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Abstract In this paper, we examine an elliptic system of divergence form in a homogeniza-
tion problem in order to obtain a global W 1,p estimate for 1 < p < ∞. Throughout our
study, the coefficients are assumed to have a small bounded mean oscillation seminorm, and
the boundary of the domain is assumed to be flat in the Reifenberg sense, which is a natural
generalization of a Lipschitz domain with a small Lipschitz constant. As a consequence, an
optimal W 1,p regularity is determined.
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1 Introduction

This study aims to produce Calderón–Zygmund type estimates for the weak solution to a
Dirichlet problem of a divergence-form elliptic system in a homogenization problem :{

Dα

(
Aαβ,ε
i j (x)Dβu

j
ε (x)

)
= Dα f iα(x) in Ω

uiε(x) = 0 on ∂Ω
(1.1)

for 1 ≤ α, β ≤ n and 1 ≤ i, j ≤ m with m ≥ 2, where the nonhomogeneous term
F = { f iα} is given by a matrix-valued function. Here, � is a bounded domain in R

n with
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n ≥ 2 and 0 < ε ≤ 1. Also, the coefficients Aε = {Aαβ,ε
i j } for 0 < ε ≤ 1 from A = {Aαβ

i j },
Aαβ
i j : Rn → R, are defined to be

Aαβ
i j (x) = Aαβ,1

i j (x) and Aαβ,ε
i j (x) = Aαβ

i j

( x
ε

)
. (1.2)

The coefficients are assumed to have uniform ellipticity and uniform boundedness. In
other words, we assume that there exist positive constants ν and L such that

ν|ξ |2 ≤ Aαβ
i j (x)ξ iαξ

j
β and ‖A‖L∞(Rn ,Rmn×mn) ≤ L , (1.3)

for every matrix ξ ∈ R
mn and for almost every x ∈ R

n .
The primary question thatW 1,p regularity theory poses for (1.1) is : what are the minimal

requirements for coefficient Aαβ
i j and the boundary condition of �, which are related by

F ∈ L p(�,Rmn) �⇒ Duε ∈ L p(�,Rm) for every 1 < p < ∞? (1.4)

When ε = 1, meaning there is no homogenization issue, W 1,p regularity theory for
elliptic equations and systems has been extensively studied by investigating the regularity
requirements for the coefficients and smoothness of the domain’s boundary.We refer to [2,4–
7,9–11,16] and the references therein for related results. In [15], we see that the coefficients
must not be measurable in two variables. Also, as it relates to the domain, W 1,p regularity
does not hold even for Poisson’s equation when � is a bounded Lipschitz domain [13].

Homogenization theory of partial differential equations studies equations that have rapidly
oscillating coefficients. Therefore, this theory has many applications in multiple fields, such
asmechanics and physics. One of the goals of this theory is to find amacroscopic, or effective,
description, even when the microscopic structure is irregular. In this study, we examine the
global W 1,p theory of the homogenization problem (1.1). Hence, our goal is to produce a
uniform result of (1.4) that is independent of ε for 0 < ε ≤ 1. Namely, if F ∈ L p(�,Rmn),
we want to derive the following estimate for 1 < p < ∞ :

‖Duε‖L p(�) ≤ c‖F‖L p(�), (1.5)

where the constant c is independent of F and ε.
Much research has been devoted to the globalization of the homogenization problem. In

[1], a uniformW 1,p regularity for (1.1) was proved when the coefficients are Hölder continu-
ous and the boundary of the domain isC1,α . Following this, given continuous coefficients, the
interiorW 1,p regularity for linear elliptic equations was established in [9]. Also, the estimate
(1.5) of a linear elliptic equation for 1 < p < 3 + δ1 when n ≥ 3, and for 1 < p < 4 + δ1
when n = 2 under the conditions that the coefficients are in the vanishing mean oscillation
(VMO) class and the domain is a general Lipschitz domain was established [19]. Contrary
to the result in [19], we want to prove (1.5) for all p, in which 1 < p < ∞.

