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Abstract Wedescribe new components of theGieseker–Maruyamamoduli schemeM(n) of
semistable rank 2 sheaves E on P

3 with c1(E) = 0, c2(E) = n and c3(E) = 0 whose generic
point corresponds to nonlocally free sheaves.We show that such components grow in number
as n grows, and discuss how they intersect the instanton component. As an application, we
prove that M(2) is connected, and identify a connected subscheme of M(3) consisting of
seven irreducible components.
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1 Introduction

Let M(c1; c2; c3) denote the Gieseker–Maruyama moduli scheme of semistable rank 2
sheaves on P

3 with the first, second and third Chern classes equal to c1, c2 and c3, respec-
tively. We will be particularly concerned with M(n) := M(0; n; 0). In addition, we also
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define B(n) to be the open subset of M(n) consisting of stable locally free sheaves, and let
R(c1; c2; c3) denote the open subset ofM(c1; c2; c3) consisting of stable reflexive sheaves.

The study of stable rank 2 locally free sheaves on P
3 in the past 40 years has been mostly

concentrated on instanton bundles, that is, those stable rank 2 locally free sheaves E on P
3

satisfying c1(E) = 0 and h1(E(−2)) = 0. Let I(n) denote the moduli space of instanton
bundles E with c2(E) = n, regarded as an open subset of M(n); the basic questions about
its geometry have been settled just recently: it is an irreducible [24,25], nonsingular [16],
affine [5] variety of dimension 8n − 3. However, I(n), the closure of I(n) within M(n),
is not the only irreducible component of M(n) for n ≥ 2; in fact, Ein showed in [7] that
B(n) has several irreducible components as soon as n ≥ 3 and that the number of irreducible
components of B(n) is not bounded as n grows.

In addition, the closure B(n) of B(n) within M(n) does not exhaust M(n) already for
n ≥ 2, as it was observed by Le Potier [17, Chapter 7], Trautmann [26] and Miró-Roig
[19]. In other words, for each n ≥ 2, M(n) possesses entire irreducible components whose
generic point corresponds to a stable rank 2 torsion free sheaf which is not locally free. Such
components are the main focus of the present paper.

To be more precise, let E be a rank 2 torsion free sheaf on P
3 with c1(E) = 0, c2(E) = n

and c3(E) = 0. Clearly, c1(E∨∨) = 0; we denote m := c2(E∨∨) and l = c3(E∨∨)/2.
Setting QE := E∨∨/E , one has the fundamental sequence

0 → E → E∨∨ → QE → 0 (1)

from which one can check that c2(QE ) = −(n − m) and c3(QE ) = 2l. If E is not locally
free, then QE �= 0 and there are three possibilities:

(i) dim QE = 0; in this case, n = m and E∨∨ is not locally free; we say that E has
0-dimensional singularities;

(ii) QE has pure dimension 1; in this case, n > m and we say that E has 1-dimensional
singularities;

(iii) dim QE = 1, but it contains 0-dimensional subsheaves; in this case, we say that E has
mixed singularities.

Note that in general Supp(QE ) ⊆ Sing(E), with equality if E∨∨ is locally free. Remark that
Sing(E) may contain 0-dimensional components even when QE has pure dimension one.

We present a systematic construction of irreducible components of M(n) whose generic
point corresponds to stable rank 2 torsion free sheaveswith 0- and 1-dimensional singularities,
seeTheorems7 and17below, respectively. Furthermore,we also show that the number of such
components grows as n grows, cf. Theorem 9, for the 0-dimensional case, and Theorem 19,
for the 1-dimensional case, below.

These results raise the questions of whether it is possible to enumerate all of the irreducible
components of M(n), at least for low values of n, and whether M(n) is connected. Indeed,
it is not difficult to check that M(1) is irreducible (see Sect. 6), while Le Potier [17] and
Trautmann [26] showed that M(2) has precisely three irreducible components, I(2) plus
two additional ones. In Sect. 6, we show, in addition, that the generic point of each of the
two so-called Trautmann components identified by Le Potier corresponds to a sheaf with
0-dimensional singularities, and that M(2) is connected.

Finally, we show in Sect. 7 that M(3) has at least seven irreducible components. In
addition, we provide a discussion on how these various components intersect each other,
showing that their union forms a connected subscheme of M(3).
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2 Torsion free sheaves with 0-dimensional singularities

Let us begin by fixing some basic facts about torsion free sheaves E with 0-dimensional
singularities. Given any coherent sheaf G on P

3, one has Ext3(E,G) = 0 and Ext2(E,G) �
Ext3(QE ,G) due to the reflexivity of E∨∨. It follows that torsion free sheaves E with 0-
dimensional singularities have homological dimension equal to 2; in other words, E admits
a resolution of the form

0 → L2 → L1 → L0 → E → 0 (2)

with each Lk (k = 0, 1, 2) being a locally free sheaf.
Note that Ext1(E, E) and Ext2(E, E) are 0-dimensional sheaves, while Ext3(E, E) van-

ishes. Thus using the spectral sequence of local-to-global Ext’s, we obtain:

(i) Ext1(E, E) = H1(Hom(E, E)) ⊕ ker d012
(ii) Ext2(E, E) = ker d023 ⊕ coker d012
(iii) Ext3(E, E) = coker d023

where d012 and d023 are the spectral sequence maps

d012 : H0(Ext1(E, E)) → H2(Hom(E, E)) and (3)

d023 : H0(Ext2(E, E)) → H3(Hom(E, E)). (4)

It then follows that

3∑

j=0

(−1) j dim Ext j (E, E) = χ(Hom(E, E)) − h0(Ext1(E, E)) + h0(Ext2(E, E)). (5)

Remark 1 Observe that for a reflexive sheaf F (so that Ext2(F, F) = 0) the previous expres-
sions for Ext j (F, F) simplify to

• Ext1(F, F) = H1(Hom(F, F)) ⊕ ker d012 ;
• Ext2(F, F) = coker d012 ;
• Ext3(F, F) = H3(Hom(F, F)),

where d012 is the spectral sequence map d012 : H0(Ext1(F, F)) → H2(Hom(F, F)). Note
as well that (5) simplifies to

3∑

j=0

(−1) j dim Ext j (F, F) = χ(Hom(F, F)) − h0(Ext1(F, F)). (6)

Lemma 2 If E is a rank 2 torsion free sheaf with 0-dimensional singularities and c1(E) = 0,
then

3∑

j=0

(−1) j dim Ext j (E, E) = −8c2(E) + 4.

Proof The strategy is to show that

χ(Hom(E, E)) − h0(Ext1(E, E)) + h0(Ext2(E, E))

= χ(Hom(E∨∨, E∨∨)) − h0(Ext1(E∨∨, E∨∨)).
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The desired equality will follow from (5), (6), and

3∑

j=0

(−1) j dim Ext j (E∨∨, E∨∨) = −8c2(E
∨∨) + 4,

see [12, Prop. 3.4].
Indeed, applying the functor Hom(·, E) to the fundamental sequence (1) we obtain the

isomorphism Ext2(E, E) � Ext3(QE , E) plus the exact sequence

0 → Hom(E∨∨, E) → Hom(E, E) → Ext1(QE , E) → Ext1(E∨∨, E) (7)

→ Ext1(E, E) → Ext2(QE , E) → 0, (8)

since Ext2(E∨∨, E) = 0 because E∨∨ is reflexive. Next, apply the functor
Hom(E∨∨, ·) to the fundamental sequence (1), obtaining

0 → Hom(E∨∨, E) → Hom(E∨∨, E∨∨) → Hom(E∨∨, QE ) (9)

→ Ext1(E∨∨, E) → Ext1(E∨∨, E∨∨) → Ext1(E∨∨, QE ) → 0.
(10)

Comparing Euler characteristics of these last two sequences, we conclude that

χ(Hom(E∨∨, E∨∨)) − χ(Ext1(E∨∨, E∨∨))

= χ(Hom(E, E)) − χ(Ext1(E, E)) − χ(Ext1(QE , E)) + χ(Ext2(QE , E))

+χ(Hom(E∨∨, QE )) − χ(Ext1(E∨∨, QE )).

Thus, since χ(Ext2(E, E)) = χ(Ext3(QE , E)), it is now enough to show that

3∑

j=0

(−1) jχ(Ext j (QE , E)) = −
3∑

j=0

(−1) jχ(Ext j (E∨∨, QE )), (11)

noticing that Hom(QE , E) = 0 and Ext j (E∨∨, QE ) = 0 for j = 2, 3.
We first consider the left-hand side of (11). One can break a locally free resolution of E

as in (2) into short exact sequences

0 → L2 → L1 → T → 0 and 0 → T → L0 → E → 0.

Applying the functor Hom(QE , ·) to the first sequence, we obtain

0 → Ext2(QE , T ) → Ext3(QE , L2) → Ext3(QE , L1) → Ext3(QE , T ) → 0,

with all the other sheaves vanishing. Passing to Euler characteristics, we obtain

χ(Ext2(QE , T )) − χ(Ext3(QE , T )) = χ(Ext3(QE , L2)) − χ(Ext3(QE , L1)).

But Ext3(QE , Lk) = Ext3(QE ,OP3) ⊗ Lk , hence χ(Ext3(QE , Lk)) = rk(Lk) · χ(QE ).
Therefore

χ(Ext2(QE , T )) − χ(Ext3(QE , T )) = (rk(L2) − rk(L1))χ(QE ). (12)

Next, apply the functor Hom(QE , ·) to the second part of (2) to obtain the isomorphism
Ext1(QE , E) � Ext2(QE , T ) and the exact sequence

0 → Ext2(QE , E) → Ext3(QE , T ) → Ext3(QE , L0) → Ext3(QE , E) → 0.
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Passing to Euler characteristics, we obtain

χ(Ext2(QE , E)) − χ(Ext3(QE , E)) = χ(Ext3(QE , T )) − χ(Ext3(QE , L0)).

Subtracting Ext1(QE , E) from the left-hand side and Ext2(QE , T ) from the right-hand side
and then substituting for (12), we obtain

3∑

j=0

(−1) jχ(Ext j (QE , E)) = (rk(L1) − rk(L2) − rk(L0)) · χ(QE ) = −2χ(QE ).

Finally, we compute the right-hand side of (11) in a similar way. Take a locally free
resolution of E∨∨:

0 → M1 → M0 → E∨∨ → 0.

Applying the functor Hom(·, QE ) and passing to Euler characteristics, we obtain

χ(Hom(E∨∨, QE )) − χ(Ext1(E∨∨, QE )) = χ(Hom(M0, QE )) − χ(Hom(M1, QE ))

= 2χ(QE ),

as desired.

Next, we consider semistable rank 2 torsion free sheaves with 0-dimensional singularities.

Lemma 3 Let E be a rank 2 torsion free sheaf onP
3 with c1(E) = 0, c2(E) = n, c3(E) = 0,

and with 0-dimensional singularities. If E is semistable, then E∨∨ is stable.

We remark that the vanishing of the third Chern class is an essential hypothesis: the sum of
the ideal sheaves Ix/P3 ⊕ Iy/P3 of two points x, y ∈ P

3 is semistable and with 0-dimensional
singularities, but (Ix/P3 ⊕ Ix/P3)

∨∨ is not stable. Recall also that the Hilbert polynomial of
a rank 2 torsion free sheaf on P

3 with c1(E) = 0, c2(E) = n, c3(E) = 0 is given by

PE (k) = 1

3
(k + 3)(k + 2)(k + 1) − n(k + 2).

Proof If E∨∨ is not μ-stable (or, equivalently, stable), then it has a section σ . We can then
form the following diagram

0 0 0

0 I�/P3 OP3

σ

O�/P3 0

0 E E∨∨ ϕ
QE 0

(13)

where � is a 0-dimensional scheme contained in the support of QE and I�/P3 is its ideal
sheaf. Notice that one cannot have ϕσ = 0 because h0(E) = 0 by semistability.

Let d denote the length of �; it follows that

1

2
PE (k) − PI�(k) = −n

2
(k + 2) + d < 0 for k sufficiently large

thus I� would destabilize E , contradicting our hypothesis. ��
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We remark that the only properly semistable torsion free sheaf E with c1(E) = c3(E) =
0 and with 0-dimensional singularities is 2 · OP3 . Indeed, assume that QE �= 0; if E is
semistable, then E∨∨ is μ-stable by Lemma 3 above; hence, E is also μ-stable and thus
stable. When QE = 0, this claim is just [12, Remark 3.1.1].

