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Abstract We find explicit solutions of the Laplacian coflow of G2-structures on seven-
dimensional almost-abelian Lie groups. Moreover, we construct new examples of solitons
for the Laplacian coflowwhich are not eigenforms of the Laplacian and we exhibit a solution,
which is not a soliton, having a bounded interval of existence.
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1 Introduction

A G2-structure on a seven-dimensional manifold M is given by a 3-form ϕ on M with
pointwise stabilizer isomorphic to the exceptional groupG2 ⊂ SO(7). The 3-form ϕ induces
a Riemannian metric gϕ , an orientation and so a Hodge star operator �ϕ on M . It is well-
known [7] that ϕ is parallel with respect to the Levi-Civita connection of gϕ if and only if ϕ

is closed and coclosed and that when this happens the holonomy of gϕ is contained in G2.
The different classes of G2-structures can be described in terms of the exterior derivatives

dϕ and d �ϕ ϕ [4,7]. If dϕ= 0, then theG2-structure is called closed (or calibrated in the sense
of Harvey and Lawson [13]) and if ϕ is coclosed, then the G2-structure is called coclosed (or
cocalibrated [13]).
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Flows of G2-structures were first considered by Bryant in [4]. In particular, he consid-
ered the Laplacian flow of closed G2-structures. Recently, Lotay and Wei investigated the
properties of the Laplacian flow in the series of papers [19–21]. The Laplacian coflow has
been originally proposed by Karigiannis, McKay and Tsui in [15], and, for an initial coclosed
G2-form ϕ0 with �ϕ0ϕ0 = φ0, it is given by

∂

∂t
φ(t) = −�tφ(t), dφ(t) = 0, φ(0) = φ0, (1)

where φ(t) is the Hodge dual 4-form of a G2-structure ϕ(t) with respect to the Riemannian
metric gϕ(t). This flow preserves the condition of the G2-structure being coclosed, and it was
studied in [15] for warped products of an interval, or a circle, with a compact 6-manifold N
which is taken to be either a nearly Kähler manifold or a Calabi–Yau manifold. No general
result is known about the short-time existence of the coflow (1). In [2], the Laplacian coflow
on the seven-dimensional Heisenberg group has been studied, showing that the solution is
always ancient, that is it is defined in some interval (−∞, T ), with 0 < T < +∞. Other
examples of flows of G2-structures are the modified Laplacian coflow [11,12] and Weiss
and Witt’s heat flow [24]. The first one is a flow of coclosed G2-structures obtained by
adding a fixing term to the Laplacian coflow in order to ensure weak parabolicity in the exact
directions. The second one is the gradient flow associated with the functional whichmeasures
the full torsion tensor of a G2-structure; generally it does not preserve any special class of
G2-structures, but it can be modified to fix the underlying metric (see [3]).

As for the Ricci flow (and other geometric flows), for the Laplacian coflow it is interesting
to consider self-similar solutions which are evolving by diffeomorphisms and scalings. If
xt is a 1-parameter family of diffeomorphisms generated by a vector field X on M with
x0 = IdM and ct is a positive real function on M with c0 = 1, then a coclosed G2-structure
φ(t) = ct (xt )∗φ0 is a solution of the coflow (1) if and only if φ0 satisfies

−�0φ0 = LXφ0 + c′
0φ0 = d(X¬φ0) + c′

0φ0,

where by LX and X¬ we denote, respectively, the Lie derivative and the contraction with
the vector field X . A coclosed G2-structure satisfying the previous equation is called soliton.
As in the case of the Ricci flow, the soliton is said to be expanding, steady, or shrinking if
c′
0 is positive, zero, or negative, respectively. By Proposition 4.3 in [15], if M is compact,
then there are no expanding or steady soliton solutions of (1), other than the trivial case of
a torsion-free G2-structure in the steady case. Examples of solitons for the Laplacian flow
have been constructed in [5,8,16–18,22].

In this paper, we study the coflow (1) on almost-abelian Lie groups, i.e., on solvable Lie
groups with a codimension-one abelian normal subgroup. Coclosed and closed left-invariant
G2-structures on almost-abelian Lie groups have been studied by Freibert in [9,10]. General
obstructions to the existence of a coclosed G2-structure on a Lie algebra of dimension seven
with non-trivial center are given in [1].

By [16], the Laplacian coflow on homogeneous spaces can be completely described as a
flow of Lie brackets on the ordinary euclidean space, the so-called bracket flow. In particular,
Lauret showed in [16] that any left-invariant closedLaplacian flow solutionϕ(t) on an almost-
abelian Lie group is immortal, i.e., defined in the interval [0,+∞). Moreover, he proved that
the scalar curvature of gϕ(t) is strictly increasing and converges to zero as t goes to +∞.

In Sect. 3, we find an explicit description of the left-invariant solutions to the Laplacian
coflow on almost-abelian Lie groups under suitable assumptions on the initial data, showing
that the solution is ancient.
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In Sect. 4 we show sufficient conditions for a left-invariant coclosed G2-structure on an
almost-abelian Lie group to be a soliton for the Laplacian coflow. In particular, we construct
new examples of solitons which are not eigenforms of the Laplacian.

2 Preliminaries

A k-form on an n-dimensional real vector space is stable if it lies in an open orbit of the
linear group GL(n, R). In this section, we review the theory of stable forms in dimensions
six and seven. We refer to [6,14], and the references therein, for more details. Throughout
the sections, we denote by ϑ and by ∗ the actions of the endomorphism group and the general
linear group, respectively.

2.1 Linear G2-structures

A3-formϕ on a seven-dimensional real vector space V is stable if the�7(V ∗)-valued bilinear
form bϕ , defined by

bϕ(x, y) = 1

6
(x¬ϕ) ∧ (y¬ϕ) ∧ ϕ, x, y ∈ V,

is nondegenerate. In this case, ϕ defines an orientation volϕ by 9
√
detbϕ and a bilinear form

gϕ by bϕ = gϕvolϕ . A stable 3-form ϕ is said to be positive, and we will write ϕ ∈ �3+V ∗,
if, in addition, gϕ is positive definite.

It is a well-known fact that the action of GL(V ) on �3+V ∗ is transitive and the stabiliser
of every ϕ ∈ �3+V ∗ is a subgroup of SO(gϕ) isomorphic to G2. Therefore, if we assume that
||ϕ||gϕ = 7 we get a one-to-one correspondence between normalized positive 3-forms on V
and presentations of G2 inside GL(V ).