Study of global W 1,p regularity of the homogenization problem (1.1) has been limited
to Lipschitz domains. However, we want to extend the previous results of W 1,p regularity
to an irregular domain : the Reifenberg-flat domain, which is not contained in the Lipschitz
domain category. A Reifenberg-flat domain was introduced in [17] and a typical example of
this kind of domain is a Van Koch curve, which allows for fractal structures. Even though this
domain has a sufficiently irregular structure on its boundary, its beneficial properties help
address the partial differential equations over a Reifenberg-flat domain, such as a scaling
invariance. In this domain, some regularity results when there is no homogenization [4–7].
Also, we assume that the coefficients are in the bounded mean oscillation (BMO) class with
small BMO seminorms. It should be noted that for ε = 1, W 1,p regularity was established
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under the weaker condition for coefficients than that for a BMO [4,7]. However, in order to
remain consistent with the conditions between the coefficients in the homogenization and
the domain, we provide a BMO condition for the coefficients.

Throughout this paper, we address periodic homogenization. In particular, we assume the

following periodicity condition on
{
Aαβ
i j (x)

}
:

Aαβ
i j (x + z) = Aαβ

i j (x) (x ∈ R
n, z ∈ Z

n). (1.6)

In general, we say that uε = (u1ε , . . . , u
m
ε ) ∈ H1

0 (�,Rm) is a weak solution of (1.1) if∫
�

Aαβ,ε
i j Dβu

j
ε Dαφidx =

∫
�

f iαDαφidx, ∀φ = (φ1, . . . , φm) ∈ H1
0 (�,Rm). (1.7)

In order to understand the periodic homogenization problem (1.1), we must recall some
basic facts. First, (1.1) is considered to be well posed if F ∈ L2(�,Rmn). The Lax-Milgram
lemma implies the existence and uniqueness of the solutions uε ∈ H1

0 (�,Rm) with the
estimate

‖Duε‖L2(�) ≤ c‖F‖L2(�), (1.8)

where the constant c does not depend on ε. The matrix of correctors χ =
{
χ
i j
α

}
, with

1 ≤ i, j ≤ m and 1 ≤ α ≤ n, is the weak solution of the following cell problem:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−Dα

(
Aαβ
i j (x)Dβχ

jk
γ (x)

)
= DαA

αγ

ik (x) in R
n

∫
[0,1]n χ

jk
γ = 0

χ
jk
γ Z

n periodic,

(1.9)

in which the L∞ estimate is defined by

‖χ‖L∞(Rn) ≤ c(ν, L ,m, n). (1.10)

Let

Aαβ,0
i j =

∫
[0,1]n

(
Aαβ
i j + Aαγ

ik Dγ χ
k j
β

)
.

Then the linear elliptic system⎧⎨
⎩ Dα

(
Aαβ,0
i j Dβu

j
0(x)

)
= Dα f iα(x) in Ω

ui0(x) = 0 on ∂Ω

(1.11)

is the homogenized problem of (1.1), whose weak solution u0 of (1.11) is the weak limit of
the weak solutions uε in H1

0 (�,Rm) as ε → 0, see [3].
This paper is organized as follows. Section 2 introduces some basic notations and states

our main result. Section 3 addresses analytic and geometric tools used to determine the global
W 1,p regularity. Section 4 establishes the uniform W 1,p estimate.

2 Main results

We begin this section with some notations.
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1. An open ball in R
n with center y and radius r > 0 is defined to be

Br (y) = {x ∈ R
n : |x − y| < r}.

If the center is the origin, we denote Br (0) by Br for simplicity.
2. The integral average of g ∈ L1(U ) over bounded domain U in R

n is denoted

gU =
∫
−

U
g(x)dx = 1

|U |
∫
U
g(x)dx .

3. B+
r = Br ∩ {xn > 0}, Tr = Br ∩ {xn = 0}.

4. �r = Br ∩ �, ∂�r = ∂(Br ∩ �).

5. ∂w�r = Br ∩ ∂� : the wiggled part of ∂�r .

