (θ)

(
2
|ξ |2
c2

− 1

)−1
∥∥∥∥∥
L∞
x1
L2

ξ̄ ,t

�
∥∥∥∥∥ηk1(ξ1(θ))ξ1(θ)1/2F (ψ0)(ξ(θ))

(
2
|ξ |2
c2

− 1

)−1
∥∥∥∥∥
L2

θ L
2
ξ̄

�
∥∥∥∥∥ηk1(ξ1)ξ1/21 F (ψ0)(ξ)

(
2
|ξ |2
c2

− 1

)−1 (
2
|ξ |2
c2

− 1

)1/2

ξ
1/2
1

∥∥∥∥∥
L2

ξ

=
∥∥∥∥∥ηk1(ξ1)ξ1F (ψ0)(ξ)

(
2
|ξ |2
c2

− 1

)−1/2
∥∥∥∥∥
L2

ξ

� c‖ψ0‖L2 .

The proof for the case k1 � −c is similar. ��
By duality we have the following

Proposition 9 For any k = (k1, . . . , kd) ∈ Z
d with |ki | = |k|∞ and |ki | � c∥∥�k∂

2
xiA2 f

∥∥
L∞
t L2

x
� c‖�k D

1/2
i f ‖L1,2

xi ;(x j ) j �=i ,t
. (150)
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Now consider the inhomogeneous Cauchy problem

−iψt = Ac,2ψ + f (t, x), ψ(0, x) = 0. (151)

Proposition 10 For any k = (k1, . . . , kd) ∈ Z
d with |ki | = |k|∞ and |ki | � c∥∥�k∂

2
xi ψ

∥∥
L∞,2
xi ;(x j ) j �=i ,t

� ‖�k f ‖L1,2
xi ;(x j ) j �=i ,t

. (152)

Proof It suffices to consider i = 1. We write

ψ = F−1
τ,ξ

1

τ − c2 − P2(|ξ |) (Ft,x f )(τ, ξ).

We have

∂2xi ψ = F−1
τ,ξ

ξ21

P2(|ξ |) + c2 − τ
Ft,x f . (153)

We want to show that∥∥∥∥∥F−1
τ,ξ

ηk1(ξ1)ξ
2
1

P2(|ξ |) + c2 − τ
Ft,x f

∥∥∥∥∥
L∞
x1
L2

ξ̄ ,t

�
∥∥∥F−1

ξ1
ηk1(ξ1)Fx1 f

∥∥∥
L1
x1
L2

ξ̄ ,t

,

which, by Young’s inequality, is equivalent to show that

sup
x1,τ,ξ j ( j �=1)

∣∣∣∣∣F−1
ξ1

σk(ξ)ξ21

P2(|ξ |) + c2 − τ

∣∣∣∣∣ � 1. (154)

We prove (154): First, notice that when |k1| = |k|∞, then |ξ1| ∼ |ξ |∞ for ξ ∈ supp(σk).
We split the argument according to the cases τ−c2 > 0 and τ−c2 ≤ 0. In the case τ−c2 > 0

sup
x1,τ,ξ j ( j �=1)

∣∣∣∣∣F−1
ξ1

σk(ξ)ξ21

P2(|ξ |) + c2 − τ

∣∣∣∣∣ �
∣∣∣∣∣
∫ k1+3/4

k1−3/4

c2

ξ21
dξ1

∣∣∣∣∣
|k1|�c

� 1.

When τ − c2 ≤ 0 we set τ2 := τ2(c) = c
(√

5
4 − τ

c2
− 1

2

)
> 0, in order to write

P2(|ξ |) + c2 − τ =
( |ξ |2

c
+ τ2

)(
−|ξ |2

c
+ τ2 + c

)
.

Hence

F−1
ξ1

σk(ξ)ξ21

P2(|ξ |) + c2 − τ
= F−1

ξ1

σk(ξ)ξ21( |ξ |2
c + τ2

) (
−|ξ |2

c + τ2 + c
)

= F−1
ξ1

σk(ξ)ξ21(
ξ21
c + |ξ̄ |2

c + τ2

)(
− ξ21

c − |ξ̄ |2
c + τ2 + c

) . (155)

When |ξ̄ |2 ≥ c(τ2 + c), we can treat the problem as before.
Next, we consider the case |ξ̄ |2 < c(τ2 + c). Let

A2 := A(ξ̄ , τ, c)2 = |ξ̄ |2
c

+ τ2,

B2 := B(ξ̄ , τ, c)2 = −
( |ξ̄ |2

c
− τ2 − c

)
,

123



Dynamics of the nonlinear Klein–Gordon equation in the nonrelativistic limit 939

then

F−1
ξ1

ηk1(ξ1)ξ
2
1( |ξ |2

c + τ2

) (
−|ξ |2

c + τ2 + c
)

= F−1
ξ1

ξ1

ξ21
c + A2

ξ1

B2 − ξ21
c

ηk1(ξ1)

= c1/2

2
F−1

ξ1

ξ1

ξ21
c + A2

(
1

B − ξ1
c1/2

− 1

B + ξ1
c1/2

)
ηk1(ξ1)

=: I + I I .

We estimate only I , as the argument of I I is similar. First we write

I = − c

2
F−1

ξ1

ηk1(ξ1)

ξ21
c + A2

+ c

2
F−1

ξ1

ηk1(ξ1)B(
B − ξ1

c1/2

)(
ξ21
c + A2

) := I1 + I2.

SinceF−1
ξ1

(1/ξ1) is the function sgn(ξ1), we have that I1 is bounded uniformly with respect
to c. For I2, it suffices to show

cB sup
x1

∣∣∣∣∣∣∣∣
F−1

ξ1

1(
B − ξ1

c1/2

)(
ξ21
c + A2

)
∣∣∣∣∣∣∣∣
� 1.

Since |F (e−|·|)(ξ)| � 1
1+|ξ |2 ,

cB

∥∥∥∥∥∥∥∥
F−1

ξ1

1(
B − ξ1

c1/2

)(
ξ21
c + A2

)
∥∥∥∥∥∥∥∥
L∞
x1

� cB

∥∥∥∥∥F−1
ξ1

1

B − ξ1
c1/2

∥∥∥∥∥
L∞
x1

∥∥∥∥∥∥F−1
ξ1

1
ξ21
c + A2

∥∥∥∥∥∥
L1
x1

� c2B

A2

∥∥∥∥∥F−1
ξ1

1

B − ξ1
c1/2

∥∥∥∥∥
L∞
x1

∥∥∥∥∥F−1
ξ1

1

ξ21 A
−2 + 1

∥∥∥∥∥
L1
x1

� B

∥∥∥∥∥F−1
ξ1

1

B − ξ1
c1/2

∥∥∥∥∥
L∞
x1

· c2

A2

∥∥∥Ae−A|x1|
∥∥∥
L1
x1

� 1.

Finally, we observe that in general the solution ψ of (151) may not vanish at t = 0.
However, by Parseval’s identity

ψ(0, x) = ψ(t, x)|t=0 = K
∫
I
U2(s)F ( f )(s, x)ds,

for some K > 0, and if we combine it with (150), we have that �kU2(t)d2x1ψ(0, x) ∈ L2.
Hence, by (149)

σ̃ψ(t) := ψ(t) −U2(t)ψ(0, ·) = i
∫
I
U2(t − τ) f (τ )dτ (156)

is the solution of (151), and it satisfies (152). ��
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Lemma 6 For any σ ∈ R and k ∈ Z
d with |ki | ≥ 4,

‖�k D
σ
xi ψ‖L p1,p2

x1;(x j ) j �=1,t
� 〈ki 〉σ ‖�kψ‖L p1,p2

x1;(x j ) j �=1,t
. (157)

If we replace Dσ
xi by ∂σ

xi , the above inequality holds for all k ∈ Z
d .

Proof See the proof of Lemma 3.4 in [58]. One can check that both sides of (157) are
equivalent for |ki | ≥ 4. ��

By combining (152), (150) and (157) we obtain

Proposition 11 For any k = (k1, . . . , kd) ∈ Z
d with |ki | = |k|∞ � c we have∥∥�k∂

2
xiA2 f

∥∥
L∞,2
xi ;(x j ) j �=i ,t

� ‖�k f ‖L1,2
xi ;(x j ) j �=i ,t

, (158)

∥∥�k∂
2
xiA2 f

∥∥
L∞
t L2

x
� c 〈|ki |〉1/2 ‖�k f ‖L1,2

xi ;(x j ) j �=i ,t
. (159)

Remark 19 For the case r > 2 we replace (149), (150), (152), (158) and (159) with∥∥∥�k D
r−1/2
xi Ur (t)ψ0

∥∥∥
L∞,2
xi ;(x j ) j �=i ,t

� cr−1‖�kψ0‖L2 , (160)

∥∥�k∂
r
xiAr f

∥∥
L∞
t L2

x
� cr−1‖�k D

1/2
i f ‖L1,2

xi ;(x j ) j �=i ,t
, (161)∥∥∥�k∂

2(r−1)
xi ψ

∥∥∥
L∞,2
xi ;(x j ) j �=i ,t

� ‖�k f ‖L1,2
xi ;(x j ) j �=i ,t

, (162)

∥∥∥�k∂
2(r−1)
xi Ar f

∥∥∥
L∞,2
xi ;(x j ) j �=i ,t

� ‖�k f ‖L1,2
xi ;(x j ) j �=i ,t

, (163)

∥∥∥�k∂
2(r−1)
xi Ar f

∥∥∥
L∞
t L2

x

� cr−1 〈|ki |〉r−3/2 ‖�k f ‖L1,2
xi ;(x j ) j �=i ,t

. (164)

Remark 20 We point out the fact that we have worked out smoothing estimates only in the
higher frequencies. As in [50], only these smoothing estimates are needed in order to discuss
the well-posedness of (112).

8.2.3 Strichartz estimates

By exploiting (110) we can deduce Strichartz estimates for solutions of (112) combined with
�k-decomposition operators.

Proposition 12 Let r ≥ 1, d ≥ 2, c ≥ 1, t > 0. Let (p, q) and (a, b) be order-r admissible
pairs. Then for any 0 < T � c2(r−1) and for any k ∈ Z

d with |k| � K (K = K (c) is defined
in (130))

‖�kUr (t)φ0‖L p([0,T ])Lq (Rd ) � c
d
(
1− 1

r

)(
1
2− 1

q

)
‖�kφ0‖L2(Rd )

= c

(
1− 1

r

)
2r
p ‖�kφ0‖L2(Rd ), (165)∥∥∥∥�k

∫ t

0
Ur (t − τ)φ(τ)dτ

∥∥∥∥
L p([0,T ])Lq (Rd )

� c

(
1− 1

r

)
2r
(
1
p+ 1

a

)
‖�kφ‖La′ ([0,T ])Lb′ (Rd )

.

(166)
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Furthermore, by (106) we have that

‖�kUr (t)‖L1→L∞ � c
d
(
1− 1

r

)
〈t〉−d/(2r) , 0 < |t | � c2(r−1),

and by following closely the argument in Section 5 of [59] we can deduce

Proposition 13 Let r ≥ 1, d ≥ 2, c ≥ 1. Let (p, q) be a Schrödinger-admissible pair, then

‖Ur (t)ψ0‖l1,s� (L p
t ([0,T ])Lq

x )
� c

(
1− 1

r

)
2r
p ‖ψ0‖Ms

2,1
, 0 < T � c2(r−1), (167)

‖Ar f ‖l1,s� (L p
t ([0,T ])Lq

x )∩l1,s� (L∞
t ([0,T ])L2

x )
� c

(
1− 1

r

)
4r
p ‖ f ‖l1,s� (L p′ ([0,T ])Lq′ (Rd ))

. (168)

8.2.4 Maximal function estimates

In this subsection we study the maximal function estimates for the semigroup Ur (t) and the
integral operator

∫ t
0 Ur (t − τ) · dτ in anisotropic Lebesgue spaces. To do this, we will need

the time decay properties proved in Sec. 8.2.1. As always, we first prove results for the case
r = 2, and then we write the modification for the general case.

Lemma 7 1. Let q ≥ 2, 8
d < q ≤ +∞ and k ∈ Z

d with |k| � K (c), then

‖�k U2(t)ψ0‖Lq,∞
xi ;(x j ) j �=i ,t

� cd/2 〈k〉1/q ‖�kψ0‖L2 , 0 < |t | � c2, ∀i = 1, . . . , d.