We denote by �ϕ the Hodge operator induced by ϕ, and we will always write φ to indicate
the Hodge dual form �ϕϕ of ϕ. Precisely, φ belongs to the GL(V )-orbit, denoted by �4+V ∗,
of positive 4-forms. It is another basic fact that the stabilisers of ϕ and φ under GL+(V ) are
equal, and therefore, the choice of φ and of an orientation vol is sufficient to define ϕ.

We will refer to a presentation of G2 inside GL(V ) as a linear G2-structure on V , and
we will call ϕ and φ the fundamental forms associated with the linear G2-structure.

On V there exists always a gϕ-orthonormal and positive oriented co-frame
(
e1, . . . , e7

)
,

called an adapted frame, such that

ϕ = e127 + e347 + e567 + e135 − e146 − e236 − e245,

φ = e1234 + e3456 + e1256 − e2467 + e1367 + e1457 + e2357.

2.2 Linear SU(3)-structures

LetU be a real vector space of dimension six. A 2-formω onU is stable if it is nondegenerate,
i.e., if ω3 �= 0.

Given a 3-form ψ on U , the equivariant identification of �5U∗ with U ⊗ �6U∗ allows
us to define the operator

Kψ : U → U ⊗ �6U∗, x �→ (x¬ψ) ∧ ψ.
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We can consider the trace of its second iterate

λ(ψ) = 1

6
tr(K 2

ψ) ∈ (�6U∗) ⊗ (�6U∗),

where

K 2
ψ : U → U ⊗ (�6U∗) ⊗ (�6U∗).

Thenψ is stable if and only if λ(ψ) �= 0. If λ(ψ) < 0, the 3-formψ is called negative. In this
case, we will write ψ ∈ �3−U . Here, the basic fact is that the action of GL+(U ) is transitive
on�3−U with stabiliser ofψ isomorphic to SL(3, C), where the associated complex structure
Jψ and complex volume form � on U are given, respectively, by

Jψ = 1√−λ
Kψ, � = −J ∗

ψψ + iψ.

It is important to note that the 3-form J ∗
ψψ is still negative and that it defines the same

complex structure of ψ .
Ifψ is a negative 3-form and ω a stable 2-form, then ω is of type (1, 1)with respect to Jψ ,

meaning that J ∗
ψω = ω, if and only if ψ ∧ ω = 0. In this case, we can define a symmetric

bilinear form h on U by

h(x, y) = ω(x, Jψ y), x, y ∈ U.

When h is positive definite, the couple (ω,ψ) is said to be a positive couple and it defines a
linear SU(3)-structure, meaning that its stabiliser in GL(U ) is isomorphic to SU(3). In this
case, h is hermitian with respect to Jψ and � = −J ∗

ψψ + iψ is a complex volume form. A
positive couple is said to be normalized if

2ω3 = 3ψ ∧ J ∗
ψψ.

If a positive couple (ω,ψ) is normalized, then there exists an h-orthonormal and positive
oriented co-frame ofU , called an adapted frame,

(
f 1, J ∗ f 1, f 2, J ∗ f 2, f 3, J ∗ f 3

)
such that

ω = f 1 ∧ J ∗ f 1 + f 2 ∧ J ∗ f 2 + f 3 ∧ J ∗ f 3,
ψ = − f 2 ∧ f 4 ∧ f 6 + f 1 ∧ J ∗ f 3 ∧ J ∗ f 6 + J ∗ f 1 ∧ f 4 ∧ J ∗ f 5 + J ∗ f 2 ∧ J ∗ f 3 ∧ f 5.

Therefore, if we denote by ∗h the Hodge operator on U associated with h, it follows that

∗hω = 1

2
ω2, ∗hψ = J ∗

ψψ.

2.3 From G2 to SU(3)

Given a linear G2-structure ϕ on V , with fundamental forms ϕ and φ, the six-dimensional
sphere

S6 = {x ∈ V | gϕ(x, x) = 1} ⊂ V

is G2-homogeneous and, for any nonzero vector v ∈ S6, there is an induced linear SU(3)-
structure on the gϕ-orthogonal complement U = (span < v >)⊥. This structure is
constructed as follows. Let

ω = v¬ϕ, ψ = −v¬φ.
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Then, (ω,ψ) is a positive couple on U defining the linear SU(3)-structure. It is then clear
that the restriction of an adapted co-frame of (V, ϕ), with v = e7, to U gives an adapted
frame of (U, ω,ψ) and it follows that

ϕ = ω ∧ e7 − J ∗
ψψ, φ = 1

2
ω2 + ψ ∧ e7.

3 Explicit solutions to the Laplacian coflow on almost-abelian Lie groups

We recall that a Lie groupG is said to be almost-abelian if its Lie algebra g has a codimension-
one abelian ideal h. Such a Lie algebra will be called almost-abelian, and it can be written
as a semidirect product g = Rx �A h. We point out that an almost-abelian Lie algebra is
nilpotent if and only if the operator adx |h is nilpotent.

Freibert showed in [9] that if g is a 7-dimensional almost-abelian Lie algebra, then, the
following are equivalent:

1. g admits a coclosed G2-structure ϕ.
2. For any x ∈ g \ h, ad(x)|h ∈ gl(h) belongs to sp(h, ω), where ω is a nondegenerate

2-form ω on h.
3. For any x ∈ g \ h, the complex Jordan normal form of ad(x)|h has the property that for

all m ∈ N and all λ �= 0 the number of Jordan blocks of size m with λ on the diagonal
is the same as the number of Jordan blocks of size m with −λ on the diagonal and the
number of Jordan blocks of size 2m − 1 with 0 on the diagonal is even.

In this section, we obtain an explicit description of the solutions to the Laplacian coflow
on almost-abelian Lie groups under suitable assumptions on the initial data.

