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Abstract This paper focuses on uniform boundary estimates in homogenization of a family
of higher-order elliptic operators L., with rapidly oscillating periodic coefficients. We derive
uniform boundary C”~1*(0 <A < 1) and W™ P estimates in C! domains, as well as uniform
boundary C" 11 estimate in C1¢ (0 <6 < 1) domains without the symmetry assumption on
the operator. The proof, motivated by the works “Armstrong and Smart in Ann Sci Ec Norm
Supér (4) 49(2):423-481 (2016) and Shen in Anal PDE 8(7):1565-1601 (2015),” is based
on a suboptimal convergence rate in H”~'($2). Compared to “Kenig et al. in Arch Ration
Mech Anal 203(3):1009-1036 (2012) and Shen (2015),” the convergence rate obtained here
does not require the symmetry assumption on the operator, nor additional assumptions on
the regularity of ug (the solution to the homogenized problem), and thus might be of some
independent interests even for second-order elliptic systems.
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1 Introduction

This paper is aimed to investigate the uniform boundary estimates in homogenization of the
following 2m-order elliptic system,
L sl = f in .

1.1
Tr(D”ue) = gy ond2 forO<|y|<m-—1, (-1

where @ C R, d > 1, is a bounded Lipschitz domain,
(Leue)i = (=1)" >~ DA /e)DPugy), 1<ij<n,
la|=|Bl=m

ugj denotes the jth component of the R”-valued vector function ue, o, 8, y are multi-indexes
with components o, Bk, vk, k =1,2,...,d, and

Xd *

d
el =Y ax. D* =D DL ... DY
k=1

IA

. . ap
The coefficients matrix A(y) = (Aij ), 1
satisfying the strong ellipticity condition

i,j < n, is real, bounded measurable,

A

A |
pEr < Y A?,ﬁ(y>sgsg_;|5|2 for ae.y € RY, (1.2)

la|=|B|=m
where it > 0, & = (§¢)|a|=m, & = (501,, ..., &) € R", as well as the periodicity condition
A(y+2) = A(y), foranyze 7% and ae.ye€ RY. (1.3)

The regularity estimate uniform in & > 0 is one of the main concerns in quantitative
homogenization. For second-order elliptic operators, this issue has been studied extensively.
In the celebrated work of Avellaneda and Lin [5-7], by using a compactness method, the
interior and boundary Hélder estimate, W7 estimate and Lipschitz estimate were obtained
for second-order elliptic systems with Holder continuous coefficients and Dirichlet condi-
tions in bounded C!-Y domains. The uniform boundary Lipschitz estimate for the Neumann
problem has been a longstanding open problem and was recently settled by Kenig et al. [23].
Interested readers may refer to [20,24,34,36] and references therein for more applications
of compactness method in quantitative homogenization. More recently, another fabulous
scheme, which is based on convergence rates, was formulated in [4] to investigate uniform
(interior) estimates in stochastic homogenization. The approach was further developed in
[3,35], where the large-scale interior or boundary Lipschitz estimates for second-order ellip-
tic operators with periodic and almost periodic coefficients were studied systematically. We
also refer readers to [2,16,17,46] for more related results.

Relatively speaking, few quantitative results were known in the homogenization of higher-
order elliptic equations previously, although results on qualitative homogenization have been
obtained for many years [9]. Very recently, the optimal O(e) convergence rate in L?(R?)
for higher-order elliptic equations was obtained in [25,29,30]. In [39,40], some interesting
two-parameter resolvent estimates were established in homogenization of general higher-
order elliptic systems with periodic coefficients in bounded C?” domains. Meanwhile, in
[28,45] we investigated the sharp O(e) convergence rate in periodic and almost periodic
homogenization of higher-order elliptic systems in Lipschitz domains. Particularly, under
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Uniform boundary estimates in homogenization of higher-order... 99

the assumptions that A is symmetric and ug € H m+1(Q), the optimal O (¢) convergence rate
was obtained in W~ 190(Q), go = 2d/(d — 1) in [28]. Moreover, the uniform interior W7
and C"~ 1! estimates were also established therein.

As a continuation of [28], in this paper we investigate the uniform boundary estimates in
homogenization of higher-order elliptic system (1.1). Let ¢ : R‘~! — R be a C! function
with

V() =0, [Vy|=M,

1.4
sup {IVY(x)) = Vyr ()] 3y € RO and ¥ = /| = 1} < 7). o
where 7(t) — 0ast —> 0T. Set
D, =D(r, ) = [(x’,xd) eRY: x| <rand ¥ (x) < xq < Y (x)) +r],
(1.5)

A=A = [ v e R <.
The main results of this paper are stated as follows.

Theorem 1.1 Suppose that the coefficient matrix A = A(y) satisfies the conditions (1.2)—
(1.3) and uy, € H™(D1; R") is a weak solution to

[,Eug =F in Dl,
Tr(DYus) = DYG on Ay for0O<|y|<m—1,

where G € C"~1(D; R"), F € LP(Dy; R") with p > max {d/(m + 1), 2d/(d + 2m —
2), 1}. Then, forany 0 < A <min{fm +1—d/p,1}andanye <r < 1,

(]{) |vmu8|2)1/2 < CrHH(]{)I |u5|2)1/2 + (][Dl |F|P)1/p + ||G||cm—1.1(D,)}, (1.6)

where C depends only ond,n,m, A, i, p and t(t) in (1.4).

Estimate (1.6) can be viewed as the C™~!* estimate uniform down to the scale ¢ in C!
domains for higher-order elliptic operators L. In addition to the assumptions in Theorem 1.1,
if Ae VMORY), ie.,

sup ][ |A(y>—][ Aldy <o), 0<t=<1, (1.7)
B(x,r) B(x,r)

xeRd 0<r<t

for some nondecreasing continuous function g(¢) on [0, 1] with ¢(0) = 0, then a standard
blow-up argument gives the following full-scale boundary C”"~!-* estimate

1/2 1/p
||u5||cm71,x(01/4)5c{(]€) |u€|2) +(]€) |F|1’) +||G||cm71,1(01)}. (1.8)
1 1

We also mention that the restriction p > max{d/(m + 1), 1} is made to ensure C"~1*
estimate of the solution u#( to the homogenized system, which plays an essential role in
the proof of the theorem. The restriction p > 2d/(d + 2m — 2) is used to ensure that
F € H™"(Q), since our proof is based on the convergence result in Theorem 1.4 (see
Lemma 4.1 for details). Although the assumption on the regularity of F in Theorem 1.1 is
not sharp, see Corollary 5.1 for the full-scale uniform C™~!* estimate of u, it is enough for
us to derive the following uniform W™ ? estimate on u.
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100 W. Niu, Y. Xu

Theorem 1.2 Let Q be a bounded C' domain in RY. Suppose that the coefficient matrix
A € VMO (R?) satisfies (1.2)~(1.3) and us € H™(Q; R") is a weak solution to

Lette = 1q1<m DY f* inQ,
Tr(DYu;) = gy ondQ forO<|y|<m-—1,

where g = {g,}y1<m—1 € By /P (0Q; R") and f* € LP(Q; R") for|a| <m,2 < p < oo
Then,

luellwmr@) < Cp { > I lleee) + ”g”Bl’;”'/”(aQ)}’ (1.9)

loe|<m
where the constant C,, depends only on p,d,n,m, j, Q and o(t) in (1.7).

We refer readers to Sect. 2 for the definition of the Whitney—Besov space B;(BQ; R™).
Note that although the result presented in Theorem 1.2 focuses on the case p > 2, by a
standard duality argument, it still holds for 1 < p < 2. We also mention that the uniform
WP estimates in the homogenization of second-order elliptic systems have been studied
largely, see e.g., [14,15,33,43,44]. Theorem 1.2 generalizes the uniform W7 estimates
for second-order elliptic systems to higher-order elliptic systems. It also extends, in some
sense, the W7 estimate for higher-order elliptic equations (or systems) with non-oscillating
coefficients, see e.g., [10,12,13].

Our third result gives the uniform boundary C"~!! estimate of u. in C'? (0 < 6 < 1)
domains. Let D,, A, be defined as in (1.5), and let the defining function ¢ € Cl’e(Rd_l)
with

YO =0, [V¥llcogi1) < M. (1.10)

Theorem 1.3 Assume that A satisfies (1.2)—(1.3). Letu, € H™(D1; R") be a weak solution
to

Loty = Z|a\§m—1 D* f* in Dy,
Tr(DYug,) = DY G on Ay forO<|y|<m-—1,

where f* € LY(Dy; RY) withq > d,q > 2, and G € C™°(Dy; R") for some 0 < o < 6.
Then, for any ¢ <r < 1, we have

(f |Vmu5|2>1/2§C{(]{) W)+ ¥ (f |f"|‘1)1/q+||G||cm,awl)},

la|<m—1
(1.11)
where C depends only ond,n,m, u, q,o,0 and M.

