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Abstract The tensorial curvaturemeasures are tensor-valuedgeneralizations of the curvature
measures of convex bodies. On convex polytopes, there exist further generalizations some of
which also have continuous extensions to arbitrary convex bodies. We prove a complete set
of kinematic formulae for such (generalized) tensorial curvature measures. These formulae
express the integral mean of the (generalized) tensorial curvature measure of the intersection
of two given convex bodies (resp. polytopes), one of which is uniformly moved by a proper
rigid motion, in terms of linear combinations of (generalized) tensorial curvature measures
of the given convex bodies (resp. polytopes). We prove these results in a more direct way
than in the classical proof of the principal kinematic formula for curvature measures, which
uses the connection to Crofton formulae to determine the involved constants explicitly.

Keywords Kinematic formula · Tensor valuation · Curvature measure · Minkowski tensor ·
Integral geometry · Convex body · Polytope

Mathematics Subject Classification Primary 52A20 · 53C65; Secondary 52A22 · 52A38 ·
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1 Introduction

The principal kinematic formula is a cornerstone of classical integral geometry. In its basic
form in Euclidean space, it deals with integral mean values for distinguished geometric
functionals with respect to the invariant measure on the group of proper rigid motions; see
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1350 D. Hug, J. A. Weis

[67, Chap. 5.1] and [65, Chap. 4.4] for background information, recent developments and
applications. To be more specific, let Kn denote the space of convex bodies (nonempty,
compact, convex sets) in R

n . For two convex bodies K , K ′ ∈ Kn and j ∈ {0, . . . , n}, the
principal kinematic formula states that

∫
Gn

Vj (K ∩ gK ′) μ(dg) =
n∑

k= j

αn, j,kVk(K )Vn−k+ j (K
′), (1)

where Gn denotes the group of proper rigid motions of Rn , μ is the motion invariant Haar
measure on Gn , normalized in the usual way (see [67, p. 586]), and the constant

αn, j,k :=
�

( k+1
2

)
�

(
n−k+ j+1

2

)

�
(

j+1
2

)
�

( n+1
2

)

is expressed in terms of specific values of the Gamma function.
The also appearing functionals Vj : Kn → R, j ∈ {0, . . . , n}, are the intrinsic volumes,

which arise as the uniquely determined coefficients of the monomials in the Steiner formula

Hn(K + εBn) =
n∑
j=0

κn− j V j (K )εn− j , ε ≥ 0, (2)

which holds for all convex bodies K ∈ Kn . As usual in this context,+ denotes theMinkowski
addition in R

n , Bn is the Euclidean unit ball in R
n of n-dimensional volume κn and Hn is

the n-dimensional Hausdorff measure. Properties of the intrinsic volumes such as continu-
ity, isometry invariance, additivity (valuation property) and homogeneity are derived from
corresponding properties of the volume functional. A key result for the intrinsic volumes
is Hadwiger’s characterization theorem, which states that V0, . . . , Vn form a basis of the
vector space of continuous and isometry invariant real-valued valuations on Kn (see [65,
Theorem 6.4.14]). This theorem can be used to derive not only (1), but also Hadwiger’s
general integral geometric theorem (see [67, Theorem 5.1.2]).

It is an important feature of the principal kinematic formula that the integral mean values
of the intrinsic volumes can be expressed as sums of products of intrinsic volumes of the two
convex bodies involved, and no other functionals are required. In other words, the principal
kinematic formulae for the intrinsic volumes constitute a complete (closed) system of integral
geometric formulae. As a consequence, these formulae can be iterated as described in [67,
Chap. 5.1] and applied to the study of Boolean models in stochastic geometry (see [67,
Chap. 9.1]). The bilinear structure of the right side of the kinematic formula (1) motivated
the introduction and study of kinematic operators, in the recently developed field of algebraic
integral geometry, which led to new insights, generalizations and to a profound understanding
of the structure of integral geometric formulae (see [10,27]) in connection with the algebraic
structure of translation invariant valuations (see [3], also for further references).

It is natural to extend the principal kinematic formula by applying the integration over the
rigid motion group Gn to functionals which generalize the intrinsic volumes. A far-reaching
generalization is obtained by localizing the intrinsic volumes as measures, associated with
convex bodies, such that the intrinsic volumes are just the total measures. Specifically, this
leads to the supportmeasures (generalized curvaturemeasures)which areweakly continuous,
locally defined and motion-equivariant valuations on convex bodies with values in the space
of finite measures on Borel subsets of Rn × S

n−1, where Sn−1 denotes the Euclidean unit
sphere in R

n . They are determined by a local version of the Steiner formula (2), and thus,
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Kinematic formulae for tensorial curvature measures 1351

they provide a natural example of a localization of the intrinsic volumes. Their marginal
measures on Borel subsets of Rn are called curvature measures. In 1959, Federer (see [24,
Theorem 6.11]) proved kinematic formulae for the curvature measures, even in the more
general setting of sets with positive reach, which contain the classical kinematic formula
as a very special case. More recently, kinematic formulae for support measures on convex
bodies have been established by Glasauer in 1997 (see [28, Theorem 3.1]). These formulae
are based on a special set operation on support elements of the involved bodies, which limits
their usefulness for the present purpose, as explained in [29].

Already in the early seventies, integral geometric formulae for quermassvectors (curva-
ture centroids) had been found by Hadwiger and Schneider [32,61,62]. Recently, McMullen
[56] initiated a study of tensor-valued generalizations of the (scalar) intrinsic volumes and
the vector-valued quermassvectors. This naturally raised the question for an analogue of
Hadwiger’s characterization theorem and for integral geometric formulae for basic additive,
tensor-valued functionals (tensor valuations) on the space of convex bodies. As shown by
Alesker [1,2], and further studied in [42], there exist natural tensor-valued functionals, the
basicMinkowski tensors, which generalize the intrinsic volumes and span the vector space of
tensor-valued, continuous, additive functionals on the space of convex bodies which are also
isometry covariant. Although the basic Minkowski tensors span the corresponding vector
space of tensor-valued valuations, the Minkowski tensors of rank at least two satisfy non-
trivial linear relationships and hence are not a basis. This fact and the inherent difficulty of
computing Minkowski tensors explicitly for sufficiently many examples provide an obstacle
for computing the constants involved in integral geometric formulae. Nevertheless, major
progress has been made in various works by different methods. Integral geometric Crofton
formulae for general Minkowski tensors have been obtained in [41]. A specific case has
been further studied and applied to problems in stereology in [53], for various extensions
see [43] and [76]. A quite general study of various kinds of integral geometric formulae
for translation invariant tensor valuations is carried out in [15], where also corresponding
algebraic structures are explicitly determined. An approach to Crofton and thus kinematic
formulae for translation invariant tensor valuations via integral geometric formulae for area
measures (which are of independent interest) follows from [29] and [74]. Despite all these
efforts and substantial progress, a complete set of kinematic and Crofton formulae for general
Minkowski tensors had not been found prior to the present work. The current state of the
art is described in the lecture notes [48] and in the recent contributions [45,46] which are
crucially based on the present work.

Surprising new insight into integral geometric formulae can be gained by combining
local and tensorial extensions of the classical intrinsic volumes. This setting has recently
been studied by Schneider (see [64]) and further analyzed by Hug and Schneider in their
works on local tensor valuations (see [37–39]). These valuations can be viewed as tensor-
valued generalizations of the support measures. On the other hand, they can be considered
as localizations of the global tensor valuations introduced and first studied by McMullen
(see [56]) and characterized by Alesker in a Hadwiger style (see [1,2]), as pointed out
before. Inspired by the characterization results obtained in [37–39,59,64],we consider tensor-
valued curvaturemeasures, the tensorial curvaturemeasures, and their generalizations,which
basically appear for polytopes, and establish a complete set of kinematic formulae for these
(generalized) tensorial curvaturemeasures.As an applicationof the presentwork,we establish
in [46] (see also [83, Chapter 6] for a preliminary version) a complete set of kinematic and
Crofton formulae for Minkowski tensors.

Kinematic formulae for the generalized tensorial curvature measures on polytopes (which
do not have a continuous extension to all convex bodies) have not been considered before.
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In fact, our results are new even for the tensorial curvature measures which are obtained
by integration against support measures. The constants involved in these formulae are sur-
prisingly simple and can be expressed as a concise product of Gamma functions. Although
some information about tensorial kinematic formulae can be gained from abstract character-
ization results (as developed in [37,64]), we believe that explicit results cannot be obtained
by such an approach, at least not in a simple way. In contrast, our argument starts as a
tensor-valued version of the proof of the kinematic formula for curvature measures (see [65,
Theorem 4.4.2]). But instead of first deriving Crofton formulae to obtain the coefficients of
the appearing functionals, we proceed in a direct way. In fact, the explicit derivation of the
constants in related Crofton formulae via the template method does not seem to be feasible.
In [45], we provide explicit Crofton formulae for (generalized) tensorial curvature measures
as a straightforward consequence of our kinematic formulae and relate them to previously
obtained special results. The main technical part of the present argument is based on the
calculation of rotational averages over Grassmannians and the rotation group.

The current work explores generalizations of the principal kinematic formula to tensorial
measure-valued valuations. Various other directions have been taken in extending the clas-
sical framework. Kinematic formulae for support functions have been studied by Weil [80],
Goodey and Weil [30] and Schneider [63]; recent related work on mean section bodies and
Minkowski valuations is due to Schuster [73], Goodey and Weil [31] and Schuster and Wan-
nerer [74], a Crofton formula for Hessian measures of convex functions has been established
and applied in [22]. Instead of changing the functionals involved in the integral geometric
formulae, it is also natural and in fact required by applications to stochastic geometry to
explore formulae where the integration is extended over subgroups G of the motion group.
The extremal cases are translative and rotational integral geometry, where G = R

n and
G = O(n), respectively. The former is described in detail in [67, Chap. 6.4]; recent progress
for scalar- and measure-valued valuations and further references are provided in [36,81,82];
applications to stochastic geometry are given in [33,34,72], where translative integral formu-
lae for tensor-valued measures are established and applied. Rotational Crofton formulae for
tensor valuations have recently been developed further by Auneau et al. [6,7] and Svane and
Vedel Jensen [76] (see also the literature cited there); applications to stereological estimation
and bio-imaging are treated and discussed in [57,77,86]. Various other groups of isometries,
also in Riemannian isotropic spaces, have been studied in recent years. Major progress has
been made, for instance, in Hermitian integral geometry (in curved spaces), where the inter-
play between global and local results turned out to be crucial (see [13,14,25,26,75,78,79]
and the survey [11]), but various other group actions have been studied successfully as well
(see [4,8,9,12,17–19,23]).

Minkowski tensors, tensorial curvature measures and general local tensor valuations are
useful morphological characteristics that allow to describe the geometry of complex spa-
tial structure and are particularly well suited for developing structure–property relationships
for tensor-valued or orientation-dependent physical properties; see [68,69] for surveys and
Klatt’s PhD thesis [49] for an in-depth analysis of various aspects (including random fields
and percolation) of the interplay between physics andMinkowski tensors. These applications
cover a wide spectrum ranging from nuclear physics [70], granular matter [47,55,60,85],
density functional theory [84], physics of complex plasmas [20] to physics of materials
science [58]. Characterization and classification theorems for tensor valuations, unique-
ness and reconstruction results [50–52,71], which are accompanied by numerical algorithms
[21,35,68,69], stereological estimation procedures [53,54] and integral geometric formulae,
as considered in the present work, form the foundation for these and many other applica-
tions.
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The paper is structured as follows. Section 2 contains a brief introduction to the basic
concepts and definitions required to state our results. The main theorem (Theorem 1) and
its consequences are described in Sect. 3, where also further comments on the structure of
the obtained formulae are provided. The proof of Theorem 1, which is given in Sect. 5, is
preceded by several auxiliary results. These concern integral averages over Grassmannians
and the rotation group and are the subject of Sect. 4. The proof of Theorem 1 is divided into
four main steps which are outlined at the beginning of Sect. 5. In the course of that proof,
iterated sums involving Gamma functions build up. In a final step, these expressions have to
be simplified again. Some basic tools which are required for this purpose are collected in an
appendix.

2 Preliminaries

We work in the n-dimensional Euclidean space Rn , n ≥ 2, equipped with its usual topology
generated by the standard scalar product 〈· , ·〉 and the corresponding Euclidean norm ‖ · ‖.
For a topological space X , we denote the Borel σ -algebra on X by B(X).

The algebra of symmetric tensors over Rn is denoted by T (the underlying R
n will be

clear from the context); the vector space of symmetric tensors of rank p ∈ N0 is denoted
by T

p with T
0 = R. The symmetric tensor product of tensors Ti ∈ T, i = 1, 2, over Rn is

denoted by T1T2 ∈ T, and for q ∈ N0 and a tensor T ∈ T we write T q for the q-fold tensor
product of T , where T 0:= 1; see also the contributions [16,40] in the lecture notes [48] for
further details and references. IdentifyingRn with its dual space via the given scalar product,
we interpret a symmetric tensor of rank p as a symmetric p-linear map from (Rn)p to R.
A special tensor is the metric tensor Q ∈ T

2, defined by Q(x, y):= 〈x, y〉 for x, y ∈ R
n .