LetG be a seven-dimensional, simply connected, almost-abelian Lie group equipped with
an invariant coclosed G2-structure ϕ0 with 4-form φ0 and let h be a codimension-one abelian
ideal of the Lie algebra g of G. By Proposition 4.5 in [23], if we choose a vector e7 in the
orthogonal complement of h with respect to gϕ0 such that gϕ0(e7, e7) = 1, the forms

ω0 = e7¬ϕ0, ψ0 = −e7¬φ0, (2)

define an SU(3)-structure (ω0, ψ0) on h. Let η = e7¬gϕ0 . Then, we can identify g∗ with
h∗ ⊕ Rη and we have dη = 0, since η vanishes on the commutator [g, g] ⊆ h. Moreover

dα = η ∧ ϑ(A)α,

for every α ∈ �ph∗, where A = ade7 |h. In particular, if φ is any 4-form on g, we can consider
the decomposition

φ = φ(4) + φ(3) ∧ η, φ(i) ∈ �ih∗, i = 3, 4. (3)

So (φ0)
(4) = 1/2ω2

0 and (φ0)
(3) = ψ0. Finally let us observe that dφ0 = 0 if and only

if ϑ(A)(ω2
0) = 2ϑ(A)(ω0) ∧ ω0 = 0, which means that A ∈ sp(h, ω0), since ω0 is a

nondegenerate 2-form.

Lemma 3.1 Let U be a real vector space of dimension 6 endowed with a linear SU(3)-
structure (ω,ψ) and A ∈ sp(ω) be normal with respect to the inner product h defined
by (ω,ψ). Denote by J the complex structure induced by ψ and by S and L the symmet-
ric and skew-symmetric part of A, respectively. Then, there exist θ ∈ [0, 2π] and a basis
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(e1, e2, e3, Je1, Je2, Je3) of U such that

ω = e1 ∧ J ∗e1 + e2 ∧ J ∗e2 + e3 ∧ J ∗e3,
� = (e1 + i J ∗e1) ∧ (e2 + i J ∗e2) ∧ (e3 + i J ∗e3) (4)

and

S(ei )=si (cos(θ)ei +sin(θ)Jei ), S(Jei )=−si (− sin(θ)ei +cos(θ)Jei ), i = 1, 2, 3,

(5)

where the real numbers {±si , i = 1, 2, 3} are the eigenvalues of S (counted with their mul-
tiplicities), and JVsi = V−si , where Vsi denotes the eigenspace of S associated with the
eigenvalue si . Moreover,

1. if s j = 0, then Le j = l j J e j and L Je j = −l j e j , for l j ∈ R;
2. if s j �= 0 with multiplicity m j , then L|Vs j ⊕V−s j

is given by the block matrix

L =
[
L ′ 0
0 L ′

]
, L ′ ∈ so(m j ),

with respect to the basis (ei1 , . . . , eim j
, Jei1 , . . . , Jeim j

) of Vs j ⊕ V−s j ,

Proof Clearly S and L belong to sp(ω) since A does. Therefore we have

h(x, SJ y) = h(Sx, J y) = −ω(Sx, y) = ω(x, Sy) = −h(x, J Sy), x, y ∈ V .

Thus SJ = −J S and, similarly, L J = J L .
The spectrum of S must be real and centrally symmetric, since S is symmetric and anti-

commutes with J . Let {± si , i = 1, 2, 3} be the spectrum of S. Denote by Vsi the eigenspace
of S associated with the eigenvalue si , and bym(si ) its multiplicity. It is then clear that, since
[S, L] = 0 and SJ = −J S, L preserves each eigenspace Vsi and JVsi = V−si .

Now we show that on each J -invariant subspace Wsi = Vsi + V−si , both S and L are
given as in the statement with respect to some orthonormal basis. First, let us consider the
case when si = 0 is an eigenvalue of S. Clearly, its multiplicity m0 = m(0) is even and
the restriction L|V0 of L to the eigenspace V0 belongs to sp(m0, R) ∩ so(m0) = u(m0/2).
Therefore, we can diagonalize L over C as a complex matrix finding the desired expression;
indeed, its eigenvalues are all imaginary numbers.

Now let si �= 0 and m(si ) = mi . Then, Wsi has real dimension 2mi and there exists an

orthonormal basis
(
er1 , . . . , ermi

)
of Vsi such that, L|Wi has the following expression with

respect to the orthonormal basis
(
er1 , . . . , ermi

, Jer1 , . . . , Jermi

)

L =
[
L1 L3

− L†
3 L2

]
, L1, L2 ∈ so(mi ), L3 ∈ gl(mi , R),

where by † we denote the transpose. So, by L J = J L and LS = SL we get L3 = 0 and
L1 = L2.

Putting all together the basis ofWi we get an orthonormal basis (e1, e2, e3, Je1, Je2, Je3)
ofU but, generally, the basis is not an adapted framewith respect to the linear SU(3)-structure
(ω,ψ). Indeed�0 = (e1+i J ∗e1)∧(e2+i J ∗e2)∧(e3+i J ∗e3) does not necessarily coincide
with�. However, there exists a complex number z of modulus 1 such that z−1�0 = �. If we
take a cubic rootw of z andwe consider the linearmap Q defined by Q = Re(w)id+Im(w)J
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we get that Q∗�0 = �. The transformation Q commutes with J and preserves each vector
subspace Wsi . Moreover,

Q∗S = QSQ−1 = (Re(w)id + Im(w)J )S(Re(w)id − Im(w)J )

= S(Re(w)id − Im(w)J )(Re(w)id − Im(w)J )

= S
{(
Re(w)2 − Im(w)2

)
id − 2 (Re(w)Im(w)) J

}

= cos(θ)S + sin(θ)J S,

Q∗L = QLQ−1 = (Re(w)id + Im(w)J )L(Re(w)id − Im(w)J )

= L(Re(w)id + Im(w)J )(Re(w)id − Im(w)J )

= L
(
Re(w)2 + Im(w)2

)
id

= L .

Therefore, the new basis (Qe1, Qe2, Qe3, J Qe1, J Qe2, J Qe3) satisfies all the requested
properties. ��
Lemma 3.2 Let (g = Re7 �A h, ϕ0) be an almost-abelian Lie algebra endowed with a
coclosed G2-structure ϕ0. Let (ω0, ψ0) be the induced SU(3)-structure on h defined by (2),
with η(e7) �= 0, η|h = 0 and ‖η‖gϕ0

= 1. The solution φt of the Laplacian coflow on g

⎧
⎪⎨

⎪⎩

φ̇t = −�tφt ,

dφt = 0,

φ0 = �0ϕ0,

(6)

is given by

φt = 1

2
ω2
0 + pt ∧ η,

where pt is a time-dependent negative 3-form on h solving
{
ṗt = −ε(pt )2 ϑ(A)ϑ(Bt )pt ,

p0 = ψ0,
(7)

where ε(pt ) is a function such that (ω0, ε(pt )pt ) defines an SU(3)-structure on h and Bt is
the adjoint of A = ade7 |h with respect to the scalar product ht induced by theSU(3)-structure
(ω0, ε(pt )pt ).