Similar to (1.6), estimate (1.11) is the C" 1! estimate uniform down to the scale ¢ for
the operator L., which separates the large-scale estimates due to the homogenization process
from the small-scale estimates related to the smoothness of the coefficients. If in addition, A
is Holder continuous, i.e., there exist Ay > 0, 7y € (0, 1) such that

|A(x) = A)| < Aglx — y[®  forany x,y € RY, (1.12)

we can derive the full-scale boundary C"~ 1! estimate

1/2 1/q
IIVmusllmowl/usC{(][ wel?) "+ Y (][ 17417) +||G||cm.a(D1>}.
D| DI

loe|<m—1

(1.13)

@ Springer



Uniform boundary estimates in homogenization of higher-order... 101

This generalizes the boundary Lipschitz estimates in [5,35] for second-order elliptic systems
to higher-order elliptic systems.

Note that Theorem 1.3 does not require the symmetry assumption on the coefficient matrix
A. Therefore, it may be of some independent interests even for second-order elliptic systems
[21, p. 485]. Recall that the symmetry assumption on the coefficient matrix A is made in
[23] to establish the uniform boundary Lipschitz estimate for second-order elliptic systems
with Neumann boundary conditions. Such an assumption was removed in [3], where the
boundary Lipschitz estimate was obtained for second-order elliptic systems with almost
periodic coefficients. However, our investigations do not rely on the nontangential maximum
function estimates, which had played an essential role in [3, p. 1896]. This may allow one
to treat more general elliptic systems which arise in the homogenization theory [9], see also
[21] for some discussions on this topic.

Finally, we mention that the requirements on smoothness of coefficients and the domain
for uniform estimates in Theorems 1.1-1.3 are the same as those for second-order elliptic
systems [35]. Therefore, results in theorems above, combined with the interior estimates in
our previous paper [28], present a unified description on the uniform regularity estimates
in homogenization of 2m-order elliptic systems in the divergence form. The counterpart for
higher-order elliptic operators of non-divergence form will be studied in future.

The proofs of theorems above rely on the following convergence result.

Theorem 1.4 Suppose that Q2 is a bounded Lipschitz domaininR?, d > 1, and the coefficient
matrix A satisfies (1.2)—(1.3). Let u., uo be the weak solutions to the Dirichlet problem (1.1)
and the homogenized problem (2.2), respectively. Then, for 0 < e < 1andany0 <v < 1,
we have

llue = uoll g1y = Coe' ™ {lIgllwam2ae) + Il g-n+1 e} » (1.14)

where C, depends only ond,n, m, v, u and Q. If in addition A is symmetric, i.e., A = A*,
then

lute = uoll gy < Cetn(1/2) {Ilwanzagy + 1 lg-mirgy}, (115
where C depends only ond,n,m, u and Q2.

The error estimates above can be viewed as a counterpart in general Lipschitz domains for
the convergence rates obtained in [25,29,30,39]. Estimate (1.14) is new even for second-
order elliptic systems. Recall that sharp convergence rate is also one of the central issues in
quantitative homogenization theory. The estimate

lue — uoll 120y < Celluoll p2(g)

has been obtained for second-order elliptic equations in divergence form in C'*! domains
[18,37,38], as well as in Lipschitz domains with additional assumptions ug € H 2(Q)and A =
A*[28,35].In[22,42], the O[e In(1/¢)] convergence rate like (1.15) was obtained for second-
order elliptic systems under the assumption that A = A*. Compared with the reference
aforementioned, our estimate (1.14), although suboptimal, holds in general Lipschitz domains
and needs neither the symmetry of A, nor additional regularity assumptions of «(. Moreover,
the assumptions on the regularity of A, ¢ and f are also rather general. To the best of the
authors’ knowledge, optimal or suboptimal convergence rate under such weak conditions
seems to be unknown previously even for second-order elliptic systems.
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102 W. Niu, Y. Xu

The proof of Theorem 1.4 follows the line of [22,37]. The first step is to derive an estimate
like

lue — uoll gm-1y < CeV?™ {lghwamza) + If | g-mi1c} - (1.16)

When A is symmetric, this was done with the help of the nontangential maximum function
estimate, which gives proper controls on ug near the boundary 92, see [22,35,42] for the
details. Unfortunately, if A is not symmetric and the domain is just Lipschitz (or even C!) the
nontangential maximum function estimate is not in hand. Instead, we will take advantage of
some weighted estimate of u( (see Lemma 3.2) to achieve the goal. With the estimate (1.16)
at our disposal, we then modify the duality argument in [37] with proper weight to derive the
desired convergence rate. This idea is also partially motivated by [22,42], see Remark 3.1.

Armed with Theorem 1.4, our proof of Theorems 1.1 and 1.3 follows the scheme in
[3,4,35], which roughly speaking is a three-step argument:

(i) Establish the convergence rate in L2(£2) in terms of boundary data g and the forcing term
[, 1.e., the error estimate like

llue — uollz2(q) < Ce®{ norms of data g and f} forsome 0 < o9 < 1;

(ii) Prove that u, satisfies the so-called flatness property, i.e., how well it could be approxi-
mated by affine functions as ug does;
(iii) Iterate step (ii) down to the scale e, with the help of the error estimate in the first step.

Note that (1.14) gives (i), and we can thus pass to Step (ii). We shall adapt some ideas in
[3,4,35] to verify that u, satisfies the “flatness property.” However, instead of estimating
how well u, is approximated by affine functions as in [3,4,35], we estimate how well u,
is approximated by polynomials of degree m — 1 and m, respectively. By a proper iteration
argument, we then derive the desired large-scale C"™~1*(0 < < 1) and €~ 1! estimates.
The corresponding full-scale estimates (4.14) and (6.16) follow from a standard blow-up
argument.

Finally, the proof of Theorem 1.2 relies on the boundary Holder estimate (1.6) and a
real-variable argument originated from [11] and further developed in [31,32]. The key idea
is to reduce the WP estimate (1.9) to a reverse Holder inequality of the corresponding
homogeneous problem, see Lemma 5.1 for the details.

2 Preliminaries

2.1 Function spaces

To begin with, let us give the definitions of some function spaces involved next. Let 2 be a
bounded Lipschitz domain in RY. Let H™(S2:; R") and Hy'(2; R") with dual H™"(Q; R")

be the conventional Sobolev spaces of R"-valued functions. ForO < s < 1,1 < p < oo and
any nonnegative integer k, let B,’i” (£2) be the Besov space with norm (see e.g., [19, p. 17])

I/p
_ z 1D £ = DS
Wl = X Wby + 30| [ [ ELO= 2O geay

0<t<k I 1=k

Since 2 is a bounded Lipschitz domain, Bﬁ“ (£2) consists of the restrictions to €2 of functions
in BRH(RY) [19, p. 25].
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Also, define the Whitney—Besov space BZ"I“ (0€2; R™) as the closure of the set of arrays
{{Dauhmgmq UeCP (Rd)} ,

under the norm
. [t (x) — ua(Y)I? /p
||M||B;n—l+s(39) = ‘ lz 1 [||ua||Lp(aQ) + / / It — y|d— T dedSy) },
o|<m—

where &t = {uq}|a|<m—1, see e.g., [1].
Define the Whitney—Sobolev space WA™-? (9€2, R") as the completion of the set of arrays
of R"-valued functions

{{Dau la@Hal<m—1 : U € Cfo(Rd;R")},
under the norm [26]

Igllwanroey = Y. lgalleroey+ Y. IViangallLroo).

|la|<m—1 la|=m—1

2.2 Qualitative homogenization

Under the ellipticity condition (1.2), for any ¢ € WA™2(3Q2, R") and f € H™"™(Q; R"),
Dirichlet problem (1.1) admits a unique weak solution u. in H”(£2; R") such that

luellgm@) < C{If g + 1&lwan2pa) ) -

where C depends only on d, m, n,  and 2. It is known that (see e.g., [9,29]) under the
additional periodicity condition (1.3), the operator L, is G-convergent to Lo, where

(Lowyi = Y (—=D)"D*(AL DPuj)
||=|Bl=m

is an elliptic operator of order 2m with constant coefficients,

&= o / ) + AT DY 1, 0) |ay.
ly | m
Here, 0 = [0, )¢, x = (X}’) = (X,');) is the matrix of correctors for the operator £, given
by

o af o A .
{Zox:ﬁl:m D*{ A7 (y)DﬁXZj(Y)} = =Y laj=m DA () in R, o

X}/ (y) is l-periodic and [, X}/ (») =0.

The matrix (A;ﬂ ) is bounded and satisfies the coercivity condition (1.2). Thus, the following
homogenized problem of (1.1),

(2.2)

Loug = f in ,
Tr(D"ug) =g, ondQ for0<|y|<m—1,

admits a unique weak solution ug € H™(2; R"), satisfying

lluollpm ) < C {||f||H*m(Q) + ||é"||WAmv2(aQ)} .
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104 W. Niu, Y. Xu

For 1 <i, j < n and multi-indexes «, 8 with |a| = |8| = m, set
B =ALy)+ Y A 5D xf(y) - AL 2.3)
lyl=m

By the definitions of x¥(y) and A, for any 1 < i, j < n and any multi-indexes o, 8 with
la| = |B] = m, Bf‘jﬂ(y) e L2(Q)is 1-periodic with zero mean, and Z\a\:m D“Bf‘jﬂ(y) =0.