(169)

2. Let q ≥ 2, 4
d < q ≤ +∞ and k ∈ Z

d with |k| � K (c), then

‖�k U2(t)ψ0‖Lq,∞
xi ;(x j ) j �=i ,t

� c 〈k〉1/q ‖�kψ0‖L2 , ∀i = 1, . . . , d. (170)

Proof Clearly it suffices to show the thesis for i = 1; recall that for any x = (x1, . . . , xd) ∈
R
d we denote x̄ = (x2, . . . , xd). By a standard T T � argument, (169) is equivalent to∥∥∥∥

∫
Rd

ei〈x,ξ〉eit(c2+P2(|ξ |))σk(ξ)dξ

∥∥∥∥
Lq/2,∞
x1;x̄,t

� 〈k〉2/q . (171)

If |k| � K (c), then

‖F−1eit(c
2+P2(|ξ |))σk(ξ)‖L∞

x

(132)
� cd/2 〈k〉−d |t |−d/4, 0 < |t | � c2; (172)

on the other hand

‖�kU2(t)F
−1σk‖L∞

t,x
� ‖�kU2(t)F

−1σk‖L∞
t L2

x
� 1. (173)

If we combine (172) and (173), we obtain

|�kU2(t)F
−1σk | � cd/2(1+ 〈k〉4 |t |)−d/4, 0 < |t | � c2. (174)

Now, if |x1| � 1+ |t | 〈k〉5, by integrating by parts we get

|�kU2(t)F
−1σk | � cd/2 〈x1〉−2 . (175)

If |x1| � 1+ |t | 〈k〉5, by (174) we can deduce

|�kU2(t)F
−1σk | � cd/2 (1+ |x1| 〈k〉−1)−d/4

(176)
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Combining (175) and (176) we have

sup
x̄,t

|�kU2(t)F
−1σk | � cd/2 〈x1〉−2 + cd/2 (1+ |x1| 〈k〉−1)−d/4

, (177)

from which, by taking the Lq/2
x1 norm on both sides, we obtain (171). The proof for the case

|k| � K (c) is similar. ��
Lemma 8 Let q ≥ 2, 8

d < q ≤ +∞ and k ∈ Z
d with |ki | � K (c)2, then

‖�k A2 f ‖Lq,∞
xi ;(x j ) j �=i ,t

� cd/2 〈ki 〉−3/2+1/q ‖�k f ‖L1,2
xi ;(x j ) j �=i ,t

, 0 < |t | � c2, ∀i = 1, . . . , d.

(178)

Proof It suffices to prove the case i = 1. Recall that the solution of (151) is of the form

ψ = F−1
τ,ξ

1

c2 + P2(|ξ |) − τ
Ft,x f ;

hence, its frequency localization can be written as

�k ψ = F−1
τ,ξ

1

c2 + P2(|ξ |) − τ
(Ft,x�k f )(τ, ξ).

For convenience, we introduce the following regions

E1 = {
τ − c2 ≤ −c2/4

}
,

E2 =
{
−c2/4 ≤ τ − c2 ≤ |ξ̄ |2

(
−|ξ̄ |2

c2
+ 1

)}
,

E3 =
{
τ − c2 ≥ |ξ̄ |2

(
−|ξ̄ |2

c2
+ 1

)}
,

and we make the following decomposition

c2 + P2(|ξ |) − τ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

( |ξ |2
c + τ2(c, τ )

) (
− ξ1

c1/2
+ a

) (
ξ1
c1/2

+ a
)

(ξ̄ , τ ) ∈ E1,( |ξ |2
c + τ2(c, τ )

) (
−|ξ |2

c + τ2(c, τ ) + c
)

, (ξ̄ , τ ) ∈ E2,

−
( |ξ |2

c − c
2

)2 +
(
5
4c

2 − τ
)

, (ξ̄ , τ ) ∈ E3,

(179)

where a = a(c, ξ̄ , τ ) := (τ2(c, τ ) − |ξ̄ |2/c + c)1/2. We denote

�k ψi = F−1
τ,ξ

χEi (ξ̄ , τ )

c2 + P2(|ξ |) − τ
(Ft,x�k f )(τ, ξ), i = 1, 2, 3.

First, we estimate �k ψ1. Set σ̃ ηk1(ξ1) =∑
|l|≤10 ηk1+l(ξ1). First we notice that

χE1(ξ̄ , τ )

c2 + P2(|ξ |) − τ
= χE1(ξ̄ , τ )

(2τ2(c, τ ) + c)
( |ξ |2

c + τ2(c, τ )
)

+ χE1(ξ̄ , τ )

2a(2τ2(c, τ ) + c)

(
1

− ξ1
c1/2

+ a
+ 1

ξ1
c1/2

+ a

)

=:
3∑
j=1

A j (c, ξ, τ ).
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According to the above decomposition, we can rewrite �k ψ1 as

�k ψ1

= F−1
τ,ξ

χE1(ξ̄ , τ )σ̃ ηk1(ac
1/2)

c2 + P2(|ξ |) − τ
(Ft,x�k f )(τ, ξ)

+ F−1
τ,ξ

χE1(ξ̄ , τ )(1− σ̃ ηk1(ac
1/2))

c2 + P2(|ξ |) − τ
(Ft,x�k f )(τ, ξ)

=
3∑
j=1

F−1
τ,ξ χE1(ξ̄ , τ )A j (ξ, τ )σ̃ ηk1(ac

1/2)(Ft,x�k f )(τ, ξ)

+ F−1
τ,ξ

χE1(ξ̄ , τ )(1− σ̃ ηk1(ac
1/2))

c2 + P2(|ξ |) − τ
(Ft,x�k f )(τ, ξ)

=: I + II+ III+ IV.

Case k1 � K (c)2: First, we estimate II. Let σ̃ σk be as in (125), then

II =
∫
I×Rd

eitτ+i〈x̄,ξ̄〉χE1(ξ̄ , τ )

2a(2τ2(c, τ ) + c)
σ̃ σk̄(ξ̄ )σ̃ ηk1(ac

1/2) ̂�k f (y1, ·)(ξ̄ , τ )c1/2ei(x1−y1)ac1/2

× sgn(x1 − y1)dξ̄dy1dτ.

By changing variable, ξ1 = c1/2a(c, ξ̄ , τ ), and by setting σ̃ ρk(ξ) = σ̃ σk̄(ξ̄ )σ̃ ηk1(ξ1), we
obtain

|II| �
∣∣∣∣
∫

dy1 sgn(x1 − y1)
∫

eit(c
2+P2(|ξ |))ei(x1−y1)ξ1+i〈x̄,ξ̄〉σ̃ ρk(ξ) ̂�k f (y1, ·)(c2 + P2(|ξ |), τ )dξ

∣∣∣∣ ,
and by applying (169) we get

‖II‖Lq,∞
x1;x̄,t

�
∫

dy1

∥∥∥∥
∫

eit(c
2+P2(|ξ |))ei(x1−y1)ξ1+i〈x̄,ξ̄〉σ̃ ρk(ξ) ̂�k f (y1, ·)(c2 + P2(|ξ |), τ )dξ

∥∥∥∥
Lq,∞
x1;x̄,t

� cd/2 〈k1〉1/q
∫

‖σ̃ ρk(ξ) ̂�k f (y1, ·)(c2 + P2(|ξ |), τ )‖L2
ξ
dy1

(150),(157)
� c cd/2 〈k1〉1/q−3/2 ‖�k f ‖L1,2

x1;x̄,t
. (180)

Since k1 > 0, III has the same upper bound as in (180).
Now we estimate IV: First notice that

IV =
∫

dy1

∫
eitτ+i〈x̄,ξ̄〉σ̃ σk̄(ξ̄ ) ̂�k f (y1, ·)(ξ̄ , τ ) K (x1 − y1, a, ξ̄ )dξ̄ ,

K (x1, a, ξ̄ ) = χE1(ξ̄ , τ )(1− σ̃ ηk1(ac
1/2))

∫ ∑
|l|≤1 ηk1+l(ξ1)eix1ξ1

c2 + P2(|ξ |) − τ
dξ1.

By Young’s inequality for convolutions, Hölder’s inequality and Minkowski’s inequality we
have

‖I V ‖Lq,∞
x1;x̄,t

≤
∥∥∥∥
∫

‖σ̃ σk̄(ξ̄ ) ̂�k f (y1, ·)(ξ̄ , τ ) K (x1 − y1, a, ξ̄ )‖L1
ξ̄ ,τ

dy1

∥∥∥∥
Lq
x1

≤ ‖�k f ‖L1,2
x1;x̄,t

‖σ̃ σk̄(ξ̄ )K (x1, a, ξ̄ )‖
Lq,2
x1;ξ̄ ,τ

� ‖�k f ‖L1,2
x1;x̄,t

|σ̃ σk̄(ξ̄ )K (x1, a, ξ̄ )‖L∞̄
ξ
L2

τ L
q
x1

.
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Integrating by parts it follows that

‖σ̃ σk̄(ξ̄ )K (x1, a, ξ)‖L∞̄
ξ
L2

τ L
q
x1

� sup
|ξ−k|∞≤3

1∑
j=0

‖χE1(ξ̄ , τ )(1− σ̃ ηk1(ac
1/2))∂

j
ξ1

(c2 + P2(|ξ |) − τ)−1‖L2
τ
. (181)

Noticing that |ξ − ac1/2| ≥ c1/2 ≥ 1 in the support set of (1− σ̃ ηk1(ac
1/2))χ|ξ1−k1|≤3∂

j
ξ1

(c2 + P2(|ξ |) − τ)−1 we can deduce from (179) that there is no singularity if we integrate
(181), and this gives

‖σ̃ σk̄(ξ̄ )K (x1, a, ξ̄ )‖L∞̄
ξ
L2

τ L
q
x1

� c1/2|k1|−3/2.

Now we estimate I : We begin by setting

J (x1, a, ξ̄ ) = χE1(ξ̄ , τ )σ̃ ηk1(ac
1/2)

∫ ∑
|l|≤1 ηk+l(ξ1)eix1ξ1

(2τ2(c, τ ) + c)
( |xi |2

c + τ2(c, τ )
)dξ1. (182)

One can check that

I =
∫

dy1

∫
eitτ+i〈x̄,ξ̄〉σ̃ σk̄(ξ̄ ) ̂�k f (y1, ·)(ξ̄ , τ )J (x1 − y1, a, ξ̄ )dξ̄dτ.

Similar to the estimate of I V , by Young’s, Hölder’s and Minkowski’s inequalities we obtain

‖I‖Lq,∞
x1;x̄,t

� c1/2‖�k f ‖L1,2
x1;x̄,t

‖σ̃ σk(ξ̄ )J (x1, a, ξ̄ )‖L∞̄
ξ
L2

τ L
q
x1

.

By integration by parts we get

|J (x1, a, ξ)| � χE1(ξ̄ , τ )σ̃ ηk1(ac
1/2)

(2τ2(c, τ ) + c)(1+ |x1|)
1∑
j=0

∫
|ξ1−k1|≤3

∣∣∣∣∣∂ j
ξ1

( |xi |2
c

+ τ2(c, τ )

)−1
∣∣∣∣∣ dξ1.

Therefore,

‖σ̃ σk(ξ̄ )J (x1, a, ξ̄ )‖L∞̄
ξ
L2

τ L
q
x1

� sup
|ξ−k|∞≤3

1∑
j=0

∥∥∥∥∥∥
χE1(ξ̄ , τ )σ̃ ηk1(ac

1/2)

(2τ2(c, τ ) + c)(1+ |x1|)
1∑
j=0

∣∣∣∣∣∂ j
ξ1

( |xi |2
c

+ τ2(c, τ )

)−1
∣∣∣∣∣
∥∥∥∥∥∥
L2

τ

, (183)

and noticing that |ac1/2 − k1| ≤ 20 in the support set of σ̃ ηk1(ac
1/2), we can deduce that

2τ2(c, τ ) + c � k21 , and finally we obtain

‖σ̃ σk(ξ̄ )J (x1, a, ξ̄ )‖L∞̄
ξ
L2

τ L
q
x1

� |k1|−2. (184)

The proof for the case k � −K (c)2 is similar. Furthermore, in the estimate of �k ψ2 and
�k ψ3 we can check that there is no singularity in (c2 + P2(|ξ |) − τ)−1 for |ξ1| ≥ c1/2 and
(ξ̄ , τ ) ∈ E2 ∪ E3. Hence one can argue as in (182)–(184) and conclude. ��

In the last lemma we proved that �kA2 : L1,2
x1,(x j ) j �=2,t

→ L2,∞
x1,(x j ) j �=2,t

. In the next lemma

we show that �kA2 : L1,2
x2,(x j ) j �=1,t

→ L2,∞
x1,(x j ) j �=2,t

.
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Lemma 9 Let q ≥ 2, 8
d < q ≤ +∞, k ∈ Z

d with |ki | � c and h, i ∈ {1, . . . , d} with h �= i ,
then

‖�k A2 f ‖Lq,∞
xh ;(x j ) j �=h ,t

� c1+d/2 〈ki 〉−3/2+1/q ‖�k f ‖L1,2
xi ;(x j ) j �=i ,t

, 0 < |t | � c2. (185)

Proof It clearly suffices to consider the case h = 1, i = 2 and k2 � c. The proof goes along
the same line of that of (178), and we will only prove in detail the parts that are different.
For convenience, we denote σ̃ ξ = (ξ1, ξ3, . . . , ξd). We introduce the following regions

F1 = {
τ − c2 ≤ −c2/4

}
,

F2 =
{
−c2/4 ≤ τ − c2 ≤ |σ̃ ξ |2

(
−|σ̃ ξ |2

c2
+ 1

)}
,

F3 =
{
τ − c2 ≥ |σ̃ ξ |2

(
−|σ̃ ξ |2

c2
+ 1

)}
,

and we make the following decomposition

c2 + P2(|ξ |) − τ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

( |ξ |2
c + τ2(c, τ )

) (
− ξ2

c1/2
+ a

) (
ξ2
c1/2

+ a
)

(σ̃ ξ, τ ) ∈ F1,( |ξ |2
c + τ2(c, τ )

) (
−|ξ |2

c + τ2(c, τ ) + c
)

, (σ̃ ξ, τ ) ∈ F2,

−
( |ξ |2

c − c
2

)2 +
(
5
4c

2 − τ
)

, (σ̃ ξ, τ ) ∈ F3,

(186)

where b = b(c, σ̃ ξ, τ ) := (τ2(c, τ ) − |σ̃ ξ |2/c + c)1/2, τ2(c, τ ) = c
(√

5
4 − τ

c2
− 1

2

)
. We

denote

�k σ̃ψi = F−1
τ,ξ

χFi (σ̃ ξ, τ )

c2 + P2(|ξ |) − τ
(Ft,x�k f )(τ, ξ), i = 1, 2, 3.