Proof By Cauchy theorem the system of ODEs (6) admits a unique solution. Let φt be the
solution of (6) and εt be the norm ||η||t with respect to the scalar product gt induced by φt .
Then, we can write

φt = 1

2
ω2
t + ψt ∧ 1

εt
η,

where the couple (ωt , ψt ) defines an SU(3)-structure on h = Ker(η). To see this observe that
ifwe define xt by gt (xt , y) = η(y), for any y ∈ g, then h = Ker(η) = {y ∈ g | gt (xt , y) = 0}.
Therefore, for every t , the 4-form φt defines an SU(3)-structure (ωt , ψt ) on h.

With respect to the decomposition (3), we can write φt as φt = φ
(4)
t + φ

(3)
t ∧ η with

φ
(4)
t = 1

2
ω2
t , φ

(3)
t = 1

εt
ψt .
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Since the cohomology class of φt is fixed by the flow, i.e., φt = φ0 + dαt it turns out that

φ̇t = φ̇
(4)
t + φ̇

(3)
t ∧ η = dα̇t ∈ d�3g∗ ⊆ �3h∗ ∧ Rη.

Therefore, φ̇(4)
t = 0, i.e., ωt ≡ ω0, and consequently,

φt = 1

2
ω2
0 + ψt ∧ 1

εt
η.

Now define ηt = 1
εt

η and denote by �gt and �ht the star Hodge operators on g and h with
respect to gt and ht , respectively. Note that

�gt φt = ω0 ∧ ηt − �ht ψt ,

since

�gt β = �ht β ∧ ηt , �gt (β ∧ ηt ) = (−1)k �ht β,

for every k-form β on h.
Then,

�tφt = d �gt d �gt φt = d �t d (ω ∧ ηt − ∗tψt )

= −d �t (η ∧ ϑ(A) ∗t ψt ) = −d �t (εtηt ∧ ϑ(A) ∗t ψt )

= −εt d ∗t (ϑ(A) ∗t ψt )

= εt (ϑ(A) ∗t ϑ(A) ∗t ψt ) ∧ η

= ε2t (ϑ(A) ∗t ϑ(A) ∗t ψt ) ∧ ηt .

On the other hand, we have

φ̇t = ψ̇t ∧ 1

εt
η − ψt ∧ ε̇t

ε2t
η = ψ̇t ∧ ηt − ε̇t

εt
ψt ∧ ηt .

Imposing φ̇t = −�tφt , we get

d

dt
ψt − d

dt
(εt )ε

−1
t ψt = −ε2t (ϑ(A) ∗t ϑ(A) ∗t ψt ) . (8)

Consider the 3-form pt = ε−1
t ψt . It is clear that pt is a negative 3-form, compatible

with ω0 and defining the same complex structure Jt induced by ψt . Moreover, it satisfies the
condition

−6 pt ∧ J ∗
t pt = 4 ε−2

t ω0
3.

Then, by (8) we obtain

εt ṗt + ε̇t pt − ε̇t pt = −ε3t (ϑ(A) ∗t ϑ(A) ∗t pt ) ,

and thus, the following equation in terms of the 3-form pt

ṗt = −ε(pt )
2 (ϑ(A) ∗t ϑ(A) ∗t pt ) , p0 = ψ0, (9)

where the function ε(pt ) = εt = ‖η‖t is defined in terms of the 3-form pt by

6 pt ∧ J ∗
t pt = 4 ε(pt )

−2ω0
3.

It is easy to see that ∗tϑ(A)∗t is the ht -adjoint operator of ϑ(A) on �3h∗. Indeed, if
α, β ∈ �3h∗, then

〈((∗tϑ(A)∗t )α, β〉t ω3
0/6 = −β ∧ ϑ(A)(∗tα) = ϑ(A)(β) ∧ ∗t (α) = 〈α, ϑ(A)(β)〉t ω3

0/6,
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The Laplacian coflow on almost-abelian Lie groups 1863

where in the second equality we have used that A is traceless and consequently that ϑ(A)

acts trivially on 6-forms.
Now let Bt be the ht -adjoint of A on h. We claim that (∗tϑ(A)∗t )α = ϑ(Bt )α for any

3-form α on h. To see this let (e1 . . . , e6) be an ht -orthonormal basis of h, so1

(Bt )
i
j =

∑

a,b

(A)ab (ht )aj (ht )
bi = (A)

j
i , i, j = 1, . . . , 6.

On the other hand, for any choice of ordered triples (i, j, k) and (a, b, c), we get

ht
(
ϑ(A)ei jk, eabc

)
= −ht

∑

l,m,n

(
Ai

le
l jk + A j

me
imk + Ak

ne
i jn, eabc

)

= −
∑

l,m,n

ht
(
Ai

i ′e
i ′ j ′k′ + A j

j ′e
i ′ j ′k′ + Ak

k′ei
′ j ′k′

, eabc
)

= − (Ai
a + A j

b + Ak
c)

and

ht
(
ei jk, ϑ(Bt )e

abc
)

= −
∑

l,m,n

ht
(
ei jk, Ba

l e
lbc + Bb

me
amc + Bc

ne
abn
)

= −
∑

l,m,n

ht
(
ei jk, Ba

a′ea
′b′c′ + Bb

b′ea
′b′c′ + Bc

c′ea
′b′c′)

= − (Ba
i + Bb

j + Bc
k)

= − (Ai
a + A j

b + Ak
c),

since ht
(
ei jk, eabc

) = δiaδbjδkc. Therefore,

ht (ϑ(A)α, β) = ht (α, ϑ(Bt )β) , α, β ∈ �3h∗,

as we claimed and (7) holds. ��

Theorem 3.3 Let (g = Re7 �A h, ϕ0) be an almost-abelian Lie algebra endowed with
a coclosed G2-structure ϕ0. Let (ω0, ψ0) be the induced SU(3)-structure on h defined by
(2), with η(e7) �= 0, η|h = 0 and ‖η‖gϕ0