Hereafter, δ is a small positive constant to be determined later. On the other hand, the
constant R can be 1 or any other constant greater than 1 to be determined by our purpose,
since our primary problem (1.1) has a scaling invariance property.

Definition 2.1 Let U be a bounded domain in R
n .

1. We say that Aαβ
i j is (δ, R)-vanishing if

sup
0<r≤R

sup
y∈Rn

∫
−

Br (y)

∣∣∣∣Aαβ
i j (x) − Aαβ

i j Br (y)

∣∣∣∣
2

dx ≤ δ2. (2.1)

2. We also say that U is (δ, R)-Reifenberg flat if for every x ∈ ∂� and every r ∈ (0, R],
there exists a coordinate system {y1, . . . , yn} dependent on r and x so that x = 0 in this
coordinate system and

Br ∩ {yn > δr} ⊂ Br ∩ � ⊂ Br ∩ {yn > −δr} . (2.2)

Remark 2.2 Recall that the class of vanishing mean oscillation functions VMO consists of
functions whose integral oscillation over balls shrinking to a point converges uniformly to
zero, see [18]. In fact, (2.1) holds true if the term on the left-hand side of (2.1) vanishes as
R → 0. This means that the small BMO assumption (2.1) generalizes the case of VMO
coefficients.

Remark 2.3 This definition prompts a few comments. The constant δ is a small, positive
constant that is still invariant under scaling. This small number will be selected later. In fact,
Reifenberg flatness (2.2) is meaningful when 0 < δ < 1

8 [21], and a small δ allows the
deviation of ∂�, an (n − 1)-dimensional affine space, to be sufficiently small for each scale
r > 0.

Theorem 2.4 Suppose F ∈ L p(�,Rmn) for some 2 < p < ∞. Then there exists a small
positive constant δ = δ(ν, L ,m, n, p) such that if Aαβ

i j is (δ, R)-vanishing and � is (δ, R)-

Reifenberg flat, then for the weak solution uε ∈ H1
0 (�,Rm) of (1.1), we have

Duε ∈ L p(�,Rmn) (2.3)

with estimate

‖Duε‖L p(�) ≤ c‖F‖L p(�), (2.4)

where the positive constant c = c(|�|, ν, L ,m, n, p) is independent of ε.

Remark 2.5 When p = 2, the estimate is a classical one. After the estimate has been deter-
mined for 2 < p < ∞, the estimate for the 1 < p < 2 case follows using a duality
argument.
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3 Preliminary tools

In this section, we introduce analytic and geometric tools that will be used later in the proof
of our main theorem. Our approach is based on the Hardy-Littlewood maximal function,
classical measure theory, and a Vitali-type covering argument.

First, let us recall the Hardy-Littlewood maximal function and its basic properties. If we
suppose g is a locally integrable function onRn , then theHardy-Littlewoodmaximal function
is given by

(Mg)(x) = sup
r>0

1

|Br (x)|
∫
Br (x)

|g(y)|dy.

If g is defined only on a bounded subset of Rn , then we define

Mg = Mg,

where g is the zero extension of g from the bounded set toRn . This maximal function satisfies
the weak 1-1 estimate and strong p-p estimate as follows :

For g ∈ L1(Rn), there is a constant c = c(n) > 0 such that

|{x ∈ R
n : (Mg)(x) > t}| ≤ c

t
‖g‖L1(Rn), ∀t > 0.

Also, given g ∈ L p(Rn) for some p ∈ (1,∞), Mg ∈ L p(Rn) holds with the estimate

1

c
‖g‖L p(Rn) ≤ ‖Mg‖L p(Rn) ≤ c‖g‖L p(Rn) (3.1)

for some constant c = c(n, p) > 0 [20].
In order to apply it later, we need to review some classical measure theory.