We estimate �k σ̃ψ1, since by definition of the regions Fi the estimate of the other terms
follow more easily, like in the last Lemma.

Set σ̃ ηk2(ξ2) =∑
|l|≤10 ηk2+l(ξ2). First we notice that

χF1(σ̃ ξ, τ )

c2 + P2(|ξ |) − τ
= χF1(σ̃ ξ, τ )

(2τ2(c, τ ) + c)
( |ξ |2

c + τ2(c, τ )
)

+ χF1(σ̃ ξ, τ )

2b(2τ2(c, τ ) + c)

(
1

− ξ1
c1/2

+ b
+ 1

ξ1
c1/2

+ b

)

=:
3∑
j=1

Bj (c, ξ, τ ).

According to the above decomposition, we can rewrite �k ψ1 as

�k σ̃ψ1

=
3∑
j=1

F−1
τ,ξ χF1(σ̃ ξ, τ )Bj (ξ, τ )σ̃ ηk2(bc

1/2)(Ft,x�k f )(τ, ξ)

+ F−1
τ,ξ

χF1(σ̃ ξ, τ )(1− σ̃ ηk2(bc
1/2))

c2 + P2(|ξ |) − τ
(Ft,x�k f )(τ, ξ)

=: I + II+ III+ IV.

123



946 S. Pasquali

The estimates of II and III follow in the same way as for (178) by exchanging the roles of
ξ1 and ξ2. Now we estimate I : Set

m(ξ, τ ) = χE1(σ̃ ξ, τ )σ̃ σk̄(σ̃ ξ)σ̃ ηk2(bc
1/2

2b(2τ2(c, τ ) + c)
, (187)

and notice that 2τ2(c, τ )+ c � k22 in the support set of m; hence, for sufficiently large c, we
have

m(ξ, τ ) � χF1 σ̃ σk(ξ)

k42
,

and therefore,

‖m‖
L1

ξ2
L2

ξ3,...,ξd ,τ L
2q/(q−2)
ξ1

� |k2|−2. (188)

Now, since by Young’s, Hölder’s and Minkowski’s inequalities we have

‖F−1
ξ,τm(ξ, τ )(Ft,x�k f )‖Lq,∞

x1;x̄,t
� ‖F−1

ξ,τm(ξ, τ )(Ft,x�k f )‖Lq
x1 L

1
σ̃ ξ,τ

� ‖m(ξ, τ )(Ft,x�k f )‖
L1

σ̃ ξ,τ
Lq′

ξ1

� ‖m‖
L1

ξ2
L2

ξ3,...,ξd ,τ L
2q/(q−2)
ξ1

‖Ft,x�k f ‖L∞
ξ2
L2

(ξ j ) j �=2,τ

� ‖m‖
L1

ξ2
L2

ξ3,...,ξd ,τ L
2q/(q−2)
ξ1

‖�k f ‖L1
x2
L2

(x j ) j �=2,t
, (189)

we can deduce that

‖I‖Lq,∞
x1;x̄,t

� |k2|−2‖�k f ‖L1
x1
L2

(x j ) j �=2,t
. (190)

Now we estimate IV: Set

mk(ξ, τ ) := χF3(σ̃ ξ, τ )σ̃ σk(ξ)(1− σ̃ ηk2(b))

c2 + P2(|ξ |) − τ
, Mk( f ) := F−1

τ,ξ mk(ξ, τ )(Ft,x f ), (191)

and notice that Mk( f ) is the solution of the inhomogeneous equation

−iψt = Ac,2ψ −F−1
τ,ξ mk(ξ, τ )(c2 + P2(|ξ |) − τ)(Ft,x f ).

Applying (159) (recall that k2 � c), we have

‖Mk( f )‖L∞
x,t

� c3/2‖Mk( f )‖L∞
t L2

x

� cd/2c|k2|−3/2‖ f ‖L1
x2
L2

(x j ) j �=2,t

= c
d
2+1|k2|−3/2‖ f ‖L1

x2
L2

(x j ) j �=2,t
. (192)

Next, for (ξ, τ ) ∈ supp(mk),

|c2 + P2(|ξ |) − τ |
(σ̃ ξ,τ )∈F3

� c−1 〈k〉2 |k2|. (193)

By the definition of b we have that for |σ̃ ξ |
c � 1

2 (c + τ2(c, τ ))

|c2 + P2(|ξ |) − τ | � (c + τ2(c, τ ))3/2, (ξ, τ ) ∈ supp(mk), (194)
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while for |σ̃ ξ |
c � 1

2 (c+ τ2(c, τ )) we can exploit the fact that |k|∞ = |k2| � c to obtain again
that

|c2 + P2(|ξ |) − τ | � (c + τ2(c, τ ))3/2, (ξ, τ ) ∈ supp(mk), (195)

and by combining (191) with (194)–(195) we obtain

mk(ξ, τ ) � c
χτ≥ 3

4 c
2 σ̃ σk(ξ)

(|k2|2 + c + τ2(c, τ ))3/2
, (196)

which gives

‖mk‖L1
ξ2
L2

ξ3,...,ξd ,τ L
∞
ξ1

� c|k2|−1. (197)

Therefore, from(191) and (189) we can deduce

‖Mk( f )‖L2,∞
x1;x̄,t

� c|k2|−1‖ f ‖L1
x2
L2

(x j ) j �=2,t
. (198)

For any q ≥ 2 we obtain by interpolation between (192) and (198)

‖Mk( f )‖Lq,∞
x1;x̄,t

� c
1+d

(
1
2− 1

q

)
|k2|−3/2+1/q‖ f ‖L1

x2
L2

(x j ) j �=2,t
, (199)

and replacing f by �k f in (199), we finally obtain

‖IV‖Lq,∞
x1;x̄,t

� c
1+d

(
1
2− 1

q

)
|k2|−3/2+1/q‖ f ‖L1

x2
L2

(x j ) j �=2,t
.

��
If we collect (178) and (185), we can deduce

Lemma 10 Let q ≥ 2, 8
d < q ≤ +∞, k ∈ Z

d with |ki | � c and h, i ∈ {1, . . . , d}, then
‖�k ∂2xiA2 f ‖Lq,∞

xh ;(x j ) j �=h ,t
� c1+d/2 〈ki 〉1/2+1/q ‖�k f ‖L1,2

xi ;(x j ) j �=i ,t
, 0 < |t | � c2. (200)

Remark 21 In the general case r > 2 we have

1. Let q ≥ 2, 4r
d < q ≤ +∞ and k ∈ Z

d with |k| � K (c), then

‖�k Ur (t)ψ0‖Lq,∞
xi ;(x j ) j �=i ,t

� c
d
(
1− 1

r

)
〈k〉1/q ‖�kψ0‖L2 ,

0 < |t | � c2(r−1), ∀i = 1, . . . , d. (201)

2. Let q ≥ 2, 4
d < q ≤ +∞ and k ∈ Z

d with |k| � K (c), then

‖�k Ur (t)ψ0‖Lq,∞
xi ;(x j ) j �=i ,t

� c 〈k〉1/q ‖�kψ0‖L2 , ∀i = 1, . . . , d. (202)

3. Let q ≥ 2, 4r
d < q ≤ +∞ and k ∈ Z

d with |ki | � K (c)2 and i ∈ {1, . . . , d}, then

‖�k Ar f ‖Lq,∞
xi ;(x j ) j �=i ,t

� c
r−1+d

(
1− 1

r

)
〈ki 〉−r+1/2+1/q ‖�k f ‖L1,2

xi ;(x j ) j �=i ,t
, 0 < |t | � c2(r−1).

(203)
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4. Let q ≥ 2, 4r
d < q ≤ +∞, k ∈ Z

d with |ki | � c and h, i ∈ {1, . . . , d} with h �= i , then

‖�k Ar f ‖Lq,∞
xh ;(x j ) j �=h ,t

� c
r−1+d

(
1− 1

r

)
〈ki 〉−r+1/2+1/q ‖�k f ‖L1,2

xi ;(x j ) j �=i ,t
, 0 < |t | � c2(r−1). (204)

5. Let q ≥ 2, 4r
d < q ≤ +∞, k ∈ Z

d with |ki | � c and h, i ∈ {1, . . . , d}, then

‖�k ∂2(r−1)
xi Ar f ‖Lq,∞

xh ;(x j ) j �=h ,t

� c
r−1+d

(
1− 1

r

)
〈ki 〉r−3/2+1/q ‖�k f ‖L1,2

xi ;(x j ) j �=i ,t
, 0 < |t | � c2(r−1). (205)

8.2.5 Proof of the local well-posedness

In this subsection we use smoothing estimates, Strichartz estimates and maximal function
estimates in order to prove Proposition 7. In order to do so, it seems necessary to estimate
norms in which partial derivatives and anisotropic Lebesgue spaces have different directions,
for example ‖∂2x1�k A f ‖L2,∞

x2;(x j ) j �=2,t
with |k|∞ = |k3|. As usual, we show results for the case

r = 2, and then we point out the modifications for the case r > 2.

Lemma 11 Let i, l,m ∈ {1, . . . , d}, 1 ≤ p, q,≤ +∞. Assume that k = (k1, . . . , kd) with
|k|∞ = |km | � c, then

‖�k ∂2xl f ‖L p,q
xi ;(x j ) j �=i ,t

� ‖�k ∂2xm f ‖L p,q
xi ;(x j ) j �=i ,t

. (206)

Proof

‖�k ∂2xl f ‖L p,q
xi ;(x j ) j �=i ,t

�
∑

|hl |∞,|hm |∞≤1

∥∥∥∥∥F−1
ξl ,ξm

((
ξl

ξm

)2

ηkl+hl (ξl)ηkm+lm (ξm)

)∥∥∥∥∥
L1(R2)

× ‖�k ∂2xm f ‖L p,q
xi ;(x j ) j �=i ,t

� ‖�k ∂2xm f ‖L p,q
xi ;(x j ) j �=i ,t

.

��

Lemma 12 1. Let (a, b) be order-2 admissible, i ∈ {1, . . . , d}, q ≥ 2, 8
d < q < +∞ and

k ∈ Z
d with |k|∞ � K (c), then

‖�k ∂α
xiA2 f ‖Lq,∞

xi ;(x j ) j �=i ,t
� c

d
2+ 2

a 〈|k|∞〉α+1/q ‖�k f ‖La′
t Lb′

x
, 0 < |t | � c2. (207)

2. Let (a, b) be Schrödinger-admissible, i ∈ {1, . . . , d}, then
‖�k∂

2
xiA2 f ‖La

t Lb
x

� c1+4/p 〈|k|∞〉1/2 ‖�k f ‖L1,2
xi ;(x j ) j �=i ,t

, 0 < |t | � c2 (208)

‖�k∂
2
xiA2 f ‖L∞,2

xi ;(x j ) j �=i ,t
� c1+4/p 〈|k|∞〉1/2 ‖�k f ‖La′

t Lb′
x
, 0 < |t | � c2. (209)
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Proof Denote

Lk( f , ψ) =
∫ (

�k

∫
U2(t − τ) f (τ )dτ, ψ(t)

)
dt .