= 1, and let J0 = Jψ0 . Suppose that A =
ade7 |h is symmetric with respect to the inner product h0 = g0|h and fix an adapted frame
(e1, J0e1, e2, J0e2, e3, J0e3) of (h, ω0, ψ0) such that ω0 and ψ0 are given by (4) and A has
the normal form (5). Furthermore, assume that A satisfies θ = 0. Then, the solution pt of
(7) is ancient and it is given by

pt = −b1(t)e
246 + b2(t)e

136 + b3(t)e
145 + b4(t)e

235, t ∈
(

−∞,
1

8
(
s21 + s22 + s23

)

)

,

where bi (t) = e−σi ε(t) for suitable constants σi and

ε(t) =
∫ t

0

1

1 − 8
(
s21 + s22 + s23

)
u
du.

1 Note that we are not using the Einstein notation.
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Proof Consider the following system
{

χ̇t = − f (t)2ϑ(A)ϑ(A)χt ,

χ0 = ψ0,
(10)

where f (t) is a positive function which will be defined later. Moreover, let

( f1, f2, f3, f4, f5, f6) = (e1, J0e1, e2, J0e2, e3, J0e3)

be an adapted frame of h such that ω0 and ψ0 are given by (4) and A has the normal form
(5). It is clear that

ϑ(A)ϑ(A)ψ0 = −(s1 + s2 + s3)
2 f 246

+ (s1 + s2 − s3)
2 f 136

+ (s1 − s2 + s3)
2 f 145

+ (−s1 + s2 + s3)
2 f 235.

So

ϑ(A)ϑ(A)ψ0 = −σ1 f
246 + σ2 f

136 + σ3 f
145 + σ4 f

235,

for suitable constants σ1, σ2, σ3 and σ4. The solution of (10) is then given by

χt = −b1(t) f
246 + b2(t) f

136 + b3(t) f
145 + b4(t) f

235, (11)

where bi (t) = e−σi ε(t) for a function ε(t) satisfying ε̇(t) = f (t)2. In order to determine the
function f (t), note that, for every t where it is defined, the 3-form χt is negative, compatible
with ω0 and it defines a complex structure Jt , given by

Jt = 2√−νt

⎡

⎢⎢⎢⎢⎢⎢
⎣

0 −b4b1 0 0 0 0
b2b3 0 0 0 0 0
0 0 0 −b3b1 0 0
0 0 b2b4 0 0 0
0 0 0 0 0 −b2b1
0 0 0 0 b3b4 0

⎤

⎥⎥⎥⎥⎥⎥
⎦

, νt = −4b21b
2
2b

2
3b

2
4,

(12)

with respect to the adapted frame ( f1, f2, f3, f4, f5, f6). Moreover,

6χt ∧ J ∗
t χt = 4b21b

2
2b

2
3b

2
4 ω3

0.

The previous condition is satisfied if we choose f (t) such that

f (t)−2 = b21b
2
2b

2
3b

2
4 = e−2(σ1+σ2+σ3+σ4)

∫ t
0 f (u)2du = e−8(s21+s22+s23 )

∫ t
0 f (u)2du .

The above identity is satisfied if and only if the function Ft = ∫ t0 f (u)2du solves the following
Cauchy problem

{
Ḟt = e8δFt ,
F0 = 0,

where δ = s21 + s22 + s23 . Integrating we get

t = 1 − e−8δFt

8δ
.
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The Laplacian coflow on almost-abelian Lie groups 1865

Therefore,

Ft = ln(1 − 8δt)

−8δ
,

and consequently, f (t) = 1√
1−8δt

. Finally, we observe that the metric ht defined by (ω0, Jt )

is positive definite. Moreover, the endomorphism Ht , defined by g0(x, Ht y) = ht (x, y) for
any x, y ∈ h, has the following matrix representation

Ht = 2√−νt

⎡

⎢⎢⎢⎢⎢⎢
⎣

b2b3 0 0 0 0 0
0 b1b4 0 0 0 0
0 0 b2b4 0 0 0
0 0 0 b1b3 0 0
0 0 0 0 b3b4 0
0 0 0 0 0 b1b2

⎤

⎥⎥⎥⎥⎥⎥
⎦

, (13)

with respect to the adapted frame ( f1, f2, f3, f4, f5, f6). Now we claim that χt , given by
(11), with

ε(t) =
∫ t

0
f (u)2 du =

∫ t

0

1

1 − 8
(
s21 + s22 + s23

)
u
du,

is the solution of (7). To see this, first observe that the choice of f (t) ensures that ε(χt )
2 =

f (t)2. The only thingwe have to prove is that the adjointCt of Awith respect to ht is constant.
It is clear that Ct = H−1

t B0Ht and then the claim is equivalent to show that [Ht , B0] = 0.
With respect to the adapted frame ( f1, f2, f3, f4, f5, f6), the endomorphism Ht is diagonal
as well as B0 = A, and then the claim follows. Thus, the solution pt of (7) is given by χt ,
and in particular Bt ≡ B0. ��

Remark 3.4 The previous proof can be adapted to the case θ = π . Indeed, if θ = π then
ϑ(A)ϑ(A)ψ0 is again a linear combination of elements of the form ea ∧ eb ∧ J ∗

t e
c with

coefficients given by a suitable choice of ±(sa + sb − sc). On the other hand, when θ is
different from 0 and π , it turns out that ϑ(A)ϑ(A)ψ0 is a linear combination of elements
ea ∧ eb ∧ J ∗

t e
c and ea ∧ J ∗

t e
b ∧ J ∗

t e
c. Therefore, the derivative of J ∗

t at t = 0 is much more
complicated than in the other cases (see Remark 3.6).

Theorem 3.5 Let (g = Re7 �A h, ϕ0) be an almost-abelian Lie algebra endowed with a
coclosed G2-structure ϕ0. Let (ω0, ψ) be the induced SU(3)-structure on h defined by (2),
with η(e7) �= 0, η|h = 0 and ‖η‖gϕ0

= 1. Suppose that A = ade7 |h is skew-symmetric with
respect to the inner product h0 = g0|h and define l = l1 + l2 + l3, where l1, l2 and l3 are as
in Lemma 3.1. Then, the solution pt of (7) is given by

pt = b(t)ψ0,

where b(t) = e−l2
∫ t
0 ε2udu and εt is a positive function given by

εt = 1√
1 − 2l2t

.