For an affine k-flat E ⊂ R
n , k ∈ {0, . . . , n}, the metric tensor Q(E) associated with E

is defined by Q(E)(x, y):= 〈pE0(x), pE0(y)〉 for x, y ∈ R
n , where E0 denotes the linear

direction space of E (see Sect. 4) and pE0(x) is the orthogonal projection of x to E0. If
F ⊂ R

n is a k-dimensional convex set, then we again write Q(F) for the metric tensor
Q(aff(F)) = Q(aff(F)0) associated with the affine subspace aff(F) spanned by F .

In order to define the tensorial curvature measures and to explain how they are related
to the support measures, we start with the latter. For a convex body K ∈ Kn and x ∈ R

n ,
we denote the metric projection of x onto K by p(K , x), and we define u(K , x):= (x −
p(K , x))/‖x − p(K , x)‖ for x ∈ R

n\K . For ε > 0 and a Borel set η ⊂ �n :=R
n × S

n−1,

Mε(K , η):= {
x ∈ (

K + εBn) \K : (p(K , x), u(K , x)) ∈ η
}

is a local parallel set of K which satisfies the local Steiner formula

Hn(Mε(K , η)) =
n−1∑
j=0

κn− j	 j (K , η)εn− j , ε ≥ 0. (3)

This relation determines the support measures 	0(K , ·), . . . , 	n−1(K , ·) of K , which are
finite Borel measures on B(�n). Obviously, a comparison of (3) and the Steiner formula
yields Vj (K ) = 	 j (K , �n). For further information see [65, Chap. 4.2].

Let Pn ⊂ Kn denote the space of convex polytopes in R
n . For a polytope P ∈ Pn and

j ∈ {0, . . . , n}, we denote the set of j-dimensional faces of P by F j (P) and the normal
cone of P at a face F ∈ F j (P) by N (P, F). Then, the j th support measure 	 j (P, ·) of P
is explicitly given by
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	 j (P, η) = 1

ωn− j

∑
F∈F j (P)

∫
F

∫
N (P,F)∩Sn−1

1η(x, u)Hn− j−1(du)H j (dx)

for η ∈ B(�n) and j ∈ {0, . . . , n − 1}, where H j denotes the j-dimensional Hausdorff
measure and ωn is the (n − 1)-dimensional volume of Sn−1.

For a polytope P ∈ Pn , we define the generalized tensorial curvature measure

φ
r,s,l
j (P, ·), j ∈ {0, . . . , n − 1}, r, s, l ∈ N0,

as the Borel measure on B(Rn) which is given by

φ
r,s,l
j (P, β):= cr,s,ln, j

1

ωn− j

∑
F∈F j (P)

Q(F)l
∫
F∩β

xr H j (dx)
∫
N (P,F)∩Sn−1

us Hn− j−1(du),

for β ∈ B(Rn), where

cr,s,ln, j := 1

r !s!
ωn− j

ωn− j+s

ω j+2l

ω j
if j �= 0, cr,s,0n,0 := 1

r !s!
ωn

ωn+s
, and cr,s,ln,0 := 1 for l ≥ 1.

Note that if j = 0 and l ≥ 1, then we have φ
r,s,l
0 ≡ 0. In all other cases, the factor 1/ωn− j

in the definition of φ
r,s,l
j (P, β) and the factor ωn− j involved in the constant cr,s,ln, j cancel.

For a general convex body K ∈ Kn , we define the tensorial curvature measure

φr,0,l
n (K , ·), r, l ∈ N0,

as the Borel measure on B(Rn) which is given by

φr,0,l
n (K , β) := cr,0,ln,n Ql

∫
K∩β

xr Hn(dx),

for β ∈ B(Rn), where cr,0,ln,n := 1
r !

ωn+2l
ωn

. For the sake of convenience, we extend these defini-

tions by φ
r,s,0
j := 0 for j /∈ {0, . . . , n} or r /∈ N0 or s /∈ N0 or j = n and s �= 0. Finally, we

observe that for P ∈ Pn , r = s = l = 0, and j = 0, . . . , n − 1, the scalar-valued measures
φ
0,0,0
j (P, ·) are just the curvature measures φ j (P, ·), that is, the marginal measures on Rn of

the support measures 	 j (P, ·), which therefore can be extended from polytopes to general
convex bodies, and φ

0,0,0
n (K , ·) is the restriction of the n-dimensional Hausdorff measure to

K ∈ Kn .
To put the generalized tensorial curvaturemeasures into their natural context and to empha-

size some of their properties, we recall the relevant definitions and results from [37,40,64].
For p ∈ N0, let Tp(Pn) denote the vector space of all mappings �̃ : Pn × B(�n) → T

p

such that (a) �̃(P, ·) is a Tp-valued measure on B(�n), for each P ∈ Pn ; (b) �̃ is isometry
covariant; (c) �̃ is locally defined. We refer to [37,40,64] for explicit definitions of these
properties.

For a polytope P ∈ Pn , the generalized local Minkowski tensor

φ̃
r,s,l
j (P, ·), j ∈ {0, . . . , n − 1}, r, s, l ∈ N0,

is the Borel measure on B(�n) which is defined by

φ̃
r,s,l
j (P, η)

:= cr,s,ln, j
1

ωn− j

∑
F∈F j (P)

Q(F)l
∫
F

∫
N (P,F)∩Sn−1

1η(x, u)xrus H j (dx)Hn− j−1(du),

for η ∈ B(�n).
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It was shown in [37,64] (where a different notation and normalization was used) that
the mappings Qm φ̃

r,s,l
j , where m, r, s, l ∈ N0 satisfy 2m + r + s + 2l = p, where j ∈

{0, . . . , n − 1}, and where l = 0 if j ∈ {0, n − 1}, form a basis of Tp(Pn).
This fundamental characterization theorem highlights the importance of the generalized

local Minkowski tensors. In particular, since the mappings P 
→ Qm φ̃
r,s,l
j (P, ·), P ∈ Pn ,

are additive, as shown in [37], all mappings in Tp(Pn) are valuations.
Noting that

φ
r,s,l
j (P, β) = φ̃

r,s,l
j (P, β × S

n−1), j ∈ {0, . . . , n − 1}, r, s, l ∈ N0,

for P ∈ Pn and all β ∈ B(Rn), it is clear that the mappings

φ
r,s,l
j : Pn × B(Rn) → T

p, (P, β) 
→ φ
r,s,l
j (P, β),

where p = r + s+2l, have similar properties as the generalized local Minkowski tensors. In
particular, it is easy to see that (including the case j = n where Pn can be replaced by Kn)

(a) φ
r,s,l
j (P, ·) is a Tp-valued measure on B(Rn), for each P ∈ Pn ;

(b) φ
r,s,l
j is isometry covariant (translation covariant of degree r and rotation covariant);

(c) φ
r,s,l
j is locally defined (in the sense of [65, Note 11 for Section 4.2]);

(d) P 
→ φ
r,s,l
j (P, ·), P ∈ Pn , is additive (a valuation).

It is an open problem whether the vector space of all mappings � : Pn × B(Rn) → T
p

satisfying these properties, is spanned by the mappings Qmφ
r,s,l
j , where m, r, s, l ∈ N0

satisfy 2m + r + s + 2l = p, where j ∈ {0, . . . , n− 1}, and where l = 0 if j ∈ {0, n− 1}, or
where j = n and s = l = 0. However, the linear independence of these mappings is shown in
[45, Theorem 10]. A characterization theorem for smooth tensor-valued curvature measures,
meaning representablewith suitable differential forms defined on the sphere bundle ofRn and
integrated (that is, evaluated) on the normal cycle, has recently been found by Saienko [59].
Note, however, that the generalized tensorial curvature measures φ

r,s,l
j , for 1 ≤ j ≤ n−2 and

l > 1, are not smooth. We also point out that, for every β ∈ B(Rn), the mapping φ
r,s,l
j (·, β)

on Pn is measurable. This is implied by the more general Lemma A.3 in the more detailed
prior work [44].

It has been shown in [37] that the generalized local Minkowski tensor φ̃
r,s,l
j has a con-

tinuous extension to Kn which preserves all other properties if and only if l ∈ {0, 1}; see
[37, Theorem 2.3] for a stronger characterization result. Globalizing any such continuous
extension in the Sn−1-coordinate, we obtain a continuous extension for the generalized ten-
sorial curvature measures. For l = 0, there exists a natural representation of the extension
via the support measures. We call these the tensorial curvature measures. For a convex body
K ∈ Kn , a Borel set β ∈ B(Rn), and r, s ∈ N0, they are given by

φ
r,s,0
j (K , β):= cr,s,0n, j

∫
β×Sn−1

xrus 	 j (K , d(x, u)), (4)

for j ∈ {0, . . . , n − 1}, whereas φ
r,0,l
n (K , β) has already been defined for all K ∈ Kn .

For an explicit description of the generalized local Minkowski tensors φ̃
r,s,1
j (K , ·), for

K ∈ Kn and j ∈ {0, . . . , n−1}, and hence of φr,s,1
j (K , ·), we refer to [37]. There it is shown

that the map K 
→ φ̃
r,s,1
j (K , η), K ∈ Kn , is measurable for all η ∈ B(�n), which yields

that the map K 
→ φ
r,s,1
j (K , β), K ∈ Kn , is measurable for all β ∈ B(Rn). Moreover, the

measurability of the map K 
→ φ
r,s,0
j (K , β), K ∈ Kn , is clear from (4).
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1356 D. Hug, J. A. Weis

In the coefficients of the kinematic formula and in the proof of our main theorem, the
classical Gamma function is involved. It can be defined via the Gaussian product formula

�(z):= lim
a→∞

aza!
z(z + 1) · · · (z + a)

for all z ∈ C\{0,−1, . . .} (see [5, (2.7)]). For c ∈ R\Z and m ∈ N0, this definition implies
that

�(−c + m)

�(−c)
= (−1)m

�(c + 1)

�(c − m + 1)
. (5)

TheGamma function has simple poles at the nonpositive integers. The right side of relation (5)
provides a continuation of the left side at c ∈ N0, where�(c−m+1)−1 = 0 for c < m. In the
proofs, we repeatedly use Legendre’s duplication formula, �(c)�(c+ 1

2 ) = 21−2c√π�(2c),
for c > 0.

3 The main results

In the present work, we establish explicit kinematic formulae for the (generalized) tensorial
curvature measures φ

r,s,l
j of polytopes. In other words, for P, P ′ ∈ Pn and β, β ′ ∈ B(Rn)

we express the integral mean value
∫
Gn

φ
r,s,l
j (P ∩ gP ′, β ∩ gβ ′) μ(dg)

in terms of the (generalized) tensorial curvature measures of P and P ′, evaluated at β and
β ′, respectively. In fact, the precise result shows that only a selection of these measures is
needed. Furthermore, for l = 0, 1, the tensorial measures φ

r,s,l
j are defined on Kn × B(Rn),

and therefore, in these two cases we also consider integral means of the form
∫
Gn

φ
r,s,l
j (K ∩ gK ′, β ∩ gβ ′) μ(dg),

for general K , K ′ ∈ Kn and β, β ′ ∈ B(Rn). Although the latter result can be deduced as
a consequence of the former, it came as a surprise that the general formulae simplify for
l ∈ {0, 1} so that only generalized tensorial curvature measures are involved which admit a
continuous extension.

Theorem 1 For P, P ′ ∈ Pn, β, β ′ ∈ B(Rn), j, l, r, s ∈ N0 with j ≤ n, and l = 0 if j = 0,
∫
Gn

φ
r,s,l
j (P ∩ gP ′, β ∩ gβ ′) μ(dg)

=
n∑

k= j

� s
2 �∑

m=0

m∑
i=0

cs,l,i,mn, j,k Qm−iφ
r,s−2m,l+i
k (P, β)φn−k+ j (P

′, β ′),

where

cs,l,i,mn, j,k := (−1)i

(4π)mm!
(m
i

)
π i

(i + l − 2)!
(l − 2)! γ

s,m
j,k αn, j,k
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with αn, j,k as in (1) and

γ
s,m
j,k := �

( k
2 + 1

)
�

(
j
2 + 1

) �
(

j+s
2 − m + 1

)

�
( k+s

2 + 1
) �

(
k− j
2 + m

)

�
(
k− j
2

) .