Therefore, there exists a function %fjaﬁ such that

B/ =" N prel” =BT and 1B 1m0 < CIBT 1120

lyl=m

where C depends only on d, n, m, see [28, Lemma 2.1].
Let £ be the adjoint operators of L, i.e.,

cr=n" Y DY (A*P(x/e)DF), A*:(Ajﬁﬂ)z(Aff). (2.4)

la|=|B|=m

Parallel to (2.1), we introduce the matrix of correctors x* = ( X;W) =( X;;y) for LY,

{Za=ﬂ|=m DUYAT DP9} = = Ljagm DAL () in R, 2.5)

X}W (y) is 1-periodic and fQ X;y (y) =0.
We also introduce the dual correctors B*7%# (y) of £¥. It is not difficult to see that x*” and

B*reP satisfy the same properties as x” and BY*F, since A* satisfies the same conditions
as A.

2.3 Smoothing operators and auxiliary estimates

For any fixed ¢ € C2°(B(0, })) such that ¢ > 0 and [ps (x)dx = 1, set . = 7¢() and
define

SN0 = [ wx=0f01dy and 5E=5,05.
Denote §(x) = dist(x,0RQ), 28 ={x € Q:8(x) >¢e}and Q, = {x € Q :5(x) < ¢}.

Lemma 2.1 Assume that f € L?(R?) forsome 1 < p < coand g € Llpoc(Rd) is I-periodic.
Let h € L®(R?) with compact support 2. Then,

llg(x/&)Se (IR Lr(@3e;8) < CllhllelglLroll fllLr @2 s), (2.6)
||g(x/8)Sa(f)(x)h(x)||LP(Q38;5—1) < CllhllL> ||g||Ll’(Q)||f||Lp(928;5—1)’ (2.7)

where ||ul|Lr(q: s) (similar for |[u|l L (q. s-1) ) denotes the weighted norm

1/
e = ( [ o ds) "
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Proof Observe that
/ |g(x/e)h(x) / 9e(x — ¥) f(y) dy|”8(x) dx
Rd Rd
5C/ |g<x/e>|f’/ 0o (x = VIFOIPS()
939 QZE
xaf [ o= s ara) " swa
925
< C/ / lg(x/e)Ppe(x — y)dx | f(y)IP8(y) dy
QZs Q3E

=c [ sra [ rorsma. @8
where we have used Fubini’s theorem and the observation
/Q _#elx =BT dy < CI01 7
for the second inequality. This gives (2.6). The proof of (2.7) is the same. O

Lemma 2.2 Let ?28 ={x eR?:5(x) < ¢}, f e HYR?), ¢ > 0. Then, Sfor any multi-index
o, o] = ¢,

1Ss(D* F)llLrn) < Ce N f 1l @, (2.9)
186 (D% )l Lo (e 5y < Ce~ Nl FllLreg: s)- (2.10)

Proof Inequality (2.9) was proved in [28, Lemma 2.3], and the proof of (2.10) is quite similar.
We provide it just for completeness.

o 14 _
||S£(D f)”Lp(QSs;(g) _/;239

s/ / ID%0e(x — W)L )IP8(y)
Q3s Q2s

/
<yl [ 0%t = 8o ay )" s as

L 0ot =070 ] "swax

C
< — LfDIP8(y) dy,
& Q2

where, for the last step, we have used Fubini’s theorem and the observation
/2 |D%pe(x = Y)W~ VPdy =< C/2 |D% e (x — y)| [8(x)]74/7 dy
Q¢ Q2
< CeT' 80P
for x € Q%. -

Lemma 2.3 Suppose that f € WH4(R?) for some | < q < oo. Let V’ f = (D% ) a)=s-
Then,

1Se () = Fllaggre: ) < CEIV Fllzacr: s)- @.11)

Proof See [42, Lemma 3.3] and also [35, Lemma 2.2] for the case g = 2. ]

@ Springer



106 W. Niu, Y. Xu

Lemma 2.4 Assume that A satisfies (1.2)—(1.3), and u, € H™(B(xg, R) N 2; R") is a
solutionto Lou = Zlalim D% f* in B(xg, R)NQ withTr(DYu.) = DY G on B(xg, R)NI2
for some G € H™(B(xg, R) N 2; R") where xg € 09Q2. Let f* € L2(B(xo, )N R"™) for
|| <m. Then, for0 < j <mand0 < r < R, we have

/ VI (s — G)|?
B(xg,r)NQ

C .
= 72/ (luel® +1G1) + CRZ'"*ZJ/ V"G
(R = 1) JBxo, R)NQ B(x0, R)NQ
vC Y miel [ e, @.12)
la|<m B(xp,R)NQ

where C depends only on d, n, m, i and Q.
Proof 1t is obvious that v, = u, — G is a solution to

Love= Y Df*+ Y D{A(x/e)DPG) inB(xo.R) N,
ler|<m ler|=IBl=m

Tr(DYve) =0 on B(xg, R)NIQ for0 < |y|<m—1.

Let ¢ € C2°(B(xo, R)) with ¢ = 1in B(xo, ) and |V¥¢| < C(R — r)~*. Multiplying v.¢>
and using integration by parts, we obtain that

/ vl = 3 [cenrn e Vel
B(x0, R)NQ e B(x0, R)NQ

€0 NV
b [ 10"wedP)
R¥m=2lel [poo myng ¢

ree Y [ 0GP e [ 1970, 297
B(xo,R)NQ B(x0, R)NQ

la|=m

m—1
Ceog+C
+Z(R_r)2m —2j

Note that ve¢? € H{'(B(xo, R) N Q). Using Poincaré’s inequality and setting €y small
enough, we may obtain from (2.13) that

/ |V v 2. (2.13)
(B(xo. R)\B(x0.r)NL

m—1
c . s
V" (e — G2 < 7/ VY (s — G|
A(xo,r)ﬂﬁ ’ ,2:(:) (R —r)2m=2i (B(x0, R)\ B(x0,7r))NS2 ’
el <m B(xg,R)NQ
+ Z/ ID“GIZ], (2.14)
o ¥ B0, N

where C depends only on d, n, m and p, but never on ¢, R. The estimate (2.12) follows from
(2.14) in the same way as Corollary 23 in [8] through an induction argument. O
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Uniform boundary estimates in homogenization of higher-order... 107

Remark 2.1 Tt is possible to replace the L? norm of f¢ in (2.12) by the L” norm for some
1 < p < 2 when |a| < m. For example, assuming that f* = 0 for 1 < |o| < m, we may
prove that

i C 2 2
v —G>|2574/ e + 1G]
/B(xo,r)rm ‘ (R =% Jpio.m)n0 (fue )

B(xo, R)NSQ

Am—2j+d—24 0 %
rerimi (] o).
B(x0, R)NQ

for p > max{1, 2d/(d + 2m)}.

3 Convergence rates in Lipschitz domains
Let 0 < p. < 1 be a function in C2°(Q) with supp(p:) C 2%, p. = 1 on Q* and
[V"pe| < Ce™™.

Lemma 3.1 Suppose that Q is a bounded Lipschitz domain inR?, and A satisfies (1.2)~(1.3).
Let ug, ug be the weak solutions to Dirichlet problems (1.1) and (2.2), respectively. Define

we =ue —ug— ™ Y x¥ (x/)SF(DY uo) pe. 3.0)
lyl=m
Then, for any ¢ € H6" (2; R™"), we have
' 3 / D A (x/e) DP w,
Q

la|=|Bl=m

=< C||Vm¢||L2(Q4€)||Vmu0||L2(Q4e)
+CIV"ll2iny D NS (V" uo)l 2 0g a0

0<k<m—1,
+ C||Vm¢||L2(QZg; Pl ||Vmu0 - Sg (lext())”LZ(QZg; 9)
+CIV"lli2e -1y D, €™ ISV R uo) 22, ), (3.2)
0<k<m—1

where U (x) = 8(x) or 1, C depends only ond,n, m, u and 2.

Proof See [28, Lemma 3.1] for ¢ = 1. The proof for the case ¥ (x) = §(x) is almost the
same with the help of Lemmas 2.1, 2.2 and 2.3. O

Lemma 3.2 Let 2 be a bounded Lipschitz domain in RA. Let A satisfy (1.2)—(1.3) and
let ug be the weak solution to homogenized problem (2.2) with ¢ € WA™2(3K2; RM), f e
H"H(Q; RY). Then, for any 0 < v < 1/2,

IV w0l L2y < ot {1 lwanzagy + 1/ li-ns1en} 3-3)
19" ugl 2oy < Coe™ 2 (gl wan20) + I f l-n1 gy} (34
V™ uoll 2 (g2e, 5-1) < Coe ™" Il lwam2ogy + 1 | g-n+1)} » 3.5)
IV lugl 202 5 < Coe™ {18 llwanz@a) + 1Ll -ntia ) - (3.6)
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where C,, depends only ond,n, m, v, u and Q.