In addition, Hartshorne provides in [12, Thm. 8.2(b)] a bound for the third Chern class
of a stable rank 2 reflexive sheaf on P

3. Translating this bound to our context, we have the
following statement.

Corollary 4 If E is a semistable rank 2 sheaf on P
3 with c1(E) = 0, c2(E) = n, c3(E) = 0,

and with 0-dimensional singularities, then c3(E∨∨) ≤ n2 − n + 2.

Lemma 5 Let E be a rank 2 torsion free sheaf onP
3 with c1(E) = 0, c2(E) = n, c3(E) = 0,

and with 0-dimensional singularities. If E is stable, then

(a) Ext1(E, E) = H1(Hom(E, E)) ⊕ ker d012 ;
(b) Ext2(E, E) = H0(Ext2(E, E)) ⊕ coker d012 ;
(c) Ext3(E, E) = 0;
(d) dim Ext1(E, E) = 8n − 3 + dim Ext2(E, E).

Proof The stability of E implies that

dim Ext0(E, E) = h0(Hom(E, E)) = 1

and, by Serre duality,

Ext3(E, E) � Ext0(E, E(−4)) = 0.

Item (c) now follows, and item (d) is then immediate from Lemma 2.
Item (a) coincides with item (i) in page 2, so it only remains for us to establish item (b).
Since Ext1(QE , E) has dimension zero, we get from sequence (7) that

Hi (Hom(E, E)) � Hi (Hom(E∨∨, E)) for i = 2, 3. (14)

Similarly, since Ext1(E∨∨, E) has dimension zero, we get from sequence (9) that

Hi (Hom(E∨∨, E∨∨)) � Hi (Hom(E∨∨, E)) for i = 2, 3.

Putting the isomorphisms above, we get

Hi (Hom(E, E)) � Hi (Hom(E∨∨, E∨∨)) for i = 2, 3. (15)

In particular, H3(Hom(E, E)) � Ext3(E∨∨, E∨∨) = 0 since E∨∨ is stable. Thus, the
spectral sequence map d023 in (4) vanishes. Item (b) now follows from item (ii) in page 3. ��
2.1 Components of sheaves with 0-dimensional singularities

In this section, we will show how to produce irreducible components ofM(n)whose generic
point corresponds to a sheaf with 0-dimensional singularities.

Start by considering the following ingredients:

(i) A stable rank 2 reflexive sheaf F on P
3 with c1(F) = 0, c2(F) = n and c3(F) = 2l;

(ii) A 0-dimensional sheaf Q of length l on P
3;

(iii) An epimorphism ϕ : F → Q.

Now let E := ker ϕ. Clearly, this is a (μ-)stable rank 2 torsion free sheaf with c1(E) = 0,
c2(E) = n and c3(E) = 0 such that E∨∨ = F and E∨∨/E = Q; in particular, Sing(E) has
dimension 0.
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Proposition 6 Let F be a stable rank 2 reflexive sheaf with c1(F) = 0, c2(F) = n
and c3(F) = 2l such that Ext2(F, F) = 0. Take l distinct points q1, . . . , ql such that
{q1, . . . , ql}∩Sing(F) = ∅, and set Q := ⊕l

j=1Oq j . Then, the kernel E of any epimorphism

ϕ : F � Q satisfies dim Ext1(E, E) = 8n − 3 + 4l.

Proof Since E is stable, it is enough to show, by Lemma 5(d), that dim Ext2(E, E) = 4l.
The first step is to show that the spectral sequence map (3) is surjective. Indeed, one has the
commutative diagram

H0Ext1(F, E)
d012

H2(Hom(F, E))

�

H0Ext1(E, E)
d012

H2(Hom(E, E))

(16)

where vertical arrow in the left is the natural map coming from the exact sequence

0 → E → F → Q → 0, (17)

while the vertical arrow in the right is the natural isomorphism obtained as in (14). Applying
Hom(F, ·) to the sequence (17), we get

Ext1(F, Q) → Ext2(F, E) → Ext2(F, F).

To see that Ext1(F, Q) = 0, note that Hi (Ext j (F, Q)) = 0 if i, j �= 0: indeed,
Ext j (F, Q) = 0 for j = 2, 3 because F is reflexive; Ext1(F, Q) = 0 because the sin-
gular locus of F is disjoint from the support of Q; and Hom(F, Q) has dimension 0. It
follows from the spectral sequence of local-to-global Ext’s that Ext j (F, Q) = 0 for j > 0.
Since, by hypothesis, Ext2(F, F) = 0, it follows that Ext2(F, E) = 0. Since Ext2(F, E)

coincides with the cokernel of top horizontal map in diagram (16), it follows that the bottom
horizontal map, which is precisely the spectral sequence map d012 in (3), is also surjective.

It then follows from Lemma 5(b) that dim Ext2(E, E) = h0(Ext2(E, E)). To compute
this, note that

H0(Ext2(E, E)) =
⊕

p∈Sing(E)

Ext2O
P3,p

(Ep, Ep), (18)

where Sing(E) = Sing(F) ∪ {q1, . . . , ql}.
First, take p ∈ Sing(F); since p /∈ Supp(Q), we get Ep � Fp . However,

Ext2O
P3,p

(Fp, Fp) = Ext2(F, F)p = 0 because F , being reflexive, has cohomological dimen-

sion 1.
Next, take p = q j for some 1 ≤ j ≤ l; restricting the sequence (17) to an open affine

subset U of P
3 containing p but none of the other singularities of F , we have the following

short exact sequence of sheaves on U :

0 → OU ⊕ Ip/U → 2 · OU → Op/U → 0,

where Ip/U denotes the ideal sheaf of the point p ∈ U andOp/U denotes the structure sheaf
of the point p as a subscheme of U . It follows that

Ext2O
P3,p

(Ep, Ep) = H0(Ext2OU
(Ip/U ,Op/U )) ⊕ H0(Ext2OU

(Ip/U , Ip/U )).

We argue that the first summand has length 1, while the second one has length 3. Indeed,
we might as well perform the calculation globally, using the ideal sheaf Ip/P3 of the point
p ∈ P

3 and its structure sheaf Op/P3 .
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From the exact sequence

0 → Ip/P3 → OP3 → Op/P3 → 0

we obtain that Ext2(Ip/P3 ,OP3) � Ext3(Op/P3 ,OP3) � Op/P3 , so it has length 1.
Now use the resolution of Ip/P3 by locally free sheaves:

0 → OP3(−3) → 3 · OP3(−2) → 3 · OP3(−1) → Ip/P3 → 0.

Applying the functor Hom(·, Ip/P3) to the sequence

0 → G → 3 · OP3(−1) → Ip/P3 → 0

we obtain that Ext2(Ip/P3 , Ip/P3) � Ext1(G, Ip/P3). Applying the same functor to the exact
sequence

0 → OP3(−3) → 3 · OP3(−2) → G → 0

we obtain the sequence

3 · Ip/P3(2) → Ip/P3(3) → Ext1(G, Ip/P3) → 0.

Note that the cokernel of the first arrow is just Ip/P3 ⊗Op/P3 � 3·Op/P3 ; thus, Ext1(G, Ip/P3)
has length 3.

Thus, the points of Sing(F) do not contribute to (18), while each of the l points in Supp(Q)

contributes with a sheaf of length 4. We conclude that dim Ext2(E, E) = 4l, as desired. ��
Now let S(n, l) denote an irreducible, open subset ofR(0; n; 2l)whose points correspond

to stable reflexive sheaves F satisfying Ext2(F, F) = 0; in particular, S(n, l) must be the
nonsingular locus of an irreducible component ofR(0; n; 2l) of expected dimension 8n− 3.
In the product S(n, l) × (P3)l , we consider the open subset

(
S(n, l) × (P3)l

)0 := {
([F], q1, . . . , ql) | qi �= q j , qi /∈ Sing(F)

}
.

Clearly, a point in
(
S(n, l) × (P3)l

)0
can be regarded as a pair of sheaves ([F], Q :=

⊕l
j=1Oq j ) which fulfills the condition of Proposition 6. Next, with ([F], Q) ∈

(
S(n, l) × (P3)l

)0
as above, consider the open set Hom(F, Q)e of Hom(F, Q) consisting

of epimorphisms ϕ : F � Q; the group Aut(Q) of automorphisms of the sheaf Q acts on
Hom(F, Q)e just by homotheties on each factor Oq j of Q.

Putting all these data together, we construct the set of triples

T (n, l) =
{
([F], Q, ϕ) | ([F], Q) ∈

(
S(n, l) × (P3)l

)0
, ϕ ∈ Hom(F, Q)e/Aut(Q)

}
.

By construction, T (n, l) is an irreducible, quasi-projective variety of dimension 8n− 3+ 4l.
Indeed, one has the surjective projection

T (n, l) →
(
S(n, l) × (P3)l

)0
, ([F], Q, ϕ) �→ ([F], Q)

onto an irreducible base variety of dimension 8n − 3 + 3l, with fibers given by

Hom(F, Q)e/Aut(Q)
open
↪→ Hom(F, Q)/Aut(Q)

which have dimension 2l − l = l.
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To each point t := ([F], Q, ϕ) ∈ T (n, l), one associates the sheaf

E(t) := ker{ϕ : F � Q}
which defines a point [E(t)] in M(n). Proposition 6 tells us that, for each t ∈ T (n, l),

dim Ext1(E(t), E(t)) = dim T (n, l);
therefore, the image of T (n, l) intoM(n) is a dense open subset of an irreducible component
ofM(n); to simplify notation, we denote such component by T (n, l), the closure of the image
of T (n, l) within M(n).

We summarize the considerations above into the following result.

Theorem 7 For every nonsingular irreducible component F of R(0; n; 2l) of expected
dimension 8n − 3, there exists an irreducible component T (n, l) of dimension 8n − 3 + 4l
in M(n) whose generic point [E] satisfies [E∨∨] ∈ F and length(QE ) = l.

2.2 An Ein-type result for sheaves with 0-dimensional singularities

Recall that Ein has shown in [7, Proposition 3.6] that the number of irreducible components
of B(n) is unbounded as n grows. We now prove a similar statement for those irreducible
components of M(n) whose generic points correspond to sheaves with 0-dimensional sin-
gularities.

We begin by considering morphisms

α : a · OP3(−3) ⊕ b · OP3(−2) ⊕ c · OP3(−1) → (a + b + c + 2) · OP3

whose degeneracy locus

�(α) = {x ∈ P
3 | α(x) is not injective}

is 0-dimensional. It follows that the cokernel of α is a rank 2 reflexive sheaf on P
3, which

we normalize as to fit into the short exact sequence:

0 → a ·OP3(−3)⊕b ·OP3(−2)⊕c ·OP3(−1)
α−→ (a+b+c+2)·OP3 → F(k) → 0, (19)

with a, b, c ≥ 0 and such that 3a+2b+ c is nonzero and even; we set k := (3a+2b+ c)/2,
so that c1(F) = 0.

For simplicity of notation, let

G(a,b,c) := a · OP3(−3) ⊕ b · OP3(−2) ⊕ c · OP3(−1).

The dimension of the family of rank 2 reflexive sheaves constructed as in Eq. (19) is given
by

dimHom
(
G(a,b,c), (a + b + c + 2) · OP3

) − dimAut
(
G(a,b,c)

) − (a + b + c + 2)2 + 1

= 8k2 + 24k − 8(b + c) − 3 = 8c2(F) − 3.

One easily checks for that h0(F) = 0 for every F given by (19); thus, F is always
stable. In addition, it is not hard to check that Ext2(F, F) = 0. Indeed, applying the functor
Hom(·, F(k)) to the sequence (19), we obtain

Ext1
(
G(a,b,c), F(k)

) → Ext2(F, F) → Ext2((a + b + c + 2) · OP3 , F(k)).

The group on the left vanishes because H1(F(t)) = 0 for every t ∈ Z, while the group
on the right vanishes because H2(F(k)) = 0. We conclude from [12, Prop. 3.4] that
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dim Ext1(F, F) = 8c2(F) − 3, matching the dimension of the family as computed in the
previous paragraph. It follows that the family of sheaves given by (19) provides a component
of the moduli space of stable rank 2 reflexive sheaves on P

3.
Summarizing the results obtained so far, we have the following theorem.

Theorem 8 For each triple (a, b, c) of positive integers such that 3a + 2b + c is nonzero
and even, the rank 2 reflexive sheaves given by (19) fill out an irreducible, nonsingular,
component S(a, b, c) ofR(0; n;m) of expected dimension 8n − 3, where n and m are given
by the expressions:

n = 1

4
(3a + 2b + c)2 + 3

2
(3a + 2b + c) − (b + c),

m = m(a, b, c) = 27

(
a + 2

3

)
+ 8

(
b + 2

3

)
+

(
c + 2

3

)
+ 3(3a + 2b + 5)ab

+ 3

2
(3a + c + 4)ac + (2b + 3c + 3)bc + 6abc.