Lemma 3.1 [8] Assume g is a nonnegative, measurable function defined on the bounded
domain � ⊂ R

n, and let θ > 0 and λ > 1 be constants. Then for 0 < q < ∞, we have

g ∈ Lq(�) ⇐⇒ S =
∑
k≥1

λqk
∣∣∣{x ∈ � : g(x) > θλk

}∣∣∣ < ∞

and

1

c
S ≤ ‖g‖qLq (�) ≤ c(|�| + S). (3.2)

The positive constant c depends only on θ , λ, and q.

In addition, we will use the following version of the Vitali-type covering lemma for the
proof of our main theorem.

Lemma 3.2 [5,22] Assume that C and D are measurable sets with C ⊂ D ⊂ � and �

being (δ, 1)-Reifenberg flat. Also assume there exists a small η > 0 such that

|C | < η|B1| (3.3)

and that for each x ∈ � and r ∈ (0, 1] with |C ∩ Br (x)| > η|Br (x)|, we have
Br (x) ∩ � ⊂ D. (3.4)

Then

|C | ≤
(

10

1 − δ

)n

η|D|. (3.5)
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4 Global W1, p estimate

Because the proof of the interior case is essentially the same as that of the boundary case, we
briefly introduce some counterparts to the boundary case of the interior case without proof.
In order to do this, let us suppose B5 ⊂ � and that uε ∈ H1(B5,R

m) is a weak solution of

Dα(Aαβ,ε
i j Dβu

j
ε ) = Dα f iα in B5 (4.1)

for each i = 1, . . . ,m. Then we consider the following homogeneous problem.{
Dα

(
Aαβ,ε
i j (x)Dβv

j
ε (x)

)
= 0 in B4

viε(x) = uiε(x) on ∂B4
(4.2)

In order to solve this problem, we need the following higher integrability lemma for the
weak solution vε ∈ H1(B4,R

m) of (4.2).

Lemma 4.1 [19] Let vε be the weak solution of (4.2). Then for any 2 < q < ∞, there exists
δ = δ(ν, L ,m, n, q) such that if Aαβ

i j is (δ, 5)-vanishing, then we have

|Dvε | ∈ Lq(B1,R
m)

with the estimate (∫
−

B1
|Dvε |qdx

) 1
q ≤ c

(∫
−

B3
|Dvε |2dx

) 1
2

(4.3)

for some positive constant c = c(ν, L ,m, n, q), independent of ε.

Remark 4.2 In [19], the author proved interiorW 1,p regularity with VMO coefficients using
a blow-up argument. Using the same argument, we can prove Lemma 4.1 for our situation
by using the interiorW 1,p regularity for coefficients with small BMO seminorms which was
already established, [6].

With these lemmas established, we are able to return to the boundary case. In order to
address this problem, we must first assume that

B+
5 ⊂ �5 ⊂ B5 ∩ {xn > −10δ}. (4.4)

Let us suppose that uε ∈ H1(�5,R
m) is a weak solution of{

Dα

(
Aαβ,ε
i j (x)Dβu

j
ε (x)

)
= Dα f iα(x) in �5

uiε(x) = 0 on ∂w�5,
(4.5)

in which

1

|B5|
∫

�5

|Duε |2dx ≤ 1. (4.6)

Then we can consider the homogeneous problem :{
Dα

(
Aαβ,ε
i j (x)Dβw

j
ε (x)

)
= 0 in �4

wi
ε(x) = uiε(x) on ∂�4.

(4.7)

This leads us to the following regularity result.
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Lemma 4.3 [12,14] Let wε be the weak solution of (4.7). Then there exist small positive
constants σ1 and c, which depend only on ν, L ,m and n, such that

‖Dwε‖L2+σ1 (�3)
≤ c. (4.8)

However, a higher integrability is required—an integrability up to the flat boundary for
the following homogeneous problem on the flat boundary :⎧⎨

⎩ Dα

(
Aαβ,ε
i j (x)Dβv

j
ε

)
= 0 in B+

3

viε = 0 on T3.
(4.9)

Lemma 4.4 [19] Let vε ∈ H1(B+
3 ,Rm) be a weak solution of (4.9). Then for any 2 < q <

∞, there exists δ = δ(ν, L ,m, n, q) such that if Aαβ
i j is (δ, 50)-vanishing, then we have

(∫
−

B+
1

|Dvε |qdx
) 1

q

≤ c

(∫
−

B+
3

|Dvε |2dx
) 1

2

(4.10)

for some positive constant c = c(ν, L ,m, n, q), independent of ε.