Proof Recall that f € H™"+1(Q) can be written as
f= > DfE with [Iflg-nigy ™ Y. £ 020
[¢l=m—1 l¢l<m—1

Let f§ be the extension of f¢, being zero in RY \ Q. Let € be a smooth bounded domain
such that Q C . Let vg be the solution to

Lovo= Y Dff inQ  Tre(DYvp) =0 ondQ for0<|y|<m—1. (3.7

[¢]<m—1
Standard regularity estimates for higher-order elliptic systems imply that
> IV %l 2@ < CIF g o- (3.8)
1<t<m+1

Denote X; = {x € Q : dist(x,R2) = },0 <t < ¢o. Similar to [28, Theorem 3.1] (see
(3.23) and (3.24) therein), by trace theorem, we may prove that

D IVl < Clf lg-nti () (3.9)
1<t<m
D IVl < Ce Pl g-nii(g)- (3.10)
1<t<m

On the other hand, setting uo(x) = vo(x) + v(x), we have

Lov=0 inQ, Tr(D'v)=g, —D'vy ondQ for0<|y|<m—1. (3.11)

Thanks to Theorem 3’ and Theorem 5" in [1], we have v € Bg'_lﬂﬂ () forany 1/2 <s <1,
and,

101l g-1265 g = Co{Igllwan2qag) + 100l wam2as }
< Cs{léllwam2ag) + Il g-n+1 )} (3.12)
where vy = {DV Vo |aQ} and (3.9) has been used for the last step. Therefore, we have
Dy e By

lylsm—1°

() for || = m. Thanks to Theorems 1.4.2.4 and 1.4.4.4 in [19],

/Q |va(x)|28(x)l_25dx = Cs ”v”één—l/2+s(g) = Cf{”g||€VAm2(dQ) + ”f”%.[ﬂrﬁl(g)}
(3.13)

This implies that
/ |va(x)|2dx=/ V"0 ()28 (x) 28 (x)> ! dx
Qe Q¢

S ngzs_l{”g”%VAmi(aQ) + ”f”%.[—erl(Q)} (314)

for any 1/2 <s < 1. By combining (3.10) with (3.14), we derive (3.3) by settingv =1 — s.
In view of (3.11) and interior estimates for higher-order elliptic systems with constant
coefficients, we have

C 12
IV H ()] < —(][ |va|2> .
8(x) N B(x, 20
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Thus, by using (3.13) we deduce that

1
IV )2, e sc/ —][ IV u()28(y)' > dy dx
L2(Q%) o2 8(x)3—2s B(x,%)

253 2
=< CS s ”VmU”LZ(Q; 51—25)

= G 18 a0y + 11 mir ey} (3.15)
which, together with (3.8), gives (3.4).
For (3.5), it is easy to conclude from (3.12) and (3.13) that
/ V" 002800~ dx = / V"0 ()80 78 (x) > dx
Q2e Q2

< G {18l amaaqy + 1/ 15 min g ) (3.16)
On the other hand, by the co-area formula and (3.9) we deduce that

/ |vmv0(x)|23(x)*ldx:/ |vmuo(x)|25(x)*ldx+/ V™ 00(x)]28 (x) "' dx
Q2 QZS\QL‘O

Qo

(&) 1
< C/ / |vao(x)|2dedt+C/ [V 0o (x)|? dx
20 J3, t Qo

< CIn(1/&) {1815 am2ga0) + 1/ 15 -mi1 gy ) (3.17)

for 0 < ¢ < 1/2. This, combined with (3.16), gives (3.5). The proof for (3.6) is almost the
same as (3.4), and thus we omit the details. m]

Lemma 3.3 Suppose that the assumptions of Lemma 3.2 are satisfied, and A is symmetric,
i.e., A = A*. Then, we have

V™ uoll 12y < €& {18l wan2 ey + I1f I -n+1e }- (3.18)
IV w0l 1202, 5-1) < C In(1/)] {1 gllwan2oq) + | fllg-niy}.  (3.19)
V" uoll 22 5) < € I/ {1g N wanza) + 1 fla-ns1@}.  (3:20)

where C depends only on d,n, m, u and Q.

Proof The proof is the same as that of Lemma 3.2 except for three places. Firstly, since A
is symmetric, in place of (3.13) we have the nontangential maximum function estimate, see
e.g., [41, Theorem 6.1],

MV V)| 1200) < Cllollwan2ag) < C{lIEIIwan2ma) + I f Il g-n+1)}- (3.21)

where M (V™v) denotes the nontangential maximal function of V" v. Therefore, instead of
(3.14) we have

/Q V"0 dx < Ce {1813 4m200) + 112 mi1 ey} -
2¢e
which, combined with (3.10), implies (3.18).

Secondly, in substitution for (3.16) we use the nontangential estimate (3.21) and the co-
area formula to deduce that

o 1
/ IV u(x)|?8(x) " dx < C/ / 7|va(x)|2det+C/ |V u(x)|? dx
Q2 20 Jz, 1 Qo

< Cln(1/e) {ngn%mw(m) + ||f||§,_m+l(m} ,
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which, combined with (3.17), gives (3.19).
Finally, instead of (3.15), we have

1
V™2, o, sc/ —
L2(Q¢: 6) a0 8(x) B(x, Q)

+c/ ][ V() Pdy d
Q0 JB(x, 1)

)] 1 .
< C/ / ?|M(va)|2ds dr+C [“g”%)yAm.Z(aQ) + ||f||§-[”"+1(9)}
e Zr

|V u(y)[*dy dx

= Cin(1/e) {181 gy + 1/ 1 mi1cey |-
This, together with (3.8), gives (3.20). The proof is thus completed. O

Lemma 3.4 Assume that Q is a bounded Lipschitz domain in RY and A satisfies (1.2)—(1.3).
Let ug, ug be the weak solutions to Dirichlet problems (1.1) and (2.2), respectively, with
g € WA™2QuRY), f € H"™HL(Q; R"). Let w, be defined as in (3.1). Then, for any
0 <v < 1/2, we have

lwell gy < Coe > {lIgllwan 20 + 1 I g-ns1} > (3.22)

where C,, depends only ond,n,m, v, u and Q. If in addition A is symmetric, i.e., A = A*,
then

lwel gy < Ce'* {llgwan2qa) + 1 f lg-n1 )} (3.23)

where C depends only ond,n, m, u and Q.

Proof The estimate (3.23) has been proved in [28, Theorem 3.1], we only need to consider
(3.22) here. Using Lemmas 2.2 and 2.3, we deduce from (3.2) that

‘ 3 /QD“@Aj?‘f(x/s)Dﬁng

lor|=|B|=m
=< C{||vm¢||L2(Q4g)||vmu0||L2(Q5£) + 5||Vm+1”0||L2(§22€; 19)||Vm¢||L2(522€; 0*1)}- (3.24)
Taking ¢ = 1, ¢ = w, and using the ellipticity condition (1.2), we obtain that
19" well o = CLIV" ol 22y + 21 V" ol 2y}
from which and (3.3), (3.4), we obtain (3.22) immediately. ]
We are now prepared to prove Theorem 1.4.

Proof of Theorem 1.4 We only provide the details for (1.14), as the proof of (1.15) is similar.
By scaling, we may assume that

8llwam2aq) + I f | g-m+1 ) = L.

Forany fixed F € H —m+l(Q: R, let Ve € Hy' (2; R") be the weak solution to the Dirichlet
problem

Liye=F in ,
Tr(DY ) =0 ondQ for0 <|y|<m—1,
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and let Yo € Hy'(R2; R") be the weak solution to the homogenized problem
E(’gllfo =F in ,
Tr(DY o) =0 ondQ for0 <|y|<m—1.