By duality and the maximal function estimate (169)

|Lk( f , ψ)| ≤ ‖�k f ‖
Lq′
x1 L

1
x̄,t

∑
|l|∞≤1

∥∥∥∥�k+l

∫
U2(t − τ)ψ(t)dt

∥∥∥∥
Lq
x1 L

∞̄
x,t

≤ ‖�k f ‖
Lq′
x1 L

1
x̄,t

∑
|l|∞≤1

∫
‖�k+lU2(t − τ)ψ(t)dt‖Lq

x1 L
∞̄
x,t

(169)≤ cd/2 〈k〉1/q ‖�k f ‖
Lq′
x1 L

1
x̄,t
‖ψ‖L1

t L2
x
,

so by duality we obtain∥∥∥∥�k

∫
U2(t − τ) f (τ )dτ

∥∥∥∥
L∞
t L2

x

� cd/2 〈k〉1/q ‖�k f ‖
Lq′
x1 L

1
x̄,t

. (210)

Therefore, by duality, Strichartz estimates (166) and (210)

|Lk( f , ψ)| ≤
∥∥∥∥�k

∫
U2(−τ) f (τ )dτ

∥∥∥∥
L2
x

∥∥∥∥�k

∫
U2(−t)ψ(t)dt

∥∥∥∥
L2
x

� cd/2 〈k〉1/q ‖ f ‖
Lq′
x1 L

1
x̄,t

c(1−1/r)2r/a‖�k ψ‖La′
t Lb′

x
, (211)

which implies (207) for q > 2 or a > 2. In the case a = q = 2, (207) can be directly
deduced from (169). Furthermore, by (168), (157) and (159) we get

Lk(∂
2
xi f , ψ) � c1+4/p 〈|k|∞〉1/2 ‖�k f ‖L1,2

xi ;(x j ) j �=i ,t
c4/p‖ψ‖La′

t Lb′
x
, (212)

and we can deduce (208); by exchanging f and ψ , we get (209). ��
We now summarize the results we will use in order to prove the local well-posedness of

(112): We omit the proof, it follows from the results of the previous subsections, together
with (206).

Proposition 14 Let d ≥ 2, 8/d ≤ p < +∞, 2 ≤ q < +∞, q > 8/d, k ∈ Z
d with

|k|∞ = |ki | � c, h, i, l ∈ {1, . . . , d}. Then∥∥∥�k D
3/2
xi U2(t)ψ0

∥∥∥
L∞,2
xi ;(x j ) j �=i ,t

� c‖�kψ0‖L2 , (213)

‖�k U2(t)ψ0‖Lq,∞
xi ;(x j ) j �=i ,t

� cd/2 〈k〉1/q ‖�kψ0‖L2 , 0 < |t | � c2, (214)

‖�kU2(t)φ0‖L∞
t L2

x∩L2+p
x

� c
4

p(p+2) ‖�kφ0‖L2 , 0 < |t | � c2 (215)

‖�k∂
2
xlA2 f ‖L∞,2

xi ;(x j ) j �=i ,t
� ‖�k f ‖L1,2

xi ;(x j ) j �=i ,t
, (216)

‖�k ∂2xlA2 f ‖Lq,∞
xh ;(x j ) j �=h ,t

� c1+d/2 〈ki 〉1/2+1/q ‖�k f ‖L1,2
xi ;(x j ) j �=i ,t

, 0 < |t | � c2, (217)

‖�k∂
2
xlA2 f ‖L∞

t L2
x∩L2+p

t,x
� c1+

4
p(p+2) 〈ki 〉1/2 ‖�k f ‖L1,2

xi ;(x j ) j �=i ,t
, 0 < |t | � c2 (218)

‖�k∂
2
xlA2 f ‖L∞,2

xi ;(x j ) j �=i ,t
� c1+

4
p(p+2) 〈ki 〉1/2 ‖�k f ‖L(2+p)/(1+p)

t,x
, 0 < |t | � c2, (219)
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‖�k ∂2xlA2 f ‖Lq,∞
xi ;(x j ) j �=i ,t

� c
d
2+ 2

p+2+ 4
p(p+2) 〈ki 〉2+1/q ‖�k f ‖

L(2+p)/(1+p)
t,x

, 0 < |t | � c2,

(220)

‖�k A2 f ‖L∞
t L2

x∩L2+p
t,x

� c
8

p(p+2) ‖�k f ‖
L(2+p)/(1+p)
t,x

. (221)

For the case r > 2 we have the following results

Remark 22 1. Let (a, b) be order-r admissible, i ∈ {1, . . . , d}, q ≥ 2, 4r
d < q < +∞ and

k ∈ Z
d with |k|∞ � K (c), then

‖�k ∂α
xiAr f ‖Lq,∞

xi ;(x j ) j �=i ,t
� c

d
(
1− 1

r

)
+
(
1− 1

r

)
2r
a 〈|k|∞〉α+1/q ‖�k f ‖La′

t Lb′
x
, 0 < |t | � c2(r−1).

(222)

2. Let (a, b) be Schrödinger-admissible, i ∈ {1, . . . , d}, then
‖�k∂

2(r−1)
xi Ar f ‖La

t Lb
x

� cr−1+2r/a 〈|k|∞〉r−3/2 ‖�k f ‖L1,2
xi ;(x j ) j �=i ,t

, 0 < |t | � c2(r−1)

(223)

‖�k∂
2(r−1)
xi A2 f ‖L∞,2

xi ;(x j ) j �=i ,t
� cr−1+2r/a 〈|k|∞〉r−3/2 ‖�k f ‖La′

t Lb′
x
, 0 < |t | � c2(r−1).

(224)

Proposition 15 Let d ≥ 2, 4r/d ≤ p < +∞, 2 ≤ q < +∞, q > 4r/d, k ∈ Z
d with

|k|∞ = |ki | � c, h, i, l ∈ {1, . . . , d}. Then∥∥∥�k D
r−1/2
xi Ur (t)ψ0

∥∥∥
L∞,2
xi ;(x j ) j �=i ,t

� cr−1‖�kψ0‖L2 , (225)

‖�k Ur (t)ψ0‖Lq,∞
xi ;(x j ) j �=i ,t

� c
d
(
1− 1

r

)
〈k〉1/q ‖�kψ0‖L2 , 0 < |t | � c2(r−1), (226)

‖�kUr (t)φ0‖L∞
t L2

x∩L2(r−1)+p
x

� c
4(r−1)2

p(p+2(r−1)) ‖�kφ0‖L2(Rd ), 0 < |t | � c2(r−1) (227)

‖�k∂
2(r−1)
xl Ar f ‖L∞,2

xi ;(x j ) j �=i ,t
� ‖�k f ‖L1,2

xi ;(x j ) j �=i ,t
, (228)

‖�k ∂2(r−1)
xl Ar f ‖Lq,∞

xh ;(x j ) j �=h ,t
� c

r−1+d
(
1− 1

r

)
〈ki 〉r−3/2+1/q ‖�k f ‖L1,2

xi ;(x j ) j �=i ,t
,

0 < |t | � c2(r−1), (229)

‖�k∂
2(r−1)
xl Ar f ‖L∞

t L2
x∩L2(r−1)+p

t,x
� cr−1+ 4(r−1)2

p(p+2(r−1)) 〈ki 〉r−3/2 ‖�k f ‖L1,2
xi ;(x j ) j �=i ,t

,

0 < |t | � c2(r−1) (230)

‖�k∂
2(r−1)
xl Ar f ‖L∞,2

xi ;(x j ) j �=i ,t
� cr−1+ 4(r−1)2

p(p+2(r−1)) 〈ki 〉r−3/2 ‖�k f ‖
L

2(r−1)+p
2r−1+p

t,x

,

0 < |t | � c2(r−1), (231)

‖�k ∂2(r−1)
xl Ar f ‖Lq,∞

xi ;(x j ) j �=i ,t
� c

d
2+ 2r

p+2(r−1)+ 4(r−1)2

p(p+2(r−1)) 〈ki 〉2(r−1)+1/q ‖�k f ‖
L

2(r−1)+p
2r−1+p

t,x

,

0 < |t | � c2(r−1), (232)

‖�k Ar f ‖L∞
t L2

x∩L2(r−1)+p
t,x

� c
8(r−1)2

p(p+2(r−1)) ‖�k f ‖
L

2(r−1)+p
2r−1+p

t,x

. (233)
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For convenience, we state some technical results related to nonlinear mapping estimates.
For i = 1, . . . , d and N ∈ N we set

B
(N )
i,1 :=

{(
k(1), . . . , k(N )

)
∈ (Zd)N : max

(
|k(1)
i |, . . . , |k(N )

i |
)

� c
}

,

B
(N )
i,2 :=

{(
k(1), . . . , k(N )

)
∈ (Zd)N : max

(
|k(1)
i |, . . . , |k(N )

i |
)

� c
}

.

Lemma 13 Let s ≥ 0, N ≥ 3, i ∈ {1, . . . , d}, then∥∥∥∥∥∥∥
∑
B

(N )
i,1

�k(1) ψ1 · · ·�k(N ) ψN

∥∥∥∥∥∥∥
l1,s�,i,c

(L1,2
x1,(x j ) j �=2,t )

�
N∑

α=1

‖ψα‖∩d
h=1l

1,s
�,h,c

(L∞,2
xh ,(x j ) j �=h ,t )

∏
β=1,...,d

β �=α

‖ψβ‖∩d
h=1l

1
�(LN−1∞

xh ,(x j ) j �=h ,t )
. (234)

Proof See proof of Lemma 3.1 in [50]. ��
Lemma 14 Let N ≥ 1 and i ∈ {1, . . . , d}, and assume that 1 ≤ p, q, p1, q1, . . . , pN , qN ≤
+∞ satisfy

1

p
= 1

p1
+ · · · + 1

pN
,

1

q
= 1

q1
+ · · · + 1

qN
,

then ∥∥∥∥∥∥∥
∑
B

(N )
i,2

�k(1) ψ1 · · ·�k(N ) ψN

∥∥∥∥∥∥∥
l1�,i,c

(Lq
t L

p
x )

� cd Nd
∑
B

(N )
i,2

N∏
i=1

‖�k(i) ψi‖Lqi
t L

pi
x

. (235)

Proof See proof of Lemma 3.3 in [50]. ��
Lemma 15 Let s ≥ 0, N ≥ 1 and i ∈ {1, . . . , d}, and assume that 1 ≤ p, q, p1, q1, . . . , pN ,

qN ≤ +∞ satisfy

1

p
= 1

p1
+ · · · + 1

pN
,

1

q
= 1

q1
+ · · · + 1

qN
,

then

‖ψ1 · · ·ψN‖l1,s� (L p
t L

q
x )

� Nd
N∏
i=1

‖ψi‖l1,s� (L
pi
t L

qi
x )

. (236)

Proof See proof of Lemma 8.2 in [59]. ��
Proof (Proposition 7, part (i), case r = 2) Since the nonlinearity contains terms of the form
(∂α

x ψ)β with |α| ≤ 2, |β| ≥ m + 1, we introduce the space

D :=
⎧⎨
⎩ψ ∈ S ′ : ‖ψ‖D :=

∑
|α|≤2

3∑
l=1

d∑
i, j=1

ρ
(i)
l (∂α

x j ψ) � c−δ0

⎫⎬
⎭ ,
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where

ρ
(i)
1 (ψ) := ‖ψ‖

l1,s−r+1/2+1/m
�,i,c

(L∞,2
xi ;(x j ) j �=i ,t

)
,

ρ
(i)
2 (ψ) := ‖ψ‖l1,s� (Lm,∞

xi ;(x j ) j �=i ,t
)
,

ρ
(i)
3 (ψ) := ‖ψ‖

l1,s+1/m
� (L∞

t L2
x∩L2+m

t,x )
.

and for some δ0 > 0 that we will choose later.
Since ‖ψ‖D = ‖ψ̄‖D , without loss of generality we can assume that the nonlinearity

contain only terms of the form

ψβ0(∂α1
x ψ)β1(∂α2

x ψ)β2 =: Ψ1 . . . ΨR,

where R := |β| = β0 + |β1| + |β2|, |αi | = i (i = 1, 2).
To prove the first part of Proposition 7 we will show that the map

F : D → D,

ψ(t) #→ U2(t)ψ0 + iA2P
((

∂α
x ψ
)
|α|≤2 ,

(
∂α
x ψ̄
)
|α|≤2

)
is a contraction mapping.

First, we have that by Proposition 14

‖U2(t)ψ0‖D � c
d
2+ 4

m(m+2) ‖ψ0‖Ms+3+1/m
2,1

.