More precisely, let S̃(a, b, c) ⊂ Hom
(
G(a,b,c), (a + b + c + 2) · OP3

)
be the open subset

consisting of monomorphisms with 0-dimensional degeneracy loci; then,

S(a, b, c) = S̃(a, b, c)/(Aut(G(a,b,c)) × GL(a + b + c + 2))/C
∗).

Two particular cases deserve special attention, as they were previously considered by
Chang [4]. First, we set a = b = 0 and c = 2, so that n = 2 and m = 4 and (19) reducing to

0 → 2 · OP3(−1)
α−→ 4 · OP3 → F(1) → 0. (20)

It is shown in [4, Lemma 2.9] that every stable rank 2 reflexive sheaf F with c2(F) = 2 and
c3(F) = 4 admits a resolution of the form (20); in other words, S(0, 0, 2) = R(0; 2; 4).

The second case considered by Chang corresponds to a = c = 0 and b = 1, so that n = 3
and m = 8 and (19) reducing to

0 → OP3(−2)
α−→ 3 · OP3 → F(1) → 0. (21)

One can check that every stable rank 2 reflexive sheaf F with c2(F) = 3 and c3(F) = 8
admits a resolution of the form (21), cf. [4, proof of Theorem3.9]; in otherwords,S(0, 1, 0) =
R(0; 3; 8).

Finally, we are ready to establish the result promised in the beginning of the section.

Theorem 9 Let ζn denote the number of irreducible components of M(n) whose generic
points correspond to sheaves with 0-dimensional singularities. Then, lim supn→∞ ζn = ∞.

Proof For any integer q ≥ 1 set nq = 9q2 − 6q − 1 and for any integer i, 0 ≤ i ≤ q − 1,
set aq,i = i, bq,i = 3q − 3i − 3, cq,i = 3i + 2. Then, according to Theorem 8, the sheaf F
defined by (19) for the triple of integers (a, b, c) = (aq,i , bq,i , cq,i ) belongs to an irreducible
component Sq,i = S(aq,i , bq,i , cq,i ) of R(0; nq ,mq,i ), where mq,i = m(aq,i , bq,i , cq,i ) is
an even integer given by the second formula of Theorem 8. Now by Theorem 7, to each Sq,i

there corresponds an irreducible component T (nq ,
mq,i
2 ) of dimension 8nq − 3 + 2mq,i in

M(nq)whose generic point is a sheaf with 0-dimensional singularities. Since 0 ≤ i ≤ q−1,
we therefore obtain q distinct irreducible components ofM(nq) with this property. In other
words, in the notation of this theorem, ζnq ≥ q . Hence, lim supn→∞ ζn = ∞. ��
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3 Components of sheaves with 1-dimensional singularities

Let E be a rank 2 torsion free sheaf with 1-dimensional singularities, that is, the quotient
sheaf QE = E∨∨/E has pure dimension one. Given any coherent sheaf G on P

3, one has
Ext3(E,G) = 0 and Ext2(E,G) � Ext3(QE ,G) = 0 due to the reflexivity of E∨∨. There-
fore, torsion free sheaves E with 1-dimensional singularities have homological dimension
equal to 1; in other words, E admits a locally free resolution of the form

0 → L1 → L0 → E → 0. (22)

Lemma 10 If E is a rank 2 torsion free sheaf on P
3 with c1(E) = 0, and with 1-dimensional

singularities, then

χ(Hom(E, E)) − χ(Ext1(E, E)) =
3∑

j=0

(−1) j dim Ext j (E, E) = −8c2(E) + 4.

Proof In this case, the spectral sequence of local-to-global Ext’s converges in the third page,
and it yields

(i) Ext1(E, E) = H1(Hom(E, E)) ⊕ ker d012 ;
(ii) Ext2(E, E) = coker d012 ⊕ ker d112 ;
(iii) Ext3(E, E) = coker d112

where d012 and d112 are the spectral sequence maps

d012 : H0(Ext1(E, E)) → H2(Hom(E, E)) and (23)

d112 : H1(Ext1(E, E)) → H3(Hom(E, E)). (24)

The first equality is then an immediate consequence.
As for the last equality, the same proof of [12, Prop. 3.4] applies here, since E has

homological dimension 1.

Remark 11 We observe that the proof of the first equality does not depend on the hypothe-
ses rk(E) = 2 and c1(E) = 0, being valid for any torsion free sheaf with 1-dimensional
singularities.

Recall that a rank 2 instanton sheaf on P
3 is a rank 2 torsion free sheaf E with c1(E) = 0

such that

h0(E(−1)) = h1(E(−2)) = h2(E(−2)) = h3(E(−3)) = 0.

These are precisely the sheaves obtained as cohomology of linear monads of the form (cf.
[15])

0 → n · OP3(−1)
α−→ (2n + 2) · OP3

β−→ n · OP3(1) → 0.

The second Chern class of E is called the charge of E . An instanton bundle is simply a
locally free instanton sheaf. Let I(n) denote the moduli space of instanton bundles of charge
n; since every instanton bundle is μ-stable, I(n) can be regarded as an open subset ofM(n).
Moreover, for each n ≥ 1, I(n) is an irreducible [24,25], nonsingular [16], affine [5] variety
of dimension 8n − 3. The trivial sheaf 2 · OP3 is considered the instanton bundle of charge
0; with this in mind, I(0) consists of a single point. I(n) is known to be rational for n ≤ 3.
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For n > 0, denote by L(n) the union of those irreducible components of M(n) whose
generic points F satisfy the condition

h1(F(−2)) = h2(F(−2)) = 0.

We call L(n) the instanton stratum of M(n).
In this section, we study the sheaves fromM(n)with 1-dimensional singularities obtained

from the instanton bundles of charge n − d by elementary transformations, in the sense of
[14, Section 3], along complete intersection curves of degree d in P

3.
Let d1 ≤ d2 be positive integers, and for i = 1, 2 let Sdi be a surface of degree di in P

3.
If the scheme Cd1,d2 := Sd1 ∩ Sd2 has pure dimension 1, we call it a complete intersection
curve. The degree, the arithmetic genus and the Hilbert polynomial of the curve C = Cd1,d2
are given by the formulas

d := degC = d1d2, pa(C) = 1 + d1d2(d1 + d2 − 4)

2
,

H(n) = d1d2(2n + 4 − d1 − d2)

2
.

(25)

Let Hilbd1,d2 be an open subset of theHilbert schemeHilbH(t) consisting of reduced complete
intersection curves Cd1,d2 . This is a smooth irreducible scheme of dimension

dimHilbd1,d2 = 2

(
d1 + 3

3

)
− 4 = h0(NC/P3), if d1 = d2,

dimHilbd1,d2 =
(
d1 + 3

3

)
+

(
d2 + 3

3

)
−

(
d2 − d1 + 3

3

)
− 2

= h0(NC/P3), if d1 < d2,

(26)

where C ∈ Hilbd1,d2 . Besides, the h
1-cohomology of the sheaf NC/P3 is given by

h1(NC/P3) = 2

(
d1 − 1

3

)
+ 1, if d1 = d2,

h1(NC/P3) =
(
d1 − 1

3

)
+

(
d2 − 1

3

)
−

(
d2 − d1 − 1

3

)
, if d1 < d2,

h0(NC/P3) − h1(NC/P3) = 4d1d2.

(27)

Let H be an open dense subset of Hilbd1,d2 defined as

H = Hd1,d2 :={C ∈ Hilbd1,d2 | C is a reduced curve with

at most ordinary singularities = simple double points}. (28)

Note that H contains a dense open subset

Hs := {C ∈ H | C is a smooth irreducible curve}. (29)

Let
Z ↪→ H × P

3 (30)

be the universal family of curves over H. For any C ∈ H, denote g := pa(C) and let

P = P(n) = d1d2 · n (31)

be the Hilbert polynomial of OC ((g − 1)pt) with respect to the sheaf OP3(1).

123



Two infinite series of moduli spaces of rank 2 sheaves on P
3 1585

Consider the relative Jacobian functor J = JP : (Schemes/H)o → (Sets) defined as

J(T ) = {invertible sheaves F on Z ×H T with fiberwise Hilbert polynomial P}/∼,

where F1 ∼ F2 if there exists an invertible sheaf N on T such that F1 � F2 ⊗ p∗N , for
p : Z ×H T → T the projection. Let P be the étale sheaf associated with J. It is known
(see [1], [9, 0.2]) that P is represented by an algebraic space P, locally of finite type overH.
Furthermore, according to [9, Theorem B] there exists an étale base change

σ : H̃ → H (32)

such that the functor Ĵ = J ×H H̃ is represented by a H̃-scheme

Ĵ
π̂→ H̃

together with the universal (Poincaré) line bundle

L̂ on Ĵ ×H̃ Z̃, (33)

where Z̃ := Z ×H H̃. Consider an open subfunctor Jss of J defined as

Jss(T ) = {(Fmod ∼) ∈ J(T ) | F is fiberwise OP3(1)|C -semistable}
The functor J̃ = Jss ×H H̃ is represented by a H̃-scheme

J̃
π̃→ H̃ (34)

of finite type over H̃, which is an open subscheme of Ĵ endowed with the universal (Poincaré)
line bundle

L̃ = L̂|̃
J×H̃Z̃ , (35)

On the other hand, Jss is an open subfunctor of the moduli functor M = MP :
(Schemes/H)o → (Sets),

M(T ) = {T -flat sheaves F on Z ×H T with OP3(1)|C -semistable

fibers over T having fiberwise Hilbert polynomial P}/∼,

where bySimpson [23] (see also [13, Section 4])M is corepresented by a projectiveH-scheme

M = M
P
Z/H

π→ H, (36)

respectively, Jss is corepresented by a quasi-projective H-scheme

M
′ = M

′P
Z/H

π ′→ H (37)

which is an open subscheme of M and π ′ = π |M′ . Note that set-theoretically the schemes J̃

and M
′ are described as

J̃ ={(C, w, [L]) | C ∈ H, w ∈ σ−1(C), L is an invertible

OP3(1)|C -semistable sheaf on C with Hilbert polynomial P}, (38)

M
′ ={(C, [L]S) | C ∈ H, L is an invertible OP3(1)|C -semistable

sheaf on C with Hilbert polynomial P}, (39)

where [L]S denotes S-equivalence class of L with respect toOP3(1)|C . Under this description,
the corepresentability of Jss byM

′ implies that there exists a surjective morphism of schemes

ϕ : J̃ → M
′, (C, w, [L]) �→ (C, [L]S). (40)
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Note that, since every invertible sheaf on a smooth (hence irreducible) curve C ∈ Hs is
OP3(1)|C -stable, it follows that the functors Js = Jss ×H Hs andM×H Hs are isomorphic,
and they are represented by the scheme

Ms = M ×H Hs
πs→ Hs, (41)

where πs = π |Ms . Hence, the functor J̃s = Js ×Hs H̃s is represented by the scheme

J̃s := Ms ×Hs H̃s = M ×H H̃s
π̃s→ H̃s (42)

of finite type over H̃s , which is an open subscheme of J̃. Note that, by construction, πs is a
fibration

πs : Ms → Hs, π−1(C) = Picg−1(C), C ∈ Hs, (43)

where Picg−1(C) = {[L] ∈ Pic(C) | deg L = g − 1}. This implies that Ms is smooth and
irreducible, since Hs is clearly smooth and irreducible. In addition,

π̃s : J̃s → H̃s (44)

is also a fibration with fiber Picg−1(C) which is smooth since H̃s is smooth as an étale cover
of Hs .

Now consider the closure
M

0 := Ms (45)

of the scheme Ms in M. In the next section (see the proof of Lemma 20 (iv)), we will make
use of the following lemma.

Lemma 12 M
′ ⊂ M

0.

Proof It is known (see, e.g., [9, Section 0.2], [18, Fact 4.4]) that the algebraic space P

representing the functor P is formally smooth overH. This implies that the scheme Ĵ, hence
also the schemes J̃ and J̃s , is formally smooth over H̃.