In particular, pt is an ancient solution, defined for every t in
(
−∞, 1

2l2

)
.
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Proof Let ft be a positive function which will be fixed later and let us consider the following
system

{
χ̇t = − f 2t ϑ(A)ϑ(−A)χt ,

χ0 = ψ0.
(14)

Moreover, let ( f1, . . . , f6) = (e1, J0e1, e2, J0e2, e3, J0e3) be an adapted frame such that ω0

and ψ0 are given by (4) and A has the normal form (5). It is clear that

ϑ(A)ϑ(A)ψ0 = −l2ψ0.

Therefore, the solution of (14) is given by

χt = b(t)ψ0,

where b(t) = e−l2
∫ t
0 f 2u du .

The 3-form χt is negative, compatible with ω0 and it defines a constant complex structure
Jt ≡ J0. Moreover, it satisfies

6χt ∧ Itχt = 4b2(t) ω3.

Now we choose ft so that

f −2
t = b(t)2 = e−2l2

∫ t
0 f 2u du .

To do this, we solve the system
{
Ḟt = e2l

2Ftdu,

F0 = 0,

and then we put ft =
√
Ḟt . Integrating by t we get

t = 1 − e2l
2Ft

2l2
.

Thus,

Ft = ln(1 − 2l2t)

−2l2
,

and consequently, εt = 1√
1−2l2t

.

Now it is easy to show that χt is a solution of (7). Indeed, the choice of ft ensures that
ε(χt )

2 = f 2t , and moreover, that the metric ht induced by ω0 and χt is constant. Therefore,
the adjoint of A is constantly equal to −A and, as a consequence, the solution pt of (7) is
given by χt . ��
Remark 3.6 It is not hard to prove that if A is normal with respect to h0, then the solution
pt of (7) is given by

pt = − b1(t) f
246 + b2(t) f

136 + b3(t) f
145 + b4(t) f

235 + c1(t) f
135

− c2(t) f
245 − c3(t) f

236 − c4(t) f
145,

where ( f1, . . . , f6) = (e1, J0e1, e2, J0e2, , e3, J0e3) is an adapted frame of h and A is given
by (5). Unfortunately in this case, we cannot find an explicit solution of (7).

However, note that if we write pt = (xt )∗ψ0, for [xt ] ∈ GL(h)/SL(3, C), then xt belongs
to GL+(2, R)3 acting on < e1, J0e1 > ⊕ < e2, J0e2 > ⊕ < e3, J0e3 >. Therefore,
[xt ] = ([x (1)

t ], [x (2)
t ], [x (3)

t ]) ∈ ((GL+(2, R)/SO(2)
)3.
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4 Solitons for the Laplacian coflow on almost-abelian Lie groups

In this section, we find sufficient conditions for a left-invariant coclosed G2-structure on an
almost-abelian Lie group G to be a soliton for the Laplacian coflow.

Let g be a Lie algebra. We recall the following

Definition 4.1 Let g be a seven-dimensional Lie algebra endowed with a coclosed G2-
structure ϕ0. A solution φt to the Laplacian coflow (6) on g is self-similar if

φt = ct (xt )
∗φ0,

for a real-valued function ct and a GL(g)-valued function xt .

It is well-known that a solution φt of (6) is self-similar if and only if the Cauchy datum
φ0 at t = 0 is a soliton, namely if it satisfies

−�0φ0 = −4cφ0 + ϑ(D)φ0,

for some real number c and some derivation D of the Lie algebra g (see [16]). A soliton is
said to be expanding if c < 0, shrinking if c > 0 and steady if c = 0.

Let Kt be the stabiliser of φt and fix a Kt -invariant decomposition of End(g). Since φt

is stable at any time t , there exists a time-dependent endomorphism Xt of g, transversal
to the Lie algebra of Kt (in the sense that, for every t , Xt takes values in an ad-invariant
complement of the Lie algebra of Kt ), such that

−�tφt = ϑ(Xt )φt .

Therefore, φ0 is a soliton on g if and only if

X0 = c Id + D.

Suppose now that (g = Re7 �A h, ϕ0) is an almost-abelian Lie algebra endowed with a
coclosed G2-structure ϕ0. In Lemma 3.2, we have seen that, with no further assumptions on
A = ade7 |h, the Laplacian coflow reads as

{
d
dt φt = −εtϑ(A)ϑ(Bt )ψt ∧ η,

φ0 = �0ϕ0.

We can show that the term −εtϑ(A)ϑ(Bt )ψt ∧ η can be rewritten as

− εt (ϑ(A)ϑ(Bt )ψt ) ∧ η = ϑ(Xt )φt , (15)

for a time-dependent endomorphism Xt of g in the following way.
Let (ωt , ψt ) be the SU(3)-structure on h induced by φt . By Lemma 3.1 there exist θ(t) ∈

[0, 2π] and an adapted frame of h such that η = εt e7 and the symmetric part S(t) of A has
the normal form (5). More precisely, let

a(t) = cos(θ(t)), b(t) = sin(θ(t)).

With respect to the adapted frame at time t , S(t) has the form (5), so it is given by

S(t) =

⎡

⎢⎢
⎣

S1(t) 0 0 0
0 S2(t) 0 0
0 0 S3(t) 0
0 0 0 0

⎤

⎥⎥
⎦ ,
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where

Si (t) =
[
a(t)si (t) b(t)si (t)
b(t)si (t) −a(t)si (t)

]
.