Now, for the estimate of ρ(i)
1 (A2∂

α
x j F) (i, j = 1, . . . , d) it suffices to estimate ρ

(1)
1 (A2∂

α
x1F):

Indeed, by (206)

ρ
(1)
1 (A2∂

α
x2F) � ρ

(1)
1 (A2∂

α
x1F).

Using frequency-uniform decomposition, we write

�k(Ψ1 · · ·ΨR) =
∑
B

(R)
1,1

�k(�k(1) Ψ1 · · ·�k(R) ΨR) +
∑
B

(R)
1,2

�k(�k(1) Ψ1 · · ·�k(R) ΨR).

By exploiting (216) and (234) for the first sum and (219) and (236) for the second sum we
obtain

ρ
(1)
1 (A2 ∂α

x1(Ψ1 · · ·ΨR)) �

∥∥∥∥∥∥∥
∑
B

(R)
1,1

�k(1) Ψ1 · · ·�k(R) ΨR

∥∥∥∥∥∥∥
l1,s−r+1/2+1/m
�,1,c

(
L1,2
x1,(x j ) j �=1,t

)

+ c
1+ 4

R2−1

∥∥∥∥∥∥∥
∑
B

(R)
1,1

�k(1) Ψ1 · · ·�k(R) ΨR

∥∥∥∥∥∥∥
l1�,1,c

(L
R+1
R

t,x )

� c
1+ 4

R2−1
+d

Rd‖ψ‖RD .
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Next, we estimate ρ
(1)
2 (A2(Ψ1 · · ·ΨR)) and ρ

(1)
3 (A2(Ψ1 · · ·ΨR)). By (221) and (220) we

have
3∑
j=2

ρ
(1)
j (A2(Ψ1 · · ·ΨR)) � c

d
2+ 2

m+2+ 8
m(m+2) ‖Ψ1 · · ·ΨR‖

l1,s+1/m

(
L

2+m
1+m
t,x

)

(236)
� c

d
2+ 2

m+2+ 8
m(m+2) Rd‖ψ‖RD .

Then we consider ρ
(1)
2 (A2 ∂2x1(Ψ1 · · ·ΨR)): We have

ρ
(1)
2 (A2 ∂2x1(Ψ1 · · ·ΨR)) �

⎛
⎜⎜⎜⎝
∑
k∈Zd

|k|∞�c

+
∑
k∈Zd

|k|∞�c

⎞
⎟⎟⎟⎠ ‖�k A2 ∂2x1(Ψ1 . . . ΨR)‖Lm,∞

x1;(x j ) j �=1,t

=: III+ IV.

Again by (220) and (236) we obtain

IV � c
d
2+ 2

m+2+ 4
m(m+2) ‖Ψ1 . . . ΨR‖

l1,s+1/m

(
L

2+m
1+m
t,x

)

� c
d
2+ 2

m+2+ 4
m(m+2) Rd‖ψ‖RD .

Furthermore, we have that

III �

⎛
⎜⎝∑

k∈Zd
1

+ · · · +
∑
k∈Zd

d

⎞
⎟⎠ ‖�k A2 ∂2x1(Ψ1 . . . ΨR)‖Lm,∞

x1;(x j ) j �=1,t

=: G1(ψ) + · · ·Gd(ψ).

Using the frequency-uniform decomposition, (217), (234) and (235) we have that

Gi (ψ) � c1+3 d
2 Rd‖ψ‖RD, i = 1, . . . , d,

therefore

III � c1+3 d
2 Rd‖ψ‖RD,

Finally, we estimate ρ
(1)
3 (A2 ∂2xi (Ψ1 . . . ΨR)). It suffices to consider the case i = 1: By

(168) and (157) we have

‖�k A2∂
2
x1 f ‖L∞

t L2∩L2+m
t,x

� c
4

m(m+2) 〈k1〉2 ‖�k f ‖
L

2+m
1+m
t,x

,

and by (218) and (207) we obtain

ρ
(1)
3 (A2 ∂2xi (Ψ1 · · ·ΨR)) � c1+

8
m(m+2)+ d

2 Rd‖ψ‖RD .

Collecting all estimates, we have

‖F (ψ)‖D � c
d
2+ 4

m(m+2) ‖ψ0‖Ms+3+1/m
2,1

+ c1+
3d
2 + 2

m+2+ 8
m(m+2)

∑
m+1≤R<M

c
4

R2−1 Rd‖ψ‖RD .

(237)
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and for c ≥ 1 sufficiently large we can conclude by a standard contraction mapping argument
(see, for example, the proof of Theorem 1.1 in [16]), by choosing

δ > δ0(d,m, 2) := max

(
d

2
+ 4

m(m + 2)
,
1

m
+ 3d

2m
+ 2

m(m + 2)
+ 8

m2(m + 2)
+ 4

m3

)
.

(238)

��
Remark 23 By arguing in the same way for the general case r > 2 we end up with the
condition

δ > δ0(d,m, r) (239)

:= max

(
d

(
1− 1

r

)
+ 4r

m2(m + 2(r − 1))
,
r − 1

m
+ 3d

2m
+ 2rm + 8(r − 1)2

m2(m + 2(r − 1))
+ 4(r − 1)2

m3

)
.

(240)

Remark 24 The quantity δ0(d, l, r) defined in Corollary 1 is actually the right-hand side of
(240) with m replaced by 2(l − 1).

In order to prove the second part of Proposition 7 we will exploit another contraction
mapping argument, like in the proof of Theorem 1 in [28] (which in turn is based on the
proof of Theorem 4.1 of [30]). In the following, we denote by a (Qα)α∈Zd a fixed family of
nonoverlapping cubes of size R such that R

d =⋃
α Qα .

Lemma 16 Let d ≥ 2 and r ≥ 2, then the following estimates hold.

– (Local smoothing, homogeneous case)

sup
α∈Zd

(∫
Qα

∫
R

|Dr−1/2
x Ur (t)ψ0(x)|2dtdx

)1/2

� cr−1R1/2‖ψ0‖L2 , (241)

∥∥∥∥Dr
x

∫
I
Ur (t − τ)ψ(τ, ·)dτ

∥∥∥∥
2

� cr−1R1/2
∑
α∈Zd

(∫
Qα

∫
I
|ψ(t, x)|2dtdx

)1/2

; (242)

– (Local smoothing, inhomogeneous case) the solution of the inhomogeneousCauchy prob-
lem

− iψt = Ac,rψ + f (t, x), t ∈ I , x ∈ R
d ,

such that ψ0 ≡ 0 satisfies

sup
α∈Zd

‖D2(r−1)
x ψ‖L2

x (Qα);L2
t (I )

� c2(r−1) RT 1/(4d)
∑
α∈Zd

‖ f ‖L2
x (Qα);L2

t (I )
(243)

– (Maximal function estimate) For any s > d + 1
2 we have(∫

Rd
sup

|t |�c2(r−1)
|Ur (t)ψ0(x)|2dx

)1/2

� c
d
(
1− 1

r

)
‖ψ0‖Hs . (244)

Proof (sketch) The proof in the case r = 2 can be obtained simply by rescaling Lemma 3,
Lemma 4, Lemma 5 and Lemma 6 of [28]. The proof in the case r > 2 can be obtained by
considering the operator Ur (t) and Ar (t) instead of U2(t) and A2(t). ��
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Dynamics of the nonlinear Klein–Gordon equation in the nonrelativistic limit 955

Proof (Proposition 7, part (ii), case r = 2) We will prove the result only for s = s0, since the
general case follows from commutator estimates. For simplicity, we only deal with the case

P((∂α
x ψ)|α|≤2, (∂

α
x ψ̄)|α|≤2) = ∂2x j ψ ∂2xkψ ∂2xmψ.

More precisely, we fix a positive constant ν < 1/3, and we define the space Z δ
I of all function

φ : I × R
d → C such that the following three conditions hold

‖φ‖L∞(I )Hs0 ≤ c−δ, (245)∑
|β|=s0+1/2

sup
α∈Zd

(∫
I

∫
Qα

|∂β
x φ(t, x)|2dxdt

)1/2

≤ T ν, (246)

(
sup
t∈I

sup
x∈Qα

|D2
xφ(t, x)|2

)1/2

≤ c−δ. (247)

We want to show that the map

F : Z δ
I → Z δ

I ,

ψ(t) #→ U2(t)ψ0 + iA2P((∂α
x ψ)|α|≤2, (∂

α
x ψ̄)|α|≤2)

is a contraction mapping.
We can observe that for any β ∈ Z

d with |β| = s0 − 3
2

∂β
x (∂2x j ψ ∂2xkψ ∂2xmψ) = ∂β

x ∂2x j ψ ∂2xkψ ∂2xmψ + ∂2x j ψ ∂β
x ∂2xkψ ∂2xmψ + ∂2x j ψ ∂2xkψ ∂β

x ∂2xmψ

+ R
((

∂
γ
x ψ
)
2≤|γ |≤s0−1/2

)
.

Now, for any ψ ∈ Z δ
I we have

∑
|β|=s0+1/2

sup
α∈Zd

(∫
I

∫
Qα

|∂β
x ψ(t, x)|2dxdt

)1/2

�
∑

|β|=s0+1/2

sup
α∈Zd

(∫
I

∫
Qα

|U2(t)∂
β
x ψ0(x)|2dxdt

)1/2

+
∑

|β|=s0+1/2

sup
α∈Zd

(∫
I

∫
Qα

∣∣∣∣
∫ t

0
U2(t − τ)∂β

x (∂2x j ψ ∂2xkψ ∂2xmψ)dτ

∣∣∣∣
2

dxdt

)1/2

(241),(242)
� cT 1/3‖ψ0‖Hs0 + c2T 1/(4d)

∑
|β0|=s0−3/2

d∑
j,k,m=1

∑
α∈Zd

‖∂β
x ∂2x j ψ ∂2xkψ ∂2xmψ‖L2

x (Qα;L2
t (I ))

+ c2
∫ T

0
‖D1/2

x R((∂
γ
x ψ)2≤|γ |≤s0−1/2)‖L2dt

� cT 1/3‖ψ0‖Hs0 + c2T 1/(4d)

∑
|β0|=s0+1/2

sup
α∈Zd

(∫
I

∫
Qα

|∂β
x ψ |2dxdt

)1/2
⎛
⎝∑

α∈Zd

sup
t∈I

sup
x∈Qα

|D2
xψ |2

⎞
⎠

+ c2T sup
t∈I

‖ψ‖3Hs0

� c1−δT 1/3 + c2T 1/(4d)T νc−2δ + c2T c−3δ ≤ T ν, (248)

123



956 S. Pasquali

where in the last inequality we have chosen δ  1 such that

c1−δT−ν+1/3 + c2(1−δ)T 1/(4d) + c2−3δT 1−ν � 1, T = O(c2(r−1)). (249)

Next, we have that for any ψ ∈ Z δ
I

‖ψ‖L∞(I )Hs0 ≤ ‖ψ0‖Hs0 + sup
t∈I

∫ t

0
‖U2(t − τ)d2x j ψ(τ) ∂2xkψ(τ) ∂2xmψ(τ)‖L2dτ

+ sup
t∈I

∥∥∥∥D3/2
x

∫ t

0
U2(t − τ)Ds0−3/2

x d2x j ψ(τ) ∂2xkψ(τ) ∂2xmψ(τ)dτ

∥∥∥∥
L2

(242)
� ‖ψ0‖Hs0 + T sup

t∈I
‖∂2x j ψ(t) ∂2xkψ(t) ∂2xmψ(t)‖L2

+ cr−1
∑
α∈Zd

(∫
Qα

∫
I
|Ds0−3/2

x (∂2x j ψ(t) ∂2xkψ(t) ∂2xmψ(t))|2dtdx
)1/2

� ‖ψ0‖Hs0 + T sup
t∈I

‖ψ‖3
H

d
3 +2

+ c
d∑

j,k,m=1

∑
α∈Zd

(∫
Qα

∫
I
|Ds0−3/2

x ∂2x j ψ(t) ∂2xkψ(t) ∂2xmψ(t)|2dtdx
)1/2

+ c
∑
α∈Zd

(∫
Qα

∫
I
|R(Dγ

x ψ)2≤|γ |≤s0−1/2|2dtdx
)1/2

� ‖ψ0‖Hs0 + T ‖ψ‖3
L∞(I )H

d
3 +2

+ c
∑

|β|=s0+1/2

sup
α∈Zd

(∫
I

∫
Qα

|∂β
x ψ |2dxdt

)1/2 ∑
α∈Zd

sup
t∈I

sup
x∈Qα

|D2
xψ |2

+ cT 1/2‖ψ‖3L∞(I )Hs0

� ‖ψ0‖Hs0 + (T + cT 1/2)c−3δ + cT νc−2δ

� c−δ, (250)

where in the last inequality we have chosen δ  1 such that

(T + cT 1/2)c−3δ + T νc1−2δ � 1

2
, T = O(c2(r−1)). (251)