Here, £} and L are the adjoint operators of £, and Lo, respectively. Let 0 < p, < 1 bea
function in C°(Q) with supp(p:) C Q°, b = 1 on Q% and |[V" 5| < Ce™™. Set

We =y —yo—&" Y X (x/e)SZ(DY Y0)p.

lyl=m

It satisfies the same properties as w,, since A* satisfies the same properties as A. Note that
w, € Hy'(2; R"), and we deduce that

(Fs wS)H""JrI(Q)XH(I)n_I(Q) = Z AAﬂa(x/s)DawsDﬁws

lol=IB1=m
+ /Aﬁ“(x/s)D“waDﬂl/fo
jal=1Bl=m 2

+ AP (x je)D*w, D
le|=1Bl=m 7 &

x| 32 e /eS0T o))
[y |=m
=N+ DL+ J5. (3.25)

By (3.22), we obtain that
111 < Cllwell gz @) 1 Well gy < Co' I F Il g-nsi(g)-
Using (3.24) and taking 9 (x) = §(x), we have

1
V2] < CelIV™" Yol 2ge; 5-1) V" uoll 1202 5)

+ ClIV™uoll 205 IV Vol 12(04,)- (3.26)
By (3.3) (note that v also satisfies (3.3)), we get
V" w0l 125 IV Yol 12y < Co&' ™2 I Fll g-n+1 (-
Furthermore, taking (3.5) and (3.6) into consideration, we conclude from (3.26) that
2] < Coe' "2 Fll goms1 g

We now turn to J3. By (3.24), we obtain that

3l <Ce Y~ 1V uoll 2 )™ IV {X ™ (x/€)S7 (DY Y0) e Il 2020 5-1)
lyl=m

+C O IV U0l 2i0u) IV (X (/) SEHDY Y0)Be Ml 20y (B2T)
lyl=m
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where the last term is zero by the definition of p,. To estimate the first term, we note that

™ | DP{x*7 (x /&) SZ(DY Y0) P Il 22 5-1)
< CI(DP x*7)(x /) SHDY Y0) Pell 1202 5-1)
+ Ce™ | X (x/8)SZ(DPTY o) Pl 2 (2e: 51
+ Ce™ | (x/€)S2(DY Yr0) DP Pl 1202 5-1)
+C Y D) (x /) STDY T10) D Bl 2 51

[{+n+&|=m
1=[¢].Inl.1§1

= J31+ I3+ J33 + Ju,
for all multi-indexes B, y with length m. By Lemmas 2.1 and 3.2, we obtain that
Ja1 < C||S8(Vm1//0)||L2(ng;571) = C||Vm1/f0||L2(Qis;5—l) = Cv87U||F||H*m+1(Q),
J33 < C||Ss(vm1/f0)||L2(g29€\Q4s;571) <Cy™" I F Nl g-m+1()-
Furthermore, by Lemmas 2.1, 2.2 and 3.2, we see that
3 = Ce" IS (V" Y0) | 2qgees 51y = Coe ™ I Fll i gy

Ba=C Y BT ) (e /0) STV Y0 Y Bell 2 g g 51

ki+ko+kz=m
1<ki.i=1,2,3

<C Y RIS VMYl 2000505

1<kpy<m—-2

S Cvg_v || F ” H-m+l1 ()"
Taking the estimates on J31, J3, J33, J34 into (3.27), and using (3.6), we obtain that
3] < Coe' "I F |l g-nsi (g

In view of the estimates on J1, J2, J3 and (3.25), we have proved that

’(F’ w8>H””+1(Q)><H6"71(Q)| =< C\)gl_ZV”F”H*erI(Q)’

which, combined with the following estimate

le™ > %7 @ /e)SEDY uo)pell -1 gy < Ce.
ly|=m

gives (1.14). The proof is complete.

m}

Remark 3.1 Part of our motivation for the proof of (1.14) is the finding that u¢ satisfying
certain weighted estimates such as (3.3)—(3.6), which give a proper control on the solution
ug in Q° and €2,. This also inspires us to modify the duality method with weight §(x). We
mention that weight functions have been used previously in [22,42] to derive the suboptimal
O(e1n(1/¢)) convergence rate for second-order elliptic systems with symmetric coefficients.

Our consideration on the suboptimal convergence rate is also in debt to these works.
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4 Uniform C™~1:* estimates

In this section, we consider the uniform boundary C m=L. () < A < 1, estimate of ug in C!
domains. Throughout the section, we always assume that A satisfies (1.2) and (1.3). Recall
that locally the boundary of a C! domain is the graph of a C! function; we thus restrict our
considerations to equations on (D,, A,) defined in (1.5) with the defining function satisfying
(1.4). Let

Pr = [(Pk], sz, P P,i, 1 <i < n, are polynomials of degree k].
Let u, € H™(D,,; R") be a weak solution to
Leug =F in Dy,  Tr(D’u,)=D"G onAy forO<|y|<m-—1, 4.1)

where G € C"~11(Dy, i RY), F € LP(Da,; R?) with p > max({1, 2d/(d +2m —2)}. Define

1 , N2 AP
<I>x(r,us>—mmpn_}2§gm_l{(]ir s = Pua?) 47 (.ﬁ,'F' )

1

m
+er||vf(G—Pm_1>||Loc(D,>}, 0<i<l (4.2)
j=0

Lemmad.l Let 0 < ¢ < r < 1 and ®,(r,u.) be defined as above. There exists uy €
H™(D,; R") such that Louy = F in D,, Tr(DYug) = DYG on A, for0 < |y| <m — 1,
and

1/2 1/4
(7[ e —uol?) = € (2) T 0w, 43)
D, r

where C depends only ond, n, m, p, i and M in (1.4).
Proof Let us first assume that » = 1. By Caccioppoli’s inequality (see Remark 2.1), we have
m
el sy = C el + 1Frws + Y IV Gllamy | @4
Jj=0
for p > max{1, 2d/(d + 2m)}. By the co-area formula, there exists ¢ € [5/4, 3/2] such that
m .
el am @D\ A2y < c{nuaan(Dz) +IFllroy + Y ||VJG||L2(D2)}, 4.5)
j=0
where C depends only on d, n, m, u. Now let ug be the weak solution to
Loug = F in Dy, Tr(D? ug) = Tr(DY ug) on 9 D;.

Note that F € L? — H~"t! when p > max{2d/(d + 2m — 2), 1}. As a consequence of
(1.14) in Theorem 1.4, we have

lute = woll 2o = Ce ™l llimany + I1F oo ).
where C depends only on d, n, m, u and M in (1.4). This, together with (4.5), yields
lute = woll 2y < e = woll 20,y < €& ltel 2y + IF LoDy + G len-t1(y |-

(4.6)
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for p > max{1, 2d/(d + 2m — 2)}.
We now perform scaling for general ¢ <r < 1. Set

0e(x) = us(rx), Gx) = G@rx), Fx)=r"F(rx).

By (4.1), we know that £z v, = F(x)in Dy, and Tr(D” v;) = DY G (x) on A, for 0 < |y| <
m — 1, where

Dy ={( xg) € RY: x| < 2and v, (') < xg < ¥ (x)) + 2},
Ay = (& (X)) € RY: x| < 2}, with ¥ (x) = r 1y (rx).

Thanks to (4.6), there exists v with Lovg = F (x) in Dy, Tr(DY vg) = Tr(D? v,) on 9 D;
for 0 < |y| <m — 1, such that
e 1/4 ~ ~
e = vl 2,y = €(2) " {1l 2y + 1F@ Lo, + 18l cnmr 3y |-

Setting uo(x) = vo(x/r), we then obtain by the change of variables,

(s =l (U, )5, )
" 2 2

m
+ ”VJG||L°°(DZ,-)}~
j=0

Note that the above inequality still hold if we subtract a polynomial P,_; € Bp—1 from
ug, up and G simultaneously. This gives (4.3) by taking the infimum with respect to Py,—;. 0

Lemmad.2 For0 <e <r <1, letuy € H"(D2; R") be a weak solution to
Loug=F inDy, Tr(DYup) =DYG onA, forO<|y|<m-—1,

where G € C"~L1(Dy; RY), F € LP(Dy; R with p > max{d/(m + 1),2d/(d + 2m —
2), 1}. Then, for any 0 < » < min{m + 1 —d/p, 1}, there exist .o < min{fm +1—d/p, 1}
and a constant C depending only ond,n,m, p, u, M and t(t) in (1.4), such that

@, (8r;ug) < C8M4®; (riug) for 0 <8 < 1/4. (4.7)

Proof By rescaling, we assume that r = 1. For 0 < A < min{m + 1 — d/p, 1}, fix Ao such
that A < X9 < min{m + 1 —d/p, 1}. Set P,,_1 in (4.2) as

m—1 1 m—1 1
Py (x) = Z — D%up(0)x* = Z —D*G(0)x*,
=0 o! |a|=0a'

It is not difficult to find that
®5.(8, uo) < C8 M lugll em-100,py)

1/p " .
+8m+l—x—d/p(][ |F|p) +51_)‘Z||V/G||L°°(D1) (4.8)
Dy P
j=0
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for any 0 < 8 < 1/4. Observe that when p > max{d/(m + 1), 1}, L?(Dy; R") —
W4 (Dy; R") for some ¢ > d. Combining the C"~1-*0 estimate for higher-order ellip-
tic systems with constant coefficients in C ! domains (see e.g., [10,12]) and a localization
argument (see e.g., the proof of Corollary 5.1), we have

”MO”C‘"’L)‘O(DE) < C“”O”C’"’LKO(D]/;;)

< C{(fDl |u0|2)1/2 n (]{)1 |F|p)1/17 +j2:(:)||ij”Lx(Dl)}, (49)

Taking (4.9) into (4.8), we derive that

1/2 1/p .
<bx<s,uo>scak°”{(f wi?) "+ (f 1717) +Z||VJG||Loo<Dl>}~
D Dy P
j=0

Substituting ug, G by ug — P,,—1 and G — P,,_1, respectively, and taking the infimum with
respect to P, € PB,,—1, we obtain (4.7) immediately. O