Take a point x = (C, [L]S) ∈ M
′. By definition, L is an invertible sheaf on C . We have to

show that x ∈ M
0. For this, let x̃ ∈ J̃ be any point in the fiber ϕ−1(x) where ϕ is defined in

(40) and let w = π̃(x̃). Refining the étale base change σ , we may assume H̃ = �Ũi , where
each Ũi = σ−1(Ui ) is irreducible and ∪Ui is an open cover of H. The point w ∈ H̃ lies in
some Ũi , and let X be any irreducible component of π̃−1(Ui ) containing x̃ . Since Hs is an
irreducible dense open subset of H, it follows that Uis = Ui ∩ Hs is a dense open subset of
Ui . Hence, Ũis = σ−1(Uis) is a dense open subset.

Next, as π̃ : J̃ → H̃ is formally smooth, π̃ |X : X → Ũi is dominant. Hence, X ′ =
X ∩ π̃−1(Ũis) is dense open in both X and π̃−1(Ũis). Thus, ϕ(X ′) is dense in ϕ(X) and, by
construction [see (42)–(44)], ϕ(X ′) lies in Ms and contains a nonempty open subset of Ms .
Since Ms is irreducible, M

0 = Ms = ϕ(X ′) = ϕ(X), and, by construction, x ∈ ϕ(X). ��
Note that, since J̃ is formally smooth over H̃, it follows that J̃s is dense and open in J̃;

hence, (44) implies that

dim J̃ = dim J̃s = 1 + d1d2(d1 + d2 − 4)

2
+ dimH, (46)

where dimH is given by (26).
Take any curve C ∈ Hs . Then, the set UC := {[L] ∈ Picg−1(C) | h0(L) = h1(L) = 0}

is dense and open in Picg−1(C) since it is the complement of the divisor � = im(a), where
a : Sg−1C → Picg−1(C), D �→ OC (D) is the Abel–Jacobi map. Therefore, denoting
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J := {(C, [L]) ∈ Ms | h0(L) = h1(L) = 0},
J̃0 := {(C, w, [L]) ∈ J̃s | h0(L) = h1(L) = 0} = J ×Hs H̃s,

we obtain that J is a nonempty and, by semicontinuity, open subset of Ms , which is dense
and smooth as Ms is smooth and irreducible. Similarly, J̃0 is smooth, dense and open in J̃s .
Note also that by (35), J̃0 ×H̃ Z̃ carries a universal (Poincaré) line bundle, which is

L̃0 = L̃|̃
J0×H̃Z̃ . (47)

Next, for c ≥ 0 and any point ([F],C, [L]) ∈ I(c) × J, set

PHom(F,C, L)e := {kϕ ∈ P(Hom(F, L(2))) | ϕ : F → L(2) is an epimorphism}.
Recall that I(0) = {pt}.
Lemma 13 For each c ≥ 0, there is a smooth, dense and open subset (I(c)×J)0e of I(c)×J

such that, for any ([F],C, [L]) ∈ (I(c) × J)0e , one has:

(i) hi (L) = hi (L−1 ⊗ ωC ) = 0, i = 0, 1;
(ii) h1(F ⊗ L(2)) = h1(F ⊗ (L−1 ⊗ ωC )(2)) = 0;
(iii) PHom(F,C, L)e is a dense open subset of P(Hom(F, L(2)));
(iv)

dim PHom(F,C, L)e = 4d1d2 − 1. (48)

(v) There is a smooth, dense and open subset (I(c)×J)e of I(c)×J containing (I(c)×J)0e
and such that, for any ([F],C, [L]) ∈ (I(c) × J)e, the statements (iii) and (iv) and the
equalities h0(L) = h1(L) = h1(F ⊗ L(2)) = 0 from (i) and (ii) above are true.

Proof Take a point (C, [L]) ∈ J0 ∩ Js , so that

hi (L) = hi (L−1 ⊗ ωC ) = 0, i = 0, 1. (49)

We first consider the case c = 0, so that F ⊗ L(2) � 2 · L(2) and Hom(F, L(2)) �
H0(2 · L(2)). Items (ii), (iii) and (v) follow immediately. As for item (iv), just note that
χ(L(k)) = d1d2·k (sinceχ(L) = 0 and degC = d1d2); thus, h0(L(2)) = χ(L(2)) = 2d1d2.

Next, let c > 0; take a ,t Hooft bundle [F] ∈ I(c), i.e., a bundle fitting in an exact triple

0 → OP3(−1) → F → IY (1) → 0 ,

where Y is a union of c + 1 disjoint lines in P
3. Choose Y in such a way that Y ∩ C = ∅.

Then, tensoring the above triple with L(2), we obtain exact triples

0 → L(1) → F ⊗ L(2) → L(3) → 0,

0 → (L−1 ⊗ ωC )(1) → F ⊗ (L−1 ⊗ ωC )(2) → (L−1 ⊗ ωC )(3) → 0.
(50)

The equalities (49) imply

h1(L(1)) = h1(L(3)) = 0, h1((L−1 ⊗ ωC )(1)) = h1((L−1 ⊗ ωC )(3)) = 0, (51)

so that (50) yields

h1(F ⊗ L(2)) = 0, h1(F ⊗ (L−1 ⊗ ωC )(2)) = 0

for the above chosen point ([F],C, [L]) ∈ I(c)× J. Since, by semicontinuity, the vanishing
of h1(F⊗L(2)) and h1(F⊗(L−1⊗ωC )(2)) is an open condition on ([F],C, [L]) ∈ I(c)×J,
it follows that the set
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(I(c) × J)′ = {([F],C, [L]) ∈ I(c) × J | hi (L) = hi (L−1 ⊗ ωC ) = 0,

h1(F ⊗ L(2)) = h1(F ⊗ (L−1 ⊗ ωC )(2)) = 0, i = 0, 1, } (52)

is a nonempty (hence dense) open subset of I(c)× J. Next, from (49) and (50) we obtain the
exact sequence

0 → H0(L(1)) → H0(F ⊗ L(2))
ε→ H0(L(3)) → 0. (53)

Since the sheaves OP3(1) and OP3(3) are very ample, it follows from (49) that the linear
series |L(1)| and |L(3)| on C have no fixed points. This implies that there exist such sections
si ∈ H0(L(i)), i = 1, 3, that

(s1)0 ∩ (s3)0 = ∅.

Take any section s′ ∈ ε−1(s3), where ε is the epimorphism in (53). Then, the last equality
implies that the section s := s′ + s1 ∈ H0(F ⊗ L(2)) has no zeroes. Hence, its transpose
ϕ = �s : F � F∨ → L(2) is an epimorphism, i.e.,

PHom(F,C, L)e �= ∅. (54)

Since PHom(F,C, L)e is an open subset of the irreducible space P(Hom(F, L(2))), it is
dense in P(Hom(F, L(2))). Moreover, (54) is an open condition on the point ([F],C, [L])
in (I(c)×J)′. Thus in view of (52), there exists a dense open subset (I(c)×J)e of (I(c)×J)′
(hence of I(c)×J) for which the statements (i)–(iii) of Lemma hold. Besides, the smoothness
of (I(c) × J)e follows from that of I(c) (see [16]) and of J.

Next, since F � F∨, we have

dim PHom(F,C, L)e = dim(Hom(F, L(2))) − 1 = h0(F ⊗ L(2)) − 1

Note that

h0(F ⊗ L(2)) = h0(L(1)) + h0(L(3)) = χ(L(1)) + χ(L(3)) = 4d1d2,

where the first equality follows from the exact sequence (51), while the second equality
follows from (53). Putting the last two equations together, we obtain (48).

At last, the statement (v) is clear by semicontinuity. ��
In particular, note that (I(0) × J)e = J.
Next, using Lemma 13 consider, for each c ≥ 1 and d2 ≥ d1 ≥ 1, the set

W̃ (d1, d2, c) := {([F],C, [L],kϕ) | ([F],C, [L]) ∈ (I(c) × J)e, kϕ ∈ PHom(F,C, L)e}
(55)

and the surjective projection

π : W̃ (d1, d2, c) → (I(c) × J)e, ([F],C, [L],kϕ) �→ ([F],C, [L]) (56)

with fiber
π−1([F],C, [L]) = PHom(F,C, L)e

open
↪→ P(Hom(F, L(2))). (57)

When c = 0, one must also quotient out by the action of GL(2) on the trivial sheaf
2·OP3(2) in order to obtain a family of isomorphismclasses of torsion free sheaves. Therefore,
we define:

W̃ (d1, d2, 0) := {(C, [L],kϕ) | (C, [L]) ∈ J
0, kϕ ∈ PHom(2 · OP3 ,C, L)e/PGL(2)}.

(58)
Also denote

W̃ (d1, d2, c)
0 := π−1((I(c) × J)0e). (59)
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Remark 14 Note that W̃ (d1, d2, c) with c ≥ 1 is a dense open subset of a Severi–Brauer
variety fibered over B := (I(c) × J)e with fibers, given by P

4d1d2−1 via the projection π .
Indeed, let Ṽ := B ×H H̃ → B be an étale covering induced by (32). According to

[13, Section 4], over I(c) there exists (locally in the étale topology) a universal rank-2 vector
bundle. Thismeans that there exists an open étale covering� : W → I(c) and a rank 2 vector
bundle E over P

3 × W such that, for any w ∈ W , E|P3×w � Et , where t = �(w) ∈ I(c)
and Et denotes the instanton bundle whose isomorphism class is represented by t . Let Ũ :=
W ×I(c) Ṽ, and let �̃ := Ũ×H̃ Z̃; let ι : �̃ ↪→ Ũ×P

3 be the lift into Ũ×P
3 of the universal

family of curvesZ. Let also EŨ be the lift into Ũ×P
3 of the sheaf E and let L be the lift onto

�̃ of the sheaf L̃0 defined in (47). We thus obtain a vector bundle τ := Hom�̃/Ũ(EŨ, ι∗L(2))

over Ũ, the fiber of which over a point u ∈ Ũ lying over a point ([F],C, [L]) ∈ B is by
construction isomorphic to Hom(F, L(2)). Hence, by (48) the associated projective bundle
Pτ → Ũ is a P

4d1d2−1-fibration. Applying to it the argument from the proof of Proposition
6.4 from [14], we obtain that this fibration descends to a Severi–Brauer variety pB : PB → B
with fibers P

4d1d2−1 over B such that, by the above, for any point ([F],C, [L]) ∈ B one has

p−1
B ([F],C, [L]) = P(Hom(F, L(2))). (60)

This, together with (57), shows that the variety PB contains W̃ (d1, d2, c) as a dense open
subset.

Finally, for the case c = 0, note that although the fibers of the projection π :
W̃ (d1, d2, 0) → J

0 are not open subsets of a projective space, they are still smooth.

From the previous remark and the smoothness of (I(c) × J)e (see Lemma 13), we obtain
the following statement.

Theorem 15 For each c ≥ 0 and d2 ≥ d1 ≥ 1, W̃ (d1, d2, c) has a natural structure of a
smooth integral scheme of dimension

dim W̃ (d1, d2, c) = 8c − 3 + 1

2
d1d2(d1 + d2 + 4) + dimH (61)

where dimH is given by (26), and, for c ≥ 1, the map

π : W̃ (d1, d2, c) → (I(c) × J)e

defined in (56) is a morphism. Respectively, W̃ (d1, d2, c)0 is a dense open subscheme of
W̃ (d1, d2, c).

Proof It is enough to prove (61). For c ≥ 1, since dim I(c) = 8c−3, (61) follows from (46)
and (48). For c = 0, one easily sees from (58) and (46) that

dim W̃ (d1, d2, 0) = dim J + 4d1d2 − 4 = 1

2
d1d2(d1 + d2 + 4) + dimH − 3,

as desired.

Now for any point w = ([F],C, [L],kϕ) ∈ W̃ (d1, d2, c) set

E(w) := ker(F
ϕ
� L(2)).

By definition, we have an exact triple

0 → E(w) → F
ϕ→ L(2) → 0. (62)
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One easily checks, using the irreducibility of C , that E(w) is a stable sheaf (see [14,
Corollary 4.2 and Lemma 4.3]) and, in fact, [E(w)] ∈ M(c+d1d2). Moreover, Lemma 13(i)
and the triple (62) twisted by OP3(−2) yield

[E(w)] ∈ L(c + d1d2). (63)

Given a point (C, [L]) ∈ J, we call the invertible OC -sheaf L a theta -characteristic on
C if

L⊗2 � ωC .