Then, we have that for any ψ ∈ Z δ
I⎛

⎝∑
α∈Zd

sup
t∈I

sup
x∈Qα

|D2
xψ(t, x)|2

⎞
⎠

1/2

T�c2(r−1),(244)
� ‖ψ0‖Hs0 + c

d
(
1− 1

r

)
T ‖ψ‖3L∞(I )Hs0

� ‖ψ0‖Hs0 + c
d
(
1− 1

r

)
T c−3δ

� c−δ, (252)
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where in the last inequality we have chosen δ  1 such that

c
d
(
1− 1

r

)
−2δ

T � 1, T = O(c2(r−1)). (253)

Finally, if for any φ ∈ Z δ
I we set ΛT (φ) as the maximum between the three following

quantities, ∑
α∈Zd

sup
t∈I

sup
x∈Qα

|D2
xψ(t, x)|2,

‖φ‖L∞(I )Hs0 ,

c−δT−ν
∑

|β|=s0+1/2

sup
α∈Zd

(∫
I

∫
Qα

|∂β
x φ(t, x)|2dxdt

)1/2

,

we can observe that for any φ1, φ2 ∈ Z δ
I

ΛT (F (φ1) −F (φ2)) ≤ KT νc−2δΛT (φ1 − φ2),

where K is a positive constant which does not depend on c. Hence if we choose δ  1 such
that (251), (249), (253) and

KT νc−2δ ≤ 1

2
(254)

hold true, we can conclude. ��

9 Long-time approximation

Now we study the evolution of the error between the approximate solution ψa , namely the
solution of (99), and the original solution ψ of (3) for long (that means, c-dependent) time
intervals. First we prove a result for the linear case, then we consider the approximation of
small radiation solutions in the nonlinear case, and finally we make some remarks about the
approximation of standing waves and soliton solutions.

9.1 Linear case

Fix r ≥ 1, and take ψ0 ∈ Hk+k0 , where k0 > 0 and k  1 are the ones in Theorem 7.
Now, we want to estimate the space–time norm of the error δ = ψ − ψa . In the linear

case we can observe that δ satisfies

δ̇ = ic〈∇〉cδ + 1

c2r
XT (r)∗R (r) (ψa(t), ψ̄a(t)). (255)

Proof (Theorem3) By applying the Strichartz estimate (14) (choose p = +∞, q = 2, r =
+∞, s = 2), together with estimate (31) for the vector field of the remainderR(r), estimate
(32) for the canonical transformation T (r), and estimate (108) (choose p = q = 2), we can
deduce Theorem 3. ��

9.2 The nonlinear case: radiation solutions

Now, assume that we want to recover the approach of Sect. 9.1 to approximate radiation
solutions of the NLKG equation for long (c-dependent) timescales.
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We pursue such a program by a perturbative argument, considering a small radiation
solutionψr = ηrad,r of the normalized system (98) that exists up to times of orderO(c2(r−1)),
r > 1.

As an application of Proposition 1, we consider the following case. Fix r > 1, let σ > 0
and let ψr = ηrad be a radiation solution of (98), namely such that

ηrad,0 := ηrad(0) ∈ Hk+k0+σ+d/2(Rd), (256)

where k0 > 0 and k  1 are the ones in Theorem 7.
Let δ(t) be a solution of (103); then, by Duhamel formula

δ(t) := U (t, 0)δ0 = eitc〈∇〉cδ0 +
∫ t

0
ei(t−s)c〈∇〉cdP(ψa(s))U (s, 0)δ0ds. (257)

Now fix T � c2(r−1); we want to estimate the local-in-time norm in the space
L∞([0, T ])Hk(Rd) of the error δ(t).

By (13) we can estimate the first term. We can estimate the second term by (14): Hence
for any (p, q) Schrödinger-admissible exponents

∥∥∥∥
∫ t

0
ei(t−s)c〈∇〉c d P(ψa(s))δ(s)ds

∥∥∥∥
L∞
t ([0,T ])Hk

x

� c
1
q − 1

p− 1
2 ‖〈∇〉

1
p− 1

q + 1
2

c dP(ψa(t))δ(t)‖L p′
t ([0,T ])Wk,q′

x

� c
1
q − 1

p− 1
2 ‖〈∇〉

1
p− 1

q + 1
2

c dP(ηrad(c
2t))δ(t)‖

L p′
t ([0,T ])Wk,q′

x

+ c
1
q − 1

p− 1
2 ‖〈∇〉

1
p− 1

q + 1
2

c [dP(ψa(t)) − dP(ηrad(c
2t))]δ(t)‖

L p′
t ([0,T ])Wk,q′

x

=: Ip + I Ip,

but recalling (100) one has that

Ip � |λ|
2l−1/2(2l)(2l − 1)

c
1
q − 1

p + 1
2

∥∥∥∥∥∥〈∇〉
1
p − 1

q − 1
2

c

[(
c

〈∇〉c
)1/2

(ηrad + η̄rad )

]2(l−1)

δ(t)

∥∥∥∥∥∥
L p′
t ([0,T ])Wk,q′

x

.

Now fix a real number ρ ∈]0, 1[, and choose

p = 2+ ρ, (258)

q = 2dp

dp − 4
= 4d + 2dρ

2d + dρ − 4
= 2+ 8

2d − 4+ dρ
, (259)

we get (since ‖(c/〈∇〉c)
1
q − 1

p− 1
2 ‖Lq′→Lq′ ≤ 1)

I2 ≤ |λ|
2l−1/2(2l)(2l − 1)

∥∥∥∥∥∥
[(

c

〈∇〉c
)1/2

(ηrad(c
2t) + η̄rad (c

2t))

]2(l−1)

δ(t)

∥∥∥∥∥∥
L
2− ρ

1+ρ
t ([0,T ])Wk,q′

x

.
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Now, since by Hölder inequality∥∥∥∥∥∥
[(

c

〈∇〉c
)1/2

(ηrad (c
2t) + η̄rad(c

2t))

]2(l−1)

δ(t)

∥∥∥∥∥∥
L
2− ρ

1+ρ
t ([0,T ])Wk,q′

x

≤
∥∥∥∥∥∥
[(

c

〈∇〉c
)1/2

(ηrad(c
2t) + η̄rad (c

2t))

]2(l−1)
∥∥∥∥∥∥
L
2− ρ

1+ρ
t ([0,T ])Wk,d(1+ρ/2)

x

‖δ(t)‖L∞
t ([0,T ])Hk

x
,

and by Sobolev product theorem (recall that l ≥ 2, and that k  1) we can deduce that∥∥∥∥∥∥
[(

c

〈∇〉c
)1/2

(ηrad(c
2t) + η̄rad(c

2t))

]2(l−1)
∥∥∥∥∥∥
L
2− ρ

1+ρ
t ([0,T ])Wk,d(1+ρ/2)

x

≤
⎡
⎢⎣∫ T

0

∥∥∥∥∥
[(

c

〈∇〉c
)1/2

(ηrad(c
2t) + η̄rad(c

2t))

]∥∥∥∥∥
2(l−1)

(
2− ρ

1+ρ

)

Wk,d(1+ρ/2)
x

dt

⎤
⎥⎦

1(
2− ρ

1+ρ

)

≤ ∥∥ηrad(c2t) + η̄rad(c
2t)
∥∥2(l−1)

L
2(l−1)

(
2− ρ

1+ρ

)
t ([0,T ])Wk,d(1+ρ/2)

x

,

but since by Proposition 6 we have that for any σ > 0

L
2(l−1)

(
2− ρ

1+ρ

)
t ([0, T ])Wk,d(1+ρ/2)

x ⊇ L
2(l−1)

(
2− ρ

1+ρ

)
t ([0, T ])Mk

d(1+ρ/2),1,x

⊇ L
2(l−1)

(
2− ρ

1+ρ

)
t ([0, T ])Mk

2,1,x

⊇ L
2(l−1)

(
2− ρ

1+ρ

)
t ([0, T ])Hk+σ+d/2

x

⊇ L∞
t ([0, T ])Hk+σ+d/2

x ,

we have that

‖ηrad‖2(l−1)

L
2(l−1)

(
2− ρ

1+ρ

)
t ([0,T ])Wk,d(1+ρ/2)

x

� T
1+ρ
2+ρ ‖ηrad‖2(l−1)

L∞
t ([0,T ])Hk+σ+d/2

x
, (260)

but by Corollary 1 the right-hand side of (260) is finite and does not depend on c ≥ 1 for

‖ηrad,0‖Hk+k0+σ+d/2
x

� c−α, (261)

α > max

(
δ0(d, l, r), δ1(d, l, r),

r − 1

l − 1

)
:= α∗(d, l, r). (262)

where c ≥ c0 is sufficiently large, andwhere δ0(d, l, r) and δ1(d, l, r) are defined inCorollary
1.

Furthermore, via (32) one can show that there exists cr ,k > 0 sufficiently large such that
for c ≥ cr ,k the term I I2 can be bounded by 1

c2
I2.

This means that we can estimate the L∞([0, T ])Hk norm of the error only for a small
(with respect to c) radiation solution, which is the statement of Proposition 16.

To summarize, we get the following result.

Proposition 16 Consider (58) onR
d , d ≥ 2. Let r > 1, and fix k1  1. Assume that l ≥ 2 and

r < d
2 (l−1). Then ∃ k0 = k0(r) > 0 such that for any k ≥ k1 and for any σ > 0 the following
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holds: Consider the solution ηrad of (98) with the initial datum ηrad,0 ∈ Hk+k0+σ+d/2(Rd),
and call δ the difference between the solution of the approximate equation (99) and the
original solution of the Hamilton equation for (58). Assume that δ0 := δ(0) satisfies

‖δ0‖Hk
x

� 1

c2
.

Then there exist α∗ := α∗(d, l, r) > 0 and there exists c∗ := c∗(r , k) > 1, such that for any
α > α∗ and for any c > c∗, if ηrad,0 satisfies

‖ηrad,0‖Hk+k0+σ+d/2 � c−α,

then

sup
t∈[0,T ]

‖δ(t)‖Hk
x

� 1

c2
, T � c2(r−1).

By exploiting (32) and Proposition 16, we obtain Theorem 4.

9.3 The nonlinear case: standing waves solutions

Now we consider the approximation of another important type of solutions, the so-called
standing waves solutions.

The issue of (in)stability of standing waves and solitons has a long history: For the NLS
equation and the NLKG the orbital stability of standing waves has been discussed first in
[53]; for the NLS, the orbital stability of one soliton solutions has been treated in [26], while
the asymptotic stability has been discussed in [20] for one soliton solutions, and in [48] and
[47] for N-solitons. For the higher-order Schrödinger equation we mention [37], which deals
with orbital stability of standing waves for fourth-order NLS-type equations. For the NLKG
equation, the instability of solitons and standing waves has been studied in [29,45,54].

As for the case of radiation solution, we should fix r ≥ 1, and consider a standing wave
solution ψr of (98), namely of the form

ψr (t, x) = eitωηω(x), (263)

where ω ∈ R, and ηω ∈ S (Rd) solves

−ωηω = XHsimp (ηω).

Remark 25 Of course the existence of a standing wave for the simplified equation (98) is a
far from trivial question. For r = 1 [26] deals with the NLS equation; for r ≥ 2, [37] deals
with the one-dimensional fourth-order NLS-type equation.

We also point out that in the case of a standing wave solution, if δ(t) satisfies (103), then
by Duhamel formula

δ̇ = ic〈∇〉cδ(t) + dP(ψa(t), ψ̄a(t))δ(t).

Since

P(eitωηω, e−i tωη̄ω) = 2l−1/2
(

c

〈∇〉c

)1/2
[(

c

〈∇〉c

)1/2

Re(eitωηω)

]2l−1

,

123



Dynamics of the nonlinear Klein–Gordon equation in the nonrelativistic limit 961

we have that

dP(ηω, η̄ω)eitωh = 2l−1/2
(

c

〈∇〉c

)[(
c

〈∇〉c

)1/2

cos(ωt)ηω

]2(l−1)

(eitωh + e−i tωh̄),

and by setting δ = e−i tωh, one gets

− i ḣ = (c〈∇〉c + ω)h + 2l−1/2 cos2(l−1)(ωt)

(
c

〈∇〉c

)[(
c

〈∇〉c

)1/2

ηω

]2(l−1)

(h + e−2i tωh̄)

(264)

+ [dP(ψa(s), ψ̄a(s)) − dP(ηω, η̄ω)
]
h. (265)

Equation (264) is a Salpeter spinless equation with a periodic time-dependent potential;
therefore, in order to get some information about the error, one would need the corresponding
Strichartz estimates for Eq. (264). Unfortunately, in the literature of dispersive estimates there
are only few results for PDEs with time-dependent potentials, and the majority of them is of
perturbative nature; for the Schrödinger equation, we mention [22,25], in which Strichartz
estimates are proved in a nonperturbative framework.