Define l(t) to be the imaginary part of the complex trace of the skew-symmetric part L(t) of
A at time t , and let

�(t) =

⎡

⎢⎢
⎣

�1(t) 0 0 0
0 �2(t) 0 0
0 0 �3(t) 0
0 0 0 −s2(t)

⎤

⎥⎥
⎦ , �(t) =

⎡

⎢⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −l(t)2

⎤

⎥⎥
⎦ (16)

where

�1(t) =
[−2s2(t)s3(t) + 4a(t)2s2(t)s3(t) −4a(t)b(t)s2(t)s3(t)

−4a(t)b(t)s2(t)s3(t) 2s2(t)s3(t) − 4a(t)2s2(t)s3(t)

]
,

�2(t) =
[−2s1(t)s3(t) + 4a(t)2s1(t)s3(t) −4a(t)b(t)s1(t)s3(t)

−4a(t)b(t)s1(t)s3(t) 2s1(t)s3(t) − 4a(t)2s1(t)s3(t)

]
,

�3(t) =
[−2s1(t)s2(t) + 4a2(t)s1(t)s2(t) −4a(t)b(t)s1(t)s2(t)

−4a(t)b(t)s1(t)s2(t) 2s1(t)s2(t) − 4a(t)2s1(t)s2(t)

]
,

and s(t)2 = s1(t)2 + s2(t)2 + s3(t)2. We claim that

Xt = −εt (�(t) + �(t) − [S(t), L(t)]) . (17)

To prove this first observe that

ϑ(A)ϑ(Bt )ψt = ϑ(S(t) + L(t))ϑ(S(t) − L(t))ψt

= (ϑ(S(t))ϑ(S(t)) − ϑ(L(t))ϑ(L(t)) − ϑ([S(t), L(t)])) ψt .

Then, a direct computation shows that

ϑ(�(t))φt = ϑ(�(t))(ψt ∧ η) = (ϑ(S(t))ϑ(S(t))ψt ) ∧ η.

On the other hand, if we change the adapted frame so that Lt has the form (5) we see that,
as already seen in the proof of Theorem 3.5, l(t) = l1(t) + l2(t) + l3(t) and

−ϑ(L(t))ϑ(L(t))ψt = l2(t)ψt ,

which is an expression independent on the choice of the adapted frame. Thus,

ϑ(�(t))φt = ϑ(�(t))(ψt ∧ η) = l(t)2ψt ∧ η = −(ϑ(L(t))ϑ(L(t))ψt ) ∧ η,

proving the claim.

Theorem 4.2 Let (g = Re7 �A h, ϕ0) be an almost-abelian Lie algebra endowed with a
coclosed G2-structure ϕ0. The 4-form φ0 = �0ϕ0 is a soliton for the Laplacian coflow if and
only if A satisfies

[−�(0) + 1/2[A, A†], A] = δA, (18)

where A† denotes the transpose of A with respect to the underlyingmetric on h, δ = l20+s20−c
for a constant c ∈ R and �(0) the endomorphism (16). If φ0 is a soliton, then the solution
φt to the Laplacian coflow is given by

φt = c(t)e f (t)Dφ0, c(t) = (1 − 2ct)2 , f (t) = − 1

2c
ln (1 − 2ct) , t <

1

2c
, (19)
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where the derivation D of g is given by X0 − c Id, with X0 as in (17).

Proof In the light of the previous results, we can write down the soliton equation for the
Laplacian coflow as follows. Suppose that φ0 is a soliton, that is, X0 = cId + D for some
c ∈ R and a derivation D of h. Then, by [16, Theorem 4.10], (19) holds. Therefore, A
corresponds to a soliton if and only if there exists c ∈ R such that D = X0 − c Id is a
derivation of g.

This condition can be read as a system of algebraic equations for c and the elements of
the matrix associated with A. Note that De7 = δe7, with δ = l20 + s20 − c. Hence, denoting
by μA the Lie bracket structure defined by A,

[D, A]v = DAv − ADv = DμA(e7, v) − μA(e7, Dv) = μA(De7, v) = δAv, v ∈ h.

This reads as

[D, A] = δA. (20)

Finally, writing D = X0−c Id for X0 as in (17) and recalling that [A, A†] = −2[S(0), L(0)],
we derive (18) from (20). ��
We call (18) the soliton equation of the almost-abelian Laplacian coflow.

Notice that we can split the soliton equation into two coupled equations, for the symmetric
and skew-symmetric parts of A, in the followingway. Since the commutator of two symmetric
matrices is skew-symmetric and the commutator of a symmetricmatrix and a skew-symmetric
one is symmetric, we find

[−�(0) + [S(0), L(0)], L(0)] = δS(0), [−�(0) + [S(0), L(0)], S(0)] = δL(0). (21)

We have just proved the following result.

Corollary 4.3 If a soliton φ0 of the Laplacian coflow on the almost-abelian Lie algebra
g = Re7 �A h is an eigenform of the Laplacian then it is harmonic, namely A ∈ su(6).

Proof Clearly, if φ0 is an eigenform of the Laplacian, then D = 0, hence X0 = c Id. Taking
the trace of X0|h = cId|h we find c = 0. ��
Corollary 4.4 Let (g = Re7 �A h, ϕ0) be an almost-abelian Lie algebra endowed with a
coclosed G2-structure ϕ0. Assume that A is normal with respect to the underlying metric.
Then, φ0 = �0ϕ0 is soliton on g if and only if 4b(1− 4a2)s1s2s3 = 0 and [�(0), L(0)] = 0.
In such a case δ = 0 and hence c ≥ 0.

Proof By hypotheses, Eq. (21) reduce to

−[�(0), S(0)] = δL(0), −[�(0), L(0)] = δS(0).

Using the normal form (5), a direct computation shows that

[�(0), S(0)] = 4b(1 − 4a2)s1s2s3 J0.

If δ was different from zero, then S(0) would be invertible (each si should be nonzero), and
therefore, L(0) would be a nonzero multiple of J0, contradicting Lemma 3.1. Thus, δ = 0,
that is 4b(1 − 4a2)s1s2s3 = 0. Clearly, if L(0) �= 0, equation [�(0), L(0)] = 0 is not
generically satisfied. ��
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Corollary 4.5 Let (g = Re7 �A h, ϕ0) be an almost-abelian Lie algebra endowed with a
coclosed G2-structure ϕ0 and suppose that A = ade7 |h is skew-symmetric with respect to
the underlying metric. Then, the solution to the Laplacian coflow obtained in Theorem 3.5
is a soliton.

Remark 4.6 Differently from the Laplacian flow studied in [16] there exist almost-abelian
Lie algebras g = Re7 �A h with A symmetric and admitting coclosed G2-structures that are
no solitons for the Laplacian coflow. Indeed, in the light of Corollary 4.4 it is enough to choose
a symmetric matrix A and a suitable G2-structure for which the constant 4b(1 − 4a2)s1s2s3
is nonzero. For instance, we can consider the G2-structure

ϕ0 = e127 + e347 + e567 + e135 − e146 − e236 − e245

on the Lie algebra g = Re7 �A h, where h = R < e1, . . . , e6 > and

A = ade7 |h =

⎡

⎢⎢⎢⎢⎢⎢
⎣

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

⎤

⎥⎥⎥⎥⎥⎥
⎦

.