Consider a subset of J defined as

�J := {(C, [L]) ∈ J | L is a theta-characteristic on C}. (64)

It is a locally closed subset of J. (Indeed, �J is a fixed point set of an involution J →
J, (C, [L]) �→ (C, [ωC ⊗ L−1]).)

Denote

�W (d1, d2, c) := π−1((I(c) × J)e ∩ (I(c) × �J)),

W (d1, d2, c) := W̃ (d1, d2, c)
0 \ �W (d1, d2, c),

where �J is the closure of �J in J. By definition, W (d1, d2, c) is an open subset of
W̃ (d1, d2, c). Since for pa(C) > 0 the set �J is clearly a proper closed subset of J, it
follows that for pa(C) > 0 the set W (d1, d2, c) is a dense open subset of W̃ (d1, d2, c).

Proposition 16 For an arbitrary closed point w = ([F],C, [L],kϕ) ∈ W (d1, d2, c) with
c ≥ 0, and (d1, d2) �= (1, 1), (d1, d2) �= (1, 2), the sheaf E = E(w) satisfies the relations:

dim Ext2(E, E) = h1(NC/P3) + pa(C) − 1, (65)

dim Ext1(E, E) = h1(NC/P3) + pa(C) − 1 + 8(c + d1d2) − 3, (66)

where pa(C) and h1(NC/P3) are given by (25) and (27), respectively.

Proof The conditions (d1, d2) �= (1, 1), (d1, d2) �= (1, 2) imply that pa(C) > 0, so that
W (d1, d2, c) is nonempty. Apply the functor Hom(L(2),−) to the triple (62):

· · · → Ext1(L(2), L(2))
δ→ Ext2(L(2), E)

→ Ext2(L(2), F) → Ext2(L(2), L(2)) → Ext3(L(2), E)

→ Ext3(L(2), F) → · · ·
(67)

Next, apply the functor Hom(L(2),−) to (62). Using the vanishing of the sheaves
Hom(L(2), F), Ext1(L(2), F) and Exti (F, L(−2)), i = 1, 2, (note that dim L(2) = 1 and
F is locally free on P

3), we obtain an isomorphism ∂1 : Hom(L(2), L(2))
�→ Ext1(L(2), E)

and an exact sequence

0 → Ext1(L(2), L(2))
∂2→ Ext2(L(2), E) → Ext2(L(2), F)

ε→ Ext2(L(2), L(2)) (68)

Respectively, applying the functorHom(·, L(−2)) to the triple (62) yields an isomorphism

ψ : Ext1(E, L(−2)) � Ext1(L(2), L(−2)). (69)
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The isomorphisms h1(∂) : H1(Hom(L(2), L(2)))
�→ H1(Ext1(L(2), E)), the

homomorphism δ in (67) and the monomorphism h0(∂2) : H0(Ext1(L(2), L(2))) →
H0(Ext2(L(2), E)) induced by (68) fit in the commutative diagram

0 0

H1(Hom(L(2), L(2)))
h1(∂1)

� H1(Ext1(L(2), E))

j

Ext1(L(2), L(2))
δ

Ext2(L(2), E)

H0(Ext1(L(2), L(2)))
h0(∂2)

H0(Ext2(L(2), E))

0 0,

(70)

in which the vertical exact triples come from the spectral sequences

H p(Extq(L(2), L(2))) ⇒ Ext•(L(2), L(2)) and

H p(Extq(L(2), E)) ⇒ Ext•((L(2), E),

respectively. Now restrict the triple (62) onto the curve C . Using the relation det F ⊗
OC � OC , we obtain an exact triple 0 → L−1(−2) → F ⊗ OC → L(2) → 0.
Tensoring this triple with the invertible OC -sheaf Ext2(L(2),OC ) and using the isomor-
phisms Ext2(L(2),OC ) ⊗ L−1(−2) � Ext2(L(2), L−1(−2)), Ext2(L(2),OC ) ⊗ F �
Ext2(L(2), F), Ext2(L(2),OC ) ⊗ L(2) � Ext2(L(2), L(2)), we obtain the exact triple

0 → Ext2(L(2), L−1(−2)) → Ext2(L(2), F)
ε→ Ext2(L(2), L(2)) → 0.

This triple together with (68) yields an exact triple

0 → Ext1(L(2), L(2))
∂2→ Ext2(L(2), E) → Ext2(L(2), L−1(−2)) → 0. (71)

Note that, since L is not a theta-characteristic on C , it follows that the sheaf

Ext2(L(2), L−1(−2)) � Ext2(OC ,OC ) ⊗ L−2(−4) �
det NC/P3 ⊗ ωP3 ⊗ L−2 � ωC ⊗ L−2

(72)

is an invertibleOC -sheaf of degree 0, nonisomorphic toOC ; hence, it has no sections. Thus,
the above triple gives an isomorphism

H0(Ext1(L(2), L(2)))
h0(∂2)� H0(Ext2(L(2), E)). (73)

This is the lower horizontal isomorphism in the diagram (70) from which it follows that the
homomorphism δ is an isomorphism:

δ : Ext1(L(2), L(2))
�→ Ext2(L(2), E). (74)
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Next, from Lemma 13(i) and the triple (50) twisted by OP3(−4) it follows easily that
H0(F ⊗ L(−2)) = 0, and the Serre–Grothendieck duality together with the isomorphism
F � F∨ implies

Ext3(L(2), F) � Hom(F, L(−2))∨ = 0. (75)

Similarly, since dimC = 1, it follows that Ext1(L(2), F(−4)) � H2(F ⊗ L(−2)) = 0.
Thus, the exact sequence

0 → Hom(F, F(−4)) → Hom(E, F(−4)) → Ext1(L(2), F(−4))

togetherwith the equalityHom(F, F(−4)) = 0 (note that F is stable) yieldsHom(E, F(−4))
= 0, and again by Serre–Grothendieck duality we obtain

Ext3(F, E) = 0. (76)

Next, twisting the triple (62) with F∨ � F and passing to cohomology, we obtain an
exact sequence H1(F ⊗ L(2)) → H2(F∨ ⊗ E) → H2(F∨ ⊗ F). Using the vanishing of
H2(F∨ ⊗ F) (see [16]) and of H1(F ⊗ L(2)) (Lemma 13(ii)), we get since F is locally free:

Ext2(F, E) � H2(F∨ ⊗ E) = 0. (77)

Now apply the functor Hom(−, E) to the triple (62) and use (76) and (77) to obtain the
isomorphism

Ext2(E, E) � Ext3(L(2), E). (78)

The sequence (67) together with (74), (75) and (78) yields an exact sequence

0 → Ext2(L(2), F) → Ext2(L(2), L(2)) → Ext2(E, E) → 0. (79)

Next, since F � F∨ is locally free, the Serre–Grothendieck duality onP
3 and onC yields:

Ext2(L(2), F) � H1(F∨ ⊗ L(−2))∨ � H0(F ⊗ (L−1 ⊗ ωC )(2))∨. (80)

On the other hand, Riemann–Roch for the sheaf F⊗(L−1⊗ωC )(2) and item (ii) of Lemma 13
imply h0(F ⊗ (L−1 ⊗ ωC )(2))∨ = 4d1d2, hence (78) and (80) yield

dim Ext2(E, E) = dim Ext2(L , L) − 4d1d2. (81)

Next, using the fact that H2(Ext2(L , L)) = 0 since dim Ext2(L , L) = 1, we obtain that
the spectral sequence H p(Extq(L , L)) ⇒ Ext•(L , L) yields an exact triple

0 → H1(NC/P3) → Ext2(L , L) → H0(Ext2(L , L)) → 0.

Note that, in view of the isomorphisms

Ext2(L , L) � Ext2(OC ,OC ) � det NC/P3 � OC (d1 + d2),

and of Serre duality h1(OC (d1 + d2)) = h0(OC (−4)) = 0, we obtain by Riemann–Roch

h0(Ext2(L , L)) = h0(OC (d1 + d2)) = χ(OC (d1 + d2)) = d1d2(d1 + d2) + 1 − pa(C).

This, together with the above triple, yields

dim Ext2(L , L) = h1(NC/P3) + d1d2(d1 + d2) + 1 − pa(C).

Now (65) follows by substituting the last equality in (81) and using (25). The equality
(66) follows from here in view of the relation

dim Ext1(E, E) − dim Ext2(E, E) = 8c2(E) − 3 = 8(c + d1d2) − 3

(see Lemma 10 above). ��
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Consider the map

f : W̃ (d1, d2, c) → L(c + d1d2), w �→ [E(w)]. (82)

Using Remark 14 and Theorem 15, one easily sees that f is a morphism.

Theorem 17 For any point w ∈ W (d1, d2, c) with c ≥ 0, and (d1, d2) �= (1, 1), (d1, d2) �=
(1, 2), one has

dim Ext1(E(w), E(w)) = dimW (d1, d2, c). (83)

In addition, the morphism f |W (d1,d2,c) is an open embedding. Thus,

C(d1, d2, c) := f (W (d1, d2, c)) (84)

is a dense smooth open subset of an irreducible component

C(d1, d2, c) = f (W̃ (d1, d2, c))

of L(c + d1d2), hence also of M(d1d2 + c).

Proof Equality (83) follows by comparing formulas (61) and (66) and using (25)–(27).
As for the second claim, note that f |W (d1,d2,c) is an injectivemorphism by construction. Its

Kodaira–Spencer map d f |w : TwW (d1, d2, c) → T f (w)M(d1d2 + c) = Ext1(E(w), E(w))

is an isomorphism by (83) for any w ∈ W (d1, d2, c). The assertion follows. ��
Remark 18 The cases (d1, d2) = (1, 1), and (d1, d2) = (1, 2), in which C is either a line
or a conic, respectively, were studied in [14], where elementary transformations of instanton
bundles by smooth rational curves of arbitrary degree are considered. In fact, for k = 1, 2,
C(1, k, c) coincides with the variety D(k, c + k) introduced in [14, Section 6]. It turns out
that D(k, c + k) are irreducible projective varieties of dimension 8(c + k) − 4 lying in the
closure I(c + k) of I(c + k) within M(c + k). In particular, for k = 1, 2, C(1, k, c) does
not define a new irreducible component of M(c + k), differently from the conclusion of
Theorem 17.

We conclude this section with a result in the same spirit of [7, Proposition 3.6] and
Theorem 9 above, showing that the number of irreducible components of M(n) whose
generic points correspond to sheaves with 1-dimensional singularities becomes arbitrarily
large as n grows.

Theorem 19 Let ηn denote the number of irreducible components of M(n) whose generic
points correspond to sheaves with 1-dimensional singularities. Then, limn→∞ ηn = ∞.

Proof Indeed, the number of ways in which a given positive integer n can be represented as a
sum n = c+d1d2, where c, d1 and d2 are positive integers and (d1, d2) �= (1, 1), (d1, d2) �=
(1, 2), is unbounded as n grows. Thus, the result follows from Theorem 17.

4 Nonemptiness of the intersection C(d1, d2, c) ∩ I(n)

In this section, we will perform an inductive procedure showing that each irreducible com-
ponent C(d1, d2, c) of M(d1d2 + c) (with c ≥ 0, and (d1, d2) �= (1, 1), (d1, d2) �= (1, 2)),
constructed in Theorem 17, has a nonempty intersection with the closure of the instanton
component I(d1d2 + c).
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We startwith a construction of a reduced curveC ∈ H = Hd1,d2 completely decomposable
into a union of projective lines and satisfying some additional properties. Namely, we prove
the following lemma.

Lemma 20 For any 1 ≤ d1 ≤ d2, there exists a curve C ∈ H which is completely decom-
posable into a union of d1d2 projective lines

C =
d1d2⋃

j=1

� j (85)

such that

(i) The OC-sheaf

L0 =
d1d2⊕

j=1

O� j (−1) (86)

is OP3(1)|C-semistable.
(ii) There exists a curve Y with a marked point 0 ∈ Y , a morphism f : Y → H and a

sheaf L on Y ×H Z, flat over Y and such that, for Ct := pr−1( f (t)), t ∈ Y , where
pr : Z → H is the projection, one has

L|C0 � L0, (87)

where C0 is the curve C from (85), and

L|Ct is locally free, t ∈ Y ∗ := Y \ {0}. (88)

Proof Let xi = (P2
i1, . . . , P

2
idi

) ∈ (P3∨)×di , i = 1, 2, be two collections of hyperplanes

in P
3, and set � j1 j2 := P

2
1 j1

∩ P
2
2 j2

, 1 ≤ j1 ≤ d1, 1 ≤ j2 ≤ d2. It is clear that, for a

general choice of the points xi ∈ (P3∨)×di , i = 1, 2, the curve C = ∪d1,d2
j1, j2=1� j1 j2 satisfies

the statement of Lemma. We re-enumerate the lines � j1 j2 as the lines � j in (85).
Next, the sheaf L0 in (86) is polystable as a direct sum of stableOP3(1)-sheavesO� j (−1).

