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Abstract We prove some results on the existence and uniqueness of solutions to a recently
derived nonlinear model for the ocean flow in arctic gyres. We derive an equivalent formu-
lation of the problem in the form of an integral equation on a semi-infinite interval and then
use fixed point techniques. We also obtain some stability result.

Keywords Differential equation · Integral equation · Ocean gyre

Mathematics Subject Classification 45G99 · 58J32 · 76B03

1 Introduction

The combined forces of gravity and Coriolis (due to Earth’s rotation), triggered by the wind
stress, drive circulating ocean currents, called gyres, in which the ocean flow adjusts to
these two major forces acting on them so that those forces balance one another—see the
discussion in [10,11]. Gyres are constrained by land masses, with dimensions nearly those
of ocean basins, and, since the Coriolis effect deflects winds to the right in the Northern
Hemisphere and to the left in the Southern Hemisphere, this results in the deflection of gyres
to the right in the Northern Hemisphere (clockwise rotation) and to the left in the Southern
Hemisphere (counterclockwise rotation). These geophysical flows are dominantly horizontal,
with horizontal velocities typically of the order of 0.01 m/s [6] and about a factor 104 larger
than the vertical velocities [14]. The importance of these slow flows, which are a dominant
factor in the circulation of ocean water around the entire planet, is due to their extent, of the
order of 106 km2 in the case of the North Pacific gyre. There are gyres in all of the world’s
seven major ocean regions (North Atlantic, South Atlantic, Indian, North Pacific, South
Pacific, Arctic, Antarctic), each presenting some specific flow pattern, mostly dependent on
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its location north and south of the equator—gyres do not occur at the Equator [1]. Indeed, the
Coriolis effect is not present at the Equator due to the vanishing of the meridional component
of the Coriolis force, which implies that the Equator works as a fictitious natural boundary,
facilitating azimuthal flow propagation (for details we refer to the discussions in [3,4]).

Recently, a model of the general motion of a gyre in spherical coordinates as a shallow-
water flow on a rotating sphere was obtained (see the discussion in [6]), in which the gyre
motion is described in terms of a stream function by the solution of an elliptic boundary value
problem. In particular, this applies to the gyre problem in the northern part of theArcticOcean
(above 84◦N), where permanent ice, with thickness exceeding 2m, floats on the ocean, slowly
rotating clockwise, roughly centered on the North Pole, cf. the discussion in [16]. By means
of the stereographic projection, the formulation of the model in spherical coordinates can
be transformed into a planar elliptic boundary value problem (see [6]) which, neglecting
azimuthal variation, can be transformed into a second-order differential equation on a semi-
infinite interval, constrained by some asymptotic conditions (see [2]). The linear setting was
recently analyzed in detail in [2], where also some explicit solutions were obtained. The aim
of the present paper is to investigate the problem of an arctic gyre motion which depends on
the polar angle in the nonlinear setting. The approach consists in deriving a suitable integral
formulation for the problem and using fixed point techniques to prove the existence and
uniqueness of solutions. We also derive some stability results. When particularized to the
linear case, the results that we present recover those obtained in [2], so that our method
provides an extension of the linear theory developed in [2]. We point out that the pursued
analysis applies only to the polar region in the Northern hemisphere: while the North Pole
is located in the middle of the Arctic Ocean, the South Pole is terrestrial, being located
in Antarctica, a continent that is completely encircled by the eastward moving Antarctic
Circumpolar Current (see the discussion in [5]). Note also that while surface waves of various
types interact with the Antarctic Circumpolar Current (see [7]) and some of these appear to
be important for the climate (for example, the Antarctic Circumpolar Wave, which moves
eastward with the prevailing currents—see[12,15]), the sea ice at the surface of the Arctic
Ocean presents only very small elastic deformations (see [13]) which, while difficult to
analyze and compute, are negligible at the geophysical scales appropriate to study the gyre
motion.

2 Preliminary considerations

Let us introduce the model for gyres derived in [6]. Considering spherical coordinates, with
θ ∈ [0, π) the polar angle (with θ = 0 corresponding to the South Pole, so that θ − π/2
is the conventional angle of latitude) and ϕ ∈ [0, 2π ) the azimuthal angle i.e. the angle of
longitude, the horizontal flow on the spherical Earth, corresponding to a gyre, has azimuthal
and polar velocity components given by

1

sin θ
ψφ and − ψθ ,

respectively, where ψ(θ, ϕ) represents the stream function. Writing

ψ(θ, ϕ) = −ω cos θ + Ψ (θ, ϕ) ,
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where Ψ is associated with the vorticity of the underlying motion of the ocean (relative to
the Earth’s surface and not driven by the rotation of the Earth), the governing equation is

1

sin2 θ
Ψϕϕ + Ψθ cot θ + Ψθθ = F(Ψ − ω cos θ) .

The vorticity of the flow comprises two distinct components: the spin vorticity, 2ω cos θ , due
to the rotation of the Earth, and the oceanic vorticity, F(Ψ − ω cos θ), due to the motion of
the ocean. The latter is coupled to the Earth’s rotation, the total vorticity of the ocean flow
being the sum of these two components. While the spin vorticity is completely prescribed,
that associated with the movement of the ocean may be chosen to represent a particular gyre.
In particular, the flow field is irrotational if the oceanic vorticity vanishes, that is, F ≡ 0.

In terms of the stereographic projection (we refer to the discussions in [9] for the physical
motivation and a historical background to the stereographic projections) from the South Pole
to the equatorial plane, given by

ξ = r ei φ with r = cot
(θ

2

)
= sin θ

1 − cos θ
. (1)

where (r, φ) are the polar coordinates in the Earth’s equatorial plane, the ocean flow in the
gyre is modeled by the semilinear elliptic equation

Δψ + 8ω
1 − (x2 + y2)

(1 + x2 + y2)3
− 4F(ψ)

(1 + x2 + y2)2
= 0 , (2)

in terms of the unknown ψ(x, y). For specified ω and F , one has to solve Eq. (2) in a given
planar region O, with Dirichlet boundary data

ψ = u0 on ∂O , (3)

where u0 is the value that the stream function attains on boundary ∂O of O, which corre-
sponds therefore to the streamline ψ = u0. The planar region O corresponds, in view of the
stereographic projection (1), to the ocean region in which the gyre is located, with the arctic
setting corresponding to the planar regionO = {r : 0 ≤ r < r0}, for a suitable r0 > 0. Since
the physically relevant values of θ are in the interval [14π/15, π], with θ = π corresponding
to the North Pole, we see that cotan(θ/2) < 1/e2 and therefore r0 ≤ 1/e2. An arctic gyre in
which the flow velocity presents no azimuthal variations is provided by radially symmetric
solutionsψ = ψ(r) of the problem (2)–(3). Setting t0 = − ln(r0) ≥ 2, by changing variables
according to r = e−t and

ψ(r) = u(t) , t > t0 ,

we transform (2)–(3) to the second-order ordinary differential equation

u′′(t) = F(u(t))

cosh2(t)
− 2ω sinh(t)

cosh3(t)
, t > t0 , (4)

with the constraint

u(t0) = u0 , (5)

expressing the fact that the circle of latitude r = r0 is a streamline. Indeed, note that (1)
yields

ψθ = −1 + r2

2
ψr = et

1 + e−2t

2
u′(t) , (6)
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as well as the fact that in the gyre region the azimuthal velocity component vanishes. Phys-
ically relevant solutions of the problem (4)–(5) are therefore obtained if the asymptotic
conditions

lim
t→∞{u(t)} = ψ0 and lim

t→∞{u′(t) cosh(t)} = 0 , (7)

hold for some constantψ0, which is the value of the stream functionψ at the North Pole. The
second asymptotic condition in (7) expresses the fact that the flow is stagnant at the North
Pole, which is the gyre’s center.

3 Main result

The considerations made in [2,6] provide some explicit solutions to the Eq. (4) with the
asymptotic behavior specified in (7) for linear functions F(u) = au + b, where a, b ∈ R

are constants. The aim of the present paper is to investigate the case of nonlinear vorticity
functions F .

Note that if u(t) is a solution to (4), satisfying (5), then integration of (4) on [t,∞) yields

− u′(t) = − ω

cosh2(t)
+

∫ ∞

t

F(u(s))

cosh2(s)
ds , t > t0 , (8)

which, integrated on [t,∞), leads to

u(t) = [ψ0 − ω] + ω tanh(t) +
∫ ∞

t
(s − t)

F(u(s))

cosh2(s)
ds , t ≥ t0 , (9)

in view of the first condition in (7). The integral equation (9) is a convenient way to compress
(4) and (7). Indeed, assume that u : [t0,∞) → R is a continuous function satisfying (9)
and lim

t→∞ u(t) = ψ0. Then, differentiation of (9) yields (8) and the second condition in (7)

follows since, by l’Hospital’s rule,

lim
t→∞

{
cosh(t)

∫ ∞

t

F(u(s))

cosh2(s)
ds

}
= lim

t→∞
− F(u(t))

cosh2(t)

− sinh(t)
cosh2(t)

= lim
t→∞

F(u(t))

sinh(t)
= 0

due to the fact that u is bounded on [t0,∞). Furthermore, differentiation of (8) yields (4).
As for (5), this is satisfied provided that we have the freedom to assign the value of u0 and
this can be done since the specific value of u0 has no bearing on the underlying physics.

We now prove an existence and uniqueness result for the solution to the integral equation
(9).

Theorem 1 Assume that F : R → R is Lipschitz continuous: there exists a constant M > 0
such that

|F(u) − F(v)| ≤ M |u − v| , u, v ∈ R .

Then, for everyψ0 ∈ R, Eq. (9) has a unique continuous solution u : [t0,∞) → R satisfying
lim
t→∞ u(t) = ψ0.

Proof Choose T0 ≥ t0 such that cosh(T0) > M . On the Banach space X of all continuous and
bounded functions u : [T0,∞) → R, endowed with the supremum norm ‖u‖ = sup

t≥T0
{|u(t)|},
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consider the operator

[F(u)](t) = [ψ0 − ω] + ω tanh(t) +
∫ ∞

t
(s − t)

F(u(s))

cosh2(s)
ds , t ≥ T0 .

Note that the inequality
∣∣∣
∫ ∞

t
(s − t)

F(u(s))

cosh2(s)
ds

∣∣∣ ≤
∫ ∞

t

s |F(u(s))|
cosh2(s)

ds , t ≥ T0 ,

confirms that F : X → X . For any u, v ∈ X , we have that

‖F(u) − F(v)‖ ≤ sup
t≥t0

∣∣∣
∫ ∞

t
(s − t)

F(u(s)) − F(v(s))

cosh2(s)
ds

∣∣∣

≤ sup
t≥T0

∫ ∞

t
(s − t)

|F(u(s)) − F(v(s))|
cosh2(s)

ds

≤ sup
t≥T0

∫ ∞

t
(s − t)

M |u(s) − v(s)|
cosh2(s)

ds

≤ M‖u − v‖ sup
t≥T0

∫ ∞

t

s − t

cosh2(s)
ds

≤ M‖u − v‖ sup
t≥T0

∫ ∞

t

sinh(s)

cosh2(s)
ds = M

cosh(T0)
‖u − v‖ ,

since sinh(s) ≥ s for s ≥ 0.Consequently, themapF is a contraction on X . By the contraction
principle,F will have a unique fixed point (see [8]). This fixed point is the unique solution to
(9) on [T0,∞). If T0 = t0, we are done, while if T0 > t0, then we note that u(T0) and u′(T0)
are determined. Taking into account that (4) follows from (9), the uniqueness of solutions for
(4) if F is Lipschitz ensures that we have a unique backward continuation of u(t) to [t0,∞);
note that the linear growth rate of F (see Remark 2) prevents blow-up in finite time, so that
we may extend the solution from [T0,∞) to the maximal possible time-interval, which is
[t0,∞). �

Remark 1 Examples of nonlinear functions satisfying the hypotheses of Theorem 1 are

F(u) = a sin(u) + b , u ∈ R ,

for some real constants a and b with a �= 0.

Remark 2 Choosing v = 0 in the Lipschitz condition in Theorem 1 yields

|F(u)| ≤ M |u| + |F(0)| , u ∈ R ,

so that all such functions are sublinear.

While the exact values of u0 and ψ0 are not physically relevant, they cannot be assigned
arbitrarily: the fact that the problem (4)–(5)–(7) appears to be overdetermined hints at an
interdependence between u0 andψ0. To elucidate this, we show that the solution provided by
Theorem 1 is stable (in the supremum norm) with respect to variations of ψ0. In particular,
this shows that u0 depends continuously on ψ0.

Theorem 2 The solution obtained in Theorem 1 is stable (in the supremum norm) with
respect to variations of ψ0.
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Proof Let u(t) and ũ(t) be two solutions of Eq. (9) with lim
t→∞ u(t) = ψ0 and lim

t→∞ ũ(t) = ψ̃0,

respectively. Then, choosing T0 ≥ t0 such that

ln(1 + e−2T0) ≤ 1

1 + M
(10)

and defining ‖u‖ = sup
t≥T0

{|u(t)|}, we have

|u(t) − ũ(t)| ≤ |ψ0 − ψ̃0| +
∣∣∣
∫ ∞

t
(s − t)

F(u(s)) − F(ũ(s))

cosh2(s)
ds

∣∣∣

≤ |ψ0 − ψ̃0| + sup
t≥T0

∫ ∞

t
(s − t)

|F(u(s)) − F(ũ(s))|
cosh2(s)

ds

≤ |ψ0 − ψ̃0| + M sup
t≥T0

∫ ∞

t
(s − t)

|u(s) − ũ(s)|
cosh2(s)

ds

≤ |ψ0 − ψ̃0| + M‖u − ũ‖
∫ ∞

t
(s − t)

1

cosh2(s)
ds

≤ |ψ0 − ψ̃0| + M‖u − ũ‖ ln(1 + e−2T0) , t ≥ T0 , (11)

since ∫ ∞

t

s − t

cosh2(s)
ds =

∫ ∞

t

∫ ∞

s

1

cosh2(τ )
dτ ds

=
∫ ∞

t
[1 − tanh(s)] ds

=
∫ ∞

t

2e−2s

1 + e−2s ds = ln(1 + e−2t ) .

From (10) and (11), we get

‖u − ũ‖ ≤ |ψ0 − ψ̃0| + ‖u − ũ‖ M

1 + M
,

so that

‖u − ũ‖ ≤ (1 + M)|ψ0 − ψ̃0| . (12)

Using now (8) and (12), we obtain that

|u′(t) − ũ′(t)| ≤
∣∣∣
∫ ∞

t

F(u(s)) − F(ũ(s))

cosh2(s)
ds

∣∣∣

≤
∫ ∞

t

|F(u(s)) − F(ũ(s))|
cosh2(s)

ds

≤
∫ ∞

t

M |u(s) − ũ(s)|
cosh2(s)

ds

≤ M(1 + M)|ψ0 − ψ̃0|
∫ ∞

t

1

cosh2(s)
ds

= M(1 + M)|ψ0 − ψ̃0| [1 − tanh(t)] , t ≥ T0 ,

and therefore

|u′(T0) − ũ′(T0)| ≤ M(1 + M)|ψ0 − ψ̃0| .
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Since clearly |u(T0) − ũ(T0)| ≤ ‖u − ũ‖, the above inequality in combination with (12)
yields

|u(T0) − ũ(T0)| + |u′(T0) − ũ′(T0)| ≤ (1 + M)2|ψ0 − ψ̃0| . (13)

If T0 = t0, then the proof is complete. If T0 > t0, we see that u(t0) is the value obtained
by evaluating the backward flow of the differential equation (4) at t = t0, starting with data
u(T0) and u′(T0) at t = T0. In other words, if u(t) solves (4), we set

s = T0 − t , v(s) = u(T0 − s) , 0 ≤ s ≤ T0 − t0 ,

to see that

v′′(s) = F(v(s))

cosh2(T0 − s)
− 2ω sinh(T0 − s)

cosh3(T0 − s)
, 0 < s < T0 − t0 , (14)

with initial data

v(0) = u(T0) , v′(0) = −u′(T0) . (15)

We now use the fact that the general solution of the linear second-order differential equation

U ′′(t) = − 2

cosh2(t)
U (t) , t ≥ 0 ,

has the form

U (t) = A tanh(t) − B + B t tanh(t) , t ≥ 0 ,

where A, B ∈ R are constants (see [2]), to infer that the general solution of the linear
second-order differential equation

V ′′(s) = − 2

cosh2(T0 − s)
V (s) , s ≥ 0 , (16)

has the form

V (s) = A tanh(T0 − s) − B + B (T0 − s) tanh(T0 − s) , s ≥ 0 .

It is convenient to express this fact by noticing that

S(s) =
(
a11(s) a12(s)
a21(s) a22(s)

)
, s ∈ R ,

where

a11(s) = [sinh(T0) cosh(T0) + s] tanh(T0 − s) + 1

cosh2(T0)
,

a21(s) = tanh(T0 − s)

cosh2(T0)
− sinh(T0) cosh(T0) + s

cosh2(T0) cosh2(T0 − s)
,

a12(s) = tanh(T0) + tanh(T0 − s) [s tanh(T0) − 1] ,
a22(s) = tanh(T0) tanh(T0 − s) − s sinh(T0 − s) − 1

cosh2(T0 − s)
,

is a fundamental matrix for the linear system

d

ds

(
V (s)
W (s)

)
=

⎛
⎝

0 1
−2

cosh2(T0 − s)
0

⎞
⎠

(
V (s)
W (s)

)
,
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which is equivalent to (16). Writing (14)–(15) in the form

d

ds

(
v(s)
w(s)

)
=

⎛
⎝

0 1
−2

cosh2(T0 − s)
0

⎞
⎠

(
v(s)
w(s)

)

+
⎛
⎝

0
F(v(s)) + 2v(s)

cosh2(T0 − s)
− 2ω sinh(T0 − s)

cosh3(T0 − s)

⎞
⎠ ,

with initial data (
v(0)
w(0)

)
=

(
u(T0)

−u′(T0)

)
,

the variation of constants formula yields
(

v(s)
w(s)

)
= S(s)

(
u(T0)

−u′(T0)

)

+
∫ s

0
S(s − τ)

⎛
⎝

0
F(v(τ )) + 2v(τ)

cosh2(T0 − τ)
− 2ω sinh(T0 − τ)

cosh3(T0 − τ)

⎞
⎠ dτ (17)

for 0 ≤ s ≤ T0 − t0. Therefore,

v(s) = [sinh(T0) cosh(T0) + s] tanh(T0 − s) + 1

cosh2(T0)
u(T0)

−
(
tanh(T0) + tanh(T0 − s) [s tanh(T0) − 1]

)
u′(T0)

+
∫ s

0

(
tanh(T0 − s + τ) [(s − τ) tanh(T0) − 1] + tanh(T0)]

)

{ F(v(τ )) + 2v(τ)

cosh2(T0 − τ)
− 2ω sinh(T0 − τ)

cosh3(T0 − τ)

}
dτ

for 0 ≤ s ≤ T0 − t0. Setting ṽ(s) = ũ(T0 − s) for 0 ≤ s ≤ T0 − t0, we deduce that ṽ(s)
satisfies an integral equation analogous to (17), so that

v(s) − ṽ(s) = [sinh(T0) cosh(T0) + s] tanh(T0 − s) + 1

cosh2(T0)

(
u(T0) − ũ(T0)

)

−
(
tanh(T0) + tanh(T0 − s) [s tanh(T0) − 1]

) (
u′(T0) − ũ′(T0)

)

+
∫ s

0

(
tanh(T0 − s + τ) [(s − τ) tanh(T0) − 1] + tanh(T0)]

)

F(v(τ )) − F(ṽ(τ )) + 2[v(τ) − ṽ(τ )]
cosh2(T0 − τ)

dτ

for 0 ≤ s ≤ T0 − t0. Therefore,

|v(s) − ṽ(s)| ≤ K
{
|u(T0) − ũ(T0)| + |u′(T0) − ũ′(T0)|

}

+
∫ s

0
T0 tanh

2(T0)
(M + 2) |v(τ) − ṽ(τ )|

cosh2(T0 − τ)
dτ

for 0 ≤ s ≤ T0 − t0, where

K =
(
1 + T0 tanh(T0)

)(
2 tanh(T0) + 1

)
.
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Taking (13) into account, we deduce that

|v(s) − ṽ(s)| ≤ K (1 + M)2|ψ0 − ψ̃0|
+ (M + 2)T0 tanh

2(T0)
∫ s

0

|v(τ) − ṽ(τ )|
cosh2(T0 − τ)

dτ

for 0 ≤ s ≤ T0 − t0. Gronwall’s inequality (see [8]) now yields

|v(s) − ṽ(s)| ≤ K (1 + M)2|ψ0 − ψ̃0| e(M+2)T0 tanh2 T0
∫ s
0

dτ
cosh2(T0−τ)

= K (1 + M)2e(M+2)T0 tanh2 T0 |ψ0 − ψ̃0| etanh(T0)−tanh(T0−s)

for 0 ≤ s ≤ T0 − t0. Evaluating the above relation at s = T0 − t , we get

|u(t) − ũ(t)| ≤ K (1 + M)2e(M+2)T0 tanh2 T0 |ψ0 − ψ̃0| etanh(T0)−tanh(t)

for t0 ≤ t ≤ T0. In combination with (12), the above inequality proves the claimed stable
dependence (in the supremum norm) of the solution determined in Theorem 1, with respect
to variations of ψ0. �
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