Several remarkable facts concerning the coefficients cs,l,i,mn, j,k should be observed. First, the
ratio (i + l − 2)!/(l − 2)! has to be interpreted in terms of Gamma functions and relation
(5) if l ∈ {0, 1}, as described below. The corresponding special cases will be considered
separately in the following two theorems. Second, the coefficients are indeed independent
of the tensorial parameter r and depend only on l through the ratio (i + l − 2)!/(l − 2)!.
Moreover, only tensors φ

r,s−2m,p
k (P, β)with p ≥ l show up on the right side of the kinematic

formula. Using Legendre’s duplication formula, we could shorten the given expressions for
the coefficients cs,l,i,mn, j,k even further.However, the present formhas the advantage of exhibiting

that γ s,m
j,k = 1 if s = 0 (and hence also m = i = 0). Furthermore, the coefficients are signed

in contrast to the classical kinematic formula. We shall see below that for l ∈ {0, 1} all
coefficients are nonnegative.

In Theorem 1, we can simplify the coefficient cs,l,i,mn, j,k for k ∈ { j, n} and j ≤ n − 1 such
that only one functional remains. From (5) we conclude that

cs,l,i,mn, j, j = 1{i = m = 0}.
Furthermore, sinceφ

r,s,l
n vanishes for s �= 0 and the functionals Q

s
2−iφ

r,0,l+i
n , i ∈ {0, . . . , s

2 },
can be combined, we can redefine

cs,l,i,mn, j,n := 1{s even,m = i = s
2 }

1

(2π)s
( s
2

)!
�

(
n− j+s

2

)

�
(
n− j
2

) ;

see (7) and (10) in the proof of Theorem 1.
It should also be observed that the functionals φ

r,s−2m,l+i
n−1 can be expressed in terms of

the functionals Qm′
φ
r,s′,0
n−1 , where m′, s′ ∈ N0 and 2m′ + s′ = s + 2l. We do not pursue this

here, since the resulting coefficients do not simplify nicely (see, however, [45]).
Theorem 1 states an equality for measures, hence the case r = 0 of the theorem imme-

diately implies the general case (nevertheless, we prove it in the present general form). In
fact, algebraic induction and the inversion invariance of μ immediately yield the following
extension of Theorem 1.

Corollary 2 Let P, P ′ ∈ Pn, j, l, r, s ∈ N0 with j ≤ n, and l = 0 if j = 0. Let f, h be
tensor-valued continuous functions on Rn. Then∫

Gn

∫
Rn

f (x)h(gx) φ
r,s,l
j (P ∩ g−1P ′, dx) μ(dg)

=
n∑

k= j

� s
2 �∑

m=0

m∑
i=0

cs,l,i,mn, j,k Qm−i
∫
Rn

f (x) φ
r,s−2m,l+i
k (P, dx)

∫
Rn

h(y) φn−k+ j (P
′, dy).

In particular, we could choose h(y) = yr̄ , y ∈ R
n , for r̄ ∈ N0. Moreover, since the

generalized tensorial curvature measures depend additively on the underlying polytope, all
integral formulae remain true if P and P ′ are replaced by finite unions of polytopes. Similar
extensions hold for the following results.
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1358 D. Hug, J. A. Weis

The cases l = 0, 1 are of special interest, since we can formulate the kinematic formulae
for general convex bodies in these cases.

Theorem 3 For K , K ′ ∈ Kn, β, β ′ ∈ B(Rn) and j, r, s ∈ N0 with 1 ≤ j ≤ n,

∫
Gn

φ
r,s,1
j (K ∩ gK ′, β ∩ gβ ′) μ(dg)

=
n∑

k= j

� s
2 �∑

m=0

cs,1,0,mn, j,k Qmφ
r,s−2m,1
k (K , β)φn−k+ j (K

′, β ′),

where

cs,1,0,mn, j,k = 1

(4π)mm! γ
s,m
j,k αn, j,k .

Proof We apply (5) to obtain

(i − 1)!
(−1)! = �(i)

�(0)
= 1{i = 0}.

Then, Theorem 1 yields the assertion in the polytopal case. For a convex body, we conclude
the formula by approximation with polytopes, since the valuations φ

r,s−2m,1
k have weakly

continuous extensions to Kn (and the same is true for the curvature measures). ��

Theorem 4 For K , K ′ ∈ Kn, β, β ′ ∈ B(Rn) and j, r, s ∈ N0 with j ≤ n,

∫
Gn

φ
r,s,0
j (K ∩ gK ′, β ∩ gβ ′) μ(dg)

=
n∑

k= j

� s
2 �∑

m=0

1∑
i=0

cs,0,i,mn, j,k Qm−iφ
r,s−2m,i
k (K , β)φn−k+ j (K

′, β ′),

where

cs,0,i,mn, j,k = 1

(4π)m(m − i)!π i
γ
s,m
j,k αn, j,k .

Proof We apply (5) to obtain

(i − 2)!
(−2)! = �(i − 1)

�(−1)
= (−1)i

1

�(2 − i)
= 1{i = 0} − 1{i = 1}.

Then, Theorem 1 yields the assertion in the polytopal case. For a convex body, we conclude
the formula by approximation with polytopes, since for i ∈ {0, 1} the valuations φ

r,s−2m,i
k

have weakly continuous extensions to Kn . Finally, we note that cs,0,1,0n, j,k = 0. ��

It is crucial that the right sides of the formulae in Theorems 3 and 4 only involve the
(generalized) tensorial curvature measures φ

r,s,0
k and φ

r,s,1
k , which are the ones with weakly

continuous extensions to Kn , and not φr,s,i
k with i > 1.
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4 Some auxiliary results

Before we start with the proof of the main theorem, we establish several auxiliary integral
geometric results in this section. As a rule, these results hold for n ≥ 1. If not stated otherwise,
the case n = 1 (or even n = 0) can be checked directly.

We recall the following notions. The rotation group on R
n is denoted by SO(n), the

orthogonal group on R
n by O(n), and we write ν for the Haar probability measure on

both spaces. By G(n, k) (resp. A(n, k)), for k ∈ {0, . . . , n}, we denote the Grassmannian
(resp. affine Grassmannian) of k-dimensional linear (resp. affine) subspaces of Rn . We write
νk for the rotation invariant Haar probability measure on G(n, k). The directional space of
an affine k-flat E ∈ A(n, k) is denoted by E0 ∈ G(n, k) and its orthogonal complement
by E⊥ ∈ G(n, n − k). For k ∈ {0, . . . , n} and F ∈ G(n, k), we denote the group of
rotations of Rn mapping F (and hence also F⊥) into itself by SO(F) (which is the same
as SO(F⊥)) and write νF for the Haar probability measure on SO(F). For l ∈ {0, . . . , n},
let G(F, l):= {L ∈ G(n, l) : L ⊂ F} if l ≤ k, and let G(F, l):= {L ∈ G(n, l) : L ⊃ F}
if l > k. Then G(F, l) is a homogeneous SO(F)-space. Hence, there exists a unique Haar
probability measure νF

l on G(F, l), which is SO(F) invariant. An introduction to invariant
measures and group operations as needed here is provided in [67, Chap. 13], where, however,
SO(F) is defined in a slightly different way.

Recall that the orthogonal projection of a vector x ∈ R
n to a linear subspace L of Rn

is denoted by pL (x), and set πL(x):= pL (x)/‖pL (x)‖ ∈ S
n−1 for x /∈ L⊥. For two linear

subspaces L , L ′ of Rn , the subspace determinant [L , L ′] is defined as follows (see [67,
Sect. 14.1]). One extends an orthonormal basis of L ∩ L ′ (the empty set if L ∩ L ′ = {0}) to
an orthonormal basis of L and to one of L ′. Then [L , L ′] is the volume of the parallelepiped
spanned by all these vectors. Consequently, if L = {0} or L = R

n , then [L , L ′]:= 1. For
F, F ′ ∈ Kn , we define [F, F ′]:= [F0, (F ′)0], where F0 is the direction space of the affine
hull of F .

A basic tool in this work is the following integral geometric transformation formula, which
is a special case of [67, Theorem 7.2.6].

Lemma 5 Let 0 ≤ j ≤ k ≤ n be integers, F ∈ G(n, k), and let f : G(n, n − k + j) → R

be integrable. Then

∫
G(n,n−k+ j)

f (L) νn−k+ j (dL)

= dn, j,k

∫
G(F, j)

∫
G(U,n−k+ j)

[F, L] j f (L) νUn−k+ j (dL) νF
j (dU )

with

dn, j,k :=
k− j∏
i=1

�
( i
2

)
�

(
n−k+ j+i

2

)

�
(

j+i
2

)
�

( n−k+i
2

) .

The preceding lemma yields the next result, which is again an integral geometric trans-
formation formula (which will be needed in Sect. 5.3). Here we (implicitly) require that
n ≥ 2.
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1360 D. Hug, J. A. Weis

Lemma 6 [41, Corollary 4.2] Let u ∈ S
n−1 and let h : G(n, k) → T be an integrable

function, where and 0 < k < n. Then
∫
G(n,k)

h(L) νk(dL) = ωk

2ωn

∫
G(u⊥,k−1)

∫ 1

−1

∫
U⊥∩u⊥∩Sn−1

|t |k−1(1 − t2)
n−k−2

2

× h
(
span

{
U, tu +

√
1 − t2w

})Hn−k−1(dw) dt νu
⊥

k−1(dU ).

The following lemmas can be derived from Lemma 6 (see [66, (24)], [41, Lemma 4.3 and
Proposition 4.5]).

Lemma 7 [66, (24)] Let s ∈ N0 and n ≥ 1. Then∫
Sn−1

us Hn−1(du) = 1{s even } 2ωn+s

ωs+1
Q

s
2 .

The next lemma is used in the proofs of Lemmas 9 and 10 below.

Lemma 8 [41, Lemma 4.3] Let i, k ∈ N0 with k ≤ n and n ≥ 1. Then
∫
G(n,k)

Q(L)i νk(dL) = �
( n
2

)
�

( k
2 + i

)
�

( n
2 + i

)
�

( k
2

) Qi .

The following lemma extends Lemma 8 (but the latter is used in the proof of Lemma 9).
It will be needed in the proof of Proposition 14 (of which Lemma 9 is a special case).

Lemma 9 [41, Proposition 4.5] Let a, i ∈ N0, k, r ∈ {0, . . . , n} with k + r ≥ n ≥ 1, and
let F ∈ G(n, r). Then

∫
G(n,k)

[F, L]aQ(L)i νk(dL) = en,k,r,a
�( n+a

2 )

�( n+a
2 + i)�( k+a

2 )

i∑
β=0

(−1)β
(
i

β

)
�( k+a

2 + i − β)

× �
( n−k

2 + β
)
�

( a
2 + 1

)
�

( r
2

)
�

( n−k
2

)
�

( a
2 + 1 − β

)
�

( r
2 + β

) Qi−βQ(F)β

with

en,k,r,a :=
n−r−1∏
p=0

�
( n−p

2

)
�

(
k−p+a

2

)

�
( n−p+a

2

)
�

(
k−p
2

) .

Proof Although this lemma is stated in [41, Proposition 4.5] only for k, r ≥ 1, it is easy to
check that it remains true for k = 0 (and r = n) and for r = 0 (and k = n) with n ≥ 1 as
well as for n = k = r = 1. The only nontrivial case concerns the assertion for a > 0, k = 0,
r = n and i ≥ 1, where we can show (using relation (A.1’)) that the right side is the zero
tensor. The case a = 0 is covered by Lemma 8. ��

From Lemma 8, we deduce the next result, which will be used in the proofs of Lemma 11
and Proposition 14.

Lemma 10 Let i, j, k ∈ N0 with 0 ≤ k ≤ n. Then
∫
G(n,k)

Q(L)i Q(L⊥) j νk(dL) = �
( n
2

)
�

( k
2 + i

)
�

( n−k
2 + j

)
�

( n
2 + i + j

)
�

( k
2

)
�

( n−k
2

) Qi+ j .
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Proof The cases where k ∈ {0, n} can be checked easily. For 1 ≤ k ≤ n − 1, expansion of
Q(L⊥) j = (Q − Q(L)) j , Lemma 8 and relation (A.1’) yield the assertion. ��

The next lemma will be used at the beginning of Sect. 5.2.

Lemma 11 Let j, l, s ∈ N0 with j < n, L ∈ G(n, j) and u ∈ L⊥ ∩ S
n−1. Then

∫
SO(n)

Q(ϑL)l(ϑu)s ν(dϑ) =
�

( n
2

)
�

(
j
2 + l

)
�

( s+1
2

)
√

π�
( n+s

2 + l
)
�

(
j
2

) Ql+ s
2 ,

if s is even. The same relation holds if the integration is extended over O(n). If s is odd and
n ≥ 2 (or n = 1 and the integration is extended over O(1)), then the integral vanishes.

Proof The case n = 1, j = 0 is checked directly by distinguishing l = 0 or l �= 0. Hence
let n ≥ 2. Let I denote the integral we are interested in. Due to symmetry, I = 0 if s is odd.
Therefore, let s be even. Let ρ ∈ SO(L⊥). Then, by the right invariance of ν and Fubini’s
theorem we obtain

I =
∫
SO(L⊥)

∫
SO(n)

Q(ϑρL)l(ϑρu)s ν(dϑ) νL⊥
(dρ)

=
∫
SO(L⊥)

∫
SO(n)

Q(ϑL)l(ϑρu)s ν(dϑ) νL⊥
(dρ)

=
∫
SO(n)

Q(ϑL)lϑ

∫
SO(L⊥)

(ρu)s νL⊥
(dρ) ν(dϑ).