Remark 4.5 In [19], Lemma 4.4 was proved for VMO coefficients and a general Lipschitz
domain but not for all q in which 2 < q < ∞ because the author dealt with a general
Lipschitz domain. In our case, we only control the flat boundary, and our results still hold
for all 2 < q < ∞. Also, the proof of the case involving BMO coefficients with small BMO
seminorms is similar to that involving VMO coefficients, see [2].

Therefore, we need the following lemma in order to justify our argument in a Reifenberg
domain.

Lemma 4.6 Let uε ∈ H1(�5,R
m) be a weak solution of (4.5) satisfying (4.6), and let

wε ∈ H1(�4,R
m) be the weak solution of (4.7). Then for any fixed κ > 0, there exists a

small δ = δ(κ, ν, L ,m, n) > 0 such that if

B+
5 ⊂ �5 ⊂ B5 ∩ {xn > −10δ} (4.11)

holds for δ, then there exists a weak solution vε ∈ H1(B+
3 ,Rm) of (4.9) with∫

−
B+
3

|Dvε |2dx ≤ c (4.12)

for some positive constant c = c(ν, L ,m, n) such that∫
−

B+
1

|D(wε − vε)|2dx ≤ κ2. (4.13)

Proof We argue this by contradiction. To do this, we assume there exist κ0 > 0,
{
uε,k

}∞
k=1,

and
{
�k

5

}∞
k=1 such that uε,k is a weak solution of⎧⎨

⎩ Dα

(
Aαβ,ε
i j (x)Dβ(uε,k)

j
)

= 0 in �k
5

(uε,k)
i = 0 on ∂w�k

5

(4.14)
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with ∫
−

�k
5

|Duε,k |2dx ≤ 1 (4.15)

and

B+
5 ⊂ �k

5 ⊂ B5 ∩
{
xn > −10

k

}
. (4.16)

However, ∫
−

B+
1

|D(wε,k − vε)|2dx > κ2
0 (4.17)

for any weak solution vε of⎧⎨
⎩ Dα

(
Aαβ,ε
i j (x)Dβv

j
ε

)
= 0 in B+

3

viε = 0 on T3,
(4.18)

where ∫
−

B+
3

|Dvε |2dx ≤ c (4.19)

for the same positive constant c as in (4.12) and wε,k is the weak solution of⎧⎨
⎩ Dα

(
Aαβ,ε
i j (x)Dβw

j
ε,k(x)

)
= 0 in �k

4

wi
ε,k(x) = uiε,k(x) on ∂�k

4.
(4.20)

Applying (4.15) and the standard L2-estimate for (4.20), we know that

1

|B4|
∫

�k
4

|Dwε,k |2dx ≤ c
1

|B5|
∫

�k
5

|Duε,k |2dx ≤ c. (4.21)

Also, using the fact that wε,k = 0 on ∂w�k
3 and (4.16), we apply Poincaré’s inequality to

find that

1

|B3|
∫
B+
3

|wε,k |2dx ≤ 1

|B3|
∫

�k
3

|wε,k |2dx ≤ c

|B3|
∫

�k
3

|Dwε,k |2dx

≤ c

|B5|
∫

�k
5

|Duε,k |2dx ≤ c (4.22)

for some positive constant c = c(ν, L ,m, n). If we apply the zero extension of wε,k from
�k

3 to B3, say, w̄ε,k , then (4.21) and (4.22) imply that
{
w̄ε,k

}∞
k=1 is uniformly bounded in

H1(B3,R
m). Thus, there exists a subsequence, which we will continue to denote as

{
w̄ε,k

}
,

and w̄ε,0 ∈ H1(B3,R
m) such that{
Dw̄ε,k ⇀ Dw̄ε,0 weakly in L2(B3,R

mn)

w̄ε,k → w̄ε,0 strongly in L2(B3,R
m)

(4.23)

as k → ∞. We define wε,0 on B+
3 ∪ T3 by wε,0(x) = w̄ε,0(x) for all x ∈ B+

3 ∪ T3. Hence,
wε,0 is a weak solution of
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⎧⎨
⎩ Dα

(
Aαβ,ε
i j (x)Dβw

j
ε,0

)
= 0 in B+

3

wi
ε,0 = 0 on T3.