Remark 26 By using Proposition 3 one can show that the NLKG can be approximated by the
simplified equation (3) locally uniformly in time, up to an error of order O(c−2r ).

Remark 27 One could ask whether one could get a similar result for more general (in par-
ticular, moving) soliton solution of (98). Apart from the issue of existence and stability for
such solutions, one can check that, provided that a moving soliton solution for (98) exists,
then the error δ(t) must solve a (264)-type equation, namely a spinless Salpeter equation
with a time-dependent moving potential. Unfortunately, since Eq. (264), unlike KG, is not
manifestly covariant, one cannot apparently reduce to an analogue equation, and once again
one cannot justify the approximation over the O(1) timescale.

Acknowledgements The author would like to thank Professor Dario Bambusi, for introducing him to the
problem and for many valuable discussions and suggestions.

A Proof of Lemma 4

In order to normalize system (33), we used an adaptation of Theorem 4.4 in [2]. The result
is based on the method of Lie transform that we will recall in the following.

Let k ≥ k1 and p ∈ (1,+∞) be fixed.
Given an auxiliary function χ analytic on Wk,p , we consider the auxiliary differential

equation

ψ̇ = i∇ψ̄χ(ψ, ψ̄) =: Xχ (ψ, ψ̄) (266)

and denote by Φ t
χ its time-t flow. A simple application of Cauchy inequality gives

Lemma 17 Let χ and its symplectic gradient be analytic in Bk,p(R). Fix δ < R, and assume
that

sup
Bk,p(R−δ)

‖Xχ (ψ, ψ̄)‖k,p ≤ δ.
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Then, if we consider the time-t flow Φ t
χ of Xχ we have that for |t | ≤ 1

sup
Bk,p(R−δ)

‖Φ t
χ (ψ, ψ̄) − (ψ, ψ̄)‖k,p ≤ sup

Bk,p(R−δ)

‖Xχ (ψ, ψ̄)‖k,p.

Definition 1 The map Φ := Φ1
χ will be called the Lie transform generated by χ .

Remark 28 Given G analytic on Wk,p , consider the differential equation

ψ̇ = XG(ψ, ψ̄), (267)

where by XG we denote the vector field of G. Now define

Φ∗G(φ, φ̄) := G ◦ Φ(ψ, ψ̄).

In the new variables (φ, φ̄) defined by (ψ, ψ̄) = Φ(φ, φ̄) Eq. (267) is equivalent to

φ̇ = XΦ∗G(φ, φ̄). (268)

Using the relation

d

dt
(Φ t

χ )∗G = (Φ t
χ )∗{χ,G},

we formally get

Φ∗G =
∞∑
l=0

Gl , (269)

G0 := G, (270)

Gl := 1

l
{χ,Gl−1}, l ≥ 1. (271)

In order to estimate the terms appearing in (269) we exploit the following results

Lemma 18 Let R > 0, and assume that χ , G are analytic on Bk,p(R).
Then, for any d ∈ (0, R) we have that {χ,G} is analytic on Bk,p(R − d), and

sup
Bk,p(R−d)

‖X{χ,G}(ψ, ψ̄)‖k,p � 2

d
. (272)

Lemma 19 Let R > 0, and assume thatχ , G are analytic on Bk,p(R). Let l ≥ 1, and consider
Gl as defined in (269); for any d ∈ (0, R), we have that Gl is analytic on Bk,p(R − d), and

sup
Bk,p(R−d)

‖XGl (ψ, ψ̄)‖k,p �
(
2e

d

)l

. (273)

Proof Fix l, and denote δ := d/l. We look for a sequence C (l)
m such that

sup
Bk,p(R−mδ)

‖XGm (ψ, ψ̄)‖k,p � C (l)
m , ∀m ≤ l.
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By (272) we can define the sequence

C (l)
0 := sup

Bk,p(R)

‖XG(ψ, ψ̄)‖k,p,

C (l)
m = 2

δm
C (l)
m−1 sup

Bk,p(R)

‖Xχ (ψ, ψ̄)‖k,p

= 2l

dm
C (l)
m−1 sup

Bk,p(R)

‖Xχ (ψ, ψ̄)‖k,p.

One has

C (l)
l = 1

l!

(
2l

d
sup

Bk,p(R)

‖Xχ (ψ, ψ̄)‖k,p
)l

sup
Bk,p(R)

‖XG(ψ, ψ̄)‖k,p,

and by using the inequality ll < l!el we can conclude. ��

Remark 29 Let k ≥ k1, p ∈ (1,+∞), and assume that χ , F are analytic on Bk,p(R). Fix
d ∈ (0, R), and assume also that

sup
Bk,p(R)

‖Xχ (ψ, ψ̄)‖k,p ≤ d/3,

Then for |t | ≤ 1

sup
Bk,p(R−d)

‖X(Φ t
χ )∗F−F (ψ, ψ̄)‖k,p = sup

Bk,p(R−d)

‖XF◦Φ t
χ−F (ψ, ψ̄)‖k,p (274)

(272)≤ 5

d
sup

Bk,p(R)

‖Xχ (ψ, ψ̄)‖k,p sup
Bk,p(R)

‖XF (ψ, ψ̄)‖k,p.
(275)

Lemma 20 Let k ≥ k1, p ∈ (1,+∞), and assume that G is analytic on Bk,p(R), and that
h0 satisfies PER. Then there exists χ analytic on Bk,p(R) and Z analytic on Bk,p(R) with Z
in normal form, namely {h0, Z} = 0, such that

{h0, χ} + G = Z . (276)

Furthermore, we have the following estimates on the vector fields

sup
Bk,p(R)

‖XZ (ψ, ψ̄)‖k,p ≤ sup
Bk,p(R)

‖XG(ψ, ψ̄)‖k,p, (277)

sup
Bk,p(R)

‖Xχ (ψ, ψ̄)‖k,p � sup
Bk,p(R)

‖XG(ψ, ψ̄)‖k,p. (278)

Proof One can check that the solution of (276) is

χ(ψ, ψ̄) = 1

T

∫ T

0
t
[
G(Φ t (ψ, ψ̄)) − Z(Φ t (ψ, ψ̄))

]
dt,
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with T = 2π . Indeed,

{h0, χ}(ψ, ψ̄) = d

ds |s=0
χ(Φs(ψ, ψ̄))

= 1

2π

∫ 2π

0
t
d

ds |s=0

[
G(Φ t+s(ψ, ψ̄)) − Z(Φ t+s(ψ, ψ̄))

]
dt

= 1

2π

∫ 2π

0
t
d

dt

[
G(Φ t (ψ, ψ̄)) − Z(Φ t (ψ, ψ̄))

]
dt

= 1

2π

[
tG(Φ t (ψ, ψ̄)) − t Z(Φ t (ψ, ψ̄))

]2π
t=0

− 1

2π

∫ 2π

0

[
G(Φ t (ψ, ψ̄)) − Z(Φ t (ψ, ψ̄))

]
dt

= G(ψ, ψ̄) − Z(ψ, ψ̄).

Finally, (277) follows from the fact that

Xχ (ψ, ψ̄) = 1

T

∫ T

0
t Φ−t ◦ XG−Z (Φ t (ψ, ψ̄)dt

by applying property (25). ��
Lemma 21 Let k ≥ k1, p ∈ (1,+∞), and assume that G is analytic on Bk,p(R), and that h0
satisfies PER. Let χ be analytic on Bk,p(R), and assume that it solves (276). For any l ≥ 1
denote by h0,l the functions defined recursively as in (269) from h0. Then for any d ∈ (0, R)

one has that h0,l is analytic on Bk,p(R − d), and

sup
Bk,p(R−d)

‖Xh0,l (ψ, ψ̄)‖k,p ≤ 2 sup
Bk,p(R)

‖XG(ψ, ψ̄)‖k,p
(
5

d
sup

Bk,p(R)

‖Xχ (ψ, ψ̄)‖k,p
)l

.

(279)

Proof By using (276) one gets that h0,1 = Z −G is analytic on Bk,p(R). Then by exploiting
(275) one gets the result. ��
Lemma 22 Let k1  1, p ∈ (1,+∞), R > 0, m ≥ 0, and consider the Hamiltonian

H (m)(ψ, ψ̄) = h0(ψ, ψ̄) + εĥ(ψ, ψ̄) + εZ (m)(ψ, ψ̄) + εm+1F (m)(ψ, ψ̄). (280)

Assume that h0 satisfies PER and INV, that ĥ satisfies NF, and that

sup
Bk,p(R)

‖Xĥ(ψ, ψ̄)‖k,p ≤ F0,

sup
Bk,p(R)

‖XF (0) (ψ, ψ̄)‖k,p ≤ F .

Fix δ < R/(m + 1), and assume also that Z (m) are analytic on Bk,p(R − mδ), and that

sup
Bk,p(R−mδ)

‖XZ (0) (ψ, ψ̄)‖k,p = 0,

sup
Bk,p(R−mδ)

‖XZ (m) (ψ, ψ̄)‖k,p ≤ F
m−1∑
i=0

εi K i
s , m ≥ 1,

sup
Bk,p(R−mδ)

‖XF (m) (ψ, ψ̄)‖k,p ≤ F Km
s , m ≥ 1, (281)
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with Ks := 2π
δ

(18F + 5F0).

Then, if εKs < 1/2 there exists a canonical transformation T
(m)

ε analytic on Bk,p(R −
(m + 1)δ) such that

sup
Bk,p(R−mδ)

‖T (m)
ε (ψ, ψ̄) − (ψ, ψ̄)‖k,p ≤ 2πεm+1F, (282)

H (m+1) := H (m) ◦ T (m) has the form (280) and satisfies (281) with m replaced by m + 1.

Proof The key point of the lemma is to look forT (m)
ε as the time-onemap of the Hamiltonian

vector field of an analytic function εm+1χm . Hence consider the differential equation

(ψ̇, ˙̄ψ) = Xεm+1χm
(ψ, ψ̄); (283)

by standard theory we have that, if ‖Xεm+1χm
‖Bk,p(R−mδ) is sufficiently small and (ψ0, ψ̄0) ∈

Bk,p(R − (m + 1)δ), then the solution of (283) exists for |t | ≤ 1. Therefore, we can define
T t
m,ε : Bk,p(R − (m + 1)δ) → Bk,p(R −mδ), and in particular the corresponding time-one

mapT (m)
ε := T 1

m,ε, which is an analytic canonical transformation, εm+1-close to the identity.
We have

(T (m+1)
ε )∗ (h0 + εĥ + εZ (m) + εm+1F (m)) = h0 + εĥ + εZ (m)

+ εm+1
[
{χm, h0} + F (m)

]
+
(
h0 ◦ T (m+1) − h0 − εm+1{χm, h0}

)
+ ε(ĥ ◦ T (m+1) − ĥ) (284)

+ ε
(
Z (m) ◦ T (m+1) − Z (m)

)
+ εm+1

(
F (m) ◦ T (m+1) − F (m)

)
. (285)

It is easy to see that the first three terms are already normalized, that the term in the second
line is the nonnormalized part of order m+1 that will vanish through the choice of a suitable
χm , and that the last lines contains all the terms of order higher than m+1.

Now we want to determine χm in order to solve the so-called homological equation

{χm, h0} + F (m) = Zm+1,

with Zm+1 in normal form. The existence of χm and Zm+1 is ensured by Lemma 20, and by
applying (277) and the inductive hypothesis we get

sup
Bk,p(R−mδ)

‖Xχm (ψ, ψ̄)‖k,p ≤ 2πF, (286)

sup
Bk,p(R−mδ)

‖XZm+1(ψ, ψ̄)‖k,p ≤ 2πF . (287)

Now define Z (m+1) := Z (m) + εm Zm+1, and notice that by Lemma 17 we can deduce the
estimate of XZ (m+1) on Bk,p(R−(m+1)δ) and (282) at levelm+1. Next, set εm+2F (m+1) :=
(286) + (287). Then we can use (275) and (279), in order to get
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sup
Bk,p(R−(m+1)δ)

‖Xεm+2F (m+1) (ψ, ψ̄)‖k,p (288)

≤
(
10

δ
εmKm

s εF + 5

δ
εF0 + 5

δ
εF

m−1∑
i=0

εi K i
s +

5

δ
εF εmKm

s

)
εm+1 sup

Bk,p(R−mδ)

‖Xχm (ψ, ψ̄)‖k,p

= εm+2

(
10

δ
εmKm

s F + 5

δ
F0 + 5

δ
F

m−1∑
i=0

εi K i
s +

5

δ
F εmKm

s

)
sup

Bk,p(R−mδ)

‖Xχm (ψ, ψ̄)‖k,p.

