

Two infinite series of moduli spaces of rank 2 sheaves on \mathbb{P}^3

Marcos Jardim¹ · Dimitri Markushevich² · Alexander S. Tikhomirov3

Received: 25 April 2016 / Accepted: 24 December 2016 / Published online: 5 January 2017 © Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag Berlin Heidelberg 2017

Abstract We describe new components of the Gieseker–Maruyama moduli scheme*M*(*n*) of semistable rank 2 sheaves *E* on \mathbb{P}^3 with $c_1(E) = 0$, $c_2(E) = n$ and $c_3(E) = 0$ whose generic point corresponds to nonlocally free sheaves. We show that such components grow in number as *n* grows, and discuss how they intersect the instanton component. As an application, we prove that $\mathcal{M}(2)$ is connected, and identify a connected subscheme of $\mathcal{M}(3)$ consisting of seven irreducible components.

Keywords Moduli spaces of sheaves · Instantons · Stable vector bundles

Mathematics Subject Classification 14D20 · 14J60

1 Introduction

Let $\mathcal{M}(c_1; c_2; c_3)$ denote the Gieseker–Maruyama moduli scheme of semistable rank 2 sheaves on \mathbb{P}^3 with the first, second and third Chern classes equal to c_1 , c_2 and c_3 , respectively. We will be particularly concerned with $M(n) := M(0; n; 0)$. In addition, we also

 \boxtimes Alexander S. Tikhomirov astikhomirov@mail.ru

> Marcos Jardim jardim@ime.unicamp.br

Dimitri Markushevich markushe@math.univ-lille1.fr

¹ Departamento de Matemática, IMECC - UNICAMP, Rua Sérgio Buarque de Holanda, 651, Campinas, SP 13083-970, Brazil

² Mathématiques – bât. M2, Université Lille 1, 59655 Villeneuve d'Ascq Cedex, France

³ Department of Mathematics, National Research University Higher School of Economics (HSE), 6 Usacheva Street, Moscow, Russia 119048

define $B(n)$ to be the open subset of $\mathcal{M}(n)$ consisting of stable locally free sheaves, and let $\mathcal{R}(c_1; c_2; c_3)$ denote the open subset of $\mathcal{M}(c_1; c_2; c_3)$ consisting of stable reflexive sheaves.

The study of stable rank 2 locally free sheaves on \mathbb{P}^3 in the past 40 years has been mostly concentrated on *instanton bundles*, that is, those stable rank 2 locally free sheaves E on \mathbb{P}^3 satisfying $c_1(E) = 0$ and $h^1(E(-2)) = 0$. Let $\mathcal{I}(n)$ denote the moduli space of instanton bundles *E* with $c_2(E) = n$, regarded as an open subset of $\mathcal{M}(n)$; the basic questions about its geometry have been settled just recently: it is an irreducible [\[24](#page-35-0)[,25\]](#page-35-1), nonsingular [\[16\]](#page-34-0), affine [\[5](#page-34-1)] variety of dimension $8n - 3$. However, $\overline{\mathcal{I}(n)}$, the closure of $\mathcal{I}(n)$ within $\mathcal{M}(n)$, is not the only irreducible component of $\mathcal{M}(n)$ for $n \geq 2$; in fact, Ein showed in [\[7\]](#page-34-2) that $B(n)$ has several irreducible components as soon as $n \geq 3$ and that the number of irreducible components of $B(n)$ is not bounded as *n* grows.

In addition, the closure $\overline{\mathcal{B}(n)}$ of $\mathcal{B}(n)$ within $\mathcal{M}(n)$ does not exhaust $\mathcal{M}(n)$ already for $n \geq 2$, as it was observed by Le Potier [\[17,](#page-34-3) Chapter 7], Trautmann [\[26\]](#page-35-2) and Miró-Roig [\[19\]](#page-35-3). In other words, for each $n \geq 2$, $\mathcal{M}(n)$ possesses entire irreducible components whose generic point corresponds to a stable rank 2 torsion free sheaf which is not locally free. Such components are the main focus of the present paper.

To be more precise, let *E* be a rank 2 torsion free sheaf on \mathbb{P}^3 with $c_1(E) = 0$, $c_2(E) = n$ and $c_3(E) = 0$. Clearly, $c_1(E^{\vee\vee}) = 0$; we denote $m := c_2(E^{\vee\vee})$ and $l = c_3(E^{\vee\vee})/2$. Setting $Q_E := E^{\vee \vee}/E$, one has the fundamental sequence

$$
0 \to E \to E^{\vee \vee} \to Q_E \to 0 \tag{1}
$$

from which one can check that $c_2(Q_E) = -(n-m)$ and $c_3(Q_E) = 2l$. If *E* is not locally free, then $Q_E \neq 0$ and there are three possibilities:

- (i) dim $Q_E = 0$; in this case, $n = m$ and $E^{\vee \vee}$ is not locally free; we say that *E* has *0-dimensional singularities*;
- (ii) Q_E has pure dimension 1; in this case, $n > m$ and we say that *E* has 1-dimensional *singularities*;
- (iii) dim $Q_E = 1$, but it contains 0-dimensional subsheaves; in this case, we say that *E* has *mixed singularities*.

Note that in general Supp(Q_E) ⊆ Sing(*E*), with equality if $E^{\vee\vee}$ is locally free. Remark that $\text{Sing}(E)$ may contain 0-dimensional components even when Q_E has pure dimension one.

We present a systematic construction of irreducible components of $\mathcal{M}(n)$ whose generic point corresponds to stable rank 2 torsion free sheaves with 0- and 1-dimensional singularities, see Theorems [7](#page-8-0) and [17](#page-20-0) below, respectively. Furthermore, we also show that the number of such components grows as *n* grows, cf. Theorem [9,](#page-9-0) for the 0-dimensional case, and Theorem [19,](#page-20-1) for the 1-dimensional case, below.

These results raise the questions of whether it is possible to enumerate all of the irreducible components of $\mathcal{M}(n)$, at least for low values of *n*, and whether $\mathcal{M}(n)$ is connected. Indeed, it is not difficult to check that $M(1)$ is irreducible (see Sect. [6\)](#page-27-0), while Le Potier [\[17](#page-34-3)] and Trautmann [\[26](#page-35-2)] showed that $\mathcal{M}(2)$ has precisely three irreducible components, $\mathcal{I}(2)$ plus two additional ones. In Sect. [6,](#page-27-0) we show, in addition, that the generic point of each of the two so-called *Trautmann components* identified by Le Potier corresponds to a sheaf with 0-dimensional singularities, and that $\mathcal{M}(2)$ is connected.

Finally, we show in Sect. 7 that $M(3)$ has at least seven irreducible components. In addition, we provide a discussion on how these various components intersect each other, showing that their union forms a connected subscheme of *M*(3).

2 Torsion free sheaves with 0-dimensional singularities

Let us begin by fixing some basic facts about torsion free sheaves *E* with 0-dimensional singularities. Given any coherent sheaf *G* on \mathbb{P}^3 , one has $\mathcal{E}xt^3(E, G) = 0$ and $\mathcal{E}xt^2(E, G) \simeq$ $\mathcal{E}xt^3(Q_E, G)$ due to the reflexivity of $E^{\vee\vee}$. It follows that torsion free sheaves *E* with 0dimensional singularities have homological dimension equal to 2; in other words, *E* admits a resolution of the form

$$
0 \to L_2 \to L_1 \to L_0 \to E \to 0 \tag{2}
$$

with each L_k ($k = 0, 1, 2$) being a locally free sheaf.

Note that $\mathcal{E}xt^{1}(E, E)$ and $\mathcal{E}xt^{2}(E, E)$ are 0-dimensional sheaves, while $\mathcal{E}xt^{3}(E, E)$ vanishes. Thus using the spectral sequence of local-to-global Ext's, we obtain:

- (i) Ext¹(*E*, *E*) = $H^1(\text{Hom}(E, E)) \oplus \ker d_2^{01}$
- (ii) Ext²(*E*, *E*) = ker $d_3^{02} \oplus \text{coker } d_2^{01}$
(iii) Ext³(*E*, *E*) = coker d_3^{02}

where d_2^{01} and d_3^{02} are the spectral sequence maps

$$
d_2^{01}: H^0(\mathcal{E}xt^1(E, E)) \to H^2(\mathcal{H}om(E, E)) \text{ and } (3)
$$

$$
d_3^{02} : H^0(\mathcal{E}xt^2(E, E)) \to H^3(\mathcal{H}om(E, E)).
$$
 (4)

It then follows that

$$
\sum_{j=0}^{3} (-1)^{j} \dim \operatorname{Ext}^{j}(E, E) = \chi(\mathcal{H}om(E, E)) - h^{0}(\mathcal{E}xt^{1}(E, E)) + h^{0}(\mathcal{E}xt^{2}(E, E)).
$$
 (5)

Remark 1 Observe that for a reflexive sheaf *F* (so that $\mathcal{E}xt^2(F, F) = 0$) the previous expressions for $\text{Ext}^j(F, F)$ simplify to

- Ext¹(*F*, *F*) = $H^1(\text{Hom}(F, F)) \oplus \ker d_2^{01}$;
- Ext²(*F*, *F*) = coker d_2^{01} ;
- Ext³ $(F, F) = H^3(\text{Hom}(F, F)),$

where d_2^{01} is the spectral sequence map d_2^{01} : $H^0(\mathcal{E}xt^1(F, F)) \to H^2(\mathcal{H}om(F, F))$. Note as well that (5) simplifies to

$$
\sum_{j=0}^{3} (-1)^{j} \dim \text{Ext}^{j}(F, F) = \chi(\mathcal{H}om(F, F)) - h^{0}(\mathcal{E}xt^{1}(F, F)).
$$
 (6)

Lemma 2 If E is a rank 2 torsion free sheaf with 0-dimensional singularities and $c_1(E) = 0$, *then*

$$
\sum_{j=0}^{3} (-1)^{j} \dim \operatorname{Ext}^{j}(E, E) = -8c_{2}(E) + 4.
$$

Proof The strategy is to show that

$$
\chi(\mathcal{H}om(E, E)) - h^0(\mathcal{E}xt^1(E, E)) + h^0(\mathcal{E}xt^2(E, E))
$$

=
$$
\chi(\mathcal{H}om(E^{\vee \vee}, E^{\vee \vee})) - h^0(\mathcal{E}xt^1(E^{\vee \vee}, E^{\vee \vee})).
$$

The desired equality will follow from (5) , (6) , and

$$
\sum_{j=0}^{3} (-1)^{j} \dim \operatorname{Ext}^{j}(E^{\vee \vee}, E^{\vee \vee}) = -8c_{2}(E^{\vee \vee}) + 4,
$$

see [\[12](#page-34-4), Prop. 3.4].

Indeed, applying the functor \mathcal{H} *om*(\cdot , *E*) to the fundamental sequence [\(1\)](#page-1-0) we obtain the isomorphism $\mathcal{E}xt^2(E, E) \simeq \mathcal{E}xt^3(Q_E, E)$ plus the exact sequence

$$
0 \to \mathcal{H}om(E^{\vee \vee}, E) \to \mathcal{H}om(E, E) \to \mathcal{E}xt^{1}(Q_{E}, E) \to \mathcal{E}xt^{1}(E^{\vee \vee}, E) \tag{7}
$$

$$
\to \mathcal{E}xt^{1}(E, E) \to \mathcal{E}xt^{2}(Q_{E}, E) \to 0,
$$
\n(8)

since $\mathcal{E}xt^2(E^{\vee\vee}, E) = 0$ because $E^{\vee\vee}$ is reflexive. Next, apply the functor \mathcal{H} *om*($E^{\vee\vee}$, ·) to the fundamental sequence [\(1\)](#page-1-0), obtaining

$$
0 \to \mathcal{H}om(E^{\vee\vee}, E) \to \mathcal{H}om(E^{\vee\vee}, E^{\vee\vee}) \to \mathcal{H}om(E^{\vee\vee}, Q_E) \to \mathcal{E}xt^1(E^{\vee\vee}, E) \to \mathcal{E}xt^1(E^{\vee\vee}, E^{\vee\vee}) \to \mathcal{E}xt^1(E^{\vee\vee}, Q_E) \to 0. \tag{10}
$$

Comparing Euler characteristics of these last two sequences, we conclude that

$$
\begin{aligned} \chi(\mathcal{H}om(E^{\vee\vee}, E^{\vee\vee})) &- \chi(\mathcal{E}xt^1(E^{\vee\vee}, E^{\vee\vee})) \\ &= \chi(\mathcal{H}om(E, E)) - \chi(\mathcal{E}xt^1(E, E)) - \chi(\mathcal{E}xt^1(Q_E, E)) + \chi(\mathcal{E}xt^2(Q_E, E)) \\ &+ \chi(\mathcal{H}om(E^{\vee\vee}, Q_E)) - \chi(\mathcal{E}xt^1(E^{\vee\vee}, Q_E)). \end{aligned}
$$

Thus, since $\chi(\mathcal{E}xt^2(E, E)) = \chi(\mathcal{E}xt^3(O_F, E))$, it is now enough to show that

$$
\sum_{j=0}^{3} (-1)^{j} \chi(\mathcal{E}xt^{j}(\mathcal{Q}_{E}, E)) = -\sum_{j=0}^{3} (-1)^{j} \chi(\mathcal{E}xt^{j}(E^{\vee \vee}, \mathcal{Q}_{E})),
$$
 (11)

noticing that \mathcal{H} *om*(Q_E , E) = 0 and $\mathcal{E}xt^j(E^{\vee \vee}, Q_E) = 0$ for $j = 2, 3$.

We first consider the left-hand side of [\(11\)](#page-3-0). One can break a locally free resolution of *E* as in [\(2\)](#page-2-2) into short exact sequences

$$
0 \to L_2 \to L_1 \to T \to 0 \text{ and } 0 \to T \to L_0 \to E \to 0.
$$

Applying the functor \mathcal{H} *om*(Q_E , ·) to the first sequence, we obtain

$$
0 \to \mathcal{E}xt^2(\mathcal{Q}_E, T) \to \mathcal{E}xt^3(\mathcal{Q}_E, L_2) \to \mathcal{E}xt^3(\mathcal{Q}_E, L_1) \to \mathcal{E}xt^3(\mathcal{Q}_E, T) \to 0,
$$

with all the other sheaves vanishing. Passing to Euler characteristics, we obtain

$$
\chi(\mathcal{E}xt^2(\mathcal{Q}_E,T))-\chi(\mathcal{E}xt^3(\mathcal{Q}_E,T))=\chi(\mathcal{E}xt^3(\mathcal{Q}_E,L_2))-\chi(\mathcal{E}xt^3(\mathcal{Q}_E,L_1)).
$$

But $\mathcal{E}xt^3(Q_E, L_k) = \mathcal{E}xt^3(Q_E, \mathcal{O}_{\mathbb{P}^3}) \otimes L_k$, hence $\chi(\mathcal{E}xt^3(Q_E, L_k)) = \text{rk}(L_k) \cdot \chi(Q_E)$. Therefore

$$
\chi(\mathcal{E}xt^2(\mathcal{Q}_E, T)) - \chi(\mathcal{E}xt^3(\mathcal{Q}_E, T)) = (\text{rk}(L_2) - \text{rk}(L_1))\chi(\mathcal{Q}_E). \tag{12}
$$

Next, apply the functor \mathcal{H} *om*(Q_E , ·) to the second part of [\(2\)](#page-2-2) to obtain the isomorphism $\mathcal{E}xt^{1}(Q_{E}, E) \simeq \mathcal{E}xt^{2}(Q_{E}, T)$ and the exact sequence

$$
0 \to \mathcal{E}xt^2(\mathcal{Q}_E, E) \to \mathcal{E}xt^3(\mathcal{Q}_E, T) \to \mathcal{E}xt^3(\mathcal{Q}_E, L_0) \to \mathcal{E}xt^3(\mathcal{Q}_E, E) \to 0.
$$

 \circledcirc Springer

Passing to Euler characteristics, we obtain

$$
\chi(\mathcal{E}xt^2(\mathcal{Q}_E,E))-\chi(\mathcal{E}xt^3(\mathcal{Q}_E,E))=\chi(\mathcal{E}xt^3(\mathcal{Q}_E,T))-\chi(\mathcal{E}xt^3(\mathcal{Q}_E,L_0)).
$$

Subtracting $\mathcal{E}xt^1(Q_E, E)$ from the left-hand side and $\mathcal{E}xt^2(Q_E, T)$ from the right-hand side and then substituting for (12) , we obtain

$$
\sum_{j=0}^{3} (-1)^{j} \chi(\mathcal{E}xt^{j}(\mathcal{Q}_{E}, E)) = (\text{rk}(L_{1}) - \text{rk}(L_{2}) - \text{rk}(L_{0})) \cdot \chi(\mathcal{Q}_{E}) = -2\chi(\mathcal{Q}_{E}).
$$

Finally, we compute the right-hand side of (11) in a similar way. Take a locally free resolution of *E*∨∨:

$$
0 \to M_1 \to M_0 \to E^{\vee \vee} \to 0.
$$

Applying the functor \mathcal{H} *om*(\cdot , Q_E) and passing to Euler characteristics, we obtain

$$
\chi(\mathcal{H}om(E^{\vee\vee}, Q_E)) - \chi(\mathcal{E}xt^1(E^{\vee\vee}, Q_E)) = \chi(\mathcal{H}om(M_0, Q_E)) - \chi(\mathcal{H}om(M_1, Q_E))
$$

= 2\chi(Q_E),

as desired.

 $\overline{2}$

Next, we consider semistable rank 2 torsion free sheaves with 0-dimensional singularities.

Lemma 3 Let E be a rank 2 torsion free sheaf on \mathbb{P}^3 with $c_1(E) = 0$, $c_2(E) = n$, $c_3(E) = 0$, and with 0-dimensional singularities. If E is semistable, then $E^{\vee\vee}$ is stable.

We remark that the vanishing of the third Chern class is an essential hypothesis: the sum of the ideal sheaves $I_{x/\mathbb{P}^3} \oplus I_{y/\mathbb{P}^3}$ of two points $x, y \in \mathbb{P}^3$ is semistable and with 0-dimensional singularities, but $(I_{x/\mathbb{P}^3} \oplus I_{x/\mathbb{P}^3})^{\vee\vee}$ is not stable. Recall also that the Hilbert polynomial of a rank 2 torsion free sheaf on \mathbb{P}^3 with $c_1(E) = 0$, $c_2(E) = n$, $c_3(E) = 0$ is given by

$$
P_E(k) = \frac{1}{3}(k+3)(k+2)(k+1) - n(k+2).
$$

Proof If $E^{\vee\vee}$ is not μ -stable (or, equivalently, stable), then it has a section σ . We can then form the following diagram

$$
0 \longrightarrow I_{\Delta/\mathbb{P}^3} \longrightarrow \mathcal{O}_{\mathbb{P}^3} \longrightarrow \mathcal{O}_{\Delta/\mathbb{P}^3} \longrightarrow 0
$$
\n
$$
0 \longrightarrow E \longrightarrow E^{\vee \vee} \longrightarrow E^{\vee} \longrightarrow 0
$$
\n(13)

where Δ is a 0-dimensional scheme contained in the support of Q_E and I_{Δ/\mathbb{P}^3} is its ideal sheaf. Notice that one cannot have $\varphi \sigma = 0$ because $h^0(E) = 0$ by semistability.

Let d denote the length of Δ ; it follows that

$$
\frac{1}{2}P_E(k) - P_{I_{\Delta}}(k) = -\frac{n}{2}(k+2) + d < 0 \quad \text{for } k \text{ sufficiently large}
$$

thus I_{Δ} would destabilize *E*, contradicting our hypothesis.

We remark that the only properly semistable torsion free sheaf *E* with $c_1(E) = c_3(E)$ 0 and with 0-dimensional singularities is $2 \cdot \mathcal{O}_{\mathbb{P}^3}$. Indeed, assume that $Q_E \neq 0$; if *E* is semistable, then $E^{\vee\vee}$ is μ -stable by Lemma [3](#page-4-0) above; hence, *E* is also μ -stable and thus stable. When $Q_F = 0$, this claim is just [\[12,](#page-34-4) Remark 3.1.1].

In addition, Hartshorne provides in $[12, Thm. 8.2(b)]$ $[12, Thm. 8.2(b)]$ a bound for the third Chern class of a stable rank 2 reflexive sheaf on \mathbb{P}^3 . Translating this bound to our context, we have the following statement.