Hence, it is OP3(1)|C -semistable.
For the second item, set C1 := �1 and, for 2 ≤ k ≤ d1d2 − 1, consider a sub-curve

Ck := ∪k
j=1� j of C and a subscheme Dk := �k ∩ Ck−1 of �k . Since C ∈ H, it follows that

Dk is a reduced divisor on Ck ; let, say, Dk = ak1 + · · · + akmk . Consider a sequence of
OCk -sheaves Lk , where L1 := O�1(−1) and for 2 ≤ k ≤ d1d2 − 1 the sheaf Lk is defined
inductively as an extension

0 → Lk−1 → Lk → O�k (−1) → 0. (89)

Each such extension is given by an element of the group Ext1(O�k (−1), Lk−1), and an easy
calculation (cf. [9, proof of Lemma 4]) shows that

Ext1(O�k (−1), Lk−1) = H0(ODk ) =
mk⊕

i=1

kaki � A
mk . (90)

Furthermore, for any point τk ∈ A
mk∗ := {(t1, . . . , tmk ) ∈ A

mk | t j �= 0, j = 1, . . . ,mk},
the sheaf Lk is locally free at the points of Dk . Hence, the last extension Ld1d2 = Ld1d2(t) in
the sequence (89) defined by the element t = (τ1, . . . , τd1d2) ∈ A∗ := A

m1∗ × · · ·×A
md1d2∗

is a locally free OC -sheaf. In addition, from (89) it follows immediately that, for this point
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t, the sequence of sheaves 0 ⊂ L1 ⊂ L2 ⊂ · · · ⊂ Ld1d2(t) is a Jordan–Hölder filtration of
Ld1d2(t) with the associated graded sheaf L0 in (86). Thus,

[L0]S = [Ld1d2(t)]S .
Hence, since Ld1d2(t) is a locally freeOC -sheaf, it follows that, in the notation of Lemma 12,

[L0]S ∈ M
0. (91)

Now, recall the construction of the moduli space M containing M
0 as a closed subscheme

(see, e. g., [13, Thm 4.3.7]). Namely, M is obtained as a GIT-quotient p : R → R//GL(N ) =
M for an appropriately chosen open subset R of the Quot-scheme QuotZ/H(V, P), where
P is the Hilbert polynomial defined in (31), V = OZ/H(−m)⊕N , N = P(m) and m large
enough. Now, for the point s = [L0]S ∈ M

0, there exists a point [ρ : Vs � L0] ∈ R
such that p([ρ]) = s. Consider the closed subscheme R0 = p−1(M0) of R. Since R0 is
quasi-projective over M

0 and M
s is open dense in M

0, it follows that there exists a curve Y
in R0 passing through the point 0 = [ρ] and such that

Y ∗ = Y \ {0} ⊂ p−1(Ms).

By the definition ofM
s , the last inclusionmeans that the universal quotient sheaf on R0×HZ

being restricted onto ZY = Y ×H Z becomes a sheaf L such that, for t ∈ Y ∗, the sheaf L|Ct

is locally free, where Ct = pr−1( f (t)), and f = p|Y : Y → H and pr : Z → H is the
projection. Besides, by the above, L|C0 � L0. ��
Lemma 21 For any c ≥ 0, 1 ≤ d1 ≤ d2, and any [F] ∈ I(c), there exists a curve C ∈ H
satisfying the properties of Lemma 20, and, in addition, the following ones:

F |
P
1
i

� 2O
P
1
i
, 1 ≤ i ≤ d1d2 ; (92)

([F],Ct , [L|Ct ]) ∈ (I(c) × J)e, t ∈ Y ∗. (93)

Proof Both (92) and (93) are immediate when c = 0.
Since every instanton bundle of charge c > 0 is stable, there is, by the Grauert–Müllich

Theorem (see [2,13]), a divisor DF in the Grassmannian Gr = Gr(1, P
3) such that, for any

lineP
1 ∈ Gr \DF , F |

P
1
i

� 2O
P
1
i
. Thus, for a general choice of the points xi ∈ (P3∨)×di , i =

1, 2, the condition (92) above holds.
From (92) and (86), it follows immediately that

([F],C0, [L := L|C0 ]) satisfies the statements (iii) and (iv) of Lemma 13. (94)

Since L is flat over Y , the rest is clear by semicontinuity (after possibly shrinking the curve
Y ). ��

In the notation of Lemma 20, let pY : ZY = Z ×H Z → Y and ιY : Z ↪→ Y × P
3

be the natural projections; let F := F � OY , ιY∗L(2) := ιY∗L ⊗ OP3(2) � OY , and
τY := HomZY /Y (F, ιY∗L(2)). In addition, consider the projections pY : PτY → Y , and
pY : Pτ ∗

Y := PτY ×Y Y ∗ → Y ∗; by construction, pY is a projective bundle over Y such that,

p−1
Y (t) = P(Hom(F, Lt (2))), where Lt := L|Ct , t ∈ Y. (95)

By Lemma 21, one has a morphism

ψ : Y ∗ → B = (I(c) × J)e, t �→ ([F],Ct , [Lt ]),
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and from (60) and (95), it follows that

Pτ ∗
Y = Pτ ×B Y ∗. (96)

Moreover, using Lemma 13, (iii)–(v), consider the open dense subset W̃Y of PτY defined as

W̃Y := {([F],Ct , [Lt ],kϕ) | t ∈ Y, kϕ ∈ PHom(F,Ct , Lt )e}. (97)

Comparing (97) with (55) and using (96), we obtain the relation

W̃Y ∗ := W̃Y ×Y Y ∗ = W̃ (d1, d2, c) ×B Y ∗ pW→ W̃ (d1, d2, c). (98)

On the other hand, consider the morphism

fY : W̃Y → L(d1d2 + c) : w = ([F],Ct , [Lt ],kϕ) �→ [E(w) = ker(ϕ : F � Lt (2))].
(99)

From (82) and (98), it follows that fY |W̃Y∗ coincides with the composition

W̃Y ∗
pW→ W̃ (d1, d2, c)

f→ L(d1d2 + c).

In view of Theorem 17, this implies that fY (W̃Y ∗) ⊂ C(d1, d2, c). Since C(d1, d2, c) is
projective, this implies that also

fY (W̃Y ) ⊂ C(d1, d2, c).

In particular, since by (97)

PHom(F,C0, L0)e = (pY |W̃Y
)−1(0),

where C0 is the curve C defined in (85) and C(d1, d2, c) is a projective scheme, we obtain
the following result.

Theorem 22 In the conditions and notation of Lemma 20 and of Lemma 21, there is a
morphism

f0 = fY |PHom(F,C0,L0)e : PHom(F,C0, L0)e → C(d1, d2, c) :
([F],C0, [L0],kϕ) �→ [ker(ϕ : F � L0(2))].

(100)

Now, take a point

w := ([F],C0, [L0],kϕ) ∈ PHom(F,C0, L0)e

and, as above, denote

E(w) := ker(ϕ : F � L0).

Next, using (86), set

L(k) =
k⊕

i=1

O�i (−1), 1 ≤ k ≤ d1d2,

so that
L(d1d2) = L0 (101)

and we have splitting exact triples

0 → O�k (−1) → L(k)
ε(k)→ L(k−1) → 0, 2 ≤ k ≤ d1d2 (102)
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where each ε(k) is the projection onto a direct summand. Set ϕ(d1d2) := ϕ and, using (101),
define the epimorphisms ϕ(k) as the composition

ϕ(k) : F
ϕ→ L(d1d2)(2)

εd1d2→ L(d1d2−1)(2)
εd1d2−1→ · · · ε(k)→ L(k)(2), 1 ≤ k ≤ d1d2 − 1.

Set E(k) := ker ϕ(k), so that, by the above,

E(d1d2) = E(w) (103)

and, for 2 ≤ k ≤ d1d2, there is a commutative diagram

0

0 O�k (1)

0 E(k) F
ϕ(k)

L(k)(2)

ε(k)

0

0 E(k−1)

θ

F
ϕ(k−1)

L(k−1)(2) 0

O�k (1) 0

0,

(104)

in which the right vertical triple is the triple (102) twisted by the sheaf OP3(2).
We are going to show, by induction on k, that

[E(k)] ∈ I(c + k), 1 ≤ k ≤ d1d2. (105)

First, in the case k = 1 we have the exact triple

0 → E(1) → F → L(1)(2) → 0 (106)

which by Jardim et al. [14, Proposition 7.2] yields (105) for k = 1.
Next, given k ≥ 2, assume that (105) is true for k − 1, i. e., in the diagram (104),

[E(k−1)] ∈ I(c + k − 1).

This implies that there exists a curve T with a marked point 0 ∈ T and a sheaf E′ on P
3 × T ,

flat over T and such that
E′|P3×{0} � E(k−1) (107)

and, for t ∈ T ∗ = T �{0}, the sheaf E ′
t := E′|P3×{t} is an instanton bundle from I(c+k−1):

[E ′
t ] ∈ I(c + k − 1), t ∈ T ∗. (108)

Now one easily sees that, after possibly shrinking the curve T , the epimorphism θ in the
diagram (104) extends to an epimorphism � : E′ � O�k (1) � OT , and we denote E =
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ker�. By construction, the OP3×T -sheaf E is flat over T , so that, restricting the exact triple
0 → E → E′ → O�k (1) � OT → 0 onto P

3 × {t}, t ∈ T, we obtain an exact triple

0 → Et → E ′
t → O�k (1) → 0, (109)

where Et = E|P3×{t}. By Jardim et al. [14, Proposition 7.2], this triple together with (108)
implies that

[Et ] ∈ I(c + k), t ∈ T ∗. (110)

On the other hand, by the construction, the triple (109) for t = 0 coincides with the left
vertical triple in (104), so that

E0 � E(k). (111)

Besides, in the case c > 0, since F is μ-stable, the upper horizontal triple in diagram (104)
easily shows that the sheaf E0 is (μ-)stable as well. When c = 0 and F = 2 ·OP3 in diagram
(104), we again proceed by induction on k. For k = 1, triple (106) and [14, Lemma 4.3]
implies that E(1) is stable. Now assume that E(k−1) is stable; the first column of diagram
(104) immediately implies that E(k) is also stable, since any sheaf that would destabilize E(k)

would also destabilize E(k−1).
Thus, in view of (110) and (111) we obtain a modular morphism

f : T → M(c + k), t �→ [Et ].
Since I(c + k) is closed in M(c + k), it follows that [E(k)] = f (0) ∈ I(c + k), i.e., we
obtain (105).

In particular, (103) and (105) yield

[E(w)] ∈ I(c + d1d2).

Since by construction [E(w)] ∈ im f0, it follows from Theorem 22 that [E(w)] ∈
I(c + d1d2) ∩ C(d1, d2, c).

Finally, note that each E(k), and hence E0, is actually an instanton sheaf. Indeed, since F
is a locally free instanton sheaf, one easily checks from triple (106) that E(1) is an instanton
sheaf. Assuming that E(k−1) is an instanton sheaf, one can use the first column of diagram
(104) to check that so is E(k).

Summing it all up, we obtain the following theorem.

Theorem 23 For any c ≥ 0 and 1 ≤ d1 ≤ d2,

I(c + d1d2) ∩ C(d1, d2, c) �= ∅.

In addition, the above intersection contains instanton sheaves.