Lemma 7, applied in L⊥ with dim(L⊥) ≥ 1, yields∫
SO(L⊥)

(ρu)s νL⊥
(dρ) = 1

ωn− j

∫
Sn−1∩L⊥

vs Hn− j−1(dv) = 2
ωn− j+s

ωs+1ωn− j
Q(L⊥)

s
2 ,

and hence (applying a transformation to the integration with respect to ϑ) we get

I = 2
ωn− j+s

ωs+1ωn− j

∫
G(n, j)

Q(U )l Q(U⊥)
s
2 ν j (dU ).

Now Lemma 10 yields the assertion. ��
The following lemma will be required in Sect. 5.3.

Lemma 12 Let u, v ∈ S
n−1, i, t ∈ N0 and n ≥ 1. Then

∫
SO(n)

(ρv)i 〈u, ρv〉t ν(dρ) = �
( n
2

)
�(t + 1)

2t
√

π�
( n+i+t

2

)
� i
2 �∑

x=
(
i−t
2

)+

(
i

2x

)
�

(
x + 1

2

)
�

( t−i
2 + x + 1

)ui−2x Qx ,

if i + t is even. The same relation holds if the integration is extended over O(n). If i + t is
odd and n ≥ 2 (or n = 1 and the integration is extended over O(1)), then the integral on the
left side vanishes.

Proof First, we assume that n ≥ 2. Let I denote the integral we are interested in. By
symmetry, I = 0 if i + t is odd. Thus, in the following we assume that i + t is even. Applying
the transformation

f : [−1, 1] × (Sn−1 ∩ u⊥) → S
n−1, (z, w) 
→ zu +

√
1 − z2w,
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with Jacobian J f (z, w) = √
1 − z2

n−3
to the integral I , we get

I = 1

ωn

∫
Sn−1

vi 〈u, v〉t Hn−1(dv)

= 1

ωn

∫ 1

−1

∫
Sn−1∩u⊥

(
1 − z2

) n−3
2

(
zu +

√
1 − z2w

)i 〈
u, zu +

√
1 − z2w

〉t
Hn−2(dw) dz.

Binomial expansion of (zu + √
1 − z2w)i yields

I = 1

ωn

i∑
m=0

(
i

m

)
ui−m

∫ 1

−1
zt+i−m (

1 − z2
) n+m−3

2 dz
︸ ︷︷ ︸

=1{m even}B
(
t+i−m+1

2 , n+m−1
2

)

∫
Sn−1∩u⊥

wm Hn−2(dw),

where B(·, ·) denotes theBeta function. FromLemma 7 applied to the integrationwith respect
to w, we obtain

I = �
( n
2

)
π�

( n+i+t
2

)
� i
2 �∑

m=0

(
i

2m

)
�

(
m + 1

2

)
�

( t+i+1
2 − m

)
ui−2mQ(u⊥)m .

Since Q(u⊥) = Q − u2, binomial expansion yields

Q(u⊥)m =
m∑

x=0

(−1)m+x
(
m

x

)
u2m−2x Qx .

Legendre’s duplication formula gives
(

i

2m

)(
m

x

)
�

(
m + 1

2

) =
(

i

2x

)
�

(
x + 1

2

) (� i
2� − x

m − x

)
�

(� i+1
2 � − x + 1

2

)
�

(� i+1
2 � − m + 1

2

) ,

and thus, we obtain by a change of the order of summation

I = �
( n
2

)
π�

( n+i+t
2

)
� i
2 �∑

x=0

(
i

2x

)
�

(
x + 1

2

)
�

(� i+1
2 � − x + 1

2

)
ui−2x Qx

×
� i
2 �∑

m=x

(−1)m+x
(� i

2� − x

m − x

)
�

( t+i+1
2 − m

)
�

(� i+1
2 � − m + 1

2

) .

We denote the sum with respect to m by S1. An index shift by x , applied to S1, yields

S1 =
� i
2 �−x∑
m=0

(−1)m
(� i

2� − x

m

)
�

( t+i+1
2 − x − m

)
�

(� i+1
2 � − x − m + 1

2

) .

Now we conclude from relation (A.1’) that

S1 = (−1)�
i
2 �−x

� i
2 �−x∑
m=0

(−1)m
(� i

2� − x

m

)
�

( t+i+1
2 − � i

2� + m
)

�
(� i+1

2 � − � i
2� + m + 1

2

)

= (−1)�
i
2 �−x �

( t+i+1
2 − � i

2�
)
�

(� i+1
2 � + � i

2� − t+i+1
2 − x + 1

2

)
�

(� i+1
2 � − x + 1

2

)
�

(� i+1
2 � − t+i+1

2 + 1
2

)
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=
=(−1)2i=1︷ ︸︸ ︷

(−1)i+� i+1
2 �+� i

2 �

=�
(
t+1
2

)
�( t

2+1)︷ ︸︸ ︷
�

( t+i+1
2 − � i

2�
)
�

( t+i+1
2 − � i+1

2 � + 1
2

)
�

(� i+1
2 � − x + 1

2

)
�

( t−i
2 + x + 1

) ,

where we used (5) with c = t+i+1
2 − � i+1

2 � − 1
2 ∈ N0 and m = i − � i+1

2 � − x ∈ N0.
We notice that S1 = 0 if x < i−t

2 . Thus we obtain the assertion by another application of
Legendre’s duplication formula.

It remains to confirm the assertion if n = 1 and i + t is even (all other assertions are
easy to check). In this case, u = ±v and therefore the left-hand side of the asserted equation
equals (±1)tvi . Using Legendre’s duplication formula repeatedly and relation (A.1), we see
that the right-hand side equals (±1)ivi = (±1)tvi , which confirms the assertion. ��

The next lemma will be useful in the proof of Proposition 14.

Lemma 13 Let j, k, n ∈ N0 with j + k ≤ n, n ≥ 1, and U ∈ G(n, j). Then, for any
integrable function f : G(U, j + k) → R,∫

G(U⊥,k)
f (U + L) νU

⊥
k (dL) =

∫
G(U, j+k)

f (L) νUj+k(dL).

Proof We consider the map H : G(U⊥, k) → G(U, j + k), L 
→ U + L , which is well
defined, since dim(U ∩ L) = 0 and hence dim(L + U ) = j + k for all L ∈ G(U⊥, k).
It is sufficient to show that H(νU

⊥
k ) = νUj+k , where H(νU

⊥
k ) is the image measure of νU

⊥
k

under H . Since H(νU
⊥

k ) and νUj+k are probability measures, and νUj+k is SO(U⊥) invariant

by definition, it is sufficient to observe that H(νU
⊥

k ) is SO(U⊥) invariant. ��
The following proposition, which is a generalization of Lemma 9 in the case a = 2, will

be applied at the end of Sect. 5.3. Its proof uses several of the lemmas provided above.

Proposition 14 Let F ∈ G(n, k) with 0 ≤ j ≤ k ≤ n and m, l ∈ N0. Then∫
G(n,n−k+ j)

[F, L]2Q(L)mQ(F ∩ L)l νn−k+ j (dL)

= (n − k + j)!k!
n! j !

�
( n
2 + 1

)
�

(
j
2 + l

)
�

( k
2

)

�
( n
2 + m + 1

)
�

(
j
2

)
�

(
k− j
2

)
�

(
n−k+ j

2 + 1
)

×
m∑
i=0

(
m

i

)
(l + i − 2)!

(l − 2)!
�

(
k− j
2 + i

)
�

(
n−k+ j

2 + m − i + 1
)

�
( k
2 + l + i

) Qm−i Q(F)l+i .

For l ≤ 1, the factor (l+i−2)!
(l−2)! in Proposition 14 is read as stated in (5) and discussed in

Sect. 3. Moreover, �(l + j/2)/�( j/2) is zero if j = 0, l �= 0 and one if j = l = 0.

Proof Let I denote the integral in which we are interested. If j = k, all summands on the
right side of the asserted equation are zero except for i = 0. Thus it is easy to confirm the
assertion. Now assume that 0 ≤ j < k ≤ n, hence n ≥ 1. If j = l = 0, then the assertion
follows as a special case of Lemma 9. If j = 0, l �= 0 then both sides of the asserted equation
are zero.
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In the following, we consider the remaining cases where 0 < j < k. Then Lemma 5
yields

I = dn, j,k

∫
G(F, j)

∫
G(U,n−k+ j)

[F, L] j+2Q(L)mQ(F ∩ L)l νUn−k+ j (dL) νF
j (dU ).

For fixed U ∈ G(F, j), we have dim(F ∩ L) = j = dimU for νUn−k+ j -almost all L ∈
G(U, n − k + j) and U ⊂ F ∩ L , hence U = F ∩ L , and therefore

I = dn, j,k

∫
G(F, j)

Q(U )l
∫
G(U,n−k+ j)

[F, L] j+2Q(L)m νUn−k+ j (dL) νF
j (dU ).

An application of Lemma 13 shows that

I = dn, j,k

∫
G(F, j)

Q(U )l
∫
G(U⊥,n−k)

[F,U + L] j+2Q(U + L)m νU
⊥

n−k(dL) νF
j (dU ).

As U ⊂ F and L ⊂ U⊥, we have [F,U + L] = [F ∩ U⊥, L](U⊥) and Q(U + L)m =(
Q(U ) + Q(L)

)m . Expanding the latter yields

I = dn, j,k

m∑
α=0

(
m

α

) ∫
G(F, j)

Q(U )l+m−α

×
∫
G(U⊥,n−k)

(
[F ∩U⊥, L](U⊥)

) j+2
Q(L)α νU

⊥
n−k(dL) νF

j (dU ).

Observe that dim(U⊥) = n − j > n − k ≥ 0, hence dim(U⊥) ≥ 1. Therefore Lemma 9 can
be used to see that the integral with respect to L can be expressed as

en− j,n−k,k− j, j+2
�

( n
2 + 1

)
�

(
n−k+ j

2 + 1
)

�
( n
2 + 1 + α

)
α∑

β=0

(−1)β
(

α

β

)

×
�

(
n−k+ j

2 + 1 + α − β
)

�
(
k− j
2 + β

)
�

(
j
2 + 2

)
�

(
k− j
2

)

�
(
k− j
2

)
�

(
j
2 + 2 − β

)
�

(
k− j
2 + β

) Q(U⊥)α−βQ(F ∩U⊥)β,

and thus

I = dn, j,ken− j,n−k,k− j, j+2
�

( n
2 + 1

)
�

(
n−k+ j

2 + 1
)

×
m∑

α=0

α∑
β=0

(−1)β
(
m

α

)(
α

β

)�
(
n−k+ j

2 + 1 + α − β
)

�
(

j
2 + 2

)

�
( n
2 + 1 + α

)
�

(
j
2 + 2 − β

)

×
∫
G(F, j)

Q(U )l+m−αQ(U⊥)α−βQ(F ∩U⊥)β νF
j (dU ).

Observing cancellations and using Legendre’s duplication formula, we get

dn, j,ken− j,n−k,k− j, j+2 = (n − k + j)!k!
n! j ! .
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Expanding Q(U⊥)α−β = (Q − Q(U ))α−β , we obtain

I = (n − k + j)!k!
n! j !

�
( n
2 + 1

)
�

(
j
2 + 2

)

�
(
n−k+ j

2 + 1
)

m∑
α=0

α∑
β=0

α−β∑
i=0

(−1)α+i
(
m

α

)(
α

β

)(
α − β

i

)

×
�

(
n−k+ j

2 + 1 + α − β
)

�
( n
2 + 1 + α

)
�

(
j
2 + 2 − β

)Qi
∫
G(F, j)

Q(U )l+m−β−i Q(F ∩U⊥)β νF
j (dU ).

Lemma 10, applied in F , yields

I = (n − k + j)!k!
n! j !

�
( n
2 + 1

)
�

( k
2

)
�

(
j
2 + 2

)

�
(
n−k+ j

2 + 1
)

�
(

j
2

)
�

(
k− j
2

)

×
m∑

α=0

α∑
β=0

α−β∑
i=0

(−1)α+i
(
m

α

)(
α

β

)(
α − β

i

)

×
�

(
n−k+ j

2 + 1 + α − β
)

�
( n
2 + 1 + α

) �
(

j
2 + l + m − β − i

)
�

(
k− j
2 + β

)

�
( k
2 + l + m − i

)
�

(
j
2 + 2 − β

) Qi Q(F)l+m−i .

Using the relation

(
m

α

)(
α

β

)(
α − β

i

)
=

(
m

i

)(
m − i

β

)(
m − i − β

α − i − β

)

and by a change of the order of summation, we conclude that

I = (n − k + j)!k!
n! j !