1

Lemma 4.3 For0 < & <r < 1/2, let O, (r, u.) be defined as in (4.2). Then, there exists
8 € (0, 1/4) depending only ond,n,m, p, ., u, M and t(t) in (1.4), such that

1 1/4
,(0riue) = 30, Criue) +C(2) T @rriu), (4.10)
r
where C depends only ond,n,m, p, ., u, M and ©(t) in (1.4).
Proof By the definition, it is easy to find that
. . 1 2\/2
;. (57 ue) < D5 (875 o) + W< e = ol )

1 1/2
< C5 T, 7(7[ - 2)
< a(riuo) + e\, lue — uol

Ccsro—> 1/2
A)—A . 2
< C§"0 q)’\(r’us)_'—irm—lH(]ir|”5_”0| )

1 N\ 12
+w( o, He Mol )
3 Cs 12
S C(SAO )»q>;h(2r;ug)+ m(f |I/l£ —u0|2> .
Dr

Taking § small enough such that Csro—* < 1/2, and then using Lemma 4.1, we obtain (4.10)
directly. O

Proof of Theorem 1.1 We only need to consider the case ¢ < r < 1/4, since the estimate

(1.6) is trivial when 1/4 < r < 1, following directly from Caccioppoli’s inequality. Thanks
to Lemma 4.3, we can take Ny large enough such that

1 1\1/4
s 6riue) = S0 Criug) + () @aCrine) = G2 2riwe), .11
0
for r > Nope, where § given by Lemma 4.3 is fixed. Hence, by iteration we have

D) (r;ug) < CPy(1;ug) forr € [Noe, 1/2). (4.12)

@ Springer



116 W. Niu, Y. Xu

On the other hand, for ¢ < r < Nye, it is obvious that
@) (r; ug) < CPL(Nog; ug) < CPL(15 uy),
where C depends on Ny. This, together with (4.12), gives
Q) (r;ug) <CO,(1;u,) fore <r <1/2. (4.13)

By Caccioppoli’s inequality, we deduce that

N B ) o\ 172
(7[ V" e = Pu-n?) = Cr7"inf (7[ s = Puct )
D, Pn—1€PBm—1 Da,
+r2m<][ |F|[l>]/l7
Dy,
"o . 12
+Zr/(7[ V(G = Pu-n)P?) }
P

= Cr @, (2r ue) < Cr' @, (1 )

cer ()

1
l/p m
(£ 100+ 19 G,
1 j:0

foralle <r < 1/2 and any P, _1 € PB,,—1, which is exactly (1.6). ]

Corollary 4.1 In addition to the assumptions of Theorem 1.1, if A € VMO R?), then for
any 0 < A <min{fm +1—4d/p, 1},

1/2 1/p
||M5||Crr1—l.k(Dl/4) < C{(ﬁ |u€|2) + (]i IFlp) + ”G”C’”’I'I(Dl)}7 (4]4)
1 1

where C depends only ond,n, m, p, i as well as M, t(t) in (1.4) and o(t) in (1.7).
Proof 1t is enough to assume 0 < ¢ < 1/2, as the other case is trivial. Setting
ve(x) = ug(ex), F(x) =™ F(ex), G(x) = G(ex),
then v, satisfies
Live=F(x) inDy, Tr(D'v,)=D"G(x) onA; forO<|y|<m—1. (4.15)

By C m=L.2 estimates of operator £ in C ! domains [10,12] and a localization argument, we
have forany 0 < A <min{m +1—d/p,1}and0 < s < 1/2,

12 _ 12 ~ NP N i
(f 1wmur) " <et(F wl) " (fF 1F) 4 1B )
Dy J D J D j=0

(4.16)
By the change of variables, we obtain for 0 < r < ¢/2,
1/2 =11 172
(][ vru?) " =c(2) —[(][ e %)
D, e/ e" N Jp,
5 /p & .
+s'"(][ IFI”) +25/IIV/G||L0<>(D8)]. @.17)

j=0
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Subtracting P, from u, and G simultaneously, and taking (4.13) in consideration, we
obtain that

(]i |v"’u£|2)l/2 < CrH[(fD

forany 0 < r < e. In view of (1.6), we know that (4.18) holds for 0 < r < 1/2. Combining
(4.18) with similar interior C m=1.% estimate in [28, Corollary 5.1], we obtain that

172 172
(f ) et (k)
B(x,r)ﬂD|/4 D
1/p n .
(£ 100 4 IV Gl
1 j=0

forany 0 < r < ro (ro is small) and x € Djy4. This gives (4.14) by the Campanato
characterization of Holder spaces. O

1

N\ 172 /P - i
ue?) "+ (£ 1F1) T+ Y IVIGl
Dy =0

(4.18)

Remark 4.1 Under the assumptions of Corollary 4.1, if F, G = 0 we may use Poincaré’s
inequality to deduce from (4.17) that

(fD |vmug|2)l/2 < c(g)H(]i |v'"u£|2)l/2 (4.19)

for any 0 < r < e. This will be used to establish the uniform W™-? estimate in the next
section.

S Uniform W™ ? estimates
This section is devoted to the uniform W”? estimate for u, in C' domains under the assump-
tion A € VMO (R?).

Lemma 5.1 Assume that Q is a bounded C' domain in R? and the coefficient matrix A €
VMO (RY) satisfies (1.2)~(1.3). Let B(xq,r),r < ro, be a ball centered at xy € 32 with
radius r, and ug € H™(B(xg, 2r) N Q; R") be a weak solution to

Leug =0 in B(xp, 2r) N 2, Tr(DYug) =0 on B(xp,2r)No2 for 0 <|y| <m—1.

Then, for any 2 < p < 00,

1/p 1/2
<][ |V’"u8|”> < C(][ |V’”u8|2) , 5.1
B(xp,r)NQ B(x0,2r)NQ

where C depends only ond,n, m, p, i as well as M, t(t) in (1.4) and o(t) in (1.7).

Proof We only need to consider the case ¢ < % .Since ifelse A(x/¢) satisfies (1.7) uniformly,
and (5.1) follows from the existing W"? estimates for higher-order elliptic systems with
VMO coefficients, see e.g., [10,12]. Also, note that the function ¥, (x") = 1 (rx’) satisfies
condition (1.4) uniformly. We can then fix our considerations on the case r = 1 by rescaling.
By the uniform interior W7 estimates derived by the authors in [28, Theorem 1.3], we have

1/p : 1/2
(][ i) " e(fnupar)
B(x,t) B(x,2t)
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whenever u, is a weak solution to L,u, = 0 in B(x, 2t). Therefore, in view of (1.6) and
(4.19), we have forany 0 < A < land y € B(xo, 1) N €2,

1/p 1/2
(f ) ze(f )
B(y,5(y)/8) B(y,5(y)/4)

172
scoor ([ emp)
B(x0,2)N<

where §(y) denotes the distance of y to d(B(xp, 2) N ). Fix L € (1 — 1/p, 1) and integrate
(5.2) with respect to y in B(xg, 1) N 2. We obtain that

V", |Pdx dy < C[V"u|)” . (5.3)
/B(on)m ]i@,a(y)/& ’ LB DD

We then deduce from Fubini’s theorem that

/ IVmus(X)l"/ Ldydx < CIIV"u,|l?, .
B(x0, )N {yeB(xo, DN x—y| <8 (»)/8) S (V)4 - L*(B(x0,2)NY

(5.2)

5.4

Observe that when |x — y| < 8(y)/8, it holds that

1

Eé(y) < 3(x) =28(y). (5.5
We thus conclude that

B(xo, 1) N QN B(x,8(x)/16) C {y € Bxo, D NQ: |x — y| < 8(y)/8}
for any x € B(xp, 1) N Q. This, together with (5.5), implies that
——dy > Co > 0.
/{yeB(xo,l)ﬂQ:x—y|<8(y)/8} S(y)?

Taking this into (5.4), we obtain (5.1) immediately. m]

With Lemma 5.1 at our disposal, we are ready to prove Theorem 1.2. The proof is based
on a real-variable argument in the following theorem, which is formulated in [31,32].

Theorem 5.1 Let ¢ > 2 and Q2 be a bounded Lipschitz domain. Let F € L*(Q) and
f € LP(Q) forsome2 < p < q < 0o. Suppose that for each ball B C R with the property
that |B| < co|S2|, and either 4B C Q or B is centered on 0%, there exists two measurable
functions Fp and Rp on 2B N Q such that

|F| < |Fp|+|Rplon2B N, (5.6)

1/q N\ 1/2 172
(f )" <cf(f re) 4 s (£ irR)T) 52
2BNQ 4BNQ BCB'C4By B'NQ

N\ /2 N\ 1/2 5\ 12
(f imP) =c s (£ 1) wo( [ irR)" )
2BNQ BCB'C4By B'NQ 4BNQ

where C1,Cy > 0,0 < cg < 1. Then, there exists 5y > 0, depending only on C1, Ca, co, p, q
and the Lipschitz character of 2, such that, for any 0 < § < 8o, F € LP(2) and

(107) " = c(f,1rR) " (L) ™" 59)

where C depends only on d, C1, Ca, co, p, q and the Lipschitz character of 2.
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Proof of Theorem 1.2 Since the desired estimate is trivial when p = 2, it suffices to consider
the case p > 2. Thanks to the extension theorem in [26, p. 223], for any ¢ = {gy }y|<m—1 €

B V7 (3Q) there exista G € W™P(2) such that

Tr(DYG) =gy forO<|y|<m—1, |Gllwnr@) < ClEN =117 )
Therefore, we can restrict our investigations to the problem with homogeneous boundary
conditions.