5 Intersection of C(d1, d2, c) with the Ein components

For any three integers c > b ≥ a ≥ 0, consider the monad

0 → OP3(−c)
α−→ OP3(−b) ⊕ OP3(−a) ⊕ OP3(a) ⊕ OP3(b)

β−→ OP3(c) → 0, (112)

with morphisms given by

α =

⎛

⎜⎜⎝

σ4
σ3

−σ2
−σ1

⎞

⎟⎟⎠ and β = (
σ1 σ2 σ3 σ4

)
(113)
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where

σ1 ∈ H0(OP3(c + b)), σ2 ∈ H0(OP3(c + a))

σ3 ∈ H0(OP3(c − a)), σ4 ∈ H0(OP3(c − b))

do not vanish simultaneously. Ein showed in [7, Proposition 1.2(a)] that the cohomology
of such a monad is stable if and only if c > a + b; in this case, there exists an irreducible
componentN (a, b, c) of B(c2 − b2 − a2) whose generic point corresponds to a locally free
sheaf given as cohomology of (112). Such components are called Ein components.

Let N (a, b, c) denote the closure of N (a, b, c) within M(c2 − b2 − a2). The main goal
of this section is to establish the following result.

Proposition 24 The componentsN (0, b, c) and C(c − b, c + b, 0) intersect withinM(c2−
b2) along a subvariety of codimension 1 + (c2 − b2)(c − 2) in C(c − b, c + b, 0).

Proof Given a parameter t ∈ A
1, consider the following family of monads

0 → OP3(−c)
αt→ OP3(−b) ⊕ 2 · OP3 ⊕ OP3(b)

β→ OP3(c) → 0, (114)

where αt is given by

αt =

⎛

⎜⎜⎝

σ4
t · σ3

−t · σ2
−σ1

⎞

⎟⎟⎠

while β is given as in (113). Clearly, for each t �= 0, the sheaf Et =: ker β/ im αt defines a
point [Et ] ∈ N (0, b, c); we thus obtain a modular morphism

A
1 \ {0} → M(c2 − b2), t �→ [Et ]

whose image lies within N (0, b, c).
Next, we show that E0 fits into the following exact triple:

0 → E0 → 2 · OP3 → O�(c) → 0, (115)

where � is the complete intersection curve defined by {σ1 = σ4 = 0}; we may assume that �
is irreducible since this is an open condition. Note also thatO�(c−2) is a theta-characteristic
on �.

Indeed, consider the following short exact sequence of complexes:

0 0 0

0 OP3(−c)

�

α̃ OP3(−b) ⊕ OP3(b)
β̃

OP3(c)

�

0

0 OP3(−c)
α0 OP3(−b) ⊕ 2 · OP3 ⊕ OP3(b)

β
OP3(c) 0

0 2 · OP3 0

0 0 0
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where the complex in the middle line is (114) for t = 0 and the morphisms α̃ and β̃ are given
by

α̃ =
(−σ4

σ1

)
and β = (

σ1 σ4
)
.

Passing to cohomology, we obtain precisely the triple (115).
By Jardim et al. [14, Lemma 4.3], (115) implies that E0 is stable; hence, it follows that

[E0] ∈ N (0, b, c). On the other hand, one clearly sees from (115) and from the definition of
C(c − b, c + b, 0) in Theorem 17 that [E0] ∈ C(c − b, c + b, 0).

Finally, note that a generic point [E] in the intersection

N (0, b, c) ∩ C(c − b, c + b, 0)

will be precisely of the form (115), fixing the choice of a line bundle in Picg−1(�), where
g = 1 + (c2 − b2)(c − 2) is the genus of �. It is then easy to see that such sheaves form a
family of codimension g in C(c − b, c + b, 0). ��

6 Connectedness of M(2)

As mentioned in Introduction, it is not difficult to check that M(1) is irreducible; this fact
is probably well known to specialists, but for lack of a suitable reference, we present a brief
argument here.

The key point is to show that every semistable rank 2 sheaf E on P
3 with c1(E) = 0,

c2(E) = 1 and c3(E) = 0 is a nullcorrelation sheaf in the sense of [6], that is, given by an
exact sequence of the form

0 → OP3(−1)
σ−→ �1

P3
(1) → E → 0.

It follows that E is uniquely determinedby the sectionσ ∈ H0(�1
P3

(2))up to scalarmultiples,

so that M(1) � PH0(�1
P3

(2)).

Indeed, semistability implies that h0(E) = 0. If E is locally free, then E is stable and
it follows from Barth’s theory of spectra, see [3] or [12, Section 7], that E is an instanton
bundle of charge 1, and these are precisely the locally free nullcorrelation sheaves. On the
other hand, if E is not locally free, then E∨∨ is a μ-semistable rank 2 reflexive sheaf with
c1(E∨∨) = 0 and c2(E∨∨) = 0, 1. If c2(E∨∨) = 1, so that E has 0-dimensional singularities,
then E∨∨ must be stable by Lemma 3; it follows from [4, Lemma 2.1] that c3(E∨∨) = 0, so
E∨∨/E = 0, contradicting the hypothesis of E not being locally free. Therefore, we must
have c2(E∨∨) = 0, hence E∨∨ � 2 · OP3 and

0 → E → 2 · OP3 → O�(1) → 0

where � is a line. One can then check that E satisfies the cohomological conditions of [6,
Proposition 1.1], so that E is a nullcorrelation sheaf.

Next, we recall the description of M(2) given by Hartshorne [11], Le Potier [17] and
Trautmann [26]. By Hartshorne [11, Section 9], the schemeB(2) coincides with the instanton
component I(2) of dimension 13, so its closure I(2) is an irreducible component of M(2).
According to [17, Thm. 7.12],M(2) contains two additional irreducible components, which
are given by the closures of the subschemes

P(2)l = {[E] ∈ M(2) | dim Ext2(E,OP3) = l
}

l = 1, 2
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within M(2); furthermore, dimP(2)l = 13 + 4l. Le Potier calls these the Trautmann com-
ponents.

Note that these actually coincides with the components T (2, l) described in Section 2.1
above. Indeed, note that if [E] ∈ T (2, l), then

dim Ext2(E,OP3) = h0(Ext2(E,OP3)) = h0(Ext3(QE ,OP3)) = h0(QE ).

However, the length of QE is half of c3(E∨∨), which means that [E] ∈ P(2)l , thus T (2, l) ⊂
P(2)l .

In addition,Changproved in [4, Section 2] that, for each l = 1, 2,R(0; 2; 2l) is irreducible,
nonsingular of dimension 13. It follows from Theorem 7 that, for each l = 1, 2, T (2, l) is
an irreducible component of M(2) of dimension 13 + 4l; therefore, we must have that
T (2, l) = P(2)l .

Consequently, Le Potier’s result can be restated in the following form, see also [26]:

M(2) = I(2) ∪ T (2, 1) ∪ T (2, 2). (116)

The main goal of this section is to show that M(2) is connected.
Recall from Sect. 2.1 that a generic sheaf E from T (2, 1) is obtained as the kernel of

an epimorphism ε : F � Oq where F is a generic reflexive sheaf from R(0; 2; 2) and
q /∈ Sing(F):

0 → E → F
ε→ Oq → 0, q /∈ Sing(F). (117)

Every [F] ∈ R(0; 2; 2) satisfies h0(F(1)) = 3, cf. [4, Table 2.8.1]; moreover, the zero
scheme Y = (s)0 of a generic section s ∈ H0(F(1)) is a disjoint union of a line � and a
nonsingular conic C [4, Lemma 2.7], i.e., there is an exact triple

0 → OP3(−1) → F → IY/P3(1) → 0, Y = � � C. (118)

In addition, a generic sheaf E from T (2, 4) is obtained as the kernel of an epimorphism
ε : F � Oq1 ⊕ Oq2 where F is a generic reflexive sheaf from R(0; 2; 4) with q1, q2 /∈
Sing(F), and q1 �= q2:

0 → E → F
ε→ Oq1 ⊕ Oq2 → 0, q1, q2 /∈ Sing(F), q1 �= q2. (119)

Every [F] ∈ R(0; 2; 4) satisfies h0(F(1)) = 4, cf. [4, Table 2.12.2]; the zero scheme
Y = (s)0 of a generic section s ∈ H0(F(1)) is a nonsingular twisted cubic curve [4, Lemma
2.13], i.e., there is an exact triple

0 → OP3(−1) → E∨∨ → IY/P3(1) → 0. (120)

We are finally in position to prove the main result of this section.

Theorem 25 Both components T (2, 1) and T (2, 2) have nonempty intersection with the
instanton component I(2). In particular, M(2) is connected.

Proof We first consider the case l = 1. Recall from [11] that a generic locally free sheaf G
from I(2) is a ’t Hooft bundle, fitting in an exact triple

0 → OP3(−1) → G → IZ/P3(1) → 0, Z = �0 � �1 � �2, (121)

where �0, �1, �2 are disjoint lines in P
3. We include Z as a generic fiber Zt , t �= 0, into a

1-dimensional flat family Z of curves in P
3:
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π : Z ↪→ P
3 ×U

pr2→ U, (122)

with base U � 0 which is an open subset of A
1, such that

(a) for t �= 0 the fiber Zt = π−1(t) of the family Z is a disjoint union of three lines in P
3;

(b1) the zeroth fiber Z0 of this family, being reduced, is a union of lines

(Z0)red = �0 � (�1 ∪ �2), w := �1 ∩ �2 = {pt}. (123)

and as a scheme Z0 has an embedded point w:

0 → Ow → OZ0 → O(Z0)red → 0. (124)

The sheaf G from (121) can then be included into the family G of sheaves on P
3 with base

U fitting in the exact triple

0 → OP3(−1) � OU → G → IZ/P3×U ⊗ OP3(1) � OU → 0. (125)

We thus obtain a modular morphism

�U : U → M(2), t �→ [Gt ], Gt := G|P3×{t}. (126)

Moreover, in view of (125), the sheaf G0 fits into the exact triple

0 → OP3(−1)
r→ G0 → IZ0/P3

(1) → 0;
composing the morphism r in the previous equation with the standardmonomorphismG0 →
G∨∨

0 we obtain, using the triple (124), the following exact triples for G∨∨
0 :

0 → G0 → G∨∨
0 → Oq → 0, (127)

0 → OP3(−1)
s→ G∨∨

0 → I(Z0)red/P3
(1) → 0. (128)

Now (123) and (128) show that s is a section of a reflexive sheaf G∨∨
0 having a disjoint union

(Z0)red of a line and a reducible conic as the zero scheme. Note that G∨∨
0 is μ-stable, since

Y is not contained in a plane (cf. [12, Proposition 4.2]); it follows that G0 is stable. Since,
by construction, �(U \ {0}) ⊂ I(2), we conclude that

[G0] ∈ I(2). (129)

By the description ofR(0; 2; 2) above, it follows that the triple (128) is a specialization of
the triple (118) within a flat family of triples in which the conicC specializes into a reducible
conic �1 ∪ �2, so that Y in (118) specializes to (Z0)red. It follows that the triple (127) is a flat
specialization of the triple (117), so that

[G0] ∈ T (2, 1). (130)

Finally, (129) and (130) imply that T (2, 1) ∩ I(2) �= ∅, as desired.
Next, consider the case l = 2; one takes a family Z as in (122) satisfying property (a)

above and replacing property (b1) by the following one:

(b2) the zeroth fiber Z0 of this family, being reduced, is a (connected) chain of three lines
not lying in a plane:

(Z0)red = �0 ∪ �1 ∪ �2, q1 := �0 ∩ �1 = {pt}, q2 := �1 ∩ �2 = {pt}, q1 �= q2. (131)

and as a scheme Z0 has two embedded points q1 and q2:

0 → Oq1 ⊕ Oq2 → OZ0 → O(Z0)red → 0.
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Then, as above, the ’t Hooft bundle G from (121) is included into the family G of sheaves on
P
3 given by the exact triple (125). In this case, instead of the triple (127), one has an exact

triple
0 → G0 → G∨∨

0 → Oq1 ⊕ Oq2 → 0, (132)

Besides, the triple (128) holds as before; thus, in view of (131), the morphism s in (128) is
a section of a reflexive sheaf G∨∨

0 (1) having the chain of lines (Z0)red in (131) as its zero
scheme. Note that G∨∨

0 is μ-stable, since Y is not contained in a plane (cf. [12, Proposition
4.2]); it also follows thatG0 is stable, so that [G0] ∈ I(2), where, as before,G0 =: G|P3×{0}.