(4.24)

From (4.21) and the lower semicontinuity with respect to weak convergence, we see that∫
−

B+
3

|Dwε,0|2dx ≤ lim inf
k→∞

∫
−

B+
3

|Dwε,k |2dx ≤ c. (4.25)

Thus, we derive a contradiction by showing that

Dwε,k → Dwε,0 strongly in L2(B+
1 ,Rmn).

In order to do this, we begin with the cut-off function φ ∈ C∞
0 (B3) that satisfies

0 ≤ φ ≤ 1, φ = 1 on B1, φ = 0 on B3\B2, and |Dφ| ≤ 2. (4.26)

Then,∫
B+
1

|D(wε,k − wε,0)|2dx ≤
∫
B1

|D(w̄ε,k − w̄ε,0)|2dx

≤ c
∫
B1

Aαβ,ε
i j Dβ(w̄ε,k − w̄ε,0)

j Dα(w̄ε,k − w̄ε,0)
idx

≤ c
∫
B3

Aαβ,ε
i j Dβ(w̄ε,k)

j Dα(w̄ε,k − w̄ε,0)
iφ2dx

− c
∫
B3

Aαβ,ε
i j Dβ(w̄ε,0)

j Dα(w̄ε,k − w̄ε,0)
iφ2dx

≤ c
∫
B3

Aαβ,ε
i j Dβ(w̄ε,k)

j Dα(φ2(w̄ε,k − w̄ε,0))
idx

− c
∫
B3

Aαβ,ε
i j Dβ(w̄ε,k)

j (2φDαφ)(w̄ε,k − w̄ε,0)
idx

− c
∫
B3

Aαβ,ε
i j Dβ(w̄ε,0)

j Dα(w̄ε,k − w̄ε,0)
iφ2dx

→ 0

as k → ∞ by applying (4.20) and (4.23). This completes the proof. ��
Nowwe are ready to prove the following lemma,which is a key ingredient in our argument.

Lemma 4.7 Let 2 < p < ∞. Suppose that uε ∈ H1
0 (�,Rm) is the weak solution of (1.1).

Then there exists a universal constant η = η(ν, L ,m, n, p) so that one can select a small
δ = δ(ν, L ,m, n, p) > 0 such that if Aαβ

i j is (δ, 50)-vanishing, � is (δ, 50)-Reifenberg flat,
and for 0 < r ≤ 1 and y ∈ �, then the ball Br (y) satisfies∣∣{x ∈ � : M(|Duε |2) > N 2} ∩ Br (y)

∣∣ > η |Br (y)| , (4.27)

where (
80

7

)n

N pη = 1

2
, (4.28)

and the following condition holds

� ∩ Br (y) ⊂ {
x ∈ � : M(|Duε |2) > 1

} ∪ {
x ∈ � : M(|F |2) > δ2

}
. (4.29)
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Proof Our argument is one of contradiction. Using a scaling argument, it suffices to prove
this lemma for the r = 1 case. Therefore, assume (4.27) holds, but (4.29) is false. Then there
is a point x1 ∈ � ∩ B1(y) such that

1

|Bρ(x1)|
∫

�ρ(x1)
|Duε |2dx ≤ 1 and

1

|Bρ(x1)|
∫

�ρ(x1)
|F |2dx ≤ δ2 (4.30)

for all ρ > 0.
We divide this into the two cases : an interior case when B5(y) ⊂ � and a boundary

case where B5(y) �⊂ �. Here, we only consider the boundary case because the proof for the
interior case is similar to that of the boundary case. Because � is (δ, 50)-Reifenberg flat,
there exists an appropriate coordinate system such that