�
( n
2 + 1

)
�

( k
2

)
�

(
j
2 + 2

)

�
(
n−k+ j

2 + 1
)

�
(

j
2

)
�

(
k− j
2

)
m∑
i=0

(
m

i

)
Qi Q(F)l+m−i

× 1

�
( k
2 + l + m − i

)
m−i∑
β=0

(
m − i

β

)�
(

j
2 + l + m − β − i

)
�

(
k− j
2 + β

)

�
(

j
2 + 2 − β

)

×
m∑

α=i+β

(−1)α+i
(
m − i − β

α − i − β

)�
(
n−k+ j

2 + 1 + α − β
)

�
( n
2 + 1 + α

) .

For the sum with respect to α, we obtain from relation (A.1’) that

m−i−β∑
α=0

(−1)α+β

(
m − i − β

α

)�
(
n−k+ j

2 + i + 1 + α
)

�
( n
2 + i + β + 1 + α

)

= (−1)β
�

(
n−k+ j

2 + i + 1
)

�
(
k− j
2 + m − i

)

�
( n
2 + m + 1

)
�

(
k− j
2 + β

) .
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1366 D. Hug, J. A. Weis

Next, for the resulting sum with respect to β, we obtain again from relation (A.1’) that

m−i∑
β=0

(−1)m+i+β

(
m − i

β

) �
(

j
2 + l + β

)

�
(

j
2 + 2 − m + i + β

) =
�

(
j
2 + l

)
� (l + m − i − 1)

�
(

j
2 + 2

)
�(l − 1)

,

where we first used j > 0 and then (5) (and distinguished the cases l = 0, l = 1, l ≥ 2).
Reversing the order of summation in the resulting expression for I , the assertion of the
proposition follows. ��

5 Proof of Theorem 1

We divide the proof into several steps. First, we treat the translative part of the kinematic
integral, for which we refer to the proof of the translative integral formula for curvature mea-
sures. Then we consider two “boundary cases” separately. The main and third step requires
the explicit calculation of a rotational integral for a tensor-valued function. Once this is
accomplished, the proof is finished, except for the asserted description of the coefficients,
which at this point are still given in terms of iterated sums of products of binomial coefficients
and Gamma functions. In a final step, these coefficients are then shown to have the simple
form provided in the statement of the theorem.

5.1 The translative part

The case j = n is easy to check directly (since then s = 0). Hence we may assume that
j ≤ n − 1 in the following. Let I1 denote the integral in which we are interested. We start by
decomposing the measure μ and by substituting the definition of φ

r,s,l
j for polytopes to get

I1 =
∫
Gn

φ
r,s,l
j (P ∩ gP ′, β ∩ gβ ′) μ(dg)

=
∫
SO(n)

∫
Rn

φ
r,s,l
j (P ∩ (ϑP ′ + t), β ∩ (ϑβ ′ + t))Hn(dt) ν(dϑ)

= cr,s,ln, j
1

ωn− j

∫
SO(n)

∫
Rn

∑
G∈F j (P∩(ϑP ′+t))

Q(G)l
∫
G∩β∩(ϑβ ′+t)

xr H j (dx)

×
∫
N (P∩(ϑP ′+t),G)∩Sn−1

us Hn− j−1(du)Hn(dt) ν(dϑ).

Let ϑ ∈ SO(n) be fixed for the moment. Neglecting a set of translations t ∈ R
n of measure

zero, we can assume that the following is true (see [65, p. 241]). For every j-face G ∈
F j (P ∩ (ϑP ′ + t)), there are a unique k ∈ { j, . . . , n}, a unique F ∈ Fk(P) and a unique
F ′ ∈ Fn−k+ j (P ′) such that G = F ∩ (ϑF ′ + t). Conversely, for every k ∈ { j, . . . , n}, every
F ∈ Fk(P) and every F ′ ∈ Fn−k+ j (P ′), we have F ∩ (ϑF ′ + t) ∈ F j (P ∩ (ϑP ′ + t)) for
almost all t ∈ R

n such that F ∩ (ϑF ′ + t) �= ∅. Hence, we get

I1 = cr,s,ln, j
1

ωn− j

∫
SO(n)

n∑
k= j

∑
F∈Fk (P)

∑
F ′∈Fn−k+ j (P ′)

Q(F0 ∩ (ϑF ′)0)l

×
∫
N (P∩(ϑP ′+t),F∩(ϑF ′+t))∩Sn−1

us Hn− j−1(du)
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×
∫
Rn

∫
F∩(ϑF ′+t)∩β∩(ϑβ ′+t)

xr H j (dx)Hn(dt) ν(dϑ), (6)

where we use that the integral with respect to u is independent of the choice of a vector
t ∈ R

n such that relint F ∩ relint (ϑF ′ + t) �= ∅. As a next step, we calculate the integral
with respect to t . This can be done as in [65, p. 241–2] (for details see [83, Section 4.4.1]).
Thus, we can rewrite (6) as

I1 = cr,s,ln, j
1

ωn− j

n∑
k= j

∑
F∈Fk (P)

∑
F ′∈Fn−k+ j (P ′)

Hn−k+ j (F ′ ∩ β ′)

×
∫
F∩β

xr Hk(dx)
∫
SO(n)

[F, ϑF ′]

× Q
(
F0 ∩ (ϑF ′)0

)l ∫
N (P∩(ϑP ′+t),F∩(ϑF ′+t))∩Sn−1

us Hn− j−1(du) ν(dϑ).

5.2 The cases k ∈ { j, n}

In the summation with respect to k, we have to consider the summands for k = j and k = n
separately, since the application of some of the auxiliary results requires that j < k < n.
Starting with k = j and denoting the corresponding summand by S j , we get

S j = cr,s,ln, j
1

ωn− j

∑
F∈F j (P)

∑
F ′∈Fn(P ′)

Hn(F ′ ∩ β ′)
∫
F∩β

xr H j (dx)
∫
SO(n)

[F, ϑF ′]

× Q
(
F0 ∩ (ϑF ′)0

)l ∫
N (P∩(ϑF ′+t),F∩(ϑF ′+t))∩Sn−1

us Hn− j−1(du) ν(dϑ)

= φ
r,s,l
j (P, β)φn(P

′, β ′).

For k = n, we denote the corresponding summand by Sn and conclude from Fubini’s
theorem

Sn = cr,s,ln, j
1

ωn− j

∑
F∈Fn(P)

∑
F ′∈F j (P ′)

H j (F ′ ∩ β ′)
∫
F∩β

xr Hn(dx)
∫
SO(n)

[F, ϑF ′]

× Q
(
F0 ∩ (ϑF ′)0

)l ∫
N (P∩(ϑP ′+t),P∩(ϑF ′+t))∩Sn−1

us Hn− j−1(du) ν(dϑ)

= cr,s,ln, j
1

ωn− j

∫
P∩β

xr Hn(dx)
∑

F ′∈F j (P ′)
H j (F ′ ∩ β ′)

×
∫
N (P ′,F ′)∩Sn−1

∫
SO(n)

Q
(
ϑF ′)l (ϑu)s ν(dϑ)Hn− j−1(du).

For this, we obtain from Lemma 11

Sn = 1{s even}cr,s,ln, j
1

ωn− j

�
( n
2

)
�

(
j
2 + l

)
�

( s+1
2

)
√

π�
( n+s

2 + l
)
�

(
j
2

) Ql+ s
2

∫
P∩β

xr Hn(dx)

×
∑

F ′∈F j (P ′)
H j (F ′ ∩ β ′)

∫
N (P ′,F ′)∩Sn−1

Hn− j−1(du)

= csn, j φ
r,0, s2+l
n (P, β)φ j (P

′, β ′),
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1368 D. Hug, J. A. Weis

where

csn, j := 1{s even} 2ωn− j

s!ωs+1ωn− j+s
= 1{s even} 1

(2π)s
( s
2

)!
�

(
n− j+s

2

)

�
(
n− j
2

) . (7)

Hence, we get

I1 = cr,s,ln, j
1

ωn− j

n−1∑
k= j+1

∑
F∈Fk (P)

∑
F ′∈Fn−k+ j (P ′)

Hn−k+ j (F ′ ∩ β ′)
∫
F∩β

xr Hk(dx)

×
∫
SO(n)

[F, ϑF ′]Q (
F0 ∩ (ϑF ′)0

)l

×
∫
N (P∩(ϑP ′+t),F∩(ϑF ′+t))∩Sn−1

us Hn− j−1(du) ν(dϑ)

+ φ
r,s,l
j (P, β)φn(P

′, β ′) + csn, j φ
r,0, s2+l
n (P, β)φ j (P

′, β ′).

For any t ∈ R
n such that relint F ∩ relint (ϑF ′ + t) �= ∅, we obtain from [65, Theorem 2.2.1]

N
(
P ∩ (ϑP ′ + t), F ∩ (ϑF ′ + t)

) = N (P, F) + ϑN (P ′, F ′),

and thus

I1 = cr,s,ln, j
1

ωn− j

n−1∑
k= j+1

∑
F∈Fk (P)

∑
F ′∈Fn−k+ j (P ′)

Hn−k+ j (F ′ ∩ β ′)
∫
F∩β

xr Hk(dx)

×
∫
SO(n)

[F, ϑF ′]Q (
F0 ∩ (ϑF ′)0

)l ∫
(N (P,F)+ϑN (P ′,F ′))∩Sn−1

us Hn− j−1(du) ν(dϑ)

+ φ
r,s,l
j (P, β)φn(P

′, β ′) + csn, j φ
r,0, s2+l
n (P, β)φ j (P

′, β ′). (8)

In the following, we denote by C(ω):= {λx ∈ R
n : x ∈ ω, λ > 0} the cone spanned by a set

ω ⊂ S
n−1. Moreover, if F is a face of P , we write F⊥ for the linear subspace orthogonal to

F0. For the next and main step, we may assume that j ≤ n − 2 (since j < k ≤ n − 1). We
define the mapping

J : B(F⊥ ∩ S
n−1) × B(F ′⊥ ∩ S

n−1) → T
2l+s

by

J (ω, ω′):=
∫
SO(n)

[F, ϑF ′]Q (
F0 ∩ (ϑF ′)0

)l ∫
(C(ω)+ϑC(ω′))∩Sn−1

us Hn− j−1(du) ν(dϑ)

for ω ∈ B(F⊥ ∩ S
n−1) and ω′ ∈ B(F ′⊥ ∩ S

n−1). Then J is a finite signed measure on
B(F⊥ ∩ S

n−1) in the first variable and a finite signed measure on B(F ′⊥ ∩ S
n−1) in the

second variable, but this will not be needed in the following. In fact, we could specialize to
the case ω = N (P, F) ∩ S

n−1 and ω′ = N (P ′, F ′) ∩ S
n−1 throughout the proof.

Since [F, ϑF ′]Q(F0∩(ϑF ′)0)l depends only on the linear subspaces F0 and (ϑF ′)0, we
can assume that F ∈ G(n, k) and F ′ ∈ G(n, n−k+ j) for determining J (ω, ω′). Moreover,
for ν-almost all ϑ ∈ SO(n), the linear subspaces F⊥ and ϑ(F ′⊥) are linearly independent.
This will be tacitly used in the following.
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5.3 The rotational part

In this section, ω,ω′ are fixed and as described above. Due to the right invariance of ν and
since ρF ′ = F ′ for ρ ∈ SO(F ′⊥), we obtain

J (ω, ω′) =
∫
SO(n)

[F, ϑF ′]Q(F ∩ ϑF ′)l

×
∫
SO(F ′⊥)

∫
(C(ω)+ϑρC(ω′))∩Sn−1

us Hn− j−1(du) νF ′⊥
(dρ) ν(dϑ),

where we averaged over all such rotations ρ ∈ SO(F ′⊥) and applied Fubini’s theorem. Next,
we introduce a multiple J1 of the inner integral of J (ω, ω′) and rewrite it by means of a polar
coordinate transformation, that is,

J1 := 1
2�(

n− j+s
2 )

∫
(C(ω)+ϑρC(ω′))∩Sn−1

us Hn− j−1(du)

=
∫
C(ω)+ϑρC(ω′)

xse−‖x‖2 Hn− j (dx).

The bijective transformation (recall that we assume that ϑ ∈ SO(n) is such that F⊥ and
ϑ(F ′⊥) are linearly independent subspaces)

T : ω × ω′ × (0,
π

2
) × (0,∞) → C(ω) + ϑρC(ω′),

(u, v, α, r) 
→ r cos(α)u + r sin(α)ϑρv,

has the Jacobian

J T (u, v, α, r) = rn− j−1(cos(α))n−k−1(sin(α))k− j−1[F, ϑF ′].
Hence, we obtain

J1 = [F, ϑF ′]
∫

ω

∫
ω′

∫ π
2

0

∫ ∞

0
(cos(α))n−k−1(sin(α))k− j−1e−‖r cos(α)u+r sin(α)ϑρv‖2

× (r cos(α)u + r sin(α)ϑρv)s rn− j−1 dr dα Hk− j−1(dv)Hn−k−1(du).