Leie =Y D*F" inQ,  Te(D'm,)=0 ondQ for0 <|y|<m—1,

la|<m
where u; = u, — G and
Fr=r+ =) Y AP (x/e)DPG forjal=m, and f = f* for|a| <m.
|Bl=m

Let F = |V"u,| and f(x) = Zla\Sm |?a|. We only need to construct the functions Fp,
Rp and then verify the conditions (5.6), (5.7) and (5.8) to hold for balls B(xq, ») with the
property | B| < ¢o|€2| and either 4B C 2 or B is centered on d€2. The case of 4B C 2 has
been investigated for interior W”*? estimates in [28]. So here we only consider the situation
that B is centered on 9€2.

Let B = B(xo, r) for some xg € 3Q and 0 < r < ro/16. Let v, € Hj' (4B N Q; R") be
the solution to Leve = 314 < DYf* in 4B N Q and set

Fp = |V™0|, Rp=|V"Ww|, we =1 — v,.
Then, it is obvious that

|F| < |Fp|+|Rg|on2B N,

1/2 1/2 1/2
(f ml)=c(f wmap)T=c(f1P)"
2BNQ 4BNQ 4BNQ

which imply the conditions (5.6) and (5.8). Furthermore, note that
Lew, =0in4B N Q, Tr(D”w,) =0 on4BNIQ for0<|y|<m—1.

By Lemma 5.1, we know that for any 2 < p < oo,

1/p 1/2
(][ V" we ) sc(][ V" w )
2BNQ 4BNQ
1/2 172
c(][ |V"’ﬁ£|2) +c(][ |va8|2)
4BNQ 4BNQ
12 12
sc(f wrap)Tae(f )"
4BNQ 4BNQ

which implies (5.7). Noticing that all the conditions in Theorem 5.1 are verified, (1.9) follows
from (5.9) immediately. ]

IA

Note that if u, € W;""(Q,R") is a weak solution to Leue = f in Q, and u} €
Wy'? (Q,R") is a weak solution to Lfu} = f* in Q, where p’ = p/(p — 1). Then,
we have

(f, uj)W_mJ’XW(;n’p’ = Z QAaﬁ(x/S)DﬁuEDau: = (f*,ug)w_’"’l”xw(;n’p'
lo|=IBl=m
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Therefore, Theorem 1.2 also holds for 1 < p <2 by a standard duality argument.

As aconsequence of Theorem 1.2, one can obtain C”~!-* estimate on u, in 2 immediately.
However, we choose to provide a local version using the localization argument mentioned in
(4.9) and (4.16) (where we did not provide any details). The result will also provide a direct
comparison to Theorem 1.1 as well as Corollary 4.1.

Corollary 5.1 Suppose that Q2 is a bounded C' domain in R?, A € VMO R?) satisfies
(1.2)—(1.3). For any xo € 0Q and 0 < r < cq, let u, € H™ (2 N B(xg, 4r); R") be a weak
solution to

Loty = Z D¢ f¢ in Q2N B(xg,4r), Tr(D"u;) = DYG on 92N B(xg, 4r), 0
[¢l<m
<lylsm—1,
where ¢ e LP(Q N B(xg,4r); RY) for all |¢| < m, and G € W™P(Q N B(xp, 4r); R")
with p > d and p > 2. Then, for any x,y € Q2N B(xg, r),

oy 12
V) = vl = C ()
rim QNB(x0,4r)

+ PG lwmr@nB(xg.4r))

2m—¢| e\ VP
i Z ’ <]£2ﬂ3(x0,4r)|f | ) } (5.10)

[¢1<m
_ ' 172 _
IV uell Lo @nBrory < Cr k{(]l |Ma|2) + "Gl @B 4r)
QNB(xp,4r)
1/p
Py r2m—\§|<][ )L (5.11)
1¢1<m QNB(xp,4r)

where 0 <k <m —1,A =1—d/p, and C depends only on d,n,m, p, i, 2 as well as
o(t) in (1.7).

Proof By rescaling and translation, we may assume that r = 1, xo = 0. Denote B(0, r) as
B, and let D be a C! domain such that B3p,NQCDC BN Setve =uy —G. Itis
obvious that v, satisfies

Leve= Y DA (x/e)DPGY+ )  Df* inQnN B,
la|=m [g|<m (512)
Tr(D"v,) =0 ondQN By for0 < |y|<m—1.

Let ¢ € C2°(Bs)2) with ¢ = 1in By and |[V¥¢| < C2F. We have

L) = Y. DA /e)DPGlg
lal=IBl=m
+ Y @)D (A% (x/e)DPv DY p
o' +a’"=a,la”|>1
+ > C(ﬁ/)D‘*{A”ﬁu/e)Dﬂ’veDﬂ”¢}}+ 3" Difig inD,
B+B"=B.IB" 21 I¢<m
Tr(D” (ve¢)) =0, ondD for 0 < |y| <m—1.

@ Springer



Uniform boundary estimates in homogenization of higher-order... 121

Observe that for0 < ¢ = |&/| <m — 1,

DY [ A% (x /&) DPv. ) DY ¢ € W™ P(D) if Vv, € L9 (D) with g

dp
= ——— (< p)
m—0p+d
Thus, we may deduce from Theorem 1.2 that
M p 1/p X p
loelwnrang = ([ 1v7G17) " +c vhr)
b 0<k<m 1
m 1/q¢ ¢ /p
+C Z |Vv|‘“ —i—CZ LS |P
0<l<m—1 [g|<m
m 1/p k 1/p
sc(f wvrer)yTac Y (] 19hur)
ByNQ 0<k<m—1 ByNQ
1/q
+C Z / v |qz ¢ +C Z / |f§|17
O<tzm_1 7 BNQ (tlom Y BN

(5.13)
Let p1 = dp/(d + p). Thanks to the Poincaré inequality and Sobolev imbedding, we have

IV 0 llLrBaney < ClIIV™vell i B0y forO <k <m—1,
v cIv” for g = dp 0O<t<m—1
IV vellLae (Byn) < CIIV™vell L1 (B,n) forge = m—Op+d <f¢<m-—1,
which, combined with (5.13), implies that
lvellwmrgne) < CIV™GllLrne) + CIV vellri (B,n0) + C Z £ L Bang)-
[¢]<m

(5.14)

If p1 > 2, we can perform a bootstrap argument for finite times to obtain that

lvellwmrsine) < CIV" GllLrssne) + ClIIV™ el 2gingy + € Y I8 ILr@sne)-

[¢|<m

By Caccioppoli’s inequality, this implies that

e lwmringy < CLIV™ el 2gnm) + I1G Iwmaming) + Y 1 ILrming |

[¢1<m
< Cilluell 2 + 1Gllwm.rBsne) + I £ e Bane) |-
L2(B4NR) (B4NR) (B4NR)
[¢1<m
which gives (5.10) and (5.11) by Sobolev imbedding. ]

6 Uniform C™~ 11 estimates

In this section, we consider uniform boundary =11 egtimates for u, in C1H9(0 < 6 < 1)
domains. Throughout the section, we always assume that A satisfies (1.2) and (1.3). Similar
to Sect. 4, we only need to consider equations in (D, A, ) defined as in (1.5) with the defining
function ¢ € CL¢ (R~ satisfying ¥ (0) = 0, VY llcoga-1y < M.
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Letu, € H™(D>; R") be a weak solution to

Lewg= Y D*f* inDj, Tre(D'u;)=D'G onA; for0<|y|<m—1,

| <m—1

where f* € L1(Dy; R") withg > d,qg > 2,and G € C"™?(Dy; R") forsome 0 < o < 6.
For 0 < r < 1, define the following auxiliary quantities,

1 . 1/2 _ 1/q
o=k, g ((f ) 5 (i)

la|<m—1

m

+ DIV = Puedll= |- ©.1)
j=0

1 . 1/2 _ 1/q
H(rius) =~ inf [(f e = Pal?) T 30 ‘“‘(][ 1£419)
€ Pm D, lo|<m—1 D,

m . .