B5(y) ∩ � ⊂ B10 ∩ � (4.31)

and

B+
50 ⊂ �50 ⊂ B50 ∩ {xn > −100δ}. (4.32)

It directly follows from (4.30) that

1

|B50|
∫

�50

|Duε |2dx ≤ |B100(x1)|
|B50|

1

|B100|
∫

�100(x1)
|Duε |2dx ≤ 2n (4.33)

because B50 ⊂ B100(x1). Similarly, we have

1

|B50|
∫

�50

|F |2dx ≤ 2nδ2. (4.34)

The rescaled maps are defined as:

ũε(z) = uε(10z)

10
√
2n

, F̃(z) = F(10z)√
2n

, Ãαβ,ε
i j (z) = Aαβ,ε

i j (10z) (z ∈ �5). (4.35)

Therefore, ũε ∈ H1(�5,R
m) is a weak solution of⎧⎨

⎩ Dα

(
Ãαβ,ε
i j (z)Dβ ũ

j
ε (z)

)
= Dα f̃ iα(z) in �5

ũiε(z) = 0 on ∂w�5

(4.36)

with

1

|B5|
∫

�5

|Dũε |2dz ≤ 1 and
1

|B5|
∫

�5

|F̃ |2dz ≤ δ2. (4.37)

Let w̃ε ∈ H1(�4,R
m) be the weak solution of⎧⎨

⎩ Dα

(
Ãαβ,ε
i j (z)Dβw̃

j
ε (z)

)
= 0 in �4

w̃i
ε(z) = ũiε(z) on ∂�4.

(4.38)

Then ũε − w̃ε ∈ H1
0 (�4,R

m) is the weak solution of⎧⎨
⎩ Dα

(
Ãαβ,ε
i j (z)Dβ(ũ j

ε (z) − w̃
j
ε (z)

)
= Dα f̃ iα(z) in �4,

ũiε(z) − w̃i
ε(z) = 0 on ∂�4.

(4.39)
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Applying a standard L2 estimate to (4.39) and (4.37), we obtain

1

|B4|
∫

�4

|Dũε − Dw̃ε |2dz ≤ c

|B4|
∫

�4

|F̃ |2dz ≤ cδ2 (4.40)

for some positive constant c = c(ν, L ,m, n).
In addition, if we apply Lemma 4.6, then for any fixed κ > 0, there exists a small

δ = δ(κ, ν, L ,m, n) > 0 such that a weak solution ṽε ∈ H1(B+
3 ,Rm) exists for⎧⎨

⎩ Dα

(
Ãαβ,ε
i j (z)Dβ ṽ

j
ε

)
= 0 in B+

3

ṽiε = 0 on T3,
(4.41)

with ∫
−

B+
3

|Dṽε |2dz ≤ c (4.42)

for some constant c = c(ν, L ,m, n) such that∫
−

B+
1

|D(w̃ε − ṽε)|2dz ≤ κ2. (4.43)

Applying Lemma 4.4 to (4.41) with q = p + 1, we know there is a small δ =
δ(ν, L ,m, n, p) so that

(∫
−

B+
1

|Dṽε |p+1dz

) 1
p+1

≤ c

(∫
−

B+
3

|Dṽε |2dz
) 1

2

(4.44)

for some constant c = c(ν, L ,m, n, p). Therefore, for the zero extension ¯̃vε of ṽε from B+
3