Using binomial expansion, we get

J1 = [F, ϑF ′]
∫

ω

∫
ω′

s∑
i=0

(
s

i

)
us−i (ϑρv)i

∫ π
2

0
cos(α)n−k+s−i−1 sin(α)k− j+i−1

×
∫ ∞

0
rn− j+s−1e−r2(1+2 cos(α) sin(α)〈u,ϑρv〉) dr dα Hk− j−1(dv)Hn−k−1(du).

We factor the occurring exponential function and expand the second part of it as a power
series to obtain

J1 = [F, ϑF ′]
∫

ω

∫
ω′

s∑
i=0

(
s

i

)
us−i (ϑρv)i

×
∫ π

2

0
cos(α)n−k+s−i−1 sin(α)k− j+i−1

∫ ∞

0
rn− j+s−1

× e−r2
∞∑
t=0

(−2r2 cos(α) sin(α)〈u, ϑρv〉)t
t ! dr dα Hk− j−1(dv)Hn−k−1(du)
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= [F, ϑF ′]
∫

ω

∫
ω′

s∑
i=0

(
s

i

)
us−i (ϑρv)i

∞∑
t=0

(−2〈u, ϑρv〉)t
t !

∫ ∞

0
rn− j+s+2t−1e−r2 dr

×
∫ π

2

0
cos(α)n−k+s−i+t−1 sin(α)k− j+i+t−1 dα Hk− j−1(dv)Hn−k−1(du),

wherewe interchanged the integrationswith respect to r andα with the series with respect to t
by dominated convergencewhich can be applied for almost all (ϑ, u). In fact, for ν⊗Hn−k−1-
almost all pairs (ϑ, u) ∈ SO(n) × F⊥ we have ϑ−1u /∈ F ′⊥ (and hence 〈u, ϑρv〉 < 1, for
all ρ ∈ SO(F ′⊥) and v ∈ F ′⊥) such that the series converges absolutely and uniformly
and yields an integrable upper bound. The integrations with respect to r and α can now be
simplified to

J1 = 1

4
[F, ϑF ′]

∫
ω

∫
ω′

s∑
i=0

(
s

i

)
us−i (ϑρv)i

∞∑
t=0

(−2〈u, ϑρv〉)t
t !

× �
( n−k+s−i+t

2

)
�

( k− j+i+t
2

)Hk− j−1(dv)Hn−k−1(du).

The series with respect to t again converges absolutely for almost all (ϑ, u). Therefore,
Fubini’s theorem yields

J (ω, ω′) = 1

2�
(
n− j+s

2

)
∫

ω

∫
SO(n)

[F, ϑF ′]2 Q(F ∩ ϑF ′)l

×
s∑

i=0

(
s

i

)
us−i

∞∑
t=0

(−2)t

t ! �
( n−k+s−i+t

2

)
�

( k− j+i+t
2

)

×
∫

ω′

∫
SO(F ′⊥)

(ϑρv)i 〈u, ϑρv〉t νF ′⊥
(dρ)Hk− j−1(dv) ν(dϑ)Hn−k−1(du).

By the right invariance of the measure νF ′⊥
, the integrand is now independent of the specific

choice of v ∈ F ′⊥ ∩ S
n−1. Thus, for an arbitrary but fixed unit vector v0 ∈ F ′⊥ ∩ S

n−1 we
obtain

J (ω, ω′) = 1

2�
(
n− j+s

2

) Hk− j−1(ω′)
∫

ω

∫
SO(n)

[F, ϑF ′]2 Q(F ∩ ϑF ′)l

×
s∑

i=0

(
s

i

)
us−i

∞∑
t=0

(−2)t

t ! �
( n−k+s−i+t

2

)
�

( k− j+i+t
2

)

×
∫
SO(F ′⊥)

(ϑρv0)
i 〈u, ϑρv0〉t νF ′⊥

(dρ) ν(dϑ)Hn−k−1(du).

We denote the integral with respect to ρ by J2 and obtain

J2 = ‖pϑF ′⊥(u)‖t ϑ
∫
SO(F ′⊥)

(ρv0)
i
〈
πF ′⊥(ϑ−1u), ρv0

〉t
νF ′⊥

(dρ)

if ϑ−1u /∈ F ′ (which holds by an analogous argument as above for almost all pairs (ϑ, u)).
We note that the integration over SO(F ′⊥) yields the same value as an integration over all
ρ ∈ O(n) which fix F ′0 pointwise, since dim(F ′⊥) ∈ {1, . . . , n − 1} and n ≥ 2. Hence, an
application of Lemma 12 in F ′⊥ yields
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J2 = 1{i + t even}
�

(
k− j
2

)
√

π

�(t + 1)

2t�
(
k− j+i+t

2

)‖pϑF ′⊥(u)‖t

×
� i
2 �∑

x=( i−t
2 )+

(
i

2x

)
�(x + 1

2 )

�
( t−i

2 + x + 1
)πϑF ′⊥(u)i−2x Q(ϑF ′⊥)x .

Thus we conclude

J (ω, ω′) =
�

(
k− j
2

)

2
√

π�
(
n− j+s

2

)Hk− j−1(ω′)
∫

ω

∫
SO(n)

[F, ϑF ′]2 Q(F ∩ ϑF ′)l

×
s∑

i=0

(−1)i
(
s

i

)
us−i

∞∑
t=0

1{i + t even}�( n−k+s−i+t
2

)‖pϑF ′⊥(u)‖t

×
� i
2 �∑

x=( i−t
2 )+

(
i

2x

)
�(x + 1

2 )

�
( t−i

2 + x + 1
)πϑF ′⊥(u)i−2x Q(ϑF ′⊥)x ν(dϑ)Hn−k−1(du),

where we used that (−1)t = (−1)i provided that i + t is even.
As the series with respect to t converges absolutely for almost all (ϑ, u) (using again that

we have ϑ−1u /∈ F ′ ∪ F ′⊥, for ν ⊗Hn−k−1-almost all pairs (ϑ, u) ∈ SO(n) × F⊥), we can
rearrange the order of the summations to get

J (ω, ω′) =
�

(
k− j
2

)

2
√

π�
(
n− j+s

2

)Hk− j−1(ω′)
∫

ω

∫
SO(n)

[F, ϑF ′]2Q(F ∩ ϑF ′)l

×
s∑

i=0

� i
2 �∑

x=0

(−1)i
(
s

i

)(
i

2x

)
�(x + 1

2 )u
s−iπϑF ′⊥(u)i−2x Q(ϑF ′⊥)x

×
∞∑

t=i−2x

1{i + t even} �
( n−k+s−i+t

2

)
�

( t−i
2 + x + 1

)‖pϑF ′⊥(u)‖t ν(dϑ)Hn−k−1(du).

We denote the series with respect to t by St . Then, for ϑ−1u /∈ F ′⊥, we obtain (after an index
shift)

St =
∞∑
t=0

1{2i − 2x + t even}�
( n−k+s+t−2x

2

)
�

( t
2 + 1

) ‖pϑF ′⊥(u)‖i−2x+t

= ‖pϑF ′⊥(u)‖i−2x
∞∑
t=0

�
( n−k+s

2 + t − x
)

�(t + 1)
‖pϑF ′⊥(u)‖2t

= �( n−k+s
2 − x)‖pϑF ′⊥(u)‖i−2x

∞∑
t=0

(− n−k+s
2 + x

t

)
(−‖pϑF ′⊥(u)‖2)t

= �( n−k+s
2 − x)‖pϑF ′⊥(u)‖i−2x‖pϑF ′(u)‖−n+k−s+2x .
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1372 D. Hug, J. A. Weis

Expanding Q(ϑF ′⊥)x = (Q − Q(ϑF ′))x in J (ω, ω′), we obtain

J (ω, ω′) =
�

(
k− j
2

)

2
√

π�
(
n− j+s

2

)Hk− j−1(ω′)

×
∫

ω

∫
SO(n)

s∑
i=0

� i
2 �∑

x=0

x∑
y=0

(−1)i+y
(
s

i

)(
i

2x

)(
x

y

)
�(x + 1

2 )

× �( n−k+s
2 − x)us−i Qx−y[F, ϑF ′]2‖pϑF ′(u)‖−n+k−s+2x

× pϑF ′⊥(u)i−2x Q(ϑF ′)y Q(F ∩ ϑF ′)l ν(dϑ)Hn−k−1(du).

Changing the order of the summation under the integral gives

J (ω, ω′) =
�

(
k− j
2

)

2
√

π�
(
n− j+s

2

)Hk− j−1(ω′)

×
∫

ω

∫
SO(n)

� s
2 �∑

x=0

x∑
y=0

s∑
i=2x

(−1)i+y
(
s

i

)(
i

2x

)(
x

y

)
�(x + 1

2 )

× �( n−k+s
2 − x)us−i Qx−y[F, ϑF ′]2‖pϑF ′(u)‖−n+k−s+2x pϑF ′⊥(u)i−2x

× Q(ϑF ′)y Q(F ∩ ϑF ′)l ν(dϑ)Hn−k−1(du).

We denote the integral with respect to ϑ in J (ω, ω′) by J3 and transform it, to obtain

J3 =
∫
G(n,n−k+ j)

� s
2 �∑

x=0

x∑
y=0

s∑
i=2x

(−1)i+y
(
s

i

)(
i

2x

)(
x

y

)
�(x + 1

2 )�( n−k+s
2 − x)

× us−i Qx−y[F,G]2‖pG(u)‖−n+k−s+2x pG⊥(u)i−2x Q(G)y Q(F ∩ G)l νn−k+ j (dG).

Since n ≥ 2 and 1 ≤ n − k + j ≤ n − 1, Lemma 6 yields

J3 = ωn−k+ j

2ωn

∫
G(u⊥,n−k+ j−1)

×
∫ 1

−1

∫
U⊥∩u⊥∩Sn−1

� s
2 �∑

x=0

x∑
y=0

s∑
i=2x

(−1)i+y
(
s

i

)(
i

2x

)(
x

y

)
�(x + 1

2 )

× �( n−k+s
2 − x)us−i Qx−y |z|n−k+ j−1 (

1 − z2
) k− j−2

2 [F, lin{U, zu +
√
1 − z2w}]2

× ‖plin{U,zu+√
1−z2w}(u)‖−n+k−s+2x Q(lin{U, zu +

√
1 − z2w})y

× Q(F ∩ lin{U, zu +
√
1 − z2w})l plin{U,zu+√

1−z2w}⊥(u)i−2x

× Hk− j−1(dw) dz νu
⊥

n−k+ j−1(dU ).

The required integrability will be clear from (9) below. Since u, w ∈ U⊥, we obtain

plin{U,zu+√
1−z2w}⊥(u) =

√
1 − z2 · (

√
1 − z2u − |z|sign(z)w)
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Kinematic formulae for tensorial curvature measures 1373

and ‖plin{U,zu+√
1−z2w}(u)‖ = |z|. Furthermore, since also F ⊂ u⊥, we have

[F, lin{U, zu +
√
1 − z2w}] = [F,U ](u⊥)|z|,

Q(lin{U, zu +
√
1 − z2w}) = Q(U ) + (|z|u +

√
1 − z2sign(z)w)2,

and, for all z ∈ [−1, 1]\{0} and w ∈ U⊥ ∩ u⊥ ∩ S
n−1,

Q(F ∩ lin{U, zu +
√
1 − z2w}) = Q(F ∩U ),

as F ⊂ u⊥ and U = lin{U, zu + √
1 − z2w} ∩ u⊥. Using the fact that the integration with

respect to w is invariant under reflection in the origin, we obtain

J3 = ωn−k+ j

2ωn

∫
G(u⊥,n−k+ j−1)

∫ 1

−1

∫
U⊥∩u⊥∩Sn−1

×
� s
2 �∑

x=0

x∑
y=0

s∑
i=2x

(−1)i+y
(
s

i

)(
i

2x

)(
x

y

)
�(x + 1

2 )

× �( n−k+s
2 − x)us−i Qx−y |z| j−s+2x+1 (

1 − z2
) k− j+i−2x−2

2
(√

1 − z2u − |z|w
)i−2x

×
(
[F,U ](u⊥)

)2 (
Q(U ) + (|z|u +

√
1 − z2w)2

)y

× Q(F ∩U )l Hk− j−1(dw)dzνu
⊥

n−k+ j−1(dU ).

The binomial expansion

(√
1 − z2u − |z|w

)i−2x =
i−2x∑
α=0

(−1)α
(
i − 2x

α

)(√
1 − z2u

)i−2x−α(|z|w)α

and a change of the order of summation give

J3 = ωn−k+ j

2ωn

∫
G(u⊥,n−k+ j−1)

(
[F,U ](u⊥)

)2 ∫ 1

−1

∫
U⊥∩u⊥∩Sn−1

� s
2 �∑

x=0

x∑
y=0

s−2x∑
α=0

(−1)y
(
x

y

)

× wα
s∑

i=2x+α

(−1)i+α

(
s

i

)(
i

2x

)(
i − 2x

α

) (
1 − z2

)i
�( n−k+s

2 − x)

× �(x + 1
2 )u

s−2x−αQx−y |z| j−s+2x+α+1 (
1 − z2

) k− j−4x−α−2
2 Q(F ∩U )l

×
(
Q(U ) + (|z|u +

√
1 − z2w)2

)y
Hk− j−1(dw) dz νu

⊥
n−k+ j−1(dU ).