Moreover, we are able to prove that the interval of existence of the corresponding solution
is bounded. To this aim, and in analogy with the proof of Theorem 3.3, observe that the
solution to (10) has the following expression:

χt = −b1(t)e
246 + b2(t)e

136 + b3(t)e
145 + b4(t)e

235.

Indeed,

ϑ(A)ϑ(A)χt = −(3b1(t) − 2b2(t) − 2b3(t) − 2b4(t))e
246

+ (−2b1(t) + 3b2(t) + 2b3(t) + 2b4(t))e
136

+ (−2b1(t) + 2b2(t) + 3b3(t) + 2b4(t))e
145

+ (−2b1(t) + 2b2(t) + 2b3(t) + 3b4(t))e
235,

and therefore, the vector-valued function (b1(t), b2(t), b3(t), b4(t)) satisfies a linear ODE
whose matrix is

− f 2t

⎛

⎜⎜
⎝

3 − 2 − 2 − 2
− 2 3 2 2
− 2 2 3 2
− 2 2 2 3

⎞

⎟⎟
⎠ .

Taking into account that this matrix is symmetric, with eigenvalues −9 f 2t , − f 2t , − f 2t , − f 2t
and eigenvectors (− 1, 1, 1, 1), (1, 1, 0, 0), (1, 0, 1, 0) and (1, 0, 0, 1), it follows that

2b1(t) = −e−9
∫ t
0 f 2u du + 3e− ∫ t0 f 2u du, 2b2(t) = 2b3(t) = 2b4(t) = e−9

∫ t
0 f 2u du + e− ∫ t0 f 2u du .

The function Ft = ∫ t0 f 2u du can be fixed, as we did in Theorem 3.3, by imposing

1 = Ḟt b
2
1(t)b

2
2(t)b

2
3(t)b

2
4(t) = Ḟt

(
−e−9Ft + 3e−Ft

)2 (
e−9Ft + e−Ft

)6 1

32
.

This guarantees that χt actually solves (7) (note also that A is symmetric for any time).
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Notice that the previous equation, after integration, ensures that, since Ft ≥ 0 if and only
if t ≥ 0, the solution extinguishes in finite time. With an analogous argument, we see that
Ft cannot exist for any negative time. To be more precise, let I be the maximal interval of
existence of F , then

32t =
∫ Ft

0
(−e−9x + 3e−x )2(e−9x + e−x )6dx, t ∈ I.

We immediately see that supI < +∞. On the other hand, if inf I = −∞ then Ft should be
unbounded near −∞: indeed when M < Ft < 0 it turns out that

32t =
∫ Ft

0
(−e−9x + 3e−x )2(e−9x + e−x )6dx >

∫ M

0
(−e−9x + 3e−x )2(e−9x + e−x )6dx .

Therefore, it would exist a sufficiently large negative time t such that 0 = −e−9Ft +3e−Ft =
2b1(t). Clearly, this cannot happen because χt must be a stable and negative form. By these
considerations, we also deduce that the only negative singular time τ for the monotone
function Ft satisfies b1(τ ) = 0, that is Fτ = −1/8ln(3).

We will now construct an explicit example of soliton on a nilpotent almost-abelian Lie
group.

Example 4.7 Let g be the nilpotent almost-abelian Lie algebra with structure equations

de1 = e27,
de j = 0, j = 2, 4, 6, 7,
de3 = e47,
de5 = e67.

Then in this case, we have h = R < e1, . . . , e6 > and

A = ade7 |h =

⎛

⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟
⎠

.

Consider the G2-structure ϕ0 = e127 + e347 + e567 + e135 − e146 − e236 − e245. The 4-form

φ0 = �ϕ0 ϕ0 = e1234 + e3456 + e1256 − e2467 + e1367 + e1457 − e2357

is closed, and thus, ϕ defines a coclosed G2-structure. The basis (e1, . . . , e7) is orthonormal
with respect to gϕ0 , and one can check that A is not normal. We will apply Theorem 4.2 to
show that φ0 is a soliton for the Laplacian coflow. First observe that S(0) and L(0), on h,
restrict to
⎛

⎜⎜⎜⎜⎜⎜
⎝

0 1/2 0 0 0 0
1/2 0 0 0 0 0
0 0 0 1/2 0 0
0 0 1/2 0 0 0
0 0 0 0 0 1/2
0 0 0 0 1/2 0

⎞

⎟⎟⎟⎟⎟⎟
⎠

,

⎛

⎜⎜⎜⎜⎜⎜
⎝

0 1/2 0 0 0 0
− 1/2 0 0 0 0 0
0 0 0 1/2 0 0
0 0 − 1/2 0 0 0
0 0 0 0 0 1/2
0 0 0 0 − 1/2 0

⎞

⎟⎟⎟⎟⎟⎟
⎠

.
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So S(0) is in normal form (5), and therefore, the matrix �(0), restricted to h, turns out to be
⎛

⎜⎜⎜⎜⎜⎜
⎝

− 1/2 0 0 0 0 0
0 1/2 0 0 0 0
0 0 − 1/2 0 0 0
0 0 0 1/2 0 0
0 0 0 0 − 1/2 0
0 0 0 0 0 1/2

⎞

⎟⎟⎟⎟⎟⎟
⎠

.

A direct computation then shows that [S(0), L(0)] = �(0) on h, which leads to [−�(0) +
[S(0), L(0)], A] = 0, so A solves the soliton equation for δ = 0. In particular, we have
s1(0) = s2(0) = s3(0) = 1/2 and l(0) = l1(0) + l2(0) + l3(0) = 3/2. Thus,

s2(0) = 3/4, l2(0) = 9/4

and c = 3. Then, the associated derivation D is given by D = X − 3 Id, with

X =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

and the existence interval is (−∞, 1/6). Note that φ0 is not an eigenform of the Laplacian
since

ϑ(X)φ0 = −3(−e2467 + e1367 + e1457 − e2357).
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