to B3 we have

1

|B1| |{x ∈ � : M(|Duε |)2 > N 2} ∩ B1(y)|

≤ c

|B1| |{z ∈ �1 : M(3|Dũε − Dw̃ε |2 + 3|Dw̃ε − Dṽε |2 + 3|Dṽε |2) > N 2}|

≤ c

|B1|
∣∣∣∣
{
z ∈ �1 : M(|Dũε − Dw̃ε |2) >

N 2

9

}∣∣∣∣
+ c

|B1|
∣∣∣∣
{
z ∈ �1 : M(|Dw̃ε − Dṽε |2) >

N 2

9

}∣∣∣∣
+ c

|B1|
∣∣∣∣
{
z ∈ �1 : M(|Dṽε |2) >

N 2

9

}∣∣∣∣
≤ c

(
9

N 2

)
1

|B1|
∫

�1

|Dũε − Dw̃ε |2dz + c

(
9

N 2

)
1

|B1|
∫

�1

|Dw̃ε − Dṽε |2dz

+c

(
9

N 2

) p+1
2

∫
−

B+
1

|Dṽε |p+1dz

=: I1 + I2 + I3.
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Estimate of I1 : the inequality (4.40) gives us

I1 ≤ c

N 2 δ2 (4.45)

for some positive constant c = c(ν, L ,m, n).
Estimate of I2 : applying Lemma 4.3, Hölder’s inequality, and (4.43), we see that

I2 ≤ c

N 2

(
1

|B1|
∫
B+
1

|Dw̃ε − Dṽε |2dz + 1

|B1|
∫

�1\B+
1

|Dw̃ε |2dz
)

≤ c

N 2

⎛
⎝κ2 +

(∫
�3

|Dw̃ε |2+σ1dz

) 2
2+σ1

(∫
�1\B+

1

dz

) σ1
2+σ1

⎞
⎠

≤ c

N 2

(
κ2 + δ

σ1
2+σ1

)
(4.46)

for some positive constant c = c(ν, L ,m, n).
Estimate of I3 : from (4.42) and (4.44) we can conclude

I3 ≤ c

N p+1

(∫
−

B+
3

|Dṽε |2dz
) p+1

2

≤ c

N p+1 (4.47)

for some positive constant c = c(ν, L ,m, n, p).
Therefore, if we combine (4.45), (4.46), and (4.47), we see that

1

|B1| |{x ∈ � : M(|Duε |)2 > N 2} ∩ B1(y)|
≤ I1 + I2 + I3

≤ c

N p+1 + c

N 2

(
κ2 + δ2 + δ

σ1
2+σ1

)
≤ cη

p+1
p + cη

2
p

(
κ2 + δ2 + δ

σ1
2+σ1

)
= η

(
cη

1
p + cη

2
p −1

(
κ2 + δ2 + δ

σ1
2+σ1

))
for some constant c = c(ν, L ,m, n, p). Finally, if we select η so that it satisfies cη

1
p = 1

3

and δ so that it satisfies cη
2
p −1

κ2 ≤ 1
3 and cη

2
p −1

(
δ2 + δ

σ1
2+σ1

)
≤ 1

3 , then given this η and

δ we can conclude that

|{x ∈ � : M(|Duε |)2 > N 2} ∩ B1(y)| ≤ η|B1|. (4.48)

This contradicts (4.27) and completes the proof. ��
After establishing the preceding lemmas, we are ready to verify the requiredW 1,p estimate

for the homogenization problem. Henceforth, we will fix constants η and N given by Lemma
4.7. The letter c denotes the constant that can be explicitly computed in terms of the known
quantities: |�|, ν, L ,m, n, and p.

Proof of Theorem 2.4 Given any p with 2 < p < ∞, assume that F ∈ L p(�,Rmn) and
Aαβ
i j is (δ, 50)-vanishing. Also let uε ∈ H1

0 (�,Rm) be the weak solution of (1.1).
We can further suppose that

‖F‖L p(�) ≤ δ (4.49)
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by replacing uε and F with uε
1
δ
‖F‖L p (�)+σ

and F
1
δ
‖F‖L p (�)+σ

for σ > 0, respectively. We want

to show that

‖M(|Duε |2)‖
L

p
2 (Q1)

≤ c

for some universal constant c > 0 when σ → 0.
In order to do this, we write

C = {
x ∈ � : M(|Duε |2) > N 2}

and

D = {
x ∈ � : M(|Duε |