+ Y VG = Pu)lle,) + "I V"(G - Pm)nco,aw,)}. (6.2)
j=0

Lemma 6.1 For 0 < ¢ < r < 1, let ®(r; u,) be defined as in (6.1). Then, there exists
ug € H™(D,; R") such that Louy = Z\a|5m4 D* f% in D,, Tr(DYug) = DY G on A, for
0<|yl<m-—1,and

i(][ e — uo|2)”2 < C(f)l/4<b<2r; ), (6.3)
D,

rﬂ’L
where C depends only ond,n,m, q, o, u and M in (1.4).
Proof The proof is the same as Lemma 4.1, and we therefore omit the details. O

Lemma 6.2 Let ug € H™(D,; R") be a weak solution to Louy = Z|a|5m—1 D% f% in D,
with Tr(DYug) = DY G on A, for 0 < |y| < m — 1. Then, there exists a § € (0, 1/4),
depending onlyond,n,m, q, o, i, 0 and My in (1.10), such that

H(r; ug) < %H(r; up). (6.4)

Proof The proof, parallel to that of Lemma 4.2, is mainly based on C"*? estimates for higher-
order elliptic systems with constant coefficients in C9(0 < o < 6) domains. By rescaling,
we assume that r = 1. Taking

1 1
Pu(x)= Y — D uo (0 = > — DGOx,
la|<m la|<m
it is not difficult to find that for any 0 < § < 1/4 and any 0 < o’ < min{l — d/q, o},

’ P 1/q
HG.10) = 8 Wolomarpy + €™ 40 50 (f 1)
D,

Ja|<m—1

+ C87(|Gllcme(py)- (6.5)
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By the localization argument and the C"° estimate for higher-order elliptic systems with
constant coefficients (see e.g., [27, Corollary 2.4]), we have

lluo ||Cm.z7/(D5) = C””O”cm,a’([)l/“)

SC{<][ Iu0|2)1/2+ > (][ |f“|q)l/q+||G||Cm,a<Dl)} (6.6)
i jal=m—1 7 D1

for 0 < o’ < min{l — d/q, o}. Taking (6.6) into (6.5) and setting § small enough, we get
1 1/2 /g
60 = 3{(£ wl) " X (£ 1) 4 16 leneon ).
b lel<m—1 7 P1

For any P,, € P3,,, substituting ug, G by ug — P,, and G — P,,, respectively, and taking the
infimum, we obtain (6.4) immediately. ]

Lemma 6.3 Let0 < ¢ < 1/2and ©(r; u.), H(r; ue) be defined as in (6.1) and (6.2). Let §
be given by Lemma 6.2. Then, for any r € [g, 1/2],

1 en1/4
H(Sr;ug)ffH(r;ug)—i-C(f) ®2r: u,), (6.7)
2 r

where C depends only ond,n,m, q, i, o, 8 and My in (1.10).

Proof Similar to Lemma 4.3, the result follows from Lemmas 6.1 and 6.2. We thus omit the
details. O

Lemma 6.4 Let H(r) and h(r) be two nonnegative continuous functions on the interval
(0, 1], and let € € (0, 1/4). Assume that

max H(r) < CoH(2r), max, |h(t) — h(s)| < CoH(2r), (6.8)

r<t<2r r=t,s=2r
foranyr € [g,1/2], and also
H(8r) < %H(r) + Cow(e/r){H@2r)+h2r)} foranyr € [e,1/2], 6.9)

where § € (0, 1/4) and w is a nonnegative increasing function on [0, 1] such that w(0) = 0

and fol w(g)/sdg < oo. Then, there exists a constant C depending only on Cy, § and w,
such that

rllai(]{H(r)—i-h(r)} <Cc{HO) +hD)}. (6.10)
Proof See Lemma 8.5 in [35]. m]

Armed with lemmas above, we are ready to prove Theorem 1.3.

Proof of Theorem 1.3 We assume that 0 < ¢ < r < 1/4, since if else (1.11) is just a
consequence of Caccioppoli’s inequality. Let u, € H™(D1; R") be a weak solution to

Leue= Y Df% inDy, Te(D'u;)=D'G onA; for0<|y|<m—1,

le|<m—1

where f¢ € LY1(Dy; R") withg > d,q > 2,and G € C"™?(Dy; R") forsome 0 < o < 6.
Forr € (0, 1), let H(r) = H(r, uy), ®(r) = ®(r, uy) and w(y) = y'/*. Define

1
hry= 3 — 1D Pur ()],

la|=m
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where Py, € P, such that

o) = S {(f e 2?) 3 ()

o] <m—1

m
+ Y rIVI(G = Puplisioy) + "IV (G = Paplcor(p,) |- (6.11)
j=0

Next, let us check that H (r), h(r) satisfy conditions (6.8) and (6.9). From the definition, it
is obvious that

H(t) <CH(Q2r) foranyt € [r,2r]. (6.12)

On the other hand, by the definition of % (r),

1 1 1/2
() = h)| = Y 1D (P = Pus) = 3 J(][ 1D (Pt = Pus) )
lal=m " la|=m r
g 172 172
<c(f V™G = Pun))? +c][ V(G ~ Pus)|?
< (]f)| G = Ba)P) " C(f, 19" 7)
<C{H(®)+ H(s)} <CHQ2r), (6.13)

where we have used the fact r < ¢, s < 2r, the definition of P, and (6.12), respectively,
for the last three inequalities. Combining (6.12) with (6.13), we know that condition (6.8) is
satisfied. Finally, from the definitions of ®(r), H(r) and h(r), we obtain that

q)(r)f%n{(][Dr'”‘E_Pmr'z)l/z—l- Z r2m—|ot\(][Dr|fot|q>l/q

loe|<m—1

m
+Y HIVIG - Pmr)llLOO(D,)}
j=0

melemmfl r’m

-

) 1 ' 2 I
+ inf — (]l Par = Puct2) 4 D IV (P = Pu)) (0, |
D, =
< H(r) + Ch(r),

which, together with (6.7), implies (6.9). Note that all conditions of Lemma 6.4 are verified.
Therefore, foralle <r <1,

1 . 1/2
g, 0l (]{) e = PuciP) = ®0) = CLHE) +h()} = C{H) +h(D),
(6.14)

where C depends only ond, n, m, q, i, 0,6 and M; in (1.10). From the definition of H (1),
we have

12
=y (][ DG = Pun)?) "+ CIV"Gll=o)
Dy

la|=m

< C{H) + IV"Gllr=p)) - (6.15)
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It then follows that

1 1/2 1/2 1/q
o it (f wemraal) Czcf(f weP) (f 17)
oy, ][D =Pt ) = C{( ) hel) > g

|| <m—1
+ IGlIeme o .
which gives (1.11) through Caccioppoli’s inequality. O

Corollary 6.1 In addition to the assumptions of Theorem 1.3, if A satisfies (1.12), then

1/2 1/q
IVl < (£ wl) "6 X (£ 1) 4 16 lene o).
= lel<m—1 7 P1
(6.16)
where C depends only ond,n,m, q, o, i as well as Ao, to in (1.12) and 6, My in (1.10).

Proof 1t is enough to consider the case 0 < ¢ < 1/2, since otherwise the coefficient is
uniformly Holder continuous and the result (6.16) is known, see e.g., [27, Corollary 2.4].
Setting

Ve(X) = ue(ex) — G(x), G(x) = G(ex), [(x) =&l f(ex),

we have
L1ve = Y \gem1 DY FC) + X pjom D* {A¥ DPG(x)}  in Dy, 6.17)
Tr(DYv) =0, onA; forO<|y|<m-—1. '

Let ¢ € Cé’O(NBl) with ¢ = 1 in By4 and |VEp| < C2%, and let D be a C? domain such
that Dy/4 € D C Dj/. We have

Liwep) = EMp+ Y. C)D*{A% Dfv. D¢}

+ > c@Hp*{a¥DPu}D"¢ in D,
la|=[Bl=m

¢'+n'=a

n'1=1

Tr(DY (ve¢)) =0  ondD for0<|y|<m—1,
where

Ex)y= Y Df*t)+ Y. D*{A¥DFG)}.
lo|<m—1 la|=|Bl=m
Thanks to the boundary C m.: estimate for operator £ in C 1.9 domains [27], we know that
forany g, p > d,

m C 2 172 5
V™ vellLoo(Dy ) < [ve | + I1Gllcme(p))

Dy

+ > (]i Pt elns ). ©18)

le|<m—1
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Thanks to the W"-? estimate for (6.17), there exists some p > d such that

”Us”wmvp(f))fc{(]i [V | )1 + Z (][ |fa|q)l/q+||5||Cm,a(Dl)},

la]<m—1

which, combined with (6.18), implies that

1/2 ~ 1/q ~
IVl = Cf(f )T Y (][ 17419) ™ + 18 lema oy |-
Dy

|la|<m—1

It then follows from the change of variables that

1 1/2 1/q
Il = Cgr| (f, el?) el )3 (, 17717)

lo|=m—

m
+ 3 e IVIGllLx, + eIV Glens(p, | (6.19)
=0

Using (6.11), (6.14) and (6.15), we may conclude from (6.19) that
IV™ e ll oD, < C{H(e) +h(e)} < C{H() + h(D))

scf(f wf)"+ ¥ (][ )+ 1Glene )

|a|<m—

This, together with the interior uniform Cm—L.1 estimate for u, derived in [28, Theorem 1.2],

gives (6.16). O
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