(289)

If m = 0, then the third term is not present, and (289) reads

sup
Bk,p(R−δ)

‖Xε2F (1) (ψ, ψ̄)‖k,p ≤ ε2
(
15

δ
F + 5

δ
F

)
2πF < ε2Ks F .

If m ≥ 1, we exploit the smallness condition εKs < 1/2, and (289) reads

sup
Bk,p(R−(m+1)δ)

‖Xεm+2F (m+1) (ψ, ψ̄)‖k,p <

(
18

δ
εF + 5

δ
εF0

)
2π εF εmKm

s = εm+2 FKm+1
s .

��
Now fix R > 0.

Proof (Lemma 4) The Hamiltonian (33) satisfies the assumptions of Lemma 22 with m = 0,
FN ,r in place of F (0) and hN ,r in place of ĥ, F = K (F,r)

k,p r22Nr , F0 = K (h,r)
k,p r22Nr . (For

simplicity we will continue to denote by F and F0 the last two quantities.) So we apply
Lemma 22 with δ = R/4, provided that

8π

R
(18F + 5F0)ε <

1

2
,

which is true due to (44). Hence there exists an analytic canonical transformation T
(1)

ε,N :
Bk,p(3R/4) → Bk,p(R) with

sup
Bk,p(3R/4)

‖T (1)
ε,N (ψ, ψ̄) − (ψ, ψ̄)‖k,p ≤ 2πF ε,

such that

HN ,r ◦ T
(1)

ε,N = h0 + εhN ,r + εZ (1)
N + ε2R

(1)
N , (290)

Z (1)
N := 〈

FN ,r
〉
, (291)

ε2R
(1)
N := ε2F (1)

=
(
h0 ◦ T

(1)
ε,N − h0 − ε{χ1, h0}

)
+ ε(ĥN ,r ◦ T

(1)
ε,N − ĥN ,r ) + ε

(
Z (1)
N ◦ T

(1)
ε,N − Z (1)

N

)
+ ε2

(
FN ,r ◦ T

(1)
ε,N − FN ,r

)
, (292)

sup
Bk,p(3R/4)

‖X
hN ,r+Z (1)

N
(ψ, ψ̄)‖k,p ≤ F0 + F =: σ̃ F0, (293)

sup
Bk,p(3R/4)

‖X
R

(1)
N

(ψ, ψ̄)‖k,p ≤ 8π

R
(18F + 5F0)F =: σ̃ F . (294)
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Again (290) satisfies the assumptions of Lemma 22 with m = 0, and hN ,r + Z (1)
N and R

(1)
N

in place of F (0) and ĥ.
Now fix δ := δ(R) = R

4r , and apply r times Lemma 22; we get an Hamiltonian of the
form (45), such that

sup
Bk,p(R/2)

‖X
Z (r)
N

(ψ, ψ̄)‖k,p ≤ 2σ̃ F, (295)

sup
Bk,p(R/2)

‖X
R

(r)
N

(ψ, ψ̄)‖k,p ≤ σ̃ F . (296)

��

B Interpolation theory for relativistic Sobolev spaces

In this section we show an analogue of Theorem 6.4.5 (7) in [11] for the relativistic Sobolev
spaces W k,p

c , k ∈ R, 1 < p < +∞. We recall that

W
k,p
c (R3) :=

{
u ∈ L p : ‖u‖

W
k,p
c

:= ‖c−k 〈∇〉kcu‖L p < +∞
}

, k ∈ R, 1 < p < +∞.

In order to state themain result of this section, we exploit notations andwell-known results
coming from complex interpolation theory. (See [11] for a detailed introduction to this topic.)

In order to study the relativistic Sobolev spaces, we have to recall the notion of Fourier
multipliers.

Definition 2 Let 1 < p < +∞, and ρ ∈ S ′. We call ρ a Fourier multiplier on L p(Rd) if
the convolution (F−1ρ) ∗ f ∈ L p(Rd) for all f ∈ L p(Rd), and if

sup
‖ f ‖L p=1

‖(F−1ρ) ∗ f ‖L p < +∞. (297)

The linear space of all such ρ is denoted by Mp and is endowed with the above norm (297).

One can check that for any p ∈ (1,+∞) one has Mp = Mp′ (where 1/p + 1/p′ = 1),
and that by Parseval’s formula M2 = L∞. Furthermore, by Riesz–Thorin theorem one gets
that for any ρ ∈ Mp0 ∩ Mp1 and for any θ ∈ (0, 1)

‖ρ‖Mp ≤ ‖ρ‖1−θ
Mp0

‖ρ‖θ
Mp1

,
1

p
= 1− θ

p0
+ θ

p1
. (298)

In particular, one can deduce that ‖ · ‖Mp decreases with p ∈ (1, 2], and that Mp ⊂ Mq for
any 1 < p < q ≤ 2.

More generally, if H0 and H1 are Hilbert spaces, one can introduce a similar definition of
Fourier multiplier. We use the notationS ′(H0, H1) in order to denote the space of all linear
continuous maps from S (Rd , H0) to H1.

Definition 3 Let 1 < p < +∞, let H0 and H1 be two Hilbert spaces, and consider ρ ∈
S ′(H0, H1). We call ρ a Fourier multiplier if the convolution (F−1ρ) ∗ f ∈ L p(H1) for
all f ∈ L p(H0), and if

sup
‖ f ‖L p (H0)=1

‖(F−1ρ) ∗ f ‖L p(H1) < +∞. (299)

The linear space of all such ρ is denoted by Mp(H0, H1), and is endowed with the above
norm (299).

123



968 S. Pasquali

Next we recall Mihlin multiplier theorem (Theorem 6.1.6 in [11]).

Theorem 9 Let H0 and H1 be Hilbert spaces, and assume that ρ : R
d → L(H0, H1) be such

that

|ξ |α‖Dαρ(ξ)‖L(H0,H1) ≤ K , ∀ξ ∈ Rd , |α| ≤ L

for some integer L > d/2. Then ρ ∈ Mp(H0, H1) for any 1 < p < +∞, and

‖ρ‖Mp ≤ Cp K , 1 < p < +∞.

Now, recall the Littlewood–Paley functions (φ j ) j≥0 defined in (24), and introduce the
maps J : S ′ → S ′ and P : S ′ → S ′ via formulas

(J f ) j := φ j ∗ f , j ≥ 0, (300)

Pg :=
∑
j≥0

σ̃ φ j ∗ g j , j ≥ 0, (301)

where g = (g j ) j≥0 with g j ∈ S ′ for all j , and

σ̃ φ0 := φ0 + φ1,

σ̃φ j := φ j−1 + φ j + φ j+1, j ≥ 1.

One can check thatP ◦J f = f ∀ f ∈ S ′, since σ̃ φ j ∗φ j = φ j for all j . We then introduce
for c ≥ 1 and k ≥ 0 the space

l2,kc :=
⎧⎨
⎩(z j ) j∈Z : c−k

∑
j∈Z

(c2 + | j |2)k |z j |2 < +∞
⎫⎬
⎭ .

Theorem 10 Let c ≥ 1, k ≥ 0, 1 < p < +∞. Then 〈∇〉kc L p is a retract of L p(l2,kc ), namely
that the operators

J : W k,p
c → L p(l2,kc )

P : L p(l2,kc ) → W
k,p
c

satisfy P ◦J = id on W
k,p
c .

Proof First we show that J : W k,p
c → L p(l2,kc ) is bounded.

Since J f = (F−1χc) ∗J k
c f , where

(χc(ξ)) j := (c2 + |ξ |2)−k/2φ̂ j (ξ), j ≥ 0

J k
c f := F−1((c2 + |ξ |2)k/2 f̂ ),

we have that for any α ∈ N
d

|ξ |α‖Dαχc(ξ)‖L(C,l2,kc )
≤ |ξ |α

∑
j≥0

(2 jkck |Dα(χc(ξ)) j |) ≤ Kα

because the sum consists of at most two nonzero terms for each ξ . Thus J ∈
Mp(W

k,p
c , L p(l2,kc )) by Mihlin multiplier theorem.

On the other hand, consider P : L p(l2,kc ) → W
k,p
c .
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Since J k
c ◦Pg = (F−1δc) ∗ g(k), where

g = (g j ) j≥0,

g(k) := (2 jk g j ) j≥0,

δc(ξ)g :=
∑
j≥0

2− jk(c2 + |ξ |2)k/2σ̃ φ j (ξ)g j ,

we have that for any α ∈ N
d

|ξ |α‖Dαδc(ξ)‖L(l2,kc ,C)
≤ |ξ |α

⎡
⎣∑

j≥0

(2− jkc−k |Dα(c2 + |ξ |2)k/2σ̃ φ j (ξ)|)2
⎤
⎦
1/2

≤ Kα,

because the sum consists of at most four nonzero terms for each ξ . Thus P ∈
Mp(L p(l2,kc ),W

k,p
c ) by Mihlin multiplier theorem, and we can conclude. ��

Corollary 2 Let θ ∈ (0, 1), and assume that k0, k1 ≥ 0 (k0 �= k1) and p0, p1 ∈ (1,+∞)

satisfy

k = (1− θ)k0 + θk1,

1

p
= 1− θ

p0
+ θ

p1
.

Then (W
k0,p
c ,W

k1,p
c )θ = W

k,p
c .

The previous corollary, combinedwith the classical 3 lines theorem (Lemma 1.1.2 in [11]),
immediately leads us to the following Proposition.

Proposition 17 Let k0 �= k1, 1 < p < +∞, and assume that T : W k0,p
c → W

k0,p
c has norm

M0, and that T : W k1,p
c → W

k1,p
c has norm M1. Then

T : W k,p
c → W

k,p
c , k = (1− θ)k0 + θk1,

with norm M ≤ M1−θ
0 Mθ

1 .

Now we conclude with the proof of Theorem 5.

Proof (Theorem 5) Estimates (21) clearly follow from Proposition 1 if we can prove that for
any α and for any q ∈ [2, 6]

‖〈∇〉αcW±〈∇〉−α
c ‖Lq→Lq � 1, (302)

‖〈∇〉αcZ±〈∇〉−α
c ‖Lq→Lq � 1. (303)

Indeed in this case one would have

‖〈∇〉1/q−1/p
c eitH (x)Pc(−Δ + V )ψ0‖L p

t L
q
x
= ‖〈∇〉1/q−1/p

c W±eit〈∇〉cZ±ψ0‖L p
t L

q
x
,

but

‖〈∇〉1/q−1/p
c W±eit〈∇〉cZ±ψ0‖Lq

x
� ‖〈∇〉1/q−1/p

c eit〈∇〉cZ±ψ0‖Lq
x
,
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hence

‖〈∇〉1/q−1/p
c eitH (x)Pc(−Δ + V )ψ0‖L p

t L
q
x

� c
1
q − 1

p− 1
2 ‖〈∇〉1/2c Z±ψ0‖L2

� c
1
q − 1

p− 1
2 ‖〈∇〉1/2c ψ0‖L2 .

To prove (303) we first show that it holds for α = 2k, k ∈ N. We argue by induction. The
case k = 0 is true by Theorem 6. Now, suppose that (303) holds for α = 2(k − 1), then

‖(c2 − Δ)kZ±(c2 − Δ)−k‖Lq→Lq

= ‖(c2 − Δ)(c2 − Δ)k−1Z±(c2 − Δ)−(k−1)(c2 − Δ)−1‖Lq→Lq

≤ c2‖(c2 − Δ)k−1Z±(c2 − Δ)−(k−1)(c2 − Δ)−1‖Lq→Lq

+ ‖ − Δ(c2 − Δ)k−1Z±(c2 − Δ)−(k−1)(c2 − Δ)−1‖Lq→Lq

≤ c2‖(c2 − Δ)k−1Z±(c2 − Δ)−(k−1)(c2 − Δ)−1‖Lq→Lq

+ ‖ − Δ(c2 − Δ)−1 (c2 − Δ)k−1Z±(c2 − Δ)−(k−1)‖Lq→Lq

+ ‖ − Δ(c2 − Δ)k−1[Z±, (c2 − Δ)−1](c2 − Δ)−(k−1)‖Lq→Lq

� c2‖(c2 − Δ)−1‖Lq→Lq + ‖ − Δ(c2 − Δ)−1‖Lq→Lq � 1,

since

‖[Z±, (c2 − Δ)−1]‖L2→L2 � |ξ |
(c2 + |ξ |2)2 ≤ (

c2 + |ξ |2)−3/2
.

Similarly we can show (303) for α = −2k, k ∈ N. By Proposition 17 one can extend the
result to any α ∈ R via interpolation theory. ��
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