Hence, from the above description of R(0; 2; 4), it follows that the triple (128) is a
specialization of the triple (120) within a flat family of triples in which the twisted cubic
Y specializes to the chain of lines (Z0)red in (131). It follows that the triple (132) is a flat
specialization of the triple (119), so that

[G0] ∈ [G0] ∈ T (2, 2). (133)

Now T (2, 2) ∩ I(2) �= ∅ follows from (129) and (133). ��
Remark 26 It follows from [14, Theorem 7.8], (116) and Theorem 25 that the boundary of
charge 2 instanton bundles

∂I(2) := I(2) \ I(2)

has exactly four components, divided into two types:

(I) C(1, 1, 1) and C(1, 2, 0), which corresponds toD(1, 2) andD(2, 2), respectively, in the
notation of [14, Theorem 7.8]; and

(II) T (2, l) ∩ I(2) for l = 1, 2.

Indeed, either [E] ∈ ∂I(2) is an instanton sheaf, so [E] lies in one of the components of
type (I), or [E] is not an instanton sheaf, in which case [E] lies in one of the components of
type (II). In addition, by Jardim et al. [14, Proposition 6.4], the components of type (I) are
irreducible and divisorial.

The fact that ∂I(2) has exactly 4 components was first observed by Narasimhan and
Trautmann [20]; they also showed that all four components are irreducible and divisorial.
Therefore, it is quite reasonable to conjecture that the components of type (II) above are both
irreducible and divisorial. ��

7 Irreducible components of M(3)

Ellingsrud and Stromme showed in [8] that B(3) has precisely two irreducible components,
both nonsingular, rational and of the expected dimension 21; these can be described as
follows:

• The instanton component I(3), whose points are the cohomology of monads of the form

0 → 3 · OP3(−1) → 8 · OP3 → 3 · OP3(1) → 0;
• The Ein component N (0, 1, 2), following the notation of Sect. 5 above, whose points are

the cohomology of monads of the form

0 → OP3(−2) → OP3(−1) ⊕ 2 · OP3 ⊕ OP3(1) → OP3(2) → 0.
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Recall also that Chang [4, Section 3] proved that R(0; 3; l) is, for each l = 1, . . . , 4,
irreducible and of expected dimension 21; in addition,R(0; 3; 4) andR(0; 3; 8) are rational,
while R(0; 3; 6) is unirational. Therefore, we can apply Theorem 7 to show that there are
four irreducible components T (3, l) of dimensions 21 + 4l, for each l = 1, . . . , 4 within
M(3).

Furthermore, Theorem 17 provides one additional irreducible component whose generic
point corresponds to sheaves with 1-dimensional singularities, labeled C(1, 3, 0) in Sect. 3.

We therefore conclude thatM(3) has at least seven irreducible components, divided into
three types, as below:

(I) I(3) andN (0, 1, 2), both of dimension 21,whose generic point corresponds to a locally
free sheaf;

(II) C(1, 3, 0), of dimension 21, whose generic point corresponds to a sheaf which is sin-
gular along smooth plane cubic;

(III) T (3, l) for l = 1, 2, 3, 4, of dimension 21 + 4l, whose generic point corresponds to a
sheaf which is singular along 3l distinct points.

In this section, we prove the following.

Theorem 27 The union

I(3) ∪ N (0, 1, 2) ∪ C(1, 3, 0) ∪ T (3, 1) ∪ T (3, 2) ∪ T (3, 3) ∪ T (3, 4)

is connected.

Remark 28 It seems likely that M(3) has no other irreducible components whose generic
point corresponds either to a locally free sheaf, or to a sheaf with pure 0- or 1-dimensional
singularities. But M(3) might possess other irreducible components whose generic point
corresponds to a sheaf with mixed singularities.

First, note that Theorem 23 guarantees, in particular, that I(3)∩C(1, 3, 0) �= ∅, something
that has also been remarked by Perrin [21, Thm 0.1]. In addition, Proposition 24 for c = 2
and b = 1 guarantees that C(1, 3, 0) also intersects the closure of N (0, 1, 2). Therefore, the
proof of Theorem 27 is completed by proving the following result.

Proposition 29 For each l = 1, 2, 3, 4, we have T (3, l) ∩ I(3) �= ∅.
Proof We begin by recalling the description of T (3, l), l = 1, 2, 3, 4, from Sect. 2.1. A
generic sheaf E from T (3, l) is defined as the kernel of an epimorphism ε : F � ⊕l

i=1Oq j ,
where [F] ∈ R(0; 3; 2l) and q j /∈ Sing(F), j = 1, . . . , l:

0 → E → F
ε→ ⊕l

j=1Oq j → 0, q j /∈ Sing(F), j = 1, . . . , l. (134)

According to Chang [4, Section 3], for each l = 1, . . . , l there exist sheaves F in R(0; 3; l)
such that h0(F(1)) > 0, and whose zero scheme Y = (s)0 of a nontrivial section s ∈
H0(F(1)) can be described as follows:

(i) For l = 1, the scheme Y is a disjoint union �1 � �2 � C of two lines �1, �2 and a
nonsingular conic C ;

(ii) For l = 2, the scheme Y is a disjoint union � � C of a line � and a nonsingular twisted
cubic C , cf. [4, proof of Thm. 3.4];

(iii) For l = 3, the scheme Y is a nonsingular rational quartic curve, cf. [4, proof of Thm.
3.5];
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(iv) For l = 4, the scheme Y is a nonsingular space elliptic quartic curve, cf. [4, proof of
Lemma 3.8].

In addition, such sheaves are generic for l = 2, 3, 4, but special in the case l = 1.
Let us first consider the case l = 1. We repeat with minor modifications the argument

from Sect. 6; more precisely, compare with Eqs. (117), (120)–(130). First, similar to (118)
the sheaf F = E∨∨ fits in an exact triple

0 → OP3(−1) → E∨∨ → IY/P3(1) → 0, Y = �1 � �2 � C. (135)

Next, according to [11] there exists a ’t Hooft vector bundle H in I(3) given by an exact
triple

0 → OP3(−1) → H → IZ/P3(1) → 0, Z = �1 � �2 � �3 � �4, (136)

where �1, . . . , �4 are disjoint lines in P
3 of which �1 and �2 are taken from (i) above. We

now include Z as a generic fiber Zt , t �= 0, into a 1-dimensional flat family Z of curves in
P
3 as in (122), with base U � 0 being an open subset of A

1, such that

(a) For t �= 0 the fiber Zt = π−1(t) of the family Z is a disjoint union of four lines in P
3;

(b) The zeroth fiber Z0 of this family, being reduced, is a union of lines

(Z0)red = �1 � �2 � (�3 ∪ �4), q = �3 ∩ �4 = {pt}. (137)

and as a scheme Z0 has an embedded point q1:

0 → Oq → OZ0 → O(Z0)red → 0. (138)

The sheaf H defined in (136) is then included into the family H of sheaves on P
3 with

base U given by the exact triple

0 → OP3(−1) � OU → H → IZ/P3×U ⊗ OP3(1) � OU → 0. (139)

Thus as in (126) we obtain a modular morphism �U : U → I(3), t �→ [Ht ], where
Ht = H|P3×{t}. In particular,

[H0] ∈ I(3). (140)

In view of (139), the sheaf H0 fits into the exact triple

0 → OP3(−1)
r→ H0 → IZ0,P3

(1) → 0;
composing the morphism r in the previous equation with the standard monomorphism H0 →
H∨∨
0 , we obtain, using the triple (138), the following exact triples for H∨∨

0 :

0 → H0 → H∨∨
0 → Oq1 → 0, and (141)

0 → OP3(−1)
s→ H∨∨

0 → I(Z0)red/P3
(1) → 0. (142)

Now (137) and (142) show that s is a section of a reflexive sheaf F∨∨
0 (1) having a disjoint

union (Z0)red of two lines and a reducible conic as its zero scheme. Hence, from the descrip-
tion of R(0; 3; 2) given in item (i) above, it follows that the triple (142) is a specialization
of the triple (135) within a flat family of triples in which the nonsingular conic C specializes
into a reducible conic �3 ∪ �4, so that Y specializes to (Z0)red. It follows that the triple (141)
is a flat specialization of the triple (134), so that

[H0] ∈ T (3, 1). (143)
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Finally, the case l = 1 follows from (140) and (143).
For l = 2, 3, 4, the above argument goes through with the following modifications.
For l = 2, instead of (137) one takes (Z0)red = �1�(�2∪�3∪�4)with points q1 = �2∩�3

and q2 = �3 ∩ �4, and consider it as a flat degeneration of a disjoint union of a line � plus a
smooth twisted cubic C item (ii) above.

For l = 3, one takes (Z0)red = �1 ∪ �1 ∪ �2 ∪ �3) to be a chain of lines with three distinct
points q1 = �1 ∩ �2, q2 = �2 ∩ �3, and q2 = �3 ∩ �4, considered as a flat degeneration of a
nonsingular rational quartic curve C from item (iii) above.

For l = 4, one takes (Z0)red = �1 ∪ �2 ∪ �3 ∪ �4, to be a space union of lines with distinct
intersection points q1 = �1 ∩ �2, q2 = �2 ∩ �3, q3 = �3 ∩ �4, q4 = �4 ∩ �1, considered as a
flat degeneration of the nonsingular space elliptic quartic from item (iv) above. ��
Remark 30 Gruson and Trautmann conjectured that the boundary of charge 3 instanton
bundles

∂I(3) := I(3) \ I(3)

has exactly 8 divisorial irreducible components, which can be divided into 2 types, cf. [21,
Remarque 3.6.8]:

(I) 4 Components whose generic point corresponds to an instanton sheaf which is singular
along a line, a smooth conic, a smooth twisted cubic or a smooth plane cubic;

(II) 4 Components whose generic point corresponds to a (noninstanton) sheaf which is
singular along 2, 4, 6 or 8 points.

The components of type (I) are, in the notation of [14], D(m, 3) for m = 1, 2, 3 and
C(1, 3, 0) ∩ I(3); all of these are known to be irreducible and divisorial, see [10,14], [21,
Théorème 0.1], and [22].

The components of type (II) are, in the notation of this paper, T (3, l) ∩ I(3) for l =
1, 2, 3, 4. Perrin showed in [21] that T (3, 1) ∩ I(3) is an irreducible divisor within I(3).

Therefore, completing the proof of theGruson–Trautmann conjecture amounts to showing
that T (3, l) ∩ I(3) are irreducible and divisorial within I(3) for l = 2, 3, 4 and that ∂I(3)
has no other divisorial components.

Remark 31 It is interesting to note that the argument in Proposition 29 can be adapted to
show that T (3, 1) ∩ N (0, 1, 2) �= ∅.

Indeed, consider a 1-dimensional flat family Z of curves in P
3 as in (122), with base

U � 0 being an open subset of A
1, such that

(a) For t �= 0, the fiber Zt = π−1(t) of the family Z is a disjoint union of a nonsingular
elliptic cubic Ct with a nonsingular space elliptic quartic Qt ;

(b) The zeroth fiber Z0 of this family, being reduced, is the union a nonsingular elliptic cubic
C0 with a nonsingular space elliptic quartic Q0 meeting a point q

(Z0)red = C0 ∪ Q0, q := C0 ∩ Q0 = {pt}
and as a scheme Z0 has q as an embedded point:

0 → Oq → OZ0 → O(Z0)red → 0. (144)

Next, consider the family H of sheaves on P
3 with base U given by the exact triple

0 → OP3(−2) � OU → H → IZ/P3×U ⊗ OP3(2) � OU → 0. (145)
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As before, set Ht := H|P3×{t}. As observed by Hartshorne [11, Example 3.1.3], the sheaves
Ht for t �= 0 are stable locally free sheaves with c1(Ht ) = 0, c2(Ht ) = 3 and α invariant
equal to 1; since instanton bundles have α = 0, it follows that [Ht ] ∈ N (0, 1, 2)when t �= 0.

On the other hand, the reflexive sheaf F defined by the exact triple

0 → OP3(−2) → F → I(Z0)red/P3
(2) → 0

yields a point in R(0; 3; 2), since (Z0)red is not contained in a hypersurface of degree 2, so
that F is μ-stable; note, however, that the sheaves obtained in this way are not generic in
R(0; 3; 2), cf. [4, proof of Lemma 3.6]. Since H0 fits into the exact triple

0 → OP3(−2) → H0 → IZ0/P3
(2) → 0,

it then follows from (144) that H0 and F are related via the exact triple

0 → H0 → F → Oq → 0. (146)

The stability of F implies that H0 is also stable. Now, (145) implies that [H0] ∈ N (0, 1, 2);
on the other hand, (146) implies that [H0] ∈ T (3, 1), proving our claim.

We conjecture that T (3, l) ∩ N (0, 1, 2) �= ∅ also for l = 2, 3, 4.
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