Corollary 4 *If E is a semistable rank 2 sheaf on* \mathbb{P}^3 *with* $c_1(E) = 0$, $c_2(E) = n$, $c_3(E) = 0$, *and with 0-dimensional singularities, then* $c_3(E^{\vee\vee}) \leq n^2 - n + 2$ *.*

Lemma 5 Let E be a rank 2 torsion free sheaf on \mathbb{P}^3 with $c_1(E) = 0$, $c_2(E) = n$, $c_3(E) = 0$, *and with 0-dimensional singularities. If E is stable, then*

(a) $\text{Ext}^{1}(E, E) = H^{1}(\text{Hom}(E, E)) \oplus \text{ker} d_{2}^{01}$;

(b) Ext²(*E*, *E*) = $H^0(\mathcal{E}xt^2(E, E)) \oplus \text{coker} \ d_2^{01}$;

(c) $\text{Ext}^3(E, E) = 0$;

(d) dim Ext¹(*E*, *E*) = 8*n* − 3 + dim Ext²(*E*, *E*).

Proof The stability of *E* implies that

$$
\dim \operatorname{Ext}^0(E, E) = h^0(\mathcal{H}om(E, E)) = 1
$$

and, by Serre duality,

$$
Ext3(E, E) \simeq Ext0(E, E(-4)) = 0.
$$

Item (c) now follows, and item (d) is then immediate from Lemma [2.](#page-2-3)

Item (a) coincides with item (i) in page 2, so it only remains for us to establish item (b).

Since $\mathcal{E}xt^1(\mathcal{Q}_E, E)$ has dimension zero, we get from sequence [\(7\)](#page-3-2) that

$$
H^{i}(\mathcal{H}om(E,E)) \simeq H^{i}(\mathcal{H}om(E^{\vee\vee},E)) \text{ for } i=2,3. \tag{14}
$$

Similarly, since $\mathcal{E}xt^1(E^{\vee\vee}, E)$ has dimension zero, we get from sequence [\(9\)](#page-3-3) that

$$
H^i(\mathcal{H}om(E^{\vee\vee}, E^{\vee\vee})) \simeq H^i(\mathcal{H}om(E^{\vee\vee}, E)) \text{ for } i = 2, 3.
$$

Putting the isomorphisms above, we get

$$
H^{i}(\mathcal{H}om(E,E)) \simeq H^{i}(\mathcal{H}om(E^{\vee\vee}, E^{\vee\vee})) \text{ for } i = 2,3. \tag{15}
$$

In particular, $H^3(\text{Hom}(E, E)) \simeq \text{Ext}^3(E^{\vee \vee}, E^{\vee \vee}) = 0$ since $E^{\vee \vee}$ is stable. Thus, the spectral sequence map d_3^{02} in [\(4\)](#page-2-4) vanishes. Item (b) now follows from item (ii) in page 3. \Box

2.1 Components of sheaves with 0-dimensional singularities

In this section, we will show how to produce irreducible components of $M(n)$ whose generic point corresponds to a sheaf with 0-dimensional singularities.

Start by considering the following ingredients:

- (i) A stable rank 2 reflexive sheaf *F* on \mathbb{P}^3 with $c_1(F) = 0$, $c_2(F) = n$ and $c_3(F) = 2l$;
- (ii) A 0-dimensional sheaf *Q* of length *l* on \mathbb{P}^3 ;
- (iii) An epimorphism $\varphi : F \to Q$.

Now let $E := \ker \varphi$. Clearly, this is a $(\mu$ -)stable rank 2 torsion free sheaf with $c_1(E) = 0$, $c_2(E) = n$ and $c_3(E) = 0$ such that $E^{\vee\vee} = F$ and $E^{\vee\vee}/E = Q$; in particular, Sing(*E*) has dimension 0.

Proposition 6 *Let F be a stable rank 2 reflexive sheaf with* $c_1(F) = 0$, $c_2(F) = n$ *and* $c_3(F) = 2l$ *such that* $Ext^2(F, F) = 0$ *. Take l distinct points* q_1, \ldots, q_l *such that* {*q*1,..., *ql*}∩Sing(*F*) = ∅*, and set Q* := ⊕*^l ^j*=1*O^q ^j . Then, the kernel E of any epimorphism* $\varphi: F \to Q$ satisfies dim Ext¹(*E*, *E*) = 8*n* – 3 + 4*l*.

Proof Since *E* is stable, it is enough to show, by Lemma [5\(](#page-5-0)d), that dim $Ext^2(E, E) = 4l$. The first step is to show that the spectral sequence map [\(3\)](#page-2-4) is surjective. Indeed, one has the commutative diagram

$$
H^{0} \mathcal{E}xt^{1}(F, E) \xrightarrow{d_{2}^{01}} H^{2}(\mathcal{H}om(F, E))
$$
\n
$$
\downarrow \qquad \qquad \downarrow \simeq
$$
\n
$$
H^{0} \mathcal{E}xt^{1}(E, E) \xrightarrow{d_{2}^{01}} H^{2}(\mathcal{H}om(E, E))
$$
\n
$$
(16)
$$

where vertical arrow in the left is the natural map coming from the exact sequence

$$
0 \to E \to F \to Q \to 0,\tag{17}
$$

while the vertical arrow in the right is the natural isomorphism obtained as in (14) . Applying Hom(F , \cdot) to the sequence [\(17\)](#page-6-0), we get

$$
Ext1(F, Q) \to Ext2(F, E) \to Ext2(F, F).
$$

To see that $Ext^1(F, Q) = 0$, note that $H^i(\mathcal{E}xt^j(F, Q)) = 0$ if $i, j \neq 0$: indeed, $\mathcal{E}xt^{j}(F, Q) = 0$ for $j = 2, 3$ because *F* is reflexive; $\mathcal{E}xt^{1}(F, Q) = 0$ because the singular locus of *F* is disjoint from the support of *Q*; and \mathcal{H} *om*(*F*, *Q*) has dimension 0. It follows from the spectral sequence of local-to-global Ext's that $Ext^j(F, Q) = 0$ for $j > 0$. Since, by hypothesis, $Ext^2(F, F) = 0$, it follows that $Ext^2(F, E) = 0$. Since $Ext^2(F, E)$ coincides with the cokernel of top horizontal map in diagram [\(16\)](#page-6-1), it follows that the bottom horizontal map, which is precisely the spectral sequence map d_2^{01} in [\(3\)](#page-2-4), is also surjective.

It then follows from Lemma [5\(](#page-5-0)b) that dim $\text{Ext}^2(E, E) = h^0(\mathcal{E}xt^2(E, E))$. To compute this, note that

$$
H^{0}(\mathcal{E}xt^{2}(E,E)) = \bigoplus_{p \in \text{Sing}(E)} \text{Ext}^{2}_{\mathcal{O}_{\mathbb{P}^{3},p}}(E_{p}, E_{p}),
$$
\n(18)

where $\text{Sing}(E) = \text{Sing}(F) \cup \{q_1, \ldots, q_l\}.$

First, take $p \in \text{Sing}(F)$; since $p \notin \text{Supp}(Q)$, we get $E_p \simeq F_p$. However, $\mathcal{E}xt_{\mathcal{O}_{\mathbb{P}^3,p}}^2(F_p, F_p) = \mathcal{E}xt^2(F, F)_p = 0$ because *F*, being reflexive, has cohomological dimension 1.

Next, take $p = q_i$ for some $1 \leq j \leq l$; restricting the sequence [\(17\)](#page-6-0) to an open affine subset *U* of \mathbb{P}^3 containing *p* but none of the other singularities of *F*, we have the following short exact sequence of sheaves on *U*:

$$
0 \to \mathcal{O}_U \oplus I_{p/U} \to 2 \cdot \mathcal{O}_U \to \mathcal{O}_{p/U} \to 0,
$$

where $I_{p/U}$ denotes the ideal sheaf of the point $p \in U$ and $\mathcal{O}_{p/U}$ denotes the structure sheaf of the point *p* as a subscheme of *U*. It follows that

$$
\operatorname{Ext}^2_{\mathcal{O}_{\mathbb{P}^3,p}}(E_p, E_p) = H^0(\mathcal{E}xt^2_{\mathcal{O}_U}(I_{p/U}, \mathcal{O}_{p/U})) \oplus H^0(\mathcal{E}xt^2_{\mathcal{O}_U}(I_{p/U}, I_{p/U})).
$$

We argue that the first summand has length 1, while the second one has length 3. Indeed, we might as well perform the calculation globally, using the ideal sheaf I_{p/\mathbb{P}^3} of the point $p \in \mathbb{P}^3$ and its structure sheaf $\mathcal{O}_{p/\mathbb{P}^3}$.

From the exact sequence

$$
0 \to I_{p/\mathbb{P}^3} \to \mathcal{O}_{\mathbb{P}^3} \to \mathcal{O}_{p/\mathbb{P}^3} \to 0
$$

we obtain that $\mathcal{E}xt^2(I_{p/\mathbb{P}^3}, \mathcal{O}_{\mathbb{P}^3}) \simeq \mathcal{E}xt^3(\mathcal{O}_{p/\mathbb{P}^3}, \mathcal{O}_{\mathbb{P}^3}) \simeq \mathcal{O}_{p/\mathbb{P}^3}$, so it has length 1. Now use the resolution of I_{p/\mathbb{P}^3} by locally free sheaves:

$$
0 \to \mathcal{O}_{\mathbb{P}^3}(-3) \to 3 \cdot \mathcal{O}_{\mathbb{P}^3}(-2) \to 3 \cdot \mathcal{O}_{\mathbb{P}^3}(-1) \to I_{p/\mathbb{P}^3} \to 0.
$$

Applying the functor \mathcal{H} *om*(\cdot , I_{p/\mathbb{P}^3}) to the sequence

$$
0 \to G \to 3 \cdot \mathcal{O}_{\mathbb{P}^3}(-1) \to I_{p/\mathbb{P}^3} \to 0
$$

we obtain that $\mathcal{E}xt^2(I_{p/\mathbb{P}^3}, I_{p/\mathbb{P}^3}) \simeq \mathcal{E}xt^1(G, I_{p/\mathbb{P}^3})$. Applying the same functor to the exact sequence

$$
0 \to \mathcal{O}_{\mathbb{P}^3}(-3) \to 3 \cdot \mathcal{O}_{\mathbb{P}^3}(-2) \to G \to 0
$$

we obtain the sequence

$$
3 \cdot I_{p/\mathbb{P}^3}(2) \to I_{p/\mathbb{P}^3}(3) \to \mathcal{E}xt^1(G, I_{p/\mathbb{P}^3}) \to 0.
$$

Note that the cokernel of the first arrow is just $I_{p/\mathbb{P}^3} \otimes \mathcal{O}_{p/\mathbb{P}^3} \simeq 3 \cdot \mathcal{O}_{p/\mathbb{P}^3}$; thus, $\mathcal{E}xt^1(G, I_{p/\mathbb{P}^3})$ has length 3.

Thus, the points of $\text{Sing}(F)$ do not contribute to [\(18\)](#page-6-2), while each of the *l* points in $\text{Supp}(Q)$ contributes with a sheaf of length 4. We conclude that dim $Ext^2(E, E) = 4l$, as desired. \Box

Now let $S(n, l)$ denote an irreducible, open subset of $R(0; n; 2l)$ whose points correspond to stable reflexive sheaves *F* satisfying $Ext^2(F, F) = 0$; in particular, $S(n, l)$ must be the nonsingular locus of an irreducible component of $\mathcal{R}(0; n; 2l)$ of expected dimension $8n - 3$. In the product $S(n, l) \times (\mathbb{P}^3)^l$, we consider the open subset

$$
\left(\mathcal{S}(n,l)\times(\mathbb{P}^3)^l\right)^0:=\left\{\left([F],q_1,\ldots,q_l)\mid q_i\neq q_j\;,\; q_i\notin\text{Sing}(F)\right\}.
$$

Clearly, a point in $(S(n, l) \times (\mathbb{P}^3)^l)^0$ can be regarded as a pair of sheaves ([*F*], *Q* := $\bigoplus_{j=1}^{l} \mathcal{O}_{q_j}$ which fulfills the condition of Proposition [6.](#page-5-2) Next, with ([*F*], *Q*) ∈ $(S(n, l) \times (\mathbb{P}^3)^l)^0$ as above, consider the open set Hom(*F*, *Q*)*e* of Hom(*F*, *Q*) consisting of epimorphisms $\varphi : F \to Q$; the group Aut(*Q*) of automorphisms of the sheaf *Q* acts on Hom(*F*, Q)_e just by homotheties on each factor \mathcal{O}_{q_i} of Q .

Putting all these data together, we construct the set of triples

$$
\mathcal{T}(n,l) = \left\{ ([F], Q, \varphi) \mid ([F], Q) \in \left(\mathcal{S}(n,l) \times (\mathbb{P}^3)^l \right)^0, \varphi \in \text{Hom}(F, Q)_e / \text{Aut}(Q) \right\}.
$$

By construction, $T(n, l)$ is an irreducible, quasi-projective variety of dimension $8n - 3 + 4l$. Indeed, one has the surjective projection

$$
\mathcal{T}(n,l) \to \left(\mathcal{S}(n,l) \times (\mathbb{P}^3)^l\right)^0 , \quad ([F], \mathcal{Q}, \varphi) \mapsto ([F], \mathcal{Q})
$$

onto an irreducible base variety of dimension $8n - 3 + 3l$, with fibers given by

$$
\text{Hom}(F, Q)_e / \text{Aut}(Q) \stackrel{\text{open}}{\hookrightarrow} \text{Hom}(F, Q) / \text{Aut}(Q)
$$

which have dimension $2l - l = l$.

 \mathcal{L} Springer

To each point $\mathbf{t} := (\lceil F \rceil, O, \varphi) \in \mathcal{T}(n, l)$, one associates the sheaf

$$
E(\mathbf{t}) := \ker\{\varphi : F \twoheadrightarrow Q\}
$$

which defines a point $[E(t)]$ in $\mathcal{M}(n)$. Proposition [6](#page-5-2) tells us that, for each $t \in \mathcal{T}(n, l)$,

 $\dim \text{Ext}^{1}(E(\mathbf{t}), E(\mathbf{t})) = \dim \mathcal{T}(n, l);$

therefore, the image of $\mathcal{T}(n, l)$ into $\mathcal{M}(n)$ is a dense open subset of an irreducible component of $\mathcal{M}(n)$; to simplify notation, we denote such component by $\overline{\mathcal{T}(n,l)}$, the closure of the image of $T(n, l)$ within $\mathcal{M}(n)$.

We summarize the considerations above into the following result.

Theorem 7 For every nonsingular irreducible component F of $R(0; n; 2l)$ of expected *dimension* 8*n* − 3*, there exists an irreducible component* $\overline{T(n,l)}$ *of dimension* 8*n* − 3 + 4*l in* $\mathcal{M}(n)$ *whose generic point* [*E*] *satisfies* $[E^{\vee\vee}] \in \mathcal{F}$ *and length* $(Q_E) = l$.

2.2 An Ein-type result for sheaves with 0-dimensional singularities

Recall that Ein has shown in [\[7,](#page-34-2) Proposition 3.6] that the number of irreducible components of $B(n)$ is unbounded as *n* grows. We now prove a similar statement for those irreducible components of $\mathcal{M}(n)$ whose generic points correspond to sheaves with 0-dimensional singularities.

We begin by considering morphisms

$$
\alpha: a \cdot \mathcal{O}_{\mathbb{P}^3}(-3) \oplus b \cdot \mathcal{O}_{\mathbb{P}^3}(-2) \oplus c \cdot \mathcal{O}_{\mathbb{P}^3}(-1) \rightarrow (a+b+c+2) \cdot \mathcal{O}_{\mathbb{P}^3}
$$

whose degeneracy locus

$$
\Delta(\alpha) = \{x \in \mathbb{P}^3 \mid \alpha(x) \text{ is not injective}\}
$$

is 0-dimensional. It follows that the cokernel of α is a rank 2 reflexive sheaf on \mathbb{P}^3 , which we normalize as to fit into the short exact sequence:

$$
0 \to a \cdot \mathcal{O}_{\mathbb{P}^3}(-3) \oplus b \cdot \mathcal{O}_{\mathbb{P}^3}(-2) \oplus c \cdot \mathcal{O}_{\mathbb{P}^3}(-1) \xrightarrow{\alpha} (a+b+c+2) \cdot \mathcal{O}_{\mathbb{P}^3} \to F(k) \to 0, (19)
$$

with *a*, *b*, *c* > 0 and such that $3a + 2b + c$ is nonzero and even; we set $k := (3a + 2b + c)/2$, so that $c_1(F) = 0$.

For simplicity of notation, let

$$
G_{(a,b,c)} := a \cdot \mathcal{O}_{\mathbb{P}^3}(-3) \oplus b \cdot \mathcal{O}_{\mathbb{P}^3}(-2) \oplus c \cdot \mathcal{O}_{\mathbb{P}^3}(-1).
$$

The dimension of the family of rank 2 reflexive sheaves constructed as in Eq. [\(19\)](#page-8-1) is given by

dim Hom
$$
(G_{(a,b,c)}, (a+b+c+2) \cdot \mathcal{O}_{\mathbb{P}^3})
$$
 – dim Aut $(G_{(a,b,c)})$ – $(a+b+c+2)^2+1$
= $8k^2 + 24k - 8(b+c) - 3 = 8c_2(F) - 3$.

One easily checks for that $h^0(F) = 0$ for every *F* given by [\(19\)](#page-8-1); thus, *F* is always stable. In addition, it is not hard to check that $Ext^2(F, F) = 0$. Indeed, applying the functor Hom(\cdot , $F(k)$) to the sequence [\(19\)](#page-8-1), we obtain

$$
\operatorname{Ext}^1\big(G_{(a,b,c)}, F(k)\big) \to \operatorname{Ext}^2(F, F) \to \operatorname{Ext}^2((a+b+c+2)\cdot \mathcal{O}_{\mathbb{P}^3}, F(k)).
$$

The group on the left vanishes because $H^1(F(t)) = 0$ for every $t \in \mathbb{Z}$, while the group on the right vanishes because $H^2(F(k)) = 0$. We conclude from [\[12,](#page-34-4) Prop. 3.4] that $\dim \text{Ext}^1(F, F) = 8c_2(F) - 3$, matching the dimension of the family as computed in the previous paragraph. It follows that the family of sheaves given by [\(19\)](#page-8-1) provides a component of the moduli space of stable rank 2 reflexive sheaves on \mathbb{P}^3 .

Summarizing the results obtained so far, we have the following theorem.

Theorem 8 *For each triple* (a, b, c) *of positive integers such that* $3a + 2b + c$ *is nonzero and even, the rank 2 reflexive sheaves given by* [\(19\)](#page-8-1) *fill out an irreducible, nonsingular, component* $S(a, b, c)$ *of* $R(0; n; m)$ *of expected dimension* $8n - 3$ *, where n and m are given by the expressions:*

$$
n = \frac{1}{4}(3a + 2b + c)^2 + \frac{3}{2}(3a + 2b + c) - (b + c),
$$

\n
$$
m = m(a, b, c) = 27\binom{a + 2}{3} + 8\binom{b + 2}{3} + \binom{c + 2}{3} + 3(3a + 2b + 5)ab
$$

\n
$$
+ \frac{3}{2}(3a + c + 4)ac + (2b + 3c + 3)bc + 6abc.
$$

More precisely, let S(*a*, *b*, *c*) ⊂ Hom $(G_{(a,b,c)}, (a+b+c+2) \cdot O_{\mathbb{P}^3})$ be the open subset
consisting of monomorphisms with 0 dimensional deconomorphisms in them *consisting of monomorphisms with 0-dimensional degeneracy loci; then,*

$$
\mathcal{S}(a,b,c) = \widetilde{\mathcal{S}}(a,b,c)/(\text{Aut}(G_{(a,b,c)}) \times GL(a+b+c+2))/\mathbb{C}^*).
$$

Two particular cases deserve special attention, as they were previously considered by Chang [\[4\]](#page-34-5). First, we set $a = b = 0$ and $c = 2$, so that $n = 2$ and $m = 4$ and [\(19\)](#page-8-1) reducing to

$$
0 \to 2 \cdot \mathcal{O}_{\mathbb{P}^3}(-1) \xrightarrow{\alpha} 4 \cdot \mathcal{O}_{\mathbb{P}^3} \to F(1) \to 0. \tag{20}
$$

It is shown in [\[4](#page-34-5), Lemma 2.9] that every stable rank 2 reflexive sheaf *F* with $c_2(F) = 2$ and $c_3(F) = 4$ admits a resolution of the form [\(20\)](#page-9-1); in other words, $S(0, 0, 2) = \mathcal{R}(0, 2, 4)$.