With Lemma A.2 we get

J3 = ωn−k+ j

2ωn

� s
2 �∑

x=0

x∑
y=0

s−2x∑
α=0

(−1)y
(
x

y

)(
s

2x

)(
s − 2x

α

)
�(x + 1

2 )�( n−k+s
2 − x)us−2x−αQx−y

×
∫
G(u⊥,n−k+ j−1)

(
[F,U ](u⊥)

)2 ∫ 1

−1
|z| j+s−2x−α+1

(
1 − z2

) k− j+α−2
2

∫
U⊥∩u⊥∩Sn−1

×wαQ(F ∩U )l
(
Q(U ) + (|z|u +

√
1 − z2w)2

)y Hk− j−1(dw) dz νu
⊥

n−k+ j−1(dU ).

(9)
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1374 D. Hug, J. A. Weis

At this point, we easily see that the integrals in J3 are finite, since j + s − 2x − α + 1 ≥ 0
and k − j + α − 2 ≥ −1. In fact, the absolute values of the integrands have finite integral,
which also justifies the application of Lemma 6 above. Therefore, we can freely change the
order of summation and integration from now on. We write J4 for the integral with respect
to U multiplied by the factor ωn−k+ j/(2ωn).

By (twofold) binomial expansion of (Q(U ) + (|z|u + √
1 − z2w})2)y , we obtain

J4 = ωn−k+ j

2ωn

y∑
β=0

2β∑
γ=0

(
y

β

)(
2β

γ

)
u2β−γ

∫
G(u⊥,n−k+ j−1)

(
[F,U ](u⊥)

)2
Q(U )y−β

× Q(F ∩U )l
∫ 1

−1
|z| j+s−2x−α+2β−γ+1 (

1 − z2
) k− j+α+γ−2

2 dz

×
∫
U⊥∩u⊥∩Sn−1

wα+γ Hk− j−1(dw) νu
⊥

n−k+ j−1(dU ).

Using Lemma 7 and expressing the involved spherical volumes in terms of Gamma functions,
we get

J4 = �( n2 )
√

π�(
n−k+ j

2 )

y∑
β=0

2β∑
γ=0

1{α + γ even}
(
y

β

)(
2β

γ

)

×
�

(
j+s−α−γ

2 − x + β + 1
)

�
(

α+γ+1
2

)

�
( k+s

2 − x + β + 1
) u2β−γ

×
∫
G(u⊥,n−k+ j−1)

(
[F,U ](u⊥)

)2
Q(U )y−βQ(F∩U )l Q(U⊥ ∩ u⊥)

α+γ
2 νu

⊥
n−k+ j−1(dU ).

With an index shift in the summation with respect to γ , we obtain

J4 = �
( n
2

)
√

π�
(
n−k+ j

2

)
y∑

β=0

α+2β∑
γ=α

1{γ even}
(
y

β

)(
2β

γ − α

)

×
�

(
j+s−γ

2 − x + β + 1
)

�
(

γ+1
2

)

�
( k+s

2 − x + β + 1
) uα+2β−γ

×
∫
G(u⊥,n−k+ j−1)

(
[F,U ](u⊥)

)2
Q(U )y−βQ(F ∩U )l Q(U⊥ ∩ u⊥)

γ
2 νu

⊥
n−k+ j−1(dU ).

We plug J4 into J3 and change the order of summation to get

J3 = �
( n
2

)
√

π�
(
n−k+ j

2

)
� s
2 �∑

x=0

x∑
y=0

y∑
β=0

×
s−2x+2β∑

γ=0

(−1)y1{γ even}
(
s

2x

)(
x

y

)(
y

β

)
�(x + 1

2 )�( n−k+s
2 − x)

×
min{s−2x,γ }∑
α=(γ−2β)+

(
s − 2x

α

)(
2β

γ − α

)�
(

j+s−γ
2 − x + β + 1

)
�

(
γ+1
2

)

�
( k+s

2 − x + β + 1
) us−2x+2β−γ Qx−y
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×
∫
G(u⊥,n−k+ j−1)

(
[F,U ](u⊥)

)2
Q(U )y−βQ(F ∩U )l Q(U⊥ ∩ u⊥)

γ
2 νu

⊥
n−k+ j−1(dU ).

By Vandermonde’s identity (applied to the summation over α),

J3 = �
( n
2

)
√

π�
(
n−k+ j

2

)
� s
2 �∑

x=0

x∑
y=0

y∑
β=0

� s
2 �−x+β∑
γ=0

(−1)y
(
s

2x

)(
x

y

)(
y

β

)(
s − 2x + 2β

2γ

)
�(x + 1

2 )

× �( n−k+s
2 − x)

�
(

j+s
2 − x + β − γ + 1

)
�

(
γ + 1

2

)
�

( k+s
2 − x + β + 1

) us−2x+2β−2γ Qx−y

×
∫
G(u⊥,n−k+ j−1)

(
[F,U ](u⊥)

)2
Q(U )y−βQ(F ∩U )l Q(U⊥ ∩ u⊥)γ νu

⊥
n−k+ j−1(dU ).

Next we expand Q(U⊥ ∩ u⊥)γ = (Q(u⊥) − Q(U ))γ to get

J (ω, ω′) =
�( n2 )�

(
k− j
2

)

2π�(
n−k+ j

2 )�
(
n− j+s

2

)Hk− j−1(ω′)
� s
2 �∑

x=0

x∑
y=0

y∑
β=0

� s
2 �−x+β∑
γ=0

γ∑
δ=0

(−1)y+δ

(
s

2x

)(
x

y

)(
y

β

)

×
(
s − 2x + 2β

2γ

)(
γ

δ

)
�(x + 1

2 )�
( n−k+s

2 − x
)�

(
j+s
2 − x + β − γ + 1

)
�

(
γ + 1

2

)
�

( k+s
2 − x + β + 1

)

× Qx−y
∫

ω

us−2x+2β−2γ Q(u⊥)γ−δ

∫
G(u⊥,n−k+ j−1)

(
[F,U ](u⊥)

)2

× Q(U )y−β+δQ(F ∩U )l νu
⊥

n−k+ j−1(dU )Hn−k−1(du).

Reversing the order of summation, first with respect to β, and then with respect to y, we get

J (ω, ω′) =
�( n2 )�

(
k− j
2

)

2π�
(
n−k+ j

2

)
�

(
n− j+s

2

)Hk− j−1(ω′)
� s
2 �∑

x=0

x∑
y=0

x−y∑
β=0

� s
2 �−y−β∑
γ=0

γ∑
δ=0

(−1)x+y+δ

×
(
s

2x

)(
x

y

)(
x − y

β

)(
s − 2y − 2β

2γ

)(
γ

δ

)
�(x + 1

2 )�( n−k+s
2 − x)

×
�

(
j+s
2 − y − β − γ + 1

)
�

(
γ + 1

2

)
�

( k+s
2 − y − β + 1

) Qy
∫

ω

us−2y−2β−2γ Q(u⊥)γ−δ

×
∫
G(u⊥,n−k+ j−1)

(
[F,U ](u⊥)

)2
Q(U )β+δQ(F ∩U )l νu

⊥
n−k+ j−1(dU )Hn−k−1(du).

A change of the order of summation yields

J (ω, ω′) =
�( n2 )�

(
k− j
2

)

2π�(
n−k+ j

2 )�
(
n− j+s

2

)Hk− j−1(ω′)
� s
2 �∑

y=0

� s
2 �−y∑
β=0

� s
2 �−y−β∑
γ=0

γ∑
δ=0

(−1)y+δ

×
� s
2 �∑

x=y+β

(−1)x
(
s

2x

)(
x

y

)(
x − y

β

)
�(x + 1

2 )�
( n−k+s

2 − x
)

×
(
s − 2y − 2β

2γ

)(
γ

δ

)�
(

j+s
2 − y − β − γ + 1

)
�

(
γ + 1

2

)
�

( k+s
2 − y − β + 1

)
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× Qy
∫

ω

us−2y−2β−2γ Q(u⊥)γ−δ

∫
G(u⊥,n−k+ j−1)

(
[F,U ](u⊥)

)2

× Q(U )β+δQ(F ∩U )l νu
⊥

n−k+ j−1(dU )Hn−k−1(du).

By Legendre’s duplication formula, applied several times, we obtain
(
s

2x

)(
x

y

)(
x − y

β

)
�

(
x + 1

2

)

=
(

s

2y + 2β

)(
y + β

y

)
�

(
y + β + 1

2

) (� s
2� − y − β

x − y − β

)
�

(� s+1
2 � − y − β + 1

2

)
�

(� s+1
2 � − x + 1

2

) .

We denote the resulting sum with respect to x by Sx . An index shift and a change of the order
of summation imply that

Sx =
� s
2 �−y−β∑
x=0

(−1)�
s
2 �+x

(� s
2� − y − β

x

)
�

( n−k+s
2 − � s

2� + x
)

�
(� s+1

2 � − � s
2� + x + 1

2

) .

Hence, an application of relation (A.1’) and then of relation (5) with c = n−k+s
2 −� s+1

2 �− 1
2

and m = � s
2� − y − β ∈ N0 yield

Sx = (−1)�
s
2 � �

( n−k+s
2 − � s

2�
)
�

(� s+1
2 � + � s

2� − n−k+s
2 − y − β + 1

2

)
�

(� s+1
2 � − y − β + 1

2

)
�

(� s+1
2 � − n−k+s

2 + 1
2

)

=
=(−1)y+β︷ ︸︸ ︷

(−1)s+� s
2 �+� s+1

2 �+y+β

=�
(
n−k
2

)
�

(
n−k+1

2

)
︷ ︸︸ ︷
�

( n−k+s
2 − � s

2�
)
�

( n−k+s
2 − � s+1

2 � + 1
2

)
�

(� s+1
2 � − y − β + 1

2

)
�

( n−k+1
2 + y + β − s

2

) ,

where we used that c ≥ 0, except for k = n − 1 and odd s when c = −1/2. We note that
Sx = 0 if n − k + s is odd and n − k + 1 ≤ s − 2y − 2β. Thus, we obtain

J (ω, ω′) =
�( n2 )�

( n−k
2

)
�

( n−k+1
2

)
�

(
k− j
2

)

2π�(
n−k+ j

2 )�
(
n− j+s

2

) Hk− j−1(ω′)
� s
2 �∑

y=0

� s
2 �−y∑
β=0

� s
2 �−y−β∑
γ=0

γ∑
δ=0

(−1)β+δ

×
(

s

2y + 2β

)(
y + β

y

)(
s − 2y − 2β

2γ

)(
γ

δ

)�
(

j+s
2 − y − β − γ + 1

)
�

(
γ + 1

2

)
�

( k+s
2 − y − β + 1

)

× �
(
y + β + 1

2

)
�

( n−k+1
2 + y + β − s

2

)Qy
∫

ω

us−2y−2β−2γ Q(u⊥)γ−δ

∫
G(u⊥,n−k+ j−1)

×
(
[F,U ](u⊥)

)2
Q(U )β+δQ(F ∩U )l νu

⊥
n−k+ j−1(dU )Hn−k−1(du).

We conclude from Proposition 14 (applied in u⊥) that

J (ω, ω′) = �
( n
2

)
�

( n+1
2

)
(n − k + j − 1)!

(n − 1)!�(
n−k+ j

2 )�
(
n−k+ j+1

2

) k!� ( k
2

)
�

( n−k
2

)
�

( n−k+1
2

)
�

(
j
2 + l

)

2π j !�
(

j
2

)
�

(
n− j+s

2

) Hk− j−1(ω′)

×
� s
2 �∑

y=0

� s
2 �−y∑
β=0

� s
2 �−y−β∑
γ=0

γ∑
δ=0

β+δ∑
i=0

(−1)β+δ

(
s

2y + 2β

)(
y + β

y

)(
s − 2y − 2β

2γ

)(
γ

δ

)
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×
(

β + δ

i

)�
(

j+s
2 − y − β − γ + 1

)
�

(
γ + 1

2

)
�

( k+s
2 − y − β + 1

) �
(
y + β + 1

2

)
�

( n−k+1
2 + y + β − s

2

)

× (i + l − 2)!
(l − 2)!

�
(
k− j
2 + i

)

�
( k
2 + l + i

) �
(
n−k+ j+1

2 + β + δ − i
)

�
( n+1

2 + β + δ
) QyQ(F)l+i

×
∫

ω

us−2y−2β−2γ Q(u⊥)β+γ−i Hn−k−1(du).

To simplify the right-hand side, we apply Legendre’s duplication formula three times. Then
binomial expansion of Q(u⊥)β+γ−i = (Q − u2)β+γ−i , an index shift in the resulting sum,
and a subsequent index shift in the summation with respect to β imply that

J (ω, ω′) =
k!(n − k − 1)!� ( k

2

)
�

(
j
2 + l

)

2n− j
√

π j !�
(

j
2

)
�

(
n− j+s

2

) Hk− j−1(ω′)
� s
2 �∑

y=0

� s
2 �∑

β=y

� s
2 �−β∑
γ=0

γ∑
δ=0

β+δ−y∑
i=0

β+γ∑
m=y+i

× (−1)m+y+γ+δ

(
s

2β

)(
β

y

)(
s − 2β

2γ

)(
γ

δ

)(
β + δ − y

i

)(
β + γ − y − i

m − y − i

)

× (i + l − 2)!
(l − 2)!

�
(
β + 1

2

)
�

( n−k+1
2 + β − s

2

) �
(

j+s
2 − β − γ + 1

)
�

(
γ + 1

2

)
�

( k+s
2 − β + 1

) �
(
k− j
2 + i

)

�
( k
2 + l + i

)

×
�

(
n−k+ j+1

2 + β + δ − y − i
)

�
( n+1

2 + β + δ − y
) Qm−i Q(F)l+i

∫
ω

us−2m Hn−k−1(du).

By a change of the order of summation, we finally obtain

J (ω, ω′) = Hk− j−1(ω′)
� s
2 �∑

m=0

m∑
i=0

bs,l,in, j,k â
s,i,m
n, j,k Q

m−i Q(F)l+i
∫

ω

us−2m Hn−k−1(du),

where

bs,l,in, j,k := �
( k
2

)
2n− j

√
π�

(
j
2

)
�

(
n− j+s

2

) k!(n − k − 1)!
j !

(i + l − 2)!
(l − 2)!

�
(

j
2 + l

)
�

(
k− j
2 + i

)

�
( k
2 + l + i

) ,

âs,i,mn, j,k :=
m−i∑
y=0

� s
2 �∑

β=y

� s
2 �−β∑

γ=(m−β)+

γ∑
δ=(i−β+y)+

(−1)m+y+γ+δ

(
s

2β

)(
β

y

)(
s − 2β

2γ

)(
γ

δ

)

×
(

β + δ − y

i

)(
β + γ − y − i

m − y − i

)
�(β + 1

2 )�(γ + 1
2 )

×
�

(
j+s
2 − β − γ + 1

)

�
( k+s

2 − β + 1
)
�

( n−k+1
2 + β − s

2

) �
(
n−k+ j+1

2 + β + δ − y − i
)

�
( n+1

2 + β + δ − y
) .

5.4 Simplifying the coefficients

In this section, we simplify the coefficients âs,i,mn, j,k by a repeated change of the order of
summation and by repeated application of relations (A.1) and (A.1’).
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First, an index shift by β, applied to the summation with respect to γ , and a change of the
order of summation yield

âs,i,mn, j,k =
m−i∑
y=0

� s
2 �∑

γ=m

γ∑
β=y

γ−β∑
δ=(i−β+y)+

(−1)m+y+γ+β+δ

(
s

2β

)(
β

y

)(
s − 2β

2γ − 2β

)(
γ − β

δ

)

×
(

β + δ − y

i

)(
γ − y − i

m − y − i

)
�(β + 1

2 )�(γ − β + 1
2 )

×
�

(
j+s
2 − γ + 1

)

�
( k+s

2 − β + 1
)
�

( n−k+1
2 + β − s

2

) �
(
n−k+ j+1

2 + β + δ − y − i
)

�
( n+1

2 + β + δ − y
) .

Shifting the index of the summation with respect to δ by β and changing the order of sum-
mation, we obtain

âs,i,mn, j,k =
m−i∑
y=0

� s
2 �∑

γ=m

γ∑
δ=i+y

δ∑
β=y

(−1)m+y+γ+δ

(
s

2β

)(
β

y

)(
s − 2β

2γ − 2β

)(
γ − β

δ − β

)(
δ − y

i

)(
γ − y − i

m − y − i

)

× �(β + 1
2 )�(γ − β + 1

2 )
�

(
j+s
2 − γ + 1

)

�
( k+s

2 − β + 1
)
�

( n−k+1
2 + β − s

2

) �
(
n−k+ j+1

2 + δ − y − i
)

�
( n+1

2 + δ − y
) .

We conclude from an index shift by y, applied to the summation with respect to β, and by
−i − y, applied to the summation with respect to δ,

âs,i,mn, j,k =
m−i∑
y=0

� s
2 �∑

γ=m

γ−y−i∑
δ=0

i+δ∑
β=0

(−1)i+m+γ+δ

(
s

2y + 2β

)(
y + β

y

)(
s − 2y − 2β

2γ − 2y − 2β

)

×
(

γ − y − β

i + δ − β

)(
i + δ

i

)(
γ − y − i

m − y − i

)
�(y + β + 1

2 )�(γ − y − β + 1
2 )

×
�

(
j+s
2 − γ + 1

)

�
( k+s

2 − y − β + 1
)
�

( n−k+1
2 + y + β − s

2

) �
(
n−k+ j+1

2 + δ
)

�
( n+1

2 + i + δ
) .

With Legendre’s duplication formula (applied three times), we obtain(
s

2y + 2β

)(
y + β

y

)(
s − 2y − 2β

2γ − 2y − 2β

)(
γ − y − β

i + δ − β

)(
i + δ

i

)(
γ − y − i

m − y − i

)

× �(y + β + 1
2 )�(γ − y − β + 1

2 )

=
(
s

2i

)(
m − i

y

)(
γ − i

m − i

)(
s − 2i

2γ − 2i

)(
γ − y − i

δ

)(
i + δ

β

)
�(i + 1

2 )�(γ − i + 1
2 ),

and hence

âs,i,mn, j,k = �(i + 1
2 )

(
s

2i

) m−i∑
y=0

� s
2 �∑

γ=m

γ−y−i∑
δ=0

i+δ∑
β=0

(−1)i+m+γ+δ

×
(
m − i

y

)(
γ − i

m − i

)(
s − 2i

2γ − 2i

)(
γ − y − i

δ

)(
i + δ

β

)
�(γ − i + 1

2 )

×
�

(
j+s
2 − γ + 1

)

�
( k+s

2 − y − β + 1
)
�

( n−k+1
2 + y + β − s

2

) �
(
n−k+ j+1

2 + δ
)

�
( n+1

2 + i + δ
) .
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Now we define as,i,mn, j,k := (�(i + 1
2 )

( s
2i

)
)−1âs,i,mn, j,k . We first use relation (A.1) and then

apply relation (A.1’) twice. Thus we obtain

i+δ∑
β=0

(
i + δ

β

)
1

�
( k+s

2 − y − β + 1
)
�

( n−k−s+1
2 + y + β

)

= �
( n+1

2 + i + δ
)

�
( k+s

2 − y + 1
)
�

( n−k−s+1
2 + i + y + δ

)
�

( n+1
2

) ,

γ−y−i∑
δ=0

(−1)δ
(

γ − y − i

δ

) �
(
n−k+ j+1

2 + δ
)

�
( n−k−s+1

2 + i + y + δ
)

= (−1)i+γ+y
�

(
n−k+ j+1

2

)
�

(
j+s
2 − i − y + 1

)

�
( n−k−s+1

2 + γ
)
�

(
j+s
2 − γ + 1

) ,

where we also used (5) with c = j+s
2 − i − y ≥ 0 and m = γ − i − y ∈ N0, and

m−i∑
y=0

(−1)m+y
(
m

y

)�
(

j+s
2 − i − y + 1

)

�
( k+s

2 − y + 1
) = (−1)i

�
(

j+s
2 − m + 1

)
�

(
k− j
2 + m

)

�
( k+s

2 + 1
)
�

(
k− j
2 + i

) .

This gives

as,i,mn, j,k = (−1)i
�

(
n−k+ j+1

2

)
�

(
j+s
2 − m + 1

)
�

(
k− j
2 + m

)

�
( n+1

2

)
�

( k+s
2 + 1

)
�

(
k− j
2 + i

)

×
� s
2 �∑

γ=m

(
γ − i

m − i

)(
s − 2i

2γ − 2i

)
�

(
γ − i + 1

2

)
�

( n−k−s+1
2 + γ

) .

We deduce from Legendre’s duplication formula that
(

γ − i

m − i

)(
s − 2i

2γ − 2i

)
�

(
γ − i + 1

2

) = √
π

(� s
2� − i

m − i

)(� s
2� − m

γ − m

)
�

(� s+1
2 � − i + 1

2

)
�

(� s+1
2 � − γ + 1

2

) .

Denoting the resulting sum in as,i,mn, j,k with respect to γ by S4, we obtain

S4 =
� s
2 �−m∑
γ=0

(� s
2� − m

γ

)
1

�(� s+1
2 � − m − γ + 1

2 )�
( n−k−s+1

2 + m + γ
) ,

for which relation (A.1) yields

S4 = �
( n−k+s

2 − m
)

�
( n−k+1

2

)
�

( n−k
2

)
�

(� s+1
2 � − m + 1

2

) .

We obtain from Legendre’s duplication formula

√
π

(� s
2� − i

m − i

)
�(� s+1

2 � − i + 1
2 )S4 = �

( n−k+s
2 − m

)
�

( n−k+1
2

)
�

( n−k
2

)
(

s − 2i

2m − 2i

)
�(m − i + 1

2 ).
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This gives

as,i,mn, j,k = (−1)i
(

s − 2i

2m − 2i

)
�(m − i + 1

2 )
�

(
n−k+ j+1

2

)

�
( n+1

2

)
�

( n−k+1
2

)
�

( n−k
2

)
�

( k+s
2 + 1

)

×
�

( n−k+s
2 − m

)
�

(
j+s
2 − m + 1

)
�

(
k− j
2 + m

)

�
(
k− j
2 + i

) .

Next, we conclude from further applications of Legendre’s duplication formula that

ωn−kωk− j

ωn− j

cr,s,ln, j

cr,s−2m,l+i
n,k

(
s

2i

)
�(i + 1

2 )b
s,l,i
n, j,ka

s,i,m
n, j,k = cs,l,i,mn, j,k

with cs,l,i,mn, j,k as defined in the statement of Theorem 1.
Finally, returning to (8) and using the definition of the generalized tensorial curvature

measures, we get

I1 =
n∑

k= j

� s
2 �∑

m=0

m∑
i=0

cs,l,i,mn, j,k Qm−iφ
r,s−2m,l+i
k (P, β)φn−k+ j (P

′, β ′).

In the last step, we use that for k = j we have cs,l,i,mn, j, j = 1{i = m = 0}. Moreover, in the case

k = n we use that φ
r,s−2m,l+i
n vanishes for m �= s

2 . Hence, for even s we have to simplify
the sum

s
2∑

i=0

c
s,l,i, s2
n, j,n Q

s
2−iφr,0,l+i

n (P, β)φ j (P
′, β ′) =

s
2∑

i=0

c
s,l,i, s2
n, j,n

ωn+2l+2i

ωn+s+2l
φ
r,0, s2+l
n (P, β)φ j (P

′, β ′).

For this, an application of relation (A.1’) yields

csn, j φ
r,0, s2+l
n (P, β)φ j (P

′, β ′) = 1

(2π)s
( s
2

)!
�

( n+s
2 + l

)
�(l − 1)

�
( n
2 + 1

)
�

( n+s
2 + 1

) �
(
n− j+s

2

)

�
(
n− j
2

)

×
s
2∑

i=0

(−1)i
( s

2
i

)
�(i + l − 1)

�
( n
2 + l + i

)φ
r,0, s2+l
n (P, β)φ j (P

′, β ′)

(10)

as required. This completes the proof.

Appendix A: Explicit sum expressions

In this section, we provide closed form expressions for sums which are required in the
preceding sections.

Lemma A.1 Let q ∈ N0, b, c ∈ R. Then

q∑
y=0

(
q

y

)
1

�(b + y)�(c − y)
= �(b + c + q − 1)

�(c)�(b + q)�(b + c − 1)
. (A.1)
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The proof of Lemma A.1 is a simple application of Zeilberger’s algorithm and is therefore
not provided here. For a proof, see the more detailed prior work [44]. In this work, we often
use a consequence of Lemma A.1: With (5) we obtain for a > 0 and b ∈ R the relation

q∑
y=0

(−1)y
(
q

y

)
�(a + y)

�(b + y)
= �(a)�(b − a + q)

�(b + q)�(b − a)
, (A.1’)

which extends a corresponding lemma in [43] to the range b ≤ 0.
The following lemma is an easy application of the binomial theorem (for the proof see

[44]).

Lemma A.2 Let α, β, γ ∈ N, 0 < j < n. Then

s∑
i=2x+α

(−1)i+α

(
s

i

)(
i

2x

)(
i − 2x

α

) (
1 − z2

)i =
(
s

2x

)(
s − 2x

α

)
z2s−4x−2α(1 − z2)2x+α.
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