The second case considered by Chang corresponds to $a = c = 0$ and $b = 1$, so that $n = 3$ and $m = 8$ and [\(19\)](#page-8-1) reducing to

$$
0 \to \mathcal{O}_{\mathbb{P}^3}(-2) \xrightarrow{\alpha} 3 \cdot \mathcal{O}_{\mathbb{P}^3} \to F(1) \to 0. \tag{21}
$$

One can check that every stable rank 2 reflexive sheaf *F* with $c_2(F) = 3$ and $c_3(F) = 8$ admits a resolution of the form [\(21\)](#page-9-2), cf. [\[4,](#page-34-5) proof of Theorem 3.9]; in other words, $S(0, 1, 0) =$ *R*(0; 3; 8).

Finally, we are ready to establish the result promised in the beginning of the section.

Theorem 9 Let ζ_n denote the number of irreducible components of $\mathcal{M}(n)$ whose generic *points correspond to sheaves with 0-dimensional singularities. Then, lim sup*_{$n\rightarrow\infty$} $\zeta_n = \infty$ *.*

Proof For any integer $q \ge 1$ set $n_q = 9q^2 - 6q - 1$ and for any integer *i*, $0 \le i \le q - 1$, set $a_{q,i} = i$, $b_{q,i} = 3q - 3i - 3$, $c_{q,i} = 3i + 2$. Then, according to Theorem [8,](#page-9-3) the sheaf *F* defined by [\(19\)](#page-8-1) for the triple of integers $(a, b, c) = (a_{q,i}, b_{q,i}, c_{q,i})$ belongs to an irreducible component $S_{q,i} = S(a_{q,i}, b_{q,i}, c_{q,i})$ of $\mathcal{R}(0; n_q, m_{q,i})$, where $m_{q,i} = m(a_{q,i}, b_{q,i}, c_{q,i})$ is an even integer given by the second formula of Theorem [8.](#page-9-3) Now by Theorem [7,](#page-8-0) to each $S_{q,i}$ there corresponds an irreducible component $\overline{\mathcal{T}(n_q, \frac{m_q,i}{2})}$ of dimension $8n_q - 3 + 2m_{q,i}$ in $M(n_q)$ whose generic point is a sheaf with 0-dimensional singularities. Since $0 \le i \le q-1$, we therefore obtain *q* distinct irreducible components of $\mathcal{M}(n_q)$ with this property. In other words, in the notation of this theorem, $\zeta_{n_q} \ge q$. Hence, $\limsup_{n \to \infty} \zeta_n = \infty$.

3 Components of sheaves with 1-dimensional singularities

Let E be a rank 2 torsion free sheaf with 1-dimensional singularities, that is, the quotient sheaf $Q_E = E^{\vee \vee}/E$ has pure dimension one. Given any coherent sheaf *G* on \mathbb{P}^3 , one has $\mathcal{E}xt^3(E, G) = 0$ and $\mathcal{E}xt^2(E, G) \simeq \mathcal{E}xt^3(Q_E, G) = 0$ due to the reflexivity of $E^{\vee \vee}$. Therefore, torsion free sheaves *E* with 1-dimensional singularities have homological dimension equal to 1; in other words, *E* admits a locally free resolution of the form

$$
0 \to L_1 \to L_0 \to E \to 0. \tag{22}
$$

Lemma 10 *If E is a rank 2 torsion free sheaf on* \mathbb{P}^3 *with* $c_1(E) = 0$ *, and with 1-dimensional singularities, then*

$$
\chi(\mathcal{H}om(E,E)) - \chi(\mathcal{E}xt^{1}(E,E)) = \sum_{j=0}^{3} (-1)^{j} \dim \operatorname{Ext}^{j}(E,E) = -8c_{2}(E) + 4.
$$

Proof In this case, the spectral sequence of local-to-global Ext's converges in the third page, and it yields

- (i) $Ext^1(E, E) = H^1(\mathcal{H}om(E, E)) \oplus \ker d_2^{01};$
- (ii) Ext²(*E*, *E*) = coker $d_{21}^{01} \oplus \ker d_2^{11}$;
- (iii) $\text{Ext}^3(E, E) = \text{coker} \, d_2^{11}$

where d_2^{01} and d_2^{11} are the spectral sequence maps

$$
d_2^{01}: H^0(\mathcal{E}xt^1(E, E)) \to H^2(\mathcal{H}om(E, E)) \text{ and } (23)
$$

$$
d_2^{11}: H^1(\mathcal{E}xt^1(E, E)) \to H^3(\mathcal{H}om(E, E)).
$$
 (24)

The first equality is then an immediate consequence.

As for the last equality, the same proof of [\[12,](#page-34-4) Prop. 3.4] applies here, since *E* has homological dimension 1.

Remark 11 We observe that the proof of the first equality does not depend on the hypotheses $rk(E) = 2$ and $c_1(E) = 0$, being valid for any torsion free sheaf with 1-dimensional singularities.

Recall that a rank 2 *instanton sheaf* on \mathbb{P}^3 is a rank 2 torsion free sheaf *E* with $c_1(E) = 0$ such that

$$
h^{0}(E(-1)) = h^{1}(E(-2)) = h^{2}(E(-2)) = h^{3}(E(-3)) = 0.
$$

These are precisely the sheaves obtained as cohomology of linear monads of the form (cf. $[15]$

$$
0 \to n \cdot \mathcal{O}_{\mathbb{P}^3}(-1) \xrightarrow{\alpha} (2n+2) \cdot \mathcal{O}_{\mathbb{P}^3} \xrightarrow{\beta} n \cdot \mathcal{O}_{\mathbb{P}^3}(1) \to 0.
$$

The second Chern class of *E* is called the *charge* of *E*. An *instanton bundle* is simply a locally free instanton sheaf. Let $\mathcal{I}(n)$ denote the moduli space of instanton bundles of charge *n*; since every instanton bundle is μ -stable, $\mathcal{I}(n)$ can be regarded as an open subset of $\mathcal{M}(n)$. Moreover, for each $n \geq 1$, $\mathcal{I}(n)$ is an irreducible [\[24](#page-35-0)[,25\]](#page-35-1), nonsingular [\[16\]](#page-34-0), affine [\[5\]](#page-34-1) variety of dimension 8*n* − 3. The trivial sheaf $2 \cdot O_{\mathbb{P}^3}$ is considered the instanton bundle of charge 0; with this in mind, $\mathcal{I}(0)$ consists of a single point. $\mathcal{I}(n)$ is known to be rational for $n \leq 3$.

For $n > 0$, denote by $\mathcal{L}(n)$ the union of those irreducible components of $\mathcal{M}(n)$ whose generic points *F* satisfy the condition

$$
h^1(F(-2)) = h^2(F(-2)) = 0.
$$

We call $\mathcal{L}(n)$ the *instanton stratum of* $\mathcal{M}(n)$.

In this section, we study the sheaves from $\mathcal{M}(n)$ with 1-dimensional singularities obtained from the instanton bundles of charge $n - d$ by elementary transformations, in the sense of [\[14,](#page-34-7) Section 3], along complete intersection curves of degree *d* in \mathbb{P}^3 .

Let $d_1 \leq d_2$ be positive integers, and for $i = 1, 2$ let S_{d_i} be a surface of degree d_i in \mathbb{P}^3 . If the scheme $C_{d_1,d_2} := S_{d_1} \cap S_{d_2}$ has pure dimension 1, we call it a *complete intersection curve*. The degree, the arithmetic genus and the Hilbert polynomial of the curve $C = C_{d_1,d_2}$ are given by the formulas

$$
d := \deg C = d_1 d_2, \quad p_a(C) = 1 + \frac{d_1 d_2 (d_1 + d_2 - 4)}{2},
$$

$$
H(n) = \frac{d_1 d_2 (2n + 4 - d_1 - d_2)}{2}.
$$
 (25)

Let Hilb_{d1, d₂ be an open subset of the Hilbert scheme Hilb_{H(t)} consisting of reduced complete} intersection curves C_{d_1,d_2} . This is a smooth irreducible scheme of dimension

dim Hilb_{d₁,d₂} =
$$
2\binom{d_1+3}{3} - 4 = h^0(N_{C/\mathbb{P}^3})
$$
, if $d_1 = d_2$,
\ndim Hilb_{d₁,d₂} = $\binom{d_1+3}{3} + \binom{d_2+3}{3} - \binom{d_2-d_1+3}{3} - 2$ (26)
\n= $h^0(N_{C/\mathbb{P}^3})$, if $d_1 < d_2$,

where $C \in Hilb_{d_1,d_2}$. Besides, the h^1 -cohomology of the sheaf N_{C/\mathbb{P}^3} is given by

$$
h^{1}(N_{C/\mathbb{P}^{3}}) = 2\binom{d_{1} - 1}{3} + 1, \text{ if } d_{1} = d_{2},
$$

\n
$$
h^{1}(N_{C/\mathbb{P}^{3}}) = \binom{d_{1} - 1}{3} + \binom{d_{2} - 1}{3} - \binom{d_{2} - d_{1} - 1}{3}, \text{ if } d_{1} < d_{2},
$$
\n
$$
h^{0}(N_{C/\mathbb{P}^{3}}) - h^{1}(N_{C/\mathbb{P}^{3}}) = 4d_{1}d_{2}.
$$
\n
$$
(27)
$$

Let *H* be an open dense subset of $Hilb_{d_1,d_2}$ defined as

$$
\mathcal{H} = \mathcal{H}_{d_1, d_2} := \{ C \in \text{Hilb}_{d_1, d_2} \mid C \text{ is a reduced curve with} \text{at most ordinary singularities = simple double points} \}.
$$
\n(28)

Note that *H* contains a dense open subset

$$
\mathcal{H}_s := \{ C \in \mathcal{H} \mid C \text{ is a smooth irreducible curve} \}. \tag{29}
$$

Let

$$
\mathcal{Z} \hookrightarrow \mathcal{H} \times \mathbb{P}^3 \tag{30}
$$

be the universal family of curves over *H*. For any $C \in H$, denote $g := p_a(C)$ and let

$$
P = P(n) = d_1 d_2 \cdot n \tag{31}
$$

be the Hilbert polynomial of $\mathcal{O}_C((g-1)$ pt) with respect to the sheaf $\mathcal{O}_{\mathbb{P}^3}(1)$.

Consider the relative Jacobian functor $\mathbf{J} = \mathbf{J}^P$: (*Schemes*/*H*)^{*o*} \rightarrow (*Sets*) defined as

J(*T*) = {invertible sheaves *F* on $Z \times_H T$ with fiberwise Hilbert polynomial P }/∼,

where $F_1 \sim F_2$ if there exists an invertible sheaf *N* on *T* such that $F_1 \simeq F_2 \otimes p^*N$, for $p : Z \times_H T \to T$ the projection. Let **P** be the étale sheaf associated with **J**. It is known (see [\[1\]](#page-34-8), [\[9](#page-34-9), 0.2]) that **P** is represented by an algebraic space \mathbb{P} , locally of finite type over \mathcal{H} . Furthermore, according to [\[9,](#page-34-9) Theorem B] there exists an étale base change

$$
\sigma : \widetilde{\mathcal{H}} \to \mathcal{H} \tag{32}
$$

such that the functor $\hat{\mathbf{J}} = \mathbf{J} \times_H \tilde{\mathcal{H}}$ is represented by a $\tilde{\mathcal{H}}$ -scheme

$$
\widehat{\mathbb{J}} \stackrel{\hat{\pi}}{\rightarrow} \widetilde{\mathcal{H}}
$$

together with the universal (Poincaré) line bundle

$$
\widehat{\mathbb{L}} \text{ on } \widehat{\mathbb{J}} \times_{\widetilde{\mathcal{H}}} \widetilde{\mathcal{Z}},\tag{33}
$$

where $\widetilde{\mathcal{Z}} := \mathcal{Z} \times_{\mathcal{H}} \widetilde{\mathcal{H}}$. Consider an open subfunctor \mathbf{J}^{ss} of \mathbf{J} defined as

 $J^{ss}(T) = \{(F \mod \sim) \in J(T) \mid F \text{ is fiberwise } \mathcal{O}_{\mathbb{P}^3}(1)|_C\}$ -semistable}

The functor $\widetilde{\mathbf{J}} = \mathbf{J}^{ss} \times_H \widetilde{\mathcal{H}}$ is represented by a $\widetilde{\mathcal{H}}$ -scheme

$$
\widetilde{\mathbb{J}} \stackrel{\tilde{\pi}}{\to} \widetilde{\mathcal{H}} \tag{34}
$$

of finite type over $\widetilde{\mathcal{H}}$, which is an open subscheme of $\widehat{\mathbb{J}}$ endowed with the universal (Poincaré) line bundle

$$
\widetilde{\mathbb{L}} = \widehat{\mathbb{L}}|_{\widetilde{\mathbb{J}} \times \widetilde{\mathcal{H}}} \widetilde{\mathcal{Z}},\tag{35}
$$

On the other hand, J^{ss} is an open subfunctor of the moduli functor $M = M^P$: $(Schemes/\mathcal{H})^o \rightarrow (Sets),$

 $M(T) = {T$ -flat sheaves *F* on $Z \times_H T$ with $\mathcal{O}_{\mathbb{P}^3}(1)|_C$ -semistable

fibers over *T* having fiberwise Hilbert polynomial *P*}/∼,

where by Simpson [\[23\]](#page-35-4) (see also [\[13](#page-34-10), Section 4])**M**is corepresented by a projective *H*-scheme

$$
\mathbb{M} = \mathbb{M}_{\mathcal{Z}/\mathcal{H}}^P \stackrel{\pi}{\to} \mathcal{H},\tag{36}
$$

respectively, \mathbf{J}^{ss} is corepresented by a quasi-projective $\mathcal{H}\text{-scheme}$

$$
\mathbb{M}' = \mathbb{M}'^P_{\mathcal{Z}/\mathcal{H}} \xrightarrow{\pi'} \mathcal{H} \tag{37}
$$

which is an open subscheme of M and $\pi' = \pi|_{\mathbb{M}'}$. Note that set-theoretically the schemes $\widetilde{\mathbb{J}}$ and M' are described as

$$
\widetilde{\mathbb{J}} = \{ (C, w, [L]) \mid C \in \mathcal{H}, w \in \sigma^{-1}(C), L \text{ is an invertible}
$$

\n
$$
\mathcal{O}_{\mathbb{P}^3}(1)|_C \text{-semistable sheaf on } C \text{ with Hilbert polynomial } P \},
$$

\n
$$
\mathbb{M}' = \{ (C, [L]_S) \mid C \in \mathcal{H}, L \text{ is an invertible } \mathcal{O}_{\mathbb{P}^3}(1)|_C \text{-semistable}
$$
 (38)

 $\int_{0}^{2\pi}$ sheaf on *C* with Hilbert polynomial *P*}, (39)

where $[L]_S$ denotes *S*-equivalence class of *L* with respect to $\mathcal{O}_{\mathbb{P}^3}(1)|_C$. Under this description, the corepresentability of \mathbf{J}^{ss} by \mathbb{M}' implies that there exists a surjective morphism of schemes

$$
\varphi: \widetilde{\mathbb{J}} \to \mathbb{M}', \quad (C, w, [L]) \mapsto (C, [L]_S). \tag{40}
$$

 \mathcal{L} Springer

Note that, since every invertible sheaf on a smooth (hence irreducible) curve $C \in \mathcal{H}_s$ is $\mathcal{O}_{\mathbb{P}^3}(1)|_C$ -stable, it follows that the functors $J_s = J^{ss} \times_H \mathcal{H}_s$ and $M \times_H \mathcal{H}_s$ are isomorphic, and they are represented by the scheme

$$
\mathbb{M}_s = \mathbb{M} \times_{\mathcal{H}} \mathcal{H}_s \stackrel{\pi_s}{\to} \mathcal{H}_s,\tag{41}
$$

where $\pi_s = \pi|_{\mathbb{M}_s}$. Hence, the functor $\widetilde{\mathbf{J}}_s = \mathbf{J}_s \times \mathcal{H}_s$ $\widetilde{\mathcal{H}}_s$ is represented by the scheme

$$
\widetilde{\mathbb{J}}_s := \mathbb{M}_s \times_{\mathcal{H}_s} \widetilde{\mathcal{H}}_s = \mathbb{M} \times_{\mathcal{H}} \widetilde{\mathcal{H}}_s \stackrel{\tilde{\pi}_s}{\to} \widetilde{\mathcal{H}}_s \tag{42}
$$

of finite type over $\widetilde{\mathcal{H}}_s$, which is an open subscheme of $\widetilde{\mathbb{J}}$. Note that, by construction, π_s is a fibration

$$
\pi_s: \mathbb{M}_s \to \mathcal{H}_s, \quad \pi^{-1}(C) = \text{Pic}^{g-1}(C), \quad C \in \mathcal{H}_s,
$$
\n
$$
(43)
$$

where $Pic^{g-1}(C) = \{ [L] \in Pic(C) \mid \text{deg } L = g - 1 \}.$ This implies that M_s is smooth and irreducible, since \mathcal{H}_s is clearly smooth and irreducible. In addition,

$$
\tilde{\pi}_s : \tilde{\mathbb{J}}_s \to \tilde{\mathcal{H}}_s \tag{44}
$$

is also a fibration with fiber Pic^{$g-1$}(*C*) which is smooth since $\widetilde{\mathcal{H}}_s$ is smooth as an étale cover of \mathcal{H}_s .

Now consider the closure

$$
\mathbb{M}^0 := \overline{\mathbb{M}}_s \tag{45}
$$

of the scheme \mathbb{M}_s in \mathbb{M} . In the next section (see the proof of Lemma [20](#page-21-0) (iv)), we will make use of the following lemma.

Lemma 12 $\mathbb{M}' \subset \mathbb{M}^0$.

Proof It is known (see, e.g., [\[9](#page-34-9), Section 0.2], [\[18,](#page-35-5) Fact 4.4]) that the algebraic space $\mathbb P$ representing the functor **P** is formally smooth over H . This implies that the scheme \mathbb{J} , hence also the schemes \mathbb{J} and \mathbb{J}_s , is formally smooth over \mathcal{H} .

Take a point $x = (C, [L]_S) \in M'$. By definition, *L* is an invertible sheaf on *C*. We have to show that $x \in \mathbb{M}^0$. For this, let $\tilde{x} \in \tilde{\mathbb{J}}$ be any point in the fiber $\varphi^{-1}(x)$ where φ is defined in [\(40\)](#page-12-0) and let $w = \tilde{\pi}(\tilde{x})$. Refining the étale base change σ , we may assume $\mathcal{H} = \Box U_i$, where each $\widetilde{U}_i = \sigma^{-1}(U_i)$ is irreducible and $\cup U_i$ is an open cover of *H*. The point $w \in \widetilde{\mathcal{H}}$ lies in some \widetilde{U}_i , and let *X* be any irreducible component of $\tilde{\pi}^{-1}(U_i)$ containing \tilde{x} . Since \mathcal{H}_s is an irreducible dance agent wheat of \mathcal{U}_s , it follows that U_s is a $\mathcal{U}_s \cap \mathcal{U}_s$ is a dance age irreducible dense open subset of *H*, it follows that $U_{is} = U_i \cap H_s$ is a dense open subset of *U_i*. Hence, $\widetilde{U}_{is} = \sigma^{-1}(U_{is})$ is a dense open subset.

Next, as $\tilde{\pi}$: $\tilde{\mathbb{J}} \to \tilde{\mathcal{H}}$ is formally smooth, $\tilde{\pi}|_X : X \to \tilde{U}_i$ is dominant. Hence, $X' = \tilde{\pi}^{-1}(\tilde{U})$ is dominant. Hence, $X' = \tilde{\pi}^{-1}(\tilde{U})$ is denoted in $\mathbb{I}(X)$ and hence $X \cap \tilde{\pi}^{-1}(\tilde{U}_{is})$ is dense open in both *X* and $\tilde{\pi}^{-1}(\tilde{U}_{is})$. Thus, $\varphi(X')$ is dense in $\varphi(X)$ and, by construction [see [\(42\)](#page-13-0)–[\(44\)](#page-13-1)], $\varphi(X')$ lies in \mathbb{M}_s and contains a nonempty open subset of \mathbb{M}_s . Since M_s is irreducible, $M^0 = \overline{M}_s = \overline{\varphi(X')} = \overline{\varphi(X)}$, and, by construction, $x \in \overline{\varphi(X)}$.

Note that, since $\widetilde{\mathbb{J}}$ is formally smooth over $\widetilde{\mathcal{H}}$, it follows that $\widetilde{\mathbb{J}}_s$ is dense and open in $\widetilde{\mathbb{J}}$; hence, [\(44\)](#page-13-1) implies that

$$
\dim \widetilde{\mathbb{J}} = \dim \widetilde{\mathbb{J}}_s = 1 + \frac{d_1 d_2 (d_1 + d_2 - 4)}{2} + \dim \mathcal{H},\tag{46}
$$

where dim H is given by [\(26\)](#page-11-0).

Take any curve *C* ∈ *H*_{*s*}. Then, the set *U_C* := {[*L*] ∈ Pic^{*g*-1}(*C*) | $h^0(L) = h^1(L) = 0$ } is dense and open in Pic^{$g-1$}(*C*) since it is the complement of the divisor $\Theta = \text{im}(a)$, where *a* : $S^{g-1}C$ → Pic^{$g-1$}(*C*), *D* → $\mathcal{O}_C(D)$ is the Abel–Jacobi map. Therefore, denoting

$$
\mathbb{J} := \{ (C, [L]) \in \mathbb{M}_s \mid h^0(L) = h^1(L) = 0 \}, \n\widetilde{\mathbb{J}}_0 := \{ (C, w, [L]) \in \widetilde{\mathbb{J}}_s \mid h^0(L) = h^1(L) = 0 \} = \mathbb{J} \times_{\mathcal{H}_s} \widetilde{\mathcal{H}}_s,
$$

we obtain that $\mathbb J$ is a nonempty and, by semicontinuity, open subset of $\mathbb M_s$, which is dense and smooth as M_s is smooth and irreducible. Similarly, \tilde{J}_0 is smooth, dense and open in \tilde{J}_s . Note also that by [\(35\)](#page-12-1), $\widetilde{J}_0 \times_{\widetilde{H}} \widetilde{Z}$ carries a universal (Poincaré) line bundle, which is

$$
\widetilde{\mathbb{L}}_0 = \widetilde{\mathbb{L}}|_{\widetilde{\mathbb{J}}_0 \times_{\widetilde{\mathcal{H}}}} \widetilde{\mathcal{Z}}}. \tag{47}
$$

Next, for $c > 0$ and any point $([F], C, [L]) \in \mathcal{I}(c) \times \mathbb{J}$, set

PHom $(F, C, L)_{e} := \{ \mathbf{k}\varphi \in \mathbb{P}(\text{Hom}(F, L(2))) \mid \varphi : F \to L(2) \text{ is an epimorphism} \}.$

Recall that $\mathcal{I}(0) = \{pt\}.$

Lemma 13 *For each c* \geq 0*, there is a smooth, dense and open subset* $(\mathcal{I}(c) \times \mathbb{J})_e^0$ *of* $\mathcal{I}(c) \times \mathbb{J}$ *such that, for any* ([*F*], *C*, [*L*]) \in (*I*(*c*) \times J)⁰_{*e*}, *one has:*

- (i) $h^{i}(L) = h^{i}(L^{-1} \otimes \omega_{C}) = 0, i = 0, 1;$
- (ii) $h^1(F \otimes L(2)) = h^1(F \otimes (L^{-1} \otimes \omega_C)(2)) = 0;$
- (iii) \mathbb{P} Hom (F, C, L) *e* is a dense open subset of $\mathbb{P}(\text{Hom}(F, L(2)))$;
- (iv)

$$
\dim \mathbb{P}\mathrm{Hom}(F, C, L)_e = 4d_1d_2 - 1. \tag{48}
$$

(v) *There is a smooth, dense and open subset* $(\mathcal{I}(c) \times \mathbb{J})_e$ *of* $\mathcal{I}(c) \times \mathbb{J}$ *containing* $(\mathcal{I}(c) \times \mathbb{J})_e^0$ *and such that, for any* ([F], C, [L]) \in ($\mathcal{I}(c) \times \mathbb{J}_e$, the statements (iii) and (iv) and the *equalities* $h^0(L) = h^1(L) = h^1(F \otimes L(2)) = 0$ *from (i) and (ii) above are true.*

Proof Take a point $(C, [L]) \in J_0 \cap J_s$, so that

$$
h^{i}(L) = h^{i}(L^{-1} \otimes \omega_{C}) = 0, \quad i = 0, 1.
$$
 (49)

We first consider the case $c = 0$, so that $F \otimes L(2) \simeq 2 \cdot L(2)$ and Hom(*F*, $L(2) \simeq$ $H^0(2 \cdot L(2))$. Items (ii), (iii) and (v) follow immediately. As for item (iv), just note that $\chi(L(k)) = d_1 d_2 \cdot k$ (since $\chi(L) = 0$ and deg $C = d_1 d_2$); thus, $h^0(L(2)) = \chi(L(2)) = 2d_1 d_2$.

Next, let $c > 0$; take a \cdot t Hooft bundle [*F*] $\in \mathcal{I}(c)$, i.e., a bundle fitting in an exact triple

$$
0 \to \mathcal{O}_{\mathbb{P}^3}(-1) \to F \to \mathcal{I}_Y(1) \to 0,
$$

where *Y* is a union of $c + 1$ disjoint lines in \mathbb{P}^3 . Choose *Y* in such a way that $Y \cap C = \emptyset$. Then, tensoring the above triple with *L*(2), we obtain exact triples

$$
0 \to L(1) \to F \otimes L(2) \to L(3) \to 0,
$$

\n
$$
0 \to (L^{-1} \otimes \omega_C)(1) \to F \otimes (L^{-1} \otimes \omega_C)(2) \to (L^{-1} \otimes \omega_C)(3) \to 0.
$$
\n
$$
(50)
$$

The equalities [\(49\)](#page-14-0) imply

$$
h^1(L(1)) = h^1(L(3)) = 0, \quad h^1((L^{-1} \otimes \omega_C)(1)) = h^1((L^{-1} \otimes \omega_C)(3)) = 0,\tag{51}
$$

so that [\(50\)](#page-14-1) yields

$$
h^1(F \otimes L(2)) = 0
$$
, $h^1(F \otimes (L^{-1} \otimes \omega_C)(2)) = 0$

for the above chosen point ([*F*], *C*, [*L*]) $\in \mathcal{I}(c) \times \mathbb{J}$. Since, by semicontinuity, the vanishing of $h^1(F \otimes L(2))$ and $\hat{h}^1(F \otimes (L^{-1} \otimes \omega_C)(2))$ is an open condition on $([F], C, [L]) \in \mathcal{I}(c) \times \mathbb{J}$, it follows that the set

$$
(\mathcal{I}(c) \times \mathbb{J})' = \{ ([F], C, [L]) \in \mathcal{I}(c) \times \mathbb{J} \mid h^i(L) = h^i(L^{-1} \otimes \omega_C) = 0, h^1(F \otimes L(2)) = h^1(F \otimes (L^{-1} \otimes \omega_C)(2)) = 0, i = 0, 1, }
$$
\n
$$
(52)
$$

is a nonempty (hence dense) open subset of $\mathcal{I}(c) \times \mathbb{J}$. Next, from [\(49\)](#page-14-0) and [\(50\)](#page-14-1) we obtain the exact sequence

$$
0 \to H^0(L(1)) \to H^0(F \otimes L(2)) \stackrel{\varepsilon}{\to} H^0(L(3)) \to 0. \tag{53}
$$

Since the sheaves $\mathcal{O}_{\mathbb{P}^3}(1)$ and $\mathcal{O}_{\mathbb{P}^3}(3)$ are very ample, it follows from [\(49\)](#page-14-0) that the linear series $|L(1)|$ and $|L(3)|$ on *C* have no fixed points. This implies that there exist such sections $s_i \in H^0(L(i))$, $i = 1, 3$, that

$$
(s_1)_0 \cap (s_3)_0 = \emptyset.
$$

Take any section $s' \in \varepsilon^{-1}(s_3)$, where ε is the epimorphism in [\(53\)](#page-15-0). Then, the last equality implies that the section $s := s' + s_1 \in H^0(F \otimes L(2))$ has no zeroes. Hence, its transpose $\varphi = \frac{\sharp}{s}$: $F \simeq F^{\vee} \to L(2)$ is an epimorphism, i.e.,

$$
\mathbb{P}\mathrm{Hom}(F, C, L)_e \neq \emptyset. \tag{54}
$$

Since \mathbb{P} Hom (F, C, L) _e is an open subset of the irreducible space \mathbb{P} (Hom $(F, L(2))$), it is dense in $\mathbb{P}(\text{Hom}(F, L(2)))$. Moreover, [\(54\)](#page-15-1) is an open condition on the point ([F], C, [L]) in $(\mathcal{I}(c) \times \mathbb{J})'$. Thus in view of [\(52\)](#page-15-2), there exists a dense open subset $(\mathcal{I}(c) \times \mathbb{J})_e$ of $(\mathcal{I}(c) \times \mathbb{J})'$ (hence of $\mathcal{I}(c) \times \mathbb{J}$) for which the statements (i)–(iii) of Lemma hold. Besides, the smoothness of $(\mathcal{I}(c) \times \mathbb{J})_e$ follows from that of $\mathcal{I}(c)$ (see [\[16](#page-34-0)]) and of \mathbb{J} .

Next, since $F \simeq F^{\vee}$, we have

dim
$$
\mathbb{P}
$$
Hom $(F, C, L)_e$ = dim(Hom $(F, L(2))$) – 1 = $h^0(F \otimes L(2))$ – 1

Note that

$$
h^{0}(F \otimes L(2)) = h^{0}(L(1)) + h^{0}(L(3)) = \chi(L(1)) + \chi(L(3)) = 4d_{1}d_{2},
$$

where the first equality follows from the exact sequence (51) , while the second equality follows from [\(53\)](#page-15-0). Putting the last two equations together, we obtain [\(48\)](#page-14-3).

At last, the statement (v) is clear by semicontinuity. \square

In particular, note that $(\mathcal{I}(0) \times \mathbb{J})_e = \mathbb{J}$.

Next, using Lemma [13](#page-14-4) consider, for each $c \ge 1$ and $d_2 \ge d_1 \ge 1$, the set

$$
\widetilde{W}(d_1, d_2, c) := \{ ([F], C, [L], \mathbf{k}\varphi) \mid ([F], C, [L]) \in (\mathcal{I}(c) \times \mathbb{J})_e, \ \mathbf{k}\varphi \in \mathbb{P} \text{Hom}(F, C, L)_e \}
$$
\n(55)

and the surjective projection

$$
\pi: \widetilde{W}(d_1, d_2, c) \to (\mathcal{I}(c) \times \mathbb{J})_e, \quad ([F], C, [L], \mathbf{k}\varphi) \mapsto ([F], C, [L]) \tag{56}
$$

with fiber

$$
\pi^{-1}([F], C, [L]) = \mathbb{P} \text{Hom}(F, C, L)_e \stackrel{\text{open}}{\hookrightarrow} \mathbb{P}(\text{Hom}(F, L(2))).\tag{57}
$$

When $c = 0$, one must also quotient out by the action of $GL(2)$ on the trivial sheaf $2\cdot\mathcal{O}_{\mathbb{P}^3}(2)$ in order to obtain a family of isomorphism classes of torsion free sheaves. Therefore, we define:

$$
\widetilde{W}(d_1, d_2, 0) := \{ (C, [L], \mathbf{k}\varphi) \mid (C, [L]) \in \mathbb{J}^0, \ \mathbf{k}\varphi \in \mathbb{P} \operatorname{Hom}(2 \cdot \mathcal{O}_{\mathbb{P}^3}, C, L)_e / \mathbb{P} GL(2) \}.
$$
\n(58)

Also denote

$$
\widetilde{W}(d_1, d_2, c)^0 := \pi^{-1}((\mathcal{I}(c) \times \mathbb{J})^0_e). \tag{59}
$$

Remark 14 Note that $\widetilde{W}(d_1, d_2, c)$ with $c \ge 1$ is a dense open subset of a Severi–Brauer variety fibered over $B := (\mathcal{I}(c) \times \mathbb{J})_e$ with fibers, given by $\mathbb{P}^{\hat{A}d_1d_2-1}$ via the projection π .

Indeed, let $\widetilde{\mathbf{V}} := \mathcal{B} \times_{\mathcal{H}} \widetilde{\mathcal{H}} \to \mathcal{B}$ be an étale covering induced by [\(32\)](#page-12-2). According to [\[13,](#page-34-10) Section 4], over $\mathcal{I}(c)$ there exists (locally in the étale topology) a universal rank-2 vector bundle. This means that there exists an open étale covering $\Phi : W \to \mathcal{I}(c)$ and a rank 2 vector bundle **E** over $\mathbb{P}^3 \times W$ such that, for any $w \in W$, $\mathbf{E}|_{\mathbb{P}^3 \times w} \simeq E_t$, where $t = \Phi(w) \in \mathcal{I}(c)$ and E_t denotes the instanton bundle whose isomorphism class is represented by *t*. Let \widetilde{U} := $W \times_{\mathcal{I}(c)} \widetilde{\mathbf{V}}$, and let $\widetilde{\Gamma} := \widetilde{\mathbf{U}} \times_{\widetilde{\mathcal{H}}} \widetilde{\mathcal{Z}}$; let $\iota : \widetilde{\Gamma} \hookrightarrow \widetilde{\mathbf{U}} \times \mathbb{P}^3$ be the lift into $\widetilde{\mathbf{U}} \times \mathbb{P}^3$ of the universal family of curves \mathcal{Z} . Let also $\mathbf{E}_{\tilde{\mathbf{U}}}$ be the lift into $\tilde{\mathbf{U}} \times \mathbb{P}^3$ of the sheaf **E** and let **L** be the lift onto $\widetilde{\Gamma}$ of the sheaf $\widetilde{\mathbb{L}}_0$ defined in [\(47\)](#page-14-5). We thus obtain a vector bundle $\tau := \mathcal{H}om_{\widetilde{\Gamma}/\widetilde{\Pi}}(\mathbf{E}_{\widetilde{\Pi}}, \iota_*\mathbf{L}(2))$ over \widetilde{U} , the fiber of which over a point *u* $\in \widetilde{U}$ lying over a point ([*F*], *C*, [*L*]) $\in \mathcal{B}$ is by construction isomorphic to Hom(*F*, *L*(2)). Hence, by [\(48\)](#page-14-3) the associated projective bundle $P\tau \to \tilde{U}$ is a $\mathbb{P}^{4d_1d_2-1}$ -fibration. Applying to it the argument from the proof of Proposition 6.4 from [\[14\]](#page-34-7), we obtain that this fibration descends to a Severi–Brauer variety $\mathbf{p}_B : \mathbf{P}_B \to \mathcal{B}$ with fibers $\mathbb{P}^{4d_1d_2-1}$ over *B* such that, by the above, for any point ([*F*], *C*, [*L*]) ∈ *B* one has

$$
\mathbf{p}_{\mathcal{B}}^{-1}([F], C, [L]) = \mathbb{P}(\text{Hom}(F, L(2))).\tag{60}
$$

This, together with [\(57\)](#page-15-3), shows that the variety P_B contains $\widetilde{W}(d_1, d_2, c)$ as a dense open subset.

Finally, for the case $c = 0$, note that although the fibers of the projection π : $\widetilde{W}(d_1, d_2, 0) \rightarrow \mathbb{J}^0$ are not open subsets of a projective space, they are still smooth.

From the previous remark and the smoothness of $(\mathcal{I}(c) \times \mathbb{J})_e$ (see Lemma [13\)](#page-14-4), we obtain the following statement.

Theorem 15 *For each c* ≥ 0 *and d*₂ $\geq d_1 \geq 1$, $\widetilde{W}(d_1, d_2, c)$ *has a natural structure of a smooth integral scheme of dimension*

$$
\dim \widetilde{W}(d_1, d_2, c) = 8c - 3 + \frac{1}{2}d_1d_2(d_1 + d_2 + 4) + \dim \mathcal{H}
$$
 (61)

where dim H *is given by* [\(26\)](#page-11-0)*, and, for* $c > 1$ *, the map*

 π : $\widetilde{W}(d_1, d_2, c) \rightarrow (\mathcal{I}(c) \times \mathbb{J})_e$

defined in [\(56\)](#page-15-4) *is a morphism. Respectively,* $\widetilde{W}(d_1, d_2, c)^0$ *is a dense open subscheme of* $W(d_1, d_2, c)$.

Proof It is enough to prove [\(61\)](#page-16-0). For $c \ge 1$, since dim $\mathcal{I}(c) = 8c - 3$, (61) follows from [\(46\)](#page-13-2) and (48) . For $c = 0$, one easily sees from (58) and (46) that

$$
\dim \widetilde{W}(d_1, d_2, 0) = \dim \mathbb{J} + 4d_1d_2 - 4 = \frac{1}{2}d_1d_2(d_1 + d_2 + 4) + \dim \mathcal{H} - 3,
$$

as desired.

Now for any point **w** = ([*F*], *C*, [*L*], **k** φ) $\in \widetilde{W}(d_1, d_2, c)$ set

$$
E(\mathbf{w}) := \ker(F \stackrel{\varphi}{\twoheadrightarrow} L(2)).
$$

By definition, we have an exact triple

$$
0 \to E(\mathbf{w}) \to F \stackrel{\varphi}{\to} L(2) \to 0. \tag{62}
$$

One easily checks, using the irreducibility of C , that $E(\mathbf{w})$ is a stable sheaf (see [\[14,](#page-34-7) Corollary 4.2 and Lemma 4.3]) and, in fact, $[E(w)] \in \mathcal{M}(c+d_1d_2)$. Moreover, Lemma [13\(](#page-14-4)i) and the triple (62) twisted by $\mathcal{O}_{\mathbb{P}^3}(-2)$ yield

$$
[E(\mathbf{w})] \in \mathcal{L}(c + d_1 d_2). \tag{63}
$$

Given a point $(C, [L]) \in \mathbb{J}$, we call the invertible \mathcal{O}_C -sheaf *L* a *theta -characteristic* on *C* if

$$
L^{\otimes 2} \simeq \omega_C.
$$

Consider a subset of J defined as

$$
\Theta_{\mathbb{J}} := \{ (C, [L]) \in \mathbb{J} \mid L \text{ is a theta-characteristic on } C \}. \tag{64}
$$

It is a locally closed subset of J. (Indeed, Θ _J is a fixed point set of an involution J \rightarrow $\mathbb{J}, \ (C, [L]) \mapsto (C, [\omega_C \otimes L^{-1}]).$

Denote

$$
\Theta_W(d_1, d_2, c) := \pi^{-1}((\mathcal{I}(c) \times \mathbb{J})_e \cap (\mathcal{I}(c) \times \overline{\Theta}_{\mathbb{J}})),
$$

$$
W(d_1, d_2, c) := \widetilde{W}(d_1, d_2, c)^0 \setminus \Theta_W(d_1, d_2, c),
$$

where $\overline{\Theta}_{\mathbb{I}}$ is the closure of $\Theta_{\mathbb{I}}$ in \mathbb{J} . By definition, $W(d_1, d_2, c)$ is an open subset of $W(d_1, d_2, c)$. Since for $p_a(C) > 0$ the set $\overline{\Theta}_{\mathbb{J}}$ is clearly a proper closed subset of \mathbb{J} , it follows that for $p_a(C) > 0$ the set $W(d_1, d_2, c)$ is a dense open subset of $\widetilde{W}(d_1, d_2, c)$.

Proposition 16 *For an arbitrary closed point* $\mathbf{w} = (\mathbf{F} | \mathbf{F}, \mathbf{C}, \mathbf{L} | \mathbf{F}, \mathbf{k}\varphi) \in W(d_1, d_2, c)$ *with* $c \geq 0$ *, and* $(d_1, d_2) \neq (1, 1)$ *,* $(d_1, d_2) \neq (1, 2)$ *, the sheaf* $E = E(\mathbf{w})$ *satisfies the relations:*

$$
\dim \operatorname{Ext}^{2}(E, E) = h^{1}(N_{C/\mathbb{P}^{3}}) + p_{a}(C) - 1, \tag{65}
$$

$$
\dim \operatorname{Ext}^1(E, E) = h^1(N_{C/\mathbb{P}^3}) + p_a(C) - 1 + 8(c + d_1 d_2) - 3,\tag{66}
$$

where $p_a(C)$ *and* $h^1(N_{C/\mathbb{P}^3})$ *are given by* [\(25\)](#page-11-1) *and* [\(27\)](#page-11-2)*, respectively.*

Proof The conditions $(d_1, d_2) \neq (1, 1)$, $(d_1, d_2) \neq (1, 2)$ imply that $p_a(C) > 0$, so that $W(d_1, d_2, c)$ is nonempty. Apply the functor $Hom(L(2), -)$ to the triple [\(62\)](#page-16-1):

$$
\cdots \to \text{Ext}^1(L(2), L(2)) \stackrel{\delta}{\to} \text{Ext}^2(L(2), E)
$$

\n
$$
\to \text{Ext}^2(L(2), F) \to \text{Ext}^2(L(2), L(2)) \to \text{Ext}^3(L(2), E)
$$

\n
$$
\to \text{Ext}^3(L(2), F) \to \cdots
$$
 (67)

Next, apply the functor \mathcal{H} *om*(*L*(2), −) to [\(62\)](#page-16-1). Using the vanishing of the sheaves *Hom*(*L*(2), *F*), $\mathcal{E}xt^{1}(L(2), F)$ and $\mathcal{E}xt^{i}(F, L(-2))$, $i = 1, 2$, (note that $\dim_{\mathbb{Z}} L(2) = 1$ and *F* is locally free on \mathbb{P}^3), we obtain an isomorphism $\partial_1 : \mathcal{H}$ *om*(*L*(2), *L*(2)) $\stackrel{\sim}{\to} \mathcal{E}xt^1(L(2), E)$ and an exact sequence

$$
0 \to \mathcal{E}xt^{1}(L(2), L(2)) \stackrel{\partial_{2}}{\to} \mathcal{E}xt^{2}(L(2), E) \to \mathcal{E}xt^{2}(L(2), F) \stackrel{\varepsilon}{\to} \mathcal{E}xt^{2}(L(2), L(2)) \tag{68}
$$

Respectively, applying the functor \mathcal{H} *om*(·, $L(-2)$) to the triple [\(62\)](#page-16-1) yields an isomorphism

$$
\psi : \mathcal{E}xt^{1}(E, L(-2)) \simeq \mathcal{E}xt^{1}(L(2), L(-2)).
$$
 (69)

 \circledcirc Springer

The isomorphisms $h^1(\partial)$: $H^1(\mathcal{H}om(L(2), L(2))) \stackrel{\cong}{\rightarrow} H^1(\mathcal{E}xt^1(L(2), E))$, the homomorphism δ in [\(67\)](#page-17-0) and the monomorphism $h^0(\partial_2)$: $H^0(\mathcal{E}xt^1(L(2), L(2))) \rightarrow$ $H^0(\mathcal{E}xt^2(L(2), E))$ induced by [\(68\)](#page-17-1) fit in the commutative diagram

$$
H^{1}(\text{Hom}(L(2), L(2))) \xrightarrow{h^{1}(\partial_{1})} H^{1}(\mathcal{E}xt^{1}(L(2), E))
$$
\n
$$
\downarrow \qquad \qquad \downarrow
$$
\n
$$
\text{Ext}^{1}(L(2), L(2)) \xrightarrow{\delta} \text{Ext}^{2}(L(2), E)
$$
\n
$$
\downarrow \qquad \qquad \downarrow
$$
\n
$$
H^{0}(\mathcal{E}xt^{1}(L(2), L(2))) \xrightarrow{h^{0}(\partial_{2})} H^{0}(\mathcal{E}xt^{2}(L(2), E))
$$
\n
$$
\downarrow
$$
\n

in which the vertical exact triples come from the spectral sequences

$$
H^p(\mathcal{E}xt^q(L(2), L(2))) \Rightarrow \text{Ext}^{\bullet}(L(2), L(2)) \text{ and}
$$

$$
H^p(\mathcal{E}xt^q(L(2), E)) \Rightarrow \text{Ext}^{\bullet}((L(2), E),
$$

respectively. Now restrict the triple [\(62\)](#page-16-1) onto the curve *C*. Using the relation det $F \otimes$ $\mathcal{O}_C \simeq \mathcal{O}_C$, we obtain an exact triple $0 \to L^{-1}(-2) \to F \otimes \mathcal{O}_C \to L(2) \to 0$. Tensoring this triple with the invertible \mathcal{O}_C -sheaf $\mathcal{E}xt^2(L(2), \mathcal{O}_C)$ and using the isomorphisms $\mathcal{E}xt^2(L(2), \mathcal{O}_C) \otimes L^{-1}(-2) \simeq \mathcal{E}xt^2(L(2), L^{-1}(-2)), \mathcal{E}xt^2(L(2), \mathcal{O}_C) \otimes F$ ≃ $\mathcal{E}xt^2(L(2), F)$, $\mathcal{E}xt^2(L(2), \mathcal{O}_C) \otimes L(2) \simeq \mathcal{E}xt^2(L(2), L(2))$, we obtain the exact triple

$$
0 \to \mathcal{E}xt^2(L(2), L^{-1}(-2)) \to \mathcal{E}xt^2(L(2), F) \stackrel{\varepsilon}{\to} \mathcal{E}xt^2(L(2), L(2)) \to 0.
$$

This triple together with [\(68\)](#page-17-1) yields an exact triple

$$
0 \to \mathcal{E}xt^{1}(L(2), L(2)) \stackrel{\partial_{2}}{\to} \mathcal{E}xt^{2}(L(2), E) \to \mathcal{E}xt^{2}(L(2), L^{-1}(-2)) \to 0. \tag{71}
$$

Note that, since L is not a theta-characteristic on C , it follows that the sheaf

$$
\mathcal{E}xt^2(L(2), L^{-1}(-2)) \simeq \mathcal{E}xt^2(\mathcal{O}_C, \mathcal{O}_C) \otimes L^{-2}(-4) \simeq
$$

det $N_{C/\mathbb{P}^3} \otimes \omega_{\mathbb{P}^3} \otimes L^{-2} \simeq \omega_C \otimes L^{-2}$ (72)

is an invertible \mathcal{O}_C -sheaf of degree 0, nonisomorphic to \mathcal{O}_C ; hence, it has no sections. Thus, the above triple gives an isomorphism

$$
H^{0}(\mathcal{E}xt^{1}(L(2), L(2))) \stackrel{h^{0}(\partial_{2})}{\simeq} H^{0}(\mathcal{E}xt^{2}(L(2), E)).
$$
 (73)

This is the lower horizontal isomorphism in the diagram [\(70\)](#page-18-0) from which it follows that the homomorphism δ is an isomorphism:

$$
\delta: \operatorname{Ext}^1(L(2), L(2)) \stackrel{\simeq}{\to} \operatorname{Ext}^2(L(2), E). \tag{74}
$$

Next, from Lemma [13\(](#page-14-4)i) and the triple [\(50\)](#page-14-1) twisted by $\mathcal{O}_{\mathbb{P}^3}(-4)$ it follows easily that $H^0(F \otimes L(-2)) = 0$, and the Serre–Grothendieck duality together with the isomorphism $F \simeq F^{\vee}$ implies

$$
Ext3(L(2), F) \simeq Hom(F, L(-2))\vee = 0.
$$
 (75)

Similarly, since dim $C = 1$, it follows that $Ext^1(L(2), F(-4)) \simeq H^2(F \otimes L(-2)) = 0$. Thus, the exact sequence

$$
0 \to \text{Hom}(F, F(-4)) \to \text{Hom}(E, F(-4)) \to \text{Ext}^1(L(2), F(-4))
$$

together with the equality Hom($F, F(-4)$) = 0 (note that F is stable) yields Hom($E, F(-4)$) $= 0$, and again by Serre–Grothendieck duality we obtain

$$
\operatorname{Ext}^3(F, E) = 0. \tag{76}
$$

Next, twisting the triple [\(62\)](#page-16-1) with $F⁰ \simeq F$ and passing to cohomology, we obtain an exact sequence $H^1(F \otimes L(2)) \to H^2(F^{\vee} \otimes E) \to H^2(F^{\vee} \otimes F)$. Using the vanishing of $H^2(F^\vee \otimes F)$ (see [\[16\]](#page-34-0)) and of $H^1(F \otimes L(2))$ (Lemma [13\(](#page-14-4)ii)), we get since *F* is locally free:

$$
Ext2(F, E) \simeq H2(F6 \otimes E) = 0.
$$
 (77)

Now apply the functor Hom(−, *E*) to the triple [\(62\)](#page-16-1) and use [\(76\)](#page-19-0) and [\(77\)](#page-19-1) to obtain the isomorphism

$$
Ext2(E, E) \simeq Ext3(L(2), E).
$$
 (78)

The sequence (67) together with (74) , (75) and (78) yields an exact sequence

$$
0 \to \operatorname{Ext}^2(L(2), F) \to \operatorname{Ext}^2(L(2), L(2)) \to \operatorname{Ext}^2(E, E) \to 0. \tag{79}
$$

Next, since $F \simeq F^{\vee}$ is locally free, the Serre–Grothendieck duality on \mathbb{P}^{3} and on *C* yields:

$$
Ext^{2}(L(2), F) \simeq H^{1}(F^{\vee} \otimes L(-2))^{\vee} \simeq H^{0}(F \otimes (L^{-1} \otimes \omega_{C})(2))^{\vee}.
$$
 (80)

On the other hand, Riemann–Roch for the sheaf $F \otimes (L^{-1} \otimes \omega_C)(2)$ and item (ii) of Lemma [13](#page-14-4) imply h^0 (*F* ⊗ (*L*^{−1} ⊗ ω_{*C*})(2))[∨] = 4*d*₁*d*₂, hence [\(78\)](#page-19-3) and [\(80\)](#page-19-4) yield

$$
\dim \text{Ext}^{2}(E, E) = \dim \text{Ext}^{2}(L, L) - 4d_{1}d_{2}. \tag{81}
$$

Next, using the fact that $H^2(\mathcal{E}xt^2(L, L)) = 0$ since dim $\mathcal{E}xt^2(L, L) = 1$, we obtain that the spectral sequence $H^p(\mathcal{E}xt^q(L,L)) \Rightarrow \text{Ext}^{\bullet}(L,L)$ yields an exact triple

$$
0 \to H^1(N_{C/\mathbb{P}^3}) \to \text{Ext}^2(L, L) \to H^0(\mathcal{E}xt^2(L, L)) \to 0.
$$

Note that, in view of the isomorphisms

$$
\mathcal{E}xt^2(L, L) \simeq \mathcal{E}xt^2(\mathcal{O}_C, \mathcal{O}_C) \simeq \det N_{C/\mathbb{P}^3} \simeq \mathcal{O}_C(d_1 + d_2),
$$

and of Serre duality $h^1(\mathcal{O}_C(d_1 + d_2)) = h^0(\mathcal{O}_C(-4)) = 0$, we obtain by Riemann–Roch $h^0(\mathcal{E}xt^2(L, L)) = h^0(\mathcal{O}_C(d_1 + d_2)) = \chi(\mathcal{O}_C(d_1 + d_2)) = d_1d_2(d_1 + d_2) + 1 - p_a(C).$

This, together with the above triple, yields

$$
\dim \operatorname{Ext}^2(L, L) = h^1(N_{C/\mathbb{P}^3}) + d_1 d_2(d_1 + d_2) + 1 - p_a(C).
$$

Now [\(65\)](#page-17-2) follows by substituting the last equality in [\(81\)](#page-19-5) and using [\(25\)](#page-11-1). The equality [\(66\)](#page-17-2) follows from here in view of the relation

$$
\dim \operatorname{Ext}^1(E, E) - \dim \operatorname{Ext}^2(E, E) = 8c_2(E) - 3 = 8(c + d_1 d_2) - 3
$$

(see Lemma [10](#page-10-0) above). 

 \mathcal{L} Springer

Consider the map

$$
f: \widetilde{W}(d_1, d_2, c) \to \mathcal{L}(c + d_1 d_2), \mathbf{w} \mapsto [E(\mathbf{w})]. \tag{82}
$$

Using Remark [14](#page-15-6) and Theorem [15,](#page-16-2) one easily sees that *f* is a morphism.

Theorem 17 *For any point* $\mathbf{w} \in W(d_1, d_2, c)$ *with* $c > 0$ *, and* $(d_1, d_2) ≠ (1, 1)$ *,* $(d_1, d_2) ≠$ (1, 2)*, one has*

$$
\dim \text{Ext}^{1}(E(\mathbf{w}), E(\mathbf{w})) = \dim W(d_{1}, d_{2}, c). \tag{83}
$$

In addition, the morphism $f|_{W(d_1,d_2,c)}$ *is an open embedding. Thus,*

$$
C(d_1, d_2, c) := f(W(d_1, d_2, c))
$$
\n(84)

is a dense smooth open subset of an irreducible component

$$
\overline{\mathcal{C}(d_1, d_2, c)} = \overline{f(\widetilde{W}(d_1, d_2, c))}
$$

of $\mathcal{L}(c+d_1d_2)$ *, hence also of* $\mathcal{M}(d_1d_2+c)$ *.*

Proof Equality [\(83\)](#page-20-2) follows by comparing formulas [\(61\)](#page-16-0) and [\(66\)](#page-17-2) and using [\(25\)](#page-11-1)–[\(27\)](#page-11-2).

As for the second claim, note that $f|_{W(d_1,d_2,c)}$ is an injective morphism by construction. Its Kodaira–Spencer map $df|_{\mathbf{w}}$: $T_{\mathbf{w}}W(d_1, d_2, c) \to T_{f(\mathbf{w})} \mathcal{M}(d_1 d_2 + c) = \text{Ext}^1(E(\mathbf{w}), E(\mathbf{w}))$ is an isomorphism by (83) for any $\mathbf{w} \in W(d_1, d_2, c)$. The assertion follows. is an isomorphism by [\(83\)](#page-20-2) for any $\mathbf{w} \in W(d_1, d_2, c)$. The assertion follows.

Remark 18 The cases $(d_1, d_2) = (1, 1)$, and $(d_1, d_2) = (1, 2)$, in which *C* is either a line or a conic, respectively, were studied in [\[14\]](#page-34-7), where elementary transformations of instanton bundles by smooth rational curves of arbitrary degree are considered. In fact, for $k = 1, 2$, $\overline{C(1, k, c)}$ coincides with the variety $\overline{D(k, c + k)}$ introduced in [\[14,](#page-34-7) Section 6]. It turns out that $\mathcal{D}(k, c + k)$ are irreducible projective varieties of dimension $8(c + k) - 4$ lying in the closure $\mathcal{I}(c + k)$ of $\mathcal{I}(c + k)$ within $\mathcal{M}(c + k)$. In particular, for $k = 1, 2, \mathcal{C}(1, k, c)$ does not define a new irreducible component of $\mathcal{M}(c + k)$, differently from the conclusion of Theorem [17.](#page-20-0)

We conclude this section with a result in the same spirit of [\[7,](#page-34-2) Proposition 3.6] and Theorem [9](#page-9-0) above, showing that the number of irreducible components of $\mathcal{M}(n)$ whose generic points correspond to sheaves with 1-dimensional singularities becomes arbitrarily large as *n* grows.

Theorem 19 Let η_n denote the number of irreducible components of $\mathcal{M}(n)$ whose generic *points correspond to sheaves with 1-dimensional singularities. Then,* $\lim_{n\to\infty} \eta_n = \infty$ *.*

Proof Indeed, the number of ways in which a given positive integer *n* can be represented as a sum $n = c + d_1 d_2$, where *c*, d_1 and d_2 are positive integers and $(d_1, d_2) \neq (1, 1)$, $(d_1, d_2) \neq$ (1, 2), is unbounded as *n* grows. Thus, the result follows from Theorem [17.](#page-20-0)

4 Nonemptiness of the intersection $\overline{C(d_1, d_2, c)} \cap \overline{\mathcal{I}(n)}$

In this section, we will perform an inductive procedure showing that each irreducible component $C(d_1, d_2, c)$ of $\mathcal{M}(d_1d_2 + c)$ (with $c \ge 0$, and $(d_1, d_2) \ne (1, 1)$, $(d_1, d_2) \ne (1, 2)$), constructed in Theorem [17,](#page-20-0) has a nonempty intersection with the closure of the instanton component $\mathcal{I}(d_1d_2 + c)$.

We start with a construction of a reduced curve $C \in \mathcal{H} = \mathcal{H}_{d_1,d_2}$ completely decomposable into a union of projective lines and satisfying some additional properties. Namely, we prove the following lemma.

Lemma 20 *For any* $1 \leq d_1 \leq d_2$, there exists a curve $C \in \mathcal{H}$ which is completely decom*posable into a union of d*1*d*² *projective lines*

$$
C = \bigcup_{j=1}^{d_1 d_2} \ell_j \tag{85}
$$

such that

(i) *The OC-sheaf*

$$
L_0 = \bigoplus_{j=1}^{d_1 d_2} \mathcal{O}_{\ell_j}(-1)
$$
 (86)

is $\mathcal{O}_{\mathbb{P}^3}(1)|_C$ -semistable.

(ii) *There exists a curve Y with a marked point* $0 \in Y$, a morphism $f : Y \to H$ and a *sheaf* **L** *on* $Y \times_H Z$ *, flat over* Y *and such that, for* $C_t := pr^{-1}(f(t))$ *,* $t \in Y$ *, where* $pr : \mathcal{Z} \rightarrow \mathcal{H}$ *is the projection, one has*

$$
\mathbf{L}|_{C_0} \simeq L_0,\tag{87}
$$

where C_0 *is the curve* C from (85) *, and*

$$
\mathbf{L}|_{C_t} \text{ is locally free}, \quad t \in Y^* := Y \setminus \{0\}. \tag{88}
$$

Proof Let $x_i = (\mathbb{P}_{i1}^2, \dots, \mathbb{P}_{id_i}^2) \in (\mathbb{P}^{3 \vee})^{\times d_i}$, $i = 1, 2$, be two collections of hyperplanes in \mathbb{P}^3 , and set $\ell_{j_1 j_2} := \mathbb{P}^2_{1 j_1} \cap \mathbb{P}^2_{2 j_2}$, $1 \le j_1 \le d_1$, $1 \le j_2 \le d_2$. It is clear that, for a general choice of the points $x_i \in (\mathbb{P}^{3\vee})^{\times d_i}$, $i = 1, 2$, the curve $C = \bigcup_{j_1, j_2, \dots, j_{n-1}}^{d_1, d_2} \ell_{j_1, j_2}$ satisfies the statement of Lemma. We re-enumerate the lines $\ell_{i_1 i_2}$ as the lines ℓ_i in [\(85\)](#page-21-1).

Next, the sheaf L_0 in [\(86\)](#page-21-2) is polystable as a direct sum of stable $\mathcal{O}_{\mathbb{P}^3}(1)$ -sheaves $\mathcal{O}_{\ell_i}(-1)$. Hence, it is $\mathcal{O}_{\mathbb{P}^3}(1)|_C$ -semistable.

For the second item, set $C_1 := \ell_1$ and, for $2 \le k \le d_1 d_2 - 1$, consider a sub-curve $C_k := \bigcup_{j=1}^k \ell_j$ of *C* and a subscheme $D_k := \ell_k \cap C_{k-1}$ of ℓ_k . Since $C \in \mathcal{H}$, it follows that D_k is a reduced divisor on C_k ; let, say, $D_k = a_{k1} + \cdots + a_{km_k}$. Consider a sequence of *O*_{*C_k* -sheaves *L_k*, where *L*₁ := $O_{\ell_1}(-1)$ and for $2 \le k \le d_1d_2 - 1$ the sheaf *L_k* is defined} inductively as an extension

$$
0 \to L_{k-1} \to L_k \to \mathcal{O}_{\ell_k}(-1) \to 0. \tag{89}
$$

Each such extension is given by an element of the group $Ext¹(\mathcal{O}_{\ell_k}(-1), L_{k-1})$, and an easy calculation (cf. [\[9](#page-34-9), proof of Lemma 4]) shows that

$$
\text{Ext}^{1}(\mathcal{O}_{\ell_{k}}(-1), L_{k-1}) = H^{0}(\mathcal{O}_{D_{k}}) = \bigoplus_{i=1}^{m_{k}} \mathbf{k}_{a_{ki}} \simeq \mathbb{A}^{m_{k}}.
$$
 (90)

Furthermore, for any point $\tau_k \in \mathbb{A}^{m_k*} := \{(t_1,\ldots,t_{m_k}) \in \mathbb{A}^{m_k} \mid t_i \neq 0, j = 1,\ldots,m_k\},\$ the sheaf L_k is locally free at the points of D_k . Hence, the last extension $L_{d_1d_2} = L_{d_1d_2}(\mathbf{t})$ in the sequence [\(89\)](#page-21-3) defined by the element $\mathbf{t} = (\tau_1, \ldots, \tau_{d_1 d_2}) \in \mathbf{A}^* := \mathbb{A}^{m_1*} \times \cdots \times \mathbb{A}^{m_{d_1 d_2*}}$ is a locally free \mathcal{O}_C -sheaf. In addition, from [\(89\)](#page-21-3) it follows immediately that, for this point **t**, the sequence of sheaves $0 \text{ }\subset L_1 \subset L_2 \subset \cdots \subset L_{d_1d_2}$ (**t**) is a Jordan–Hölder filtration of $L_{d_1d_2}$ (**t**) with the associated graded sheaf L_0 in [\(86\)](#page-21-2). Thus,

$$
[L_0]_S = [L_{d_1d_2}(\mathbf{t})]_S.
$$

Hence, since $L_{d_1d_2}$ (**t**) is a locally free \mathcal{O}_C -sheaf, it follows that, in the notation of Lemma [12,](#page-13-3)

$$
[L_0]_S \in \mathbb{M}^0. \tag{91}
$$

Now, recall the construction of the moduli space M containing $M⁰$ as a closed subscheme (see, e. g., [\[13](#page-34-10), Thm 4.3.7]). Namely, M is obtained as a GIT-quotient $p: R \to R/\hspace{-3pt}/ G L(N) =$ M for an appropriately chosen open subset *R* of the Quot-scheme Quot χ / χ (*V*, *P*), where *P* is the Hilbert polynomial defined in [\(31\)](#page-11-3), $V = \mathcal{O}_{Z/H}(-m)^{\oplus N}$, $N = P(m)$ and *m* large enough. Now, for the point $s = [L_0]_S \in \mathbb{M}^0$, there exists a point $[\rho : \mathcal{V}_s \to L_0] \in R$ such that $p(\lceil \rho \rceil) = s$. Consider the closed subscheme $R_0 = p^{-1}(\mathbb{M}^0)$ of R. Since R_0 is quasi-projective over \mathbb{M}^0 and \mathbb{M}^s is open dense in \mathbb{M}^0 , it follows that there exists a curve *Y* in R_0 passing through the point $0 = [\rho]$ and such that

$$
Y^* = Y \setminus \{0\} \subset p^{-1}(\mathbb{M}^s).
$$

By the definition of \mathbb{M}^s , the last inclusion means that the universal quotient sheaf on $R_0 \times_H Z$ being restricted onto $Z_Y = Y \times_H Z$ becomes a sheaf **L** such that, for $t \in Y^*$, the sheaf $L|_{C_t}$ is locally free, where $C_t = pr^{-1}(f(t))$, and $f = p|_Y : Y \to H$ and $pr : Z \to H$ is the projection Besides by the above $\prod_{v \in V} C_v \sim L_0$ projection. Besides, by the above, $L|_{C_0} \simeq L_0$.

Lemma 21 *For any* $c \geq 0$, $1 \leq d_1 \leq d_2$, and any $[F] \in \mathcal{I}(c)$, there exists a curve $C \in \mathcal{H}$ *satisfying the properties of Lemma* [20](#page-21-0)*, and, in addition, the following ones:*

$$
F|_{\mathbb{P}_i^1} \simeq 2\mathcal{O}_{\mathbb{P}_i^1}, \quad 1 \le i \le d_1 d_2 ; \tag{92}
$$

$$
([F], C_t, [\mathbf{L}|_{C_t}]) \in (\mathcal{I}(c) \times \mathbb{J})_e, \quad t \in Y^*.
$$
\n
$$
(93)
$$

Proof Both [\(92\)](#page-22-0) and [\(93\)](#page-22-0) are immediate when $c = 0$.

Since every instanton bundle of charge $c > 0$ is stable, there is, by the Grauert–Müllich Theorem (see [\[2](#page-34-11)[,13](#page-34-10)]), a divisor D_F in the Grassmannian $Gr = Gr(1, \mathbb{P}^3)$ such that, for any line \mathbb{P}^1 ∈ *Gr* \ *D_F*, *F* | $_{\mathbb{P}_i^1}$ \cong 2*O*_{$_{\mathbb{P}_i^1}$}. Thus, for a general choice of the points *x_i* ∈ ($\mathbb{P}^{3 \vee}$)×*di*, *i* = 1, 2, the condition [\(92\)](#page-22-0) above holds.

From [\(92\)](#page-22-0) and [\(86\)](#page-21-2), it follows immediately that

([F],
$$
C_0
$$
, $[L := L|_{C_0}]$) satisfies the statements (iii) and (iv) of Lemma 13. (94)

Since **L** is flat over *Y* , the rest is clear by semicontinuity (after possibly shrinking the curve *Y*). □

In the notation of Lemma [20,](#page-21-0) let p_Y : $\mathcal{Z}_Y = \mathcal{Z} \times_{\mathcal{H}} \mathcal{Z} \to Y$ and $\iota_Y : \mathcal{Z} \hookrightarrow Y \times \mathbb{P}^3$ be the natural projections; let $\mathbf{F} := F \boxtimes \mathcal{O}_Y$, $\iota_{Y*}L(2) := \iota_{Y*}L \otimes \mathcal{O}_{\mathbb{P}^3}(2) \boxtimes \mathcal{O}_Y$, and $\tau_Y := \mathcal{H}om_{\mathcal{Z}_Y/Y}(F, \iota_{Y*}L(2))$. In addition, consider the projections $\mathbf{p}_Y : \mathbb{P}\tau_Y \to Y$, and $\mathbf{p}_Y : \mathbb{P} \mathbf{\tau}_Y^* := \mathcal{P} \mathbf{\tau}_Y \times_Y Y^* \to Y^*$; by construction, \mathbf{p}_Y is a projective bundle over *Y* such that,

$$
\mathbf{p}_Y^{-1}(t) = \mathbb{P}(\text{Hom}(F, L_t(2))), \text{ where } L_t := \mathbf{L}|_{C_t}, \quad t \in Y. \tag{95}
$$

By Lemma [21,](#page-22-1) one has a morphism

$$
\psi: Y^* \to \mathcal{B} = (\mathcal{I}(c) \times \mathbb{J})_e, \quad t \mapsto ([F], C_t, [L_t]),
$$

 \mathcal{L} Springer

and from (60) and (95) , it follows that

$$
\mathcal{P}\tau_Y^* = \mathbb{P}\tau \times_B Y^*.
$$
 (96)

Moreover, using Lemma [13,](#page-14-4) (iii)–(v), consider the open dense subset \widetilde{W}_Y of $\mathcal{P}\tau_Y$ defined as
 $\widetilde{W}_Y := \{([F] \mid C, [L] \mid \mathbf{k} \varphi) \mid t \in Y \mid \mathbf{k} \varphi \in \mathbb{P} \text{Hom}(F, C, L) \}$ (97)

$$
\widetilde{W}_Y := \{ ([F], C_t, [L_t], \mathbf{k}\varphi) \mid t \in Y, \ \mathbf{k}\varphi \in \mathbb{P} \text{Hom}(F, C_t, L_t)_e \}. \tag{97}
$$

Comparing (97) with (55) and using (96) , we obtain the relation

$$
\widetilde{W}_{Y^*} := \widetilde{W}_Y \times_Y Y^* = \widetilde{W}(d_1, d_2, c) \times_B Y^* \stackrel{P_{W}}{\to} \widetilde{W}(d_1, d_2, c).
$$
\n
$$
(98)
$$

On the other hand, consider the morphism

$$
f_Y: \tilde{W}_Y \to \mathcal{L}(d_1d_2+c): \mathbf{w} = ([F], C_t, [L_t], \mathbf{k}\varphi) \mapsto [E(\mathbf{w}) = \ker(\varphi : F \twoheadrightarrow L_t(2))].
$$
\n(99)

From [\(82\)](#page-20-3) and [\(98\)](#page-23-2), it follows that $f_Y|_{\widetilde{W}_{V*}}$ coincides with the composition

$$
\widetilde{W}_{Y^*} \stackrel{p_W}{\to} \widetilde{W}(d_1, d_2, c) \stackrel{f}{\to} \mathcal{L}(d_1d_2 + c).
$$

In view of Theorem [17,](#page-20-0) this implies that $f_Y(\widetilde{W}_{Y^*}) \subset \overline{C(d_1, d_2, c)}$. Since $\overline{C(d_1, d_2, c)}$ is projective, this implies that also

$$
f_Y(\widetilde{W}_Y) \subset \overline{\mathcal{C}(d_1, d_2, c)}.
$$

In particular, since by [\(97\)](#page-23-0)

$$
\mathbb{P}\mathrm{Hom}(F,\,C_0,\,L_0)_e=(\mathbf{p}_Y|\widetilde{w}_Y)^{-1}(0),
$$

where C_0 is the curve *C* defined in [\(85\)](#page-21-1) and $\overline{C(d_1, d_2, c)}$ is a projective scheme, we obtain the following result.

Theorem 22 *In the conditions and notation of Lemma* [20](#page-21-0) *and of Lemma* [21](#page-22-1)*, there is a morphism*

$$
f_0 = f_Y | \mathbb{P} \text{Hom}(F, C_0, L_0)_e : \mathbb{P} \text{Hom}(F, C_0, L_0)_e \to \overline{\mathcal{C}(d_1, d_2, c)} : ([F], C_0, [L_0], \mathbf{k}\varphi) \mapsto [\text{ker}(\varphi : F \to L_0(2))].
$$
 (100)

Now, take a point

$$
\mathbf{w} := ([F], C_0, [L_0], \mathbf{k}\varphi) \in \mathbb{P}\mathrm{Hom}(F, C_0, L_0)_e
$$

and, as above, denote

$$
E(\mathbf{w}) := \ker(\varphi : F \twoheadrightarrow L_0).
$$

Next, using [\(86\)](#page-21-2), set

$$
L_{(k)} = \bigoplus_{i=1}^k \mathcal{O}_{\ell_i}(-1), \quad 1 \leq k \leq d_1 d_2,
$$

so that

$$
L_{(d_1 d_2)} = L_0 \tag{101}
$$

and we have splitting exact triples

$$
0 \to \mathcal{O}_{\ell_k}(-1) \to L_{(k)} \stackrel{\varepsilon_{(k)}}{\to} L_{(k-1)} \to 0, \quad 2 \le k \le d_1 d_2 \tag{102}
$$

 \circledcirc Springer

where each $\varepsilon_{(k)}$ is the projection onto a direct summand. Set $\varphi_{(d_1d_2)} := \varphi$ and, using [\(101\)](#page-23-3), define the epimorphisms $\varphi_{(k)}$ as the composition

$$
\varphi_{(k)}:\;F\stackrel{\varphi}{\to}L_{(d_1d_2)}(2)\stackrel{\varepsilon_{d_1d_2}}{\to}L_{(d_1d_2-1)}(2)\stackrel{\varepsilon_{d_1d_2-1}}{\to}\cdots\stackrel{\varepsilon_{(k)}}{\to}L_{(k)}(2),\quad 1\leq k\leq d_1d_2-1.
$$

Set $E_{(k)} := \ker \varphi_{(k)}$, so that, by the above,

$$
E_{\left(d_1 d_2\right)} = E(\mathbf{w})\tag{103}
$$

and, for $2 \le k \le d_1 d_2$, there is a commutative diagram

in which the right vertical triple is the triple [\(102\)](#page-23-4) twisted by the sheaf $\mathcal{O}_{\mathbb{P}^3}(2)$.

We are going to show, by induction on *k*, that

$$
[E_{(k)}] \in \overline{\mathcal{I}(c+k)}, \quad 1 \le k \le d_1 d_2. \tag{105}
$$

First, in the case $k = 1$ we have the exact triple

$$
0 \to E_{(1)} \to F \to L_{(1)}(2) \to 0 \tag{106}
$$

which by Jardim et al. $[14,$ $[14,$ Proposition 7.2] yields (105) for $k = 1$.

Next, given $k \ge 2$, assume that [\(105\)](#page-24-0) is true for $k - 1$, i. e., in the diagram [\(104\)](#page-24-1),

$$
[E_{(k-1)}] \in \overline{\mathcal{I}(c+k-1)}.
$$

This implies that there exists a curve *T* with a marked point $0 \in T$ and a sheaf **E**' on $\mathbb{P}^3 \times T$, flat over *T* and such that

$$
\mathbf{E}'|_{\mathbb{P}^3 \times \{0\}} \simeq E_{(k-1)} \tag{107}
$$

and, for $t \in T^* = T \setminus \{0\}$, the sheaf $E'_t := \mathbf{E}'|_{\mathbb{P}^3 \times \{t\}}$ is an instanton bundle from $\mathcal{I}(c+k-1)$:

$$
[E'_t] \in \mathcal{I}(c+k-1), \quad t \in T^*.
$$
\n
$$
(108)
$$

Now one easily sees that, after possibly shrinking the curve *T*, the epimorphism θ in the diagram [\(104\)](#page-24-1) extends to an epimorphism Θ : $\mathbf{E}' \rightarrow \mathcal{O}_{\ell_k}(1) \boxtimes \mathcal{O}_T$, and we denote $\mathbf{E} =$

ker Θ . By construction, the $\mathcal{O}_{\mathbb{P}^3 \times T}$ -sheaf **E** is flat over *T*, so that, restricting the exact triple $0 \to \mathbf{E} \to \mathbf{E}' \to \mathcal{O}_{\ell_k}(1) \boxtimes \mathcal{O}_T \to 0$ onto $\mathbb{P}^3 \times \{t\}$, $t \in T$, we obtain an exact triple

$$
0 \to E_t \to E'_t \to \mathcal{O}_{\ell_k}(1) \to 0, \tag{109}
$$

where $E_t = \mathbf{E}_{|\mathbb{P}^3 \times \{t\}}$. By Jardim et al. [\[14,](#page-34-7) Proposition 7.2], this triple together with [\(108\)](#page-24-2) implies that

$$
[E_t] \in \overline{\mathcal{I}(c+k)}, \quad t \in T^*.
$$

On the other hand, by the construction, the triple (109) for $t = 0$ coincides with the left vertical triple in [\(104\)](#page-24-1), so that

$$
E_0 \simeq E_{(k)}.\tag{111}
$$

Besides, in the case $c > 0$, since *F* is μ -stable, the upper horizontal triple in diagram [\(104\)](#page-24-1) easily shows that the sheaf E_0 is (μ -)stable as well. When $c = 0$ and $F = 2 \cdot \mathcal{O}_{\mathbb{P}^3}$ in diagram [\(104\)](#page-24-1), we again proceed by induction on *k*. For $k = 1$, triple [\(106\)](#page-24-3) and [\[14,](#page-34-7) Lemma 4.3] implies that $E_{(1)}$ is stable. Now assume that $E_{(k-1)}$ is stable; the first column of diagram [\(104\)](#page-24-1) immediately implies that $E_{(k)}$ is also stable, since any sheaf that would destabilize $E_{(k)}$ would also destabilize $E_{(k-1)}$.

Thus, in view of (110) and (111) we obtain a modular morphism

$$
f: T \to \mathcal{M}(c+k), \ t \mapsto [E_t].
$$

Since $\overline{\mathcal{I}(c+k)}$ is closed in $\mathcal{M}(c+k)$, it follows that $[E_{(k)}] = f(0) \in \overline{\mathcal{I}(c+k)}$, i.e., we obtain [\(105\)](#page-24-0).

In particular, (103) and (105) yield

$$
[E(\mathbf{w})] \in \overline{\mathcal{I}(c + d_1 d_2)}.
$$

Since by construction $[E(\mathbf{w})] \in \text{im } f_0$, it follows from Theorem [22](#page-23-5) that $[E(\mathbf{w})] \in$ $\overline{\mathcal{I}(c+d_1d_2)} \cap \overline{\mathcal{C}(d_1,d_2,c)}$.

Finally, note that each $E(k)$, and hence E_0 , is actually an instanton sheaf. Indeed, since *F* is a locally free instanton sheaf, one easily checks from triple (106) that $E_{(1)}$ is an instanton sheaf. Assuming that *E*(*k*−1) is an instanton sheaf, one can use the first column of diagram [\(104\)](#page-24-1) to check that so is $E_{(k)}$.

Summing it all up, we obtain the following theorem.

Theorem 23 *For any* $c \ge 0$ *and* $1 \le d_1 \le d_2$ *,*

$$
\overline{\mathcal{I}(c+d_1d_2)} \cap \overline{\mathcal{C}(d_1,d_2,c)} \neq \emptyset.
$$

In addition, the above intersection contains instanton sheaves.

5 Intersection of $\overline{C(d_1, d_2, c)}$ with the Ein components

For any three integers $c > b \ge a \ge 0$, consider the monad

$$
0 \to \mathcal{O}_{\mathbb{P}^3}(-c) \xrightarrow{\alpha} \mathcal{O}_{\mathbb{P}^3}(-b) \oplus \mathcal{O}_{\mathbb{P}^3}(-a) \oplus \mathcal{O}_{\mathbb{P}^3}(a) \oplus \mathcal{O}_{\mathbb{P}^3}(b) \xrightarrow{\beta} \mathcal{O}_{\mathbb{P}^3}(c) \to 0, \quad (112)
$$

with morphisms given by

$$
\alpha = \begin{pmatrix} \sigma_4 \\ \sigma_3 \\ -\sigma_2 \\ -\sigma_1 \end{pmatrix} \text{ and } \beta = (\sigma_1 \sigma_2 \sigma_3 \sigma_4) \tag{113}
$$

where

$$
\sigma_1 \in H^0(\mathcal{O}_{\mathbb{P}^3}(c+b)), \quad \sigma_2 \in H^0(\mathcal{O}_{\mathbb{P}^3}(c+a))
$$

$$
\sigma_3 \in H^0(\mathcal{O}_{\mathbb{P}^3}(c-a)), \quad \sigma_4 \in H^0(\mathcal{O}_{\mathbb{P}^3}(c-b))
$$

do not vanish simultaneously. Ein showed in $[7,$ $[7,$ Proposition 1.2(a)] that the cohomology of such a monad is stable if and only if $c > a + b$; in this case, there exists an irreducible component $\mathcal{N}(a, b, c)$ of $\mathcal{B}(c^2 - b^2 - a^2)$ whose generic point corresponds to a locally free sheaf given as cohomology of [\(112\)](#page-25-3). Such components are called *Ein components*.

Let $\overline{\mathcal{N}(a, b, c)}$ denote the closure of $\mathcal{N}(a, b, c)$ within $\mathcal{M}(c^2 - b^2 - a^2)$. The main goal of this section is to establish the following result.

Proposition 24 *The components* $\overline{\mathcal{N}(0, b, c)}$ *and* $\overline{\mathcal{C}(c - b, c + b, 0)}$ *intersect within* $\mathcal{M}(c^2 - c)$ *b*²) *along a subvariety of codimension* $1 + (c^2 - b^2)(c - 2)$ *in* $\overline{C(c - b, c + b, 0)}$.

Proof Given a parameter $t \in \mathbb{A}^1$, consider the following family of monads

$$
0 \to \mathcal{O}_{\mathbb{P}^3}(-c) \stackrel{\alpha_t}{\to} \mathcal{O}_{\mathbb{P}^3}(-b) \oplus 2 \cdot \mathcal{O}_{\mathbb{P}^3} \oplus \mathcal{O}_{\mathbb{P}^3}(b) \stackrel{\beta}{\to} \mathcal{O}_{\mathbb{P}^3}(c) \to 0, \tag{114}
$$

where α_t is given by

$$
\alpha_t = \begin{pmatrix} \sigma_4 \\ t \cdot \sigma_3 \\ -t \cdot \sigma_2 \\ -\sigma_1 \end{pmatrix}
$$

while β is given as in [\(113\)](#page-25-4). Clearly, for each $t \neq 0$, the sheaf $E_t =: \text{ker } \beta / \text{im } \alpha_t$ defines a point $[E_t] \in \mathcal{N}(0, b, c)$; we thus obtain a modular morphism

$$
\mathbb{A}^1 \setminus \{0\} \to \mathcal{M}(c^2 - b^2), \qquad t \mapsto [E_t]
$$

whose image lies within $\mathcal{N}(0, b, c)$.

Next, we show that E_0 fits into the following exact triple:

$$
0 \to E_0 \to 2 \cdot \mathcal{O}_{\mathbb{P}^3} \to \mathcal{O}_{\Gamma}(c) \to 0, \tag{115}
$$

where Γ is the complete intersection curve defined by { $\sigma_1 = \sigma_4 = 0$ }; we may assume that Γ is irreducible since this is an open condition. Note also that $\mathcal{O}_\Gamma(c-2)$ is a theta-characteristic on Γ .

Indeed, consider the following short exact sequence of complexes:

where the complex in the middle line is [\(114\)](#page-26-0) for $t = 0$ and the morphisms $\tilde{\alpha}$ and $\tilde{\beta}$ are given by

$$
\tilde{\alpha} = \begin{pmatrix} -\sigma_4 \\ \sigma_1 \end{pmatrix}
$$
 and $\beta = \begin{pmatrix} \sigma_1 & \sigma_4 \end{pmatrix}$.

Passing to cohomology, we obtain precisely the triple [\(115\)](#page-26-1).

By Jardim et al. [\[14,](#page-34-7) Lemma 4.3], [\(115\)](#page-26-1) implies that *E*⁰ is stable; hence, it follows that $[E_0] \in \overline{\mathcal{N}(0, b, c)}$. On the other hand, one clearly sees from [\(115\)](#page-26-1) and from the definition of *C*(*c* − *b*, *c* + *b*, 0) in Theorem [17](#page-20-0) that $[E_0]$ ∈ $\overline{C(c - b, c + b, 0)}$.

Finally, note that a generic point $[E]$ in the intersection

$$
\overline{\mathcal{N}(0,b,c)} \cap \overline{\mathcal{C}(c-b,c+b,0)}
$$

will be precisely of the form [\(115\)](#page-26-1), fixing the choice of a line bundle in Pic^{$g-1$}(Γ), where $g = 1 + (c^2 - b^2)(c - 2)$ is the genus of Γ . It is then easy to see that such sheaves form a family of codimension g in $\overline{C(c - b, c + b, 0)}$. family of codimension *g* in $\overline{C(c - b, c + b, 0)}$.

6 Connectedness of *M(***2***)*

As mentioned in Introduction, it is not difficult to check that $\mathcal{M}(1)$ is irreducible; this fact is probably well known to specialists, but for lack of a suitable reference, we present a brief argument here.

The key point is to show that every semistable rank 2 sheaf *E* on \mathbb{P}^3 with $c_1(E) = 0$, $c_2(E) = 1$ and $c_3(E) = 0$ is a nullcorrelation sheaf in the sense of [\[6\]](#page-34-12), that is, given by an exact sequence of the form

$$
0 \to \mathcal{O}_{\mathbb{P}^3}(-1) \xrightarrow{\sigma} \Omega^1_{\mathbb{P}^3}(1) \to E \to 0.
$$

It follows that *E* is uniquely determined by the section $\sigma \in H^0(\Omega^1_{\mathbb{P}^3}(2))$ up to scalar multiples, so that $\mathcal{M}(1) \simeq \mathbb{P}H^0(\Omega^1_{\mathbb{P}^3}(2)).$

Indeed, semistability implies that $h^0(E) = 0$. If *E* is locally free, then *E* is stable and it follows from Barth's theory of spectra, see [\[3\]](#page-34-13) or [\[12](#page-34-4), Section 7], that *E* is an instanton bundle of charge 1, and these are precisely the locally free nullcorrelation sheaves. On the other hand, if *E* is not locally free, then $E^{\vee\vee}$ is a μ -semistable rank 2 reflexive sheaf with $c_1(E^{\vee\vee}) = 0$ and $c_2(E^{\vee\vee}) = 0$, 1. If $c_2(E^{\vee\vee}) = 1$, so that *E* has 0-dimensional singularities, then $E^{\vee\vee}$ must be stable by Lemma [3;](#page-4-0) it follows from [\[4](#page-34-5), Lemma 2.1] that $c_3(E^{\vee\vee}) = 0$, so $E^{V\vee}/E = 0$, contradicting the hypothesis of *E* not being locally free. Therefore, we must have $c_2(E^{\vee\vee}) = 0$, hence $E^{\vee\vee} \simeq 2 \cdot \mathcal{O}_{\mathbb{P}^3}$ and

$$
0 \to E \to 2 \cdot \mathcal{O}_{\mathbb{P}^3} \to \mathcal{O}_{\ell}(1) \to 0
$$

where ℓ is a line. One can then check that *E* satisfies the cohomological conditions of [\[6,](#page-34-12) Proposition 1.1], so that *E* is a nullcorrelation sheaf.

Next, we recall the description of $\mathcal{M}(2)$ given by Hartshorne [\[11\]](#page-34-14), Le Potier [\[17\]](#page-34-3) and Trautmann [\[26\]](#page-35-2). By Hartshorne [\[11](#page-34-14), Section 9], the scheme *B*(2) coincides with the instanton component $\mathcal{I}(2)$ of dimension 13, so its closure $\mathcal{I}(2)$ is an irreducible component of $\mathcal{M}(2)$. According to [\[17](#page-34-3), Thm. 7.12], *M*(2) contains two additional irreducible components, which are given by the closures of the subschemes

$$
\mathcal{P}(2)_l = \{ [E] \in \mathcal{M}(2) \mid \dim \text{Ext}^2(E, \mathcal{O}_{\mathbb{P}^3}) = l \} \quad l = 1, 2
$$

 \mathcal{L} Springer

within $\mathcal{M}(2)$; furthermore, dim $\overline{\mathcal{P}(2)_l} = 13 + 4l$. Le Potier calls these the *Trautmann components*.

Note that these actually coincides with the components $\overline{T(2, l)}$ described in Section [2.1](#page-5-3) above. Indeed, note that if $[E] \in \mathcal{T}(2, l)$, then

$$
\dim \operatorname{Ext}^2(E, \mathcal{O}_{\mathbb{P}^3}) = h^0(\mathcal{E}xt^2(E, \mathcal{O}_{\mathbb{P}^3})) = h^0(\mathcal{E}xt^3(\mathcal{Q}_E, \mathcal{O}_{\mathbb{P}^3})) = h^0(\mathcal{Q}_E).
$$

However, the length of Q_E is half of $c_3(E^{\vee \vee})$, which means that $[E] \in \mathcal{P}(2)_l$, thus $\mathcal{T}(2,l) \subset$ $P(2)$ _l.

In addition, Chang proved in [\[4,](#page-34-5) Section 2] that, for each $l = 1, 2, \mathcal{R}(0; 2; 2l)$ is irreducible, nonsingular of dimension 13. It follows from Theorem [7](#page-8-0) that, for each $l = 1, 2, \mathcal{T}(2, l)$ is an irreducible component of $\mathcal{M}(2)$ of dimension $13 + 4l$; therefore, we must have that $\overline{T(2,l)} = \overline{\mathcal{P}(2)_l}$.

Consequently, Le Potier's result can be restated in the following form, see also [\[26\]](#page-35-2):

$$
\mathcal{M}(2) = \overline{\mathcal{I}(2)} \cup \overline{\mathcal{I}(2,1)} \cup \overline{\mathcal{I}(2,2)}.
$$
\n(116)

The main goal of this section is to show that $M(2)$ is connected.

Recall from Sect. [2.1](#page-5-3) that a generic sheaf *E* from $\overline{T(2, 1)}$ is obtained as the kernel of an epimorphism ϵ : $F \rightarrow O_q$ where *F* is a generic reflexive sheaf from $\mathcal{R}(0; 2; 2)$ and $q \notin Sing(F)$:

$$
0 \to E \to F \stackrel{\epsilon}{\to} \mathcal{O}_q \to 0, \quad q \notin \text{Sing}(F). \tag{117}
$$

Every $[F] \in \mathcal{R}(0; 2; 2)$ satisfies $h^0(F(1)) = 3$, cf. [\[4,](#page-34-5) Table 2.8.1]; moreover, the zero scheme $Y = (s)_0$ of a generic section $s \in H^0(F(1))$ is a disjoint union of a line ℓ and a nonsingular conic *C* [\[4](#page-34-5), Lemma 2.7], i.e., there is an exact triple

$$
0 \to \mathcal{O}_{\mathbb{P}^3}(-1) \to F \to I_{Y/\mathbb{P}^3}(1) \to 0, \quad Y = \ell \sqcup C. \tag{118}
$$

In addition, a generic sheaf *E* from $\overline{T(2, 4)}$ is obtained as the kernel of an epimorphism ϵ : $F \rightarrow \mathcal{O}_{q_1} \oplus \mathcal{O}_{q_2}$ where *F* is a generic reflexive sheaf from $\mathcal{R}(0; 2; 4)$ with $q_1, q_2 \notin$ Sing(*F*), and $q_1 \neq q_2$:

$$
0 \to E \to F \stackrel{\epsilon}{\to} \mathcal{O}_{q_1} \oplus \mathcal{O}_{q_2} \to 0, \quad q_1, q_2 \notin \text{Sing}(F), \quad q_1 \neq q_2. \tag{119}
$$

Every $[F] \in \mathcal{R}(0; 2; 4)$ satisfies $h^0(F(1)) = 4$, cf. [\[4](#page-34-5), Table 2.12.2]; the zero scheme $Y = (s)_0$ of a generic section $s \in H^0(F(1))$ is a nonsingular twisted cubic curve [\[4,](#page-34-5) Lemma 2.13], i.e., there is an exact triple

$$
0 \to \mathcal{O}_{\mathbb{P}^3}(-1) \to E^{\vee \vee} \to I_{Y/\mathbb{P}^3}(1) \to 0. \tag{120}
$$

We are finally in position to prove the main result of this section.

Theorem 25 *Both components* $\overline{T(2, 1)}$ *and* $\overline{T(2, 2)}$ *have nonempty intersection with the instanton component I*(2)*. In particular, M*(2) *is connected.*

Proof We first consider the case $l = 1$. Recall from [\[11](#page-34-14)] that a generic locally free sheaf G from *I*(2) is a *'t Hooft bundle*, fitting in an exact triple

$$
0 \to \mathcal{O}_{\mathbb{P}^3}(-1) \to G \to I_{Z/\mathbb{P}^3}(1) \to 0, \quad Z = \ell_0 \sqcup \ell_1 \sqcup \ell_2,\tag{121}
$$

where ℓ_0, ℓ_1, ℓ_2 are disjoint lines in \mathbb{P}^3 . We include *Z* as a generic fiber Z_t , $t \neq 0$, into a 1-dimensional flat family $\mathcal Z$ of curves in $\mathbb P^3$:

$$
\pi: \mathcal{Z} \hookrightarrow \mathbb{P}^3 \times U \stackrel{pr_2}{\to} U,\tag{122}
$$

with base $U \ni 0$ which is an open subset of \mathbb{A}^1 , such that

(a) for $t \neq 0$ the fiber $Z_t = \pi^{-1}(t)$ of the family $\mathcal Z$ is a disjoint union of three lines in $\mathbb P^3$; (b1) the zeroth fiber Z_0 of this family, being reduced, is a union of lines

$$
(Z_0)_{\text{red}} = \ell_0 \sqcup (\ell_1 \cup \ell_2), \quad w := \ell_1 \cap \ell_2 = \{\text{pt}\}. \tag{123}
$$

and as a scheme Z_0 has an embedded point w:

$$
0 \to \mathcal{O}_w \to \mathcal{O}_{Z_0} \to \mathcal{O}_{(Z_0)_{\text{red}}} \to 0. \tag{124}
$$

The sheaf *G* from [\(121\)](#page-28-0) can then be included into the family *G* of sheaves on \mathbb{P}^3 with base *U* fitting in the exact triple

$$
0 \to \mathcal{O}_{\mathbb{P}^3}(-1) \boxtimes \mathcal{O}_U \to G \to I_{\mathcal{Z}/\mathbb{P}^3 \times U} \otimes \mathcal{O}_{\mathbb{P}^3}(1) \boxtimes \mathcal{O}_U \to 0. \tag{125}
$$

We thus obtain a modular morphism

$$
\Phi_U: U \to \mathcal{M}(2), t \mapsto [G_t], G_t := G|_{\mathbb{P}^3 \times \{t\}}.
$$
\n(126)

Moreover, in view of (125) , the sheaf G_0 fits into the exact triple

$$
0 \to \mathcal{O}_{\mathbb{P}^3}(-1) \stackrel{r}{\to} G_0 \to I_{Z_0/\mathbb{P}^3}(1) \to 0;
$$

composing the morphism *r* in the previous equation with the standard monomorphism $G_0 \rightarrow$ $G_0^{\vee\vee}$ we obtain, using the triple [\(124\)](#page-29-1), the following exact triples for $G_0^{\vee\vee}$:

$$
0 \to G_0 \to G_0^{\vee \vee} \to \mathcal{O}_q \to 0, \tag{127}
$$

$$
0 \to \mathcal{O}_{\mathbb{P}^3}(-1) \stackrel{s}{\to} G_0^{\vee \vee} \to I_{(Z_0)_{\text{red}}/\mathbb{P}^3}(1) \to 0. \tag{128}
$$

Now [\(123\)](#page-29-2) and [\(128\)](#page-29-3) show that *s* is a section of a reflexive sheaf $G_0^{\vee\vee}$ having a disjoint union $(Z_0)_{\text{red}}$ of a line and a reducible conic as the zero scheme. Note that $G_0^{\vee\vee}$ is μ -stable, since *Y* is not contained in a plane (cf. $[12,$ $[12,$ Proposition 4.2]); it follows that G_0 is stable. Since, by construction, $\Phi(U \setminus \{0\}) \subset \mathcal{I}(2)$, we conclude that

$$
[G_0] \in \overline{\mathcal{I}(2)}.
$$
\n⁽¹²⁹⁾

By the description of $\mathcal{R}(0; 2; 2)$ above, it follows that the triple [\(128\)](#page-29-3) is a specialization of the triple (118) within a flat family of triples in which the conic *C* specializes into a reducible conic $\ell_1 \cup \ell_2$, so that *Y* in [\(118\)](#page-28-1) specializes to (*Z*₀)_{red}. It follows that the triple [\(127\)](#page-29-3) is a flat specialization of the triple (117) , so that

$$
[G_0] \in \overline{\mathcal{T}(2, 1)}.
$$
\n⁽¹³⁰⁾

Finally, [\(129\)](#page-29-4) and [\(130\)](#page-29-5) imply that $\overline{T(2, 1)} \cap \overline{T(2)} \neq \emptyset$, as desired.

Next, consider the case $l = 2$; one takes a family $\mathcal Z$ as in [\(122\)](#page-29-6) satisfying property (a) above and replacing property (b1) by the following one:

(b2) the zeroth fiber Z_0 of this family, being reduced, is a (connected) chain of three lines not lying in a plane:

$$
(Z_0)_{\text{red}} = \ell_0 \cup \ell_1 \cup \ell_2, \quad q_1 := \ell_0 \cap \ell_1 = \{\text{pt}\}, \ q_2 := \ell_1 \cap \ell_2 = \{\text{pt}\}, \ q_1 \neq q_2. \tag{131}
$$

and as a scheme Z_0 has two embedded points q_1 and q_2 :

$$
0 \to \mathcal{O}_{q_1} \oplus \mathcal{O}_{q_2} \to \mathcal{O}_{Z_0} \to \mathcal{O}_{(Z_0)_{red}} \to 0.
$$

Then, as above, the 't Hooft bundle *G* from [\(121\)](#page-28-0) is included into the family *G* of sheaves on \mathbb{P}^3 given by the exact triple [\(125\)](#page-29-0). In this case, instead of the triple [\(127\)](#page-29-3), one has an exact triple

$$
0 \to G_0 \to G_0^{\vee \vee} \to \mathcal{O}_{q_1} \oplus \mathcal{O}_{q_2} \to 0, \tag{132}
$$

Besides, the triple [\(128\)](#page-29-3) holds as before; thus, in view of [\(131\)](#page-29-7), the morphism *s* in [\(128\)](#page-29-3) is a section of a reflexive sheaf $G_0^{\vee \vee}(1)$ having the chain of lines $(Z_0)_{\text{red}}$ in [\(131\)](#page-29-7) as its zero scheme. Note that $G_0^{\vee\vee}$ is μ -stable, since *Y* is not contained in a plane (cf. [\[12,](#page-34-4) Proposition 4.2]); it also follows that G_0 is stable, so that $[G_0] \in \overline{\mathcal{I}(2)}$, where, as before, $G_0 =: G|_{\mathbb{P}^3 \times \{0\}}$.

Hence, from the above description of $\mathcal{R}(0; 2; 4)$, it follows that the triple [\(128\)](#page-29-3) is a specialization of the triple [\(120\)](#page-28-3) within a flat family of triples in which the twisted cubic *Y* specializes to the chain of lines $(Z_0)_{\text{red}}$ in [\(131\)](#page-29-7). It follows that the triple [\(132\)](#page-30-1) is a flat specialization of the triple (119) , so that

$$
[G_0] \in [G_0] \in \overline{T(2,2)}.
$$
\n
$$
(133)
$$

Now $\overline{T(2,2)}$ ∩ $\overline{T(2)}$ ≠ Ø follows from [\(129\)](#page-29-4) and [\(133\)](#page-30-2).

Remark 26 It follows from [\[14](#page-34-7), Theorem 7.8], [\(116\)](#page-28-5) and Theorem [25](#page-28-6) that the boundary of charge 2 instanton bundles

$$
\partial \mathcal{I}(2) := \overline{\mathcal{I}(2)} \setminus \mathcal{I}(2)
$$

has exactly four components, divided into two types:

- (I) $C(1, 1, 1)$ and $C(1, 2, 0)$, which corresponds to $D(1, 2)$ and $D(2, 2)$, respectively, in the notation of [\[14](#page-34-7), Theorem 7.8]; and
- (II) $\overline{T(2, l)} \cap \overline{T(2)}$ for $l = 1, 2$.

Indeed, either $[E] \in \partial \mathcal{I}(2)$ is an instanton sheaf, so $[E]$ lies in one of the components of type (I), or $[E]$ is not an instanton sheaf, in which case $[E]$ lies in one of the components of type (II). In addition, by Jardim et al. $[14,$ $[14,$ Proposition 6.4], the components of type (I) are irreducible and divisorial.

The fact that ∂*I*(2) has exactly 4 components was first observed by Narasimhan and Trautmann [\[20](#page-35-6)]; they also showed that all four components are irreducible and divisorial. Therefore, it is quite reasonable to conjecture that the components of type (II) above are both irreducible and divisorial. 

7 Irreducible components of *M(***3***)*

Ellingsrud and Stromme showed in $[8]$ that $\mathcal{B}(3)$ has precisely two irreducible components, both nonsingular, rational and of the expected dimension 21; these can be described as follows:

• The *instanton component* $\mathcal{I}(3)$, whose points are the cohomology of monads of the form

$$
0 \to 3 \cdot \mathcal{O}_{\mathbb{P}^3}(-1) \to 8 \cdot \mathcal{O}_{\mathbb{P}^3} \to 3 \cdot \mathcal{O}_{\mathbb{P}^3}(1) \to 0;
$$

• The *Ein component* $\mathcal{N}(0, 1, 2)$, following the notation of Sect. [5](#page-25-5) above, whose points are the cohomology of monads of the form

$$
0 \to \mathcal{O}_{\mathbb{P}^3}(-2) \to \mathcal{O}_{\mathbb{P}^3}(-1) \oplus 2 \cdot \mathcal{O}_{\mathbb{P}^3} \oplus \mathcal{O}_{\mathbb{P}^3}(1) \to \mathcal{O}_{\mathbb{P}^3}(2) \to 0.
$$

Recall also that Chang [\[4,](#page-34-5) Section 3] proved that $\mathcal{R}(0; 3; l)$ is, for each $l = 1, \ldots, 4$, irreducible and of expected dimension 21; in addition, $\mathcal{R}(0; 3; 4)$ and $\mathcal{R}(0; 3; 8)$ are rational, while $R(0; 3; 6)$ is unirational. Therefore, we can apply Theorem [7](#page-8-0) to show that there are four irreducible components $\mathcal{T}(3, l)$ of dimensions $21 + 4l$, for each $l = 1, \ldots, 4$ within *M*(3).

Furthermore, Theorem [17](#page-20-0) provides one additional irreducible component whose generic point corresponds to sheaves with 1-dimensional singularities, labeled $C(1, 3, 0)$ in Sect. [3.](#page-10-1)

We therefore conclude that $M(3)$ has at least seven irreducible components, divided into three types, as below:

- (I) $\overline{I(3)}$ and $\overline{\mathcal{N}(0, 1, 2)}$, both of dimension 21, whose generic point corresponds to a locally free sheaf;
- (II) $C(1, 3, 0)$, of dimension 21, whose generic point corresponds to a sheaf which is singular along smooth plane cubic;
- (III) $T(3, l)$ for $l = 1, 2, 3, 4$, of dimension $21 + 4l$, whose generic point corresponds to a sheaf which is singular along 3*l* distinct points.

In this section, we prove the following.

Theorem 27 *The union*

$$
\overline{\mathcal{I}(3)} \cup \overline{\mathcal{N}(0,1,2)} \cup \overline{\mathcal{C}(1,3,0)} \cup \overline{\mathcal{I}(3,1)} \cup \overline{\mathcal{I}(3,2)} \cup \overline{\mathcal{I}(3,3)} \cup \overline{\mathcal{I}(3,4)}
$$

is connected.

Remark 28 It seems likely that $M(3)$ has no other irreducible components whose generic point corresponds either to a locally free sheaf, or to a sheaf with pure 0- or 1-dimensional singularities. But $M(3)$ might possess other irreducible components whose generic point corresponds to a sheaf with mixed singularities.

First, note that Theorem [23](#page-25-6) guarantees, in particular, that $\mathcal{I}(3) \cap \mathcal{C}(1, 3, 0) \neq \emptyset$, something that has also been remarked by Perrin $[21, Thm 0.1]$ $[21, Thm 0.1]$. In addition, Proposition [24](#page-26-2) for $c = 2$ and $b = 1$ guarantees that $C(1, 3, 0)$ also intersects the closure of $\mathcal{N}(0, 1, 2)$. Therefore, the proof of Theorem [27](#page-31-0) is completed by proving the following result.

Proposition 29 *For each l* = 1, 2, 3, 4*, we have* $\overline{T(3, l)} \cap \overline{T(3)} \neq \emptyset$ *.*

Proof We begin by recalling the description of $\overline{T(3, l)}$, $l = 1, 2, 3, 4$, from Sect. [2.1.](#page-5-3) A generic sheaf *E* from $\overline{T(3,l)}$ is defined as the kernel of an epimorphism ϵ : $F \twoheadrightarrow \bigoplus_{i=1}^{l} \mathcal{O}_{q_i}$, where $[F] \in \mathcal{R}(0; 3; 2l)$ and $q_j \notin \text{Sing}(F)$, $j = 1, \ldots, l$:

$$
0 \to E \to F \stackrel{\epsilon}{\to} \bigoplus_{j=1}^{l} \mathcal{O}_{q_j} \to 0, \quad q_j \notin \text{Sing}(F), \ j = 1, \dots, l. \tag{134}
$$

According to Chang [\[4](#page-34-5), Section 3], for each $l = 1, \ldots, l$ there exist sheaves *F* in $\mathcal{R}(0; 3; l)$ such that $h^0(F(1)) > 0$, and whose zero scheme $Y = (s)_0$ of a nontrivial section $s \in$ $H^0(F(1))$ can be described as follows:

- (i) For $l = 1$, the scheme Y is a disjoint union $\ell_1 \sqcup \ell_2 \sqcup C$ of two lines ℓ_1, ℓ_2 and a nonsingular conic *C*;
- (ii) For $l = 2$, the scheme Y is a disjoint union $l \sqcup C$ of a line $l \sqcup$ and a nonsingular twisted cubic *C*, cf. [\[4,](#page-34-5) proof of Thm. 3.4];
- (iii) For $l = 3$, the scheme Y is a nonsingular rational quartic curve, cf. [\[4,](#page-34-5) proof of Thm. 3.5];

(iv) For $l = 4$, the scheme Y is a nonsingular space elliptic quartic curve, cf. [\[4,](#page-34-5) proof of Lemma 3.8].

In addition, such sheaves are generic for $l = 2, 3, 4$, but special in the case $l = 1$.

Let us first consider the case $l = 1$. We repeat with minor modifications the argument from Sect. [6;](#page-27-0) more precisely, compare with Eqs. (117) , (120) – (130) . First, similar to (118) the sheaf $F = E^{\vee \vee}$ fits in an exact triple

$$
0 \to \mathcal{O}_{\mathbb{P}^3}(-1) \to E^{\vee \vee} \to I_{Y/\mathbb{P}^3}(1) \to 0, \quad Y = \ell_1 \sqcup \ell_2 \sqcup C. \tag{135}
$$

Next, according to [\[11](#page-34-14)] there exists a 't Hooft vector bundle *H* in $I(3)$ given by an exact triple

$$
0 \to \mathcal{O}_{\mathbb{P}^3}(-1) \to H \to I_{Z/\mathbb{P}^3}(1) \to 0, \quad Z = \ell_1 \sqcup \ell_2 \sqcup \ell_3 \sqcup \ell_4,\tag{136}
$$

where ℓ_1,\ldots,ℓ_4 are disjoint lines in \mathbb{P}^3 of which ℓ_1 and ℓ_2 are taken from (i) above. We now include *Z* as a generic fiber Z_t , $t \neq 0$, into a 1-dimensional flat family $\mathcal Z$ of curves in \mathbb{P}^3 as in [\(122\)](#page-29-6), with base $U \ni 0$ being an open subset of \mathbb{A}^1 , such that

- (a) For $t \neq 0$ the fiber $Z_t = \pi^{-1}(t)$ of the family $\mathcal Z$ is a disjoint union of four lines in $\mathbb P^3$;
- (b) The zeroth fiber Z_0 of this family, being reduced, is a union of lines

$$
(Z_0)_{\text{red}} = \ell_1 \sqcup \ell_2 \sqcup (\ell_3 \cup \ell_4), \quad q = \ell_3 \cap \ell_4 = \{\text{pt}\}. \tag{137}
$$

and as a scheme Z_0 has an embedded point q_1 :

$$
0 \to \mathcal{O}_q \to \mathcal{O}_{Z_0} \to \mathcal{O}_{(Z_0)_{\text{red}}} \to 0. \tag{138}
$$

The sheaf *H* defined in [\(136\)](#page-32-0) is then included into the family *H* of sheaves on \mathbb{P}^3 with base *U* given by the exact triple

$$
0 \to \mathcal{O}_{\mathbb{P}^3}(-1) \boxtimes \mathcal{O}_U \to H \to I_{\mathcal{Z}/\mathbb{P}^3 \times U} \otimes \mathcal{O}_{\mathbb{P}^3}(1) \boxtimes \mathcal{O}_U \to 0. \tag{139}
$$

Thus as in [\(126\)](#page-29-8) we obtain a modular morphism $\Phi_U : U \to \overline{\mathcal{I}(3)}$, $t \mapsto [H_t]$, where $H_t = H|_{\mathbb{P}^3 \times \{t\}}$. In particular,

$$
[H_0] \in \overline{\mathcal{I}(3)}.\tag{140}
$$

In view of (139) , the sheaf H_0 fits into the exact triple

$$
0 \to \mathcal{O}_{\mathbb{P}^3}(-1) \stackrel{r}{\to} H_0 \to I_{Z_0,\mathbb{P}^3}(1) \to 0;
$$

composing the morphism *r* in the previous equation with the standard monomorphism $H_0 \rightarrow$ $H_0^{\vee\vee}$, we obtain, using the triple [\(138\)](#page-32-2), the following exact triples for $H_0^{\vee\vee}$:

$$
0 \to H_0 \to H_0^{\vee \vee} \to \mathcal{O}_{q_1} \to 0, \text{ and } (141)
$$

$$
0 \to \mathcal{O}_{\mathbb{P}^3}(-1) \stackrel{s}{\to} H_0^{\vee \vee} \to I_{(Z_0)_{\text{red}}/\mathbb{P}^3}(1) \to 0. \tag{142}
$$

Now [\(137\)](#page-32-3) and [\(142\)](#page-32-4) show that *s* is a section of a reflexive sheaf $F_0^{\vee\vee}(1)$ having a disjoint union $(Z_0)_{\text{red}}$ of two lines and a reducible conic as its zero scheme. Hence, from the description of $\mathcal{R}(0; 3; 2)$ given in item (i) above, it follows that the triple [\(142\)](#page-32-4) is a specialization of the triple [\(135\)](#page-32-5) within a flat family of triples in which the nonsingular conic *C* specializes into a reducible conic $\ell_3 \cup \ell_4$, so that *Y* specializes to $(Z_0)_{\text{red}}$. It follows that the triple [\(141\)](#page-32-4) is a flat specialization of the triple [\(134\)](#page-31-1), so that

$$
[H_0] \in \overline{\mathcal{T}(3, 1)}.\tag{143}
$$

Finally, the case $l = 1$ follows from (140) and (143) .

For $l = 2, 3, 4$, the above argument goes through with the following modifications.

For $l = 2$, instead of [\(137\)](#page-32-3) one takes $(Z_0)_{\text{red}} = \ell_1 \sqcup (\ell_2 \cup \ell_3 \cup \ell_4)$ with points $q_1 = \ell_2 \cap \ell_3$ and $q_2 = \ell_3 \cap \ell_4$, and consider it as a flat degeneration of a disjoint union of a line ℓ plus a smooth twisted cubic *C* item (ii) above.

For $l = 3$, one takes $(Z_0)_{\text{red}} = \ell_1 \cup \ell_1 \cup \ell_2 \cup \ell_3$ to be a chain of lines with three distinct points $q_1 = \ell_1 \cap \ell_2$, $q_2 = \ell_2 \cap \ell_3$, and $q_2 = \ell_3 \cap \ell_4$, considered as a flat degeneration of a nonsingular rational quartic curve *C* from item (iii) above.

For $l = 4$, one takes $(Z_0)_{\text{red}} = \ell_1 \cup \ell_2 \cup \ell_3 \cup \ell_4$, to be a space union of lines with distinct intersection points $q_1 = \ell_1 \cap \ell_2$, $q_2 = \ell_2 \cap \ell_3$, $q_3 = \ell_3 \cap \ell_4$, $q_4 = \ell_4 \cap \ell_1$, considered as a flat degeneration of the nonsingular space elliptic quartic from item (iv) above. flat degeneration of the nonsingular space elliptic quartic from item (iv) above. 

Remark 30 Gruson and Trautmann conjectured that the boundary of charge 3 instanton bundles

$$
\partial \mathcal{I}(3) := \overline{\mathcal{I}(3)} \setminus \mathcal{I}(3)
$$

has exactly 8 divisorial irreducible components, which can be divided into 2 types, cf. [\[21,](#page-35-7) Remarque 3.6.8]:

- (I) 4 Components whose generic point corresponds to an instanton sheaf which is singular along a line, a smooth conic, a smooth twisted cubic or a smooth plane cubic;
- (II) 4 Components whose generic point corresponds to a (noninstanton) sheaf which is singular along 2, 4, 6 or 8 points.

The components of type (I) are, in the notation of [\[14\]](#page-34-7), $\mathcal{D}(m, 3)$ for $m = 1, 2, 3$ and $C(1, 3, 0) \cap T(3)$; all of these are known to be irreducible and divisorial, see [\[10](#page-34-16)[,14\]](#page-34-7), [\[21,](#page-35-7) Théorème 0.1], and [\[22](#page-35-8)].

The components of type (II) are, in the notation of this paper, $\mathcal{T}(3, l) \cap \mathcal{I}(3)$ for $l =$ 1, 2, 3, 4. Perrin showed in [\[21\]](#page-35-7) that $T(3, 1) \cap T(3)$ is an irreducible divisor within $T(3)$.

Therefore, completing the proof of the Gruson–Trautmann conjecture amounts to showing that $\overline{T(3, l)} \cap \overline{T(3)}$ are irreducible and divisorial within $\overline{T(3)}$ for $l = 2, 3, 4$ and that $\partial \overline{T(3)}$ has no other divisorial components.

Remark 31 It is interesting to note that the argument in Proposition [29](#page-31-2) can be adapted to show that $\overline{T(3, 1)} \cap \overline{\mathcal{N}(0, 1, 2)} \neq \emptyset$.

Indeed, consider a 1-dimensional flat family $\mathcal Z$ of curves in $\mathbb P^3$ as in [\(122\)](#page-29-6), with base $U \ni 0$ being an open subset of \mathbb{A}^1 , such that

- (a) For $t \neq 0$, the fiber $Z_t = \pi^{-1}(t)$ of the family $\mathcal Z$ is a disjoint union of a nonsingular elliptic cubic C_t with a nonsingular space elliptic quartic Q_t ;
- (b) The zeroth fiber Z_0 of this family, being reduced, is the union a nonsingular elliptic cubic C_0 with a nonsingular space elliptic quartic Q_0 meeting a point *q*

$$
(Z_0)_{\text{red}} = C_0 \cup Q_0, \quad q := C_0 \cap Q_0 = \{\text{pt}\}
$$

and as a scheme Z_0 has q as an embedded point:

$$
0 \to \mathcal{O}_q \to \mathcal{O}_{Z_0} \to \mathcal{O}_{(Z_0)_{\text{red}}} \to 0. \tag{144}
$$

Next, consider the family *H* of sheaves on \mathbb{P}^3 with base *U* given by the exact triple

$$
0 \to \mathcal{O}_{\mathbb{P}^3}(-2) \boxtimes \mathcal{O}_U \to H \to I_{\mathcal{Z}/\mathbb{P}^3 \times U} \otimes \mathcal{O}_{\mathbb{P}^3}(2) \boxtimes \mathcal{O}_U \to 0. \tag{145}
$$

 \mathcal{L} Springer

As before, set $H_t := H|_{\mathbb{P}^3 \times \{t\}}$. As observed by Hartshorne [\[11,](#page-34-14) Example 3.1.3], the sheaves *H_t* for $t \neq 0$ are stable locally free sheaves with $c_1(H_t) = 0$, $c_2(H_t) = 3$ and α invariant equal to 1; since instanton bundles have $\alpha = 0$, it follows that $[H_t] \in \mathcal{N}(0, 1, 2)$ when $t \neq 0$.

On the other hand, the reflexive sheaf *F* defined by the exact triple

$$
0 \to \mathcal{O}_{\mathbb{P}^3}(-2) \to F \to I_{(Z_0)_{\text{red}}/\mathbb{P}^3}(2) \to 0
$$

yields a point in $\mathcal{R}(0; 3; 2)$, since $(Z_0)_{\text{red}}$ is not contained in a hypersurface of degree 2, so that F is μ -stable; note, however, that the sheaves obtained in this way are not generic in $R(0; 3; 2)$, cf. [\[4](#page-34-5), proof of Lemma 3.6]. Since H_0 fits into the exact triple

$$
0 \to \mathcal{O}_{\mathbb{P}^3}(-2) \to H_0 \to I_{Z_0/\mathbb{P}^3}(2) \to 0,
$$

it then follows from (144) that H_0 and F are related via the exact triple

$$
0 \to H_0 \to F \to \mathcal{O}_q \to 0. \tag{146}
$$

The stability of *F* implies that H_0 is also stable. Now, [\(145\)](#page-33-1) implies that $[H_0] \in \overline{\mathcal{N}(0, 1, 2)}$; on the other hand, [\(146\)](#page-34-17) implies that $[H_0] \in \overline{\mathcal{T}(3, 1)}$, proving our claim.

We conjecture that $\overline{T(3, l)} \cap \overline{N(0, 1, 2)} \neq \emptyset$ also for $l = 2, 3, 4$.

Acknowledgements MJ is partially supported by the CNPq Grant Number 303332/2014-0 and the FAPESP Grant Number 2014/14743-8. DM was partially supported by Labex CEMPI (ANR-11-LABX-0007-01). AST was supported by Grant Number 16-01-0028 in the framework of the Academic Fund Program at the National Research University Higher School of Economics (HSE) in 2016-2017 and by a subsidy to the HSE from the Government of the Russian Federation for the implementation of Global Competitiveness Program. Part of this paper was written while AST visited the University of Campinas under the FAPESP Grant Number 2014/22807-6. AST also acknowledges the support from the Max Planck Institute for Mathematics in Bonn, where some of the main ideas of this work were conceived during the winter of 2014.

References

- 1. Artin, M.: Algebraization of formal moduli, I. In: Spencer, DC., Iyanaga, S. (eds.) Global Analysis, Papers in Honor of K. Kodaira, pp. 21–71. University of Tokyo Press, Tokyo (1969)
- 2. Barth, W.: Some properties of stable rank-2 vector bundles on \mathbb{P}_n . Math. Ann. **226**, 125–150 (1977)
- 3. Barth, W.: Stable vector bundles on P3, experimental data. Astérisque **71–72**, 205–218 (1980)
- 4. Chang, M.-C.: Stable rank 2 reflexive sheaves on \mathbb{P}^3 with small c_2 and applications. Trans. Am. Math. Soc. **284**, 57–89 (1984)
- 5. Costa, L., Ottaviani, G.: Nondegenerate multidimensional matrices and instanton bundles. Trans. Am. Math. Soc. **355**, 49–55 (2003)
- 6. Ein, L.: Some stable vector bundles on \mathbb{P}^4 and \mathbb{P}^5 . J. Reine Angew. Math. **337**, 142–153 (1982)
- 7. Ein, L.: Generalized null correlation bundles. Nagoya Math. J. **111**, 13–24 (1988)
- 8. Ellingsrud, G., Stromme, S.A.: Stable rank 2 vector bundles on \mathbb{P}^3 with $c_1 = 0$ and $c_2 = 3$. Math. Ann. **255**, 123–135 (1981)
- 9. Esteves, E.: Compactifying the relative Jacobian over families of reduced curves. Trans. Am. Math. Soc. **353**, 3045–3095 (2001)
- 10. Gruson, L., Skiti, M.: 3-Instantons et réseaux de quadriques. Math. Ann. **298**, 253–273 (1994)
- 11. Hartshorne, R.: Stable vector bundles of rank 2 on **P**3. Math. Ann. **254**, 229–280 (1978)
- 12. Hartshorne, R.: Stable reflexive sheaves. Math. Ann. **254**, 121–176 (1980)
- 13. Huybrechts, D., Lehn, M.: The Geometry of Moduli Spaces of Sheaves, 2nd edn. Cambridge Math. Lib., Cambridge University Press, Cambridge (2010)
- 14. Jardim, M., Markushevich, D., Tikhomirov, A.S.: New divisors in the boundary of the instanton moduli space. Preprint [arXiv:1501.00736](http://arxiv.org/abs/1501.00736) [math.AG]
- 15. Jardim, M.: Instanton sheaves on complex projective spaces. Collect. Math. **57**, 69–91 (2006)
- 16. Jardim, M., Verbitsky, M.: Trihyperkähler reduction and instanton bundles on P3. Compos. Math. **150**, 1836–1868 (2014)
- 17. Le Potier, J.: Systèmes cohérents et structures de niveau. Astérisque **214**, 1–143 (1993)
- 18. Melo, M., Rapagnetta, A., Viviani, F.: Fine compactified Jacobians of reduced curves. Trans. Am. Math. Soc. Preprint [arXiv:1406.2299v2](http://arxiv.org/abs/1406.2299v2) [math.AG]
- 19. Miró-Roig, R.M.: Construction of rank 2 semistable torsion free sheaves which are not limit of vector bundles. Manuscr. Math. **80**, 89–94 (1993)
- 20. Narasimhan, M.S., Trautmann, G.: Compactification of $M_{\mathbb{P}_3}(0, 2)$ and Poncelet pairs of conics. Pac. J. Math. **145**, 255–365 (1990)
- 21. Perrin, N.: Deux composantes du bord de *I*3. Bull. Soc. Math. Fr. **130**, 537–572 (2002)
- 22. Perrin, N.: Déformations de fibrés vectoriels sur les variétés de dimension 3. Manuscr. Math. **116**, 449–474 (2005)
- 23. Simpson, C.: Moduli of representations of the fundamental group of a smooth projective variety I. Publ. Math. IHES **79**, 47–129 (1994)
- 24. Tikhomirov, A.S.: Moduli of mathematical instanton vector bundles with odd c_2 on projective space. Izv. Math. **76**, 991–1073 (2012)
- 25. Tikhomirov, A.S.: Moduli of mathematical instanton vector bundles with even c_2 on projective space. Izv. Math. **77**, 1331–1355 (2013)
- 26. Trautmann, G.: Components of $M_{\mathbb{P}3}$ (2; 0, 2, 0). Private communication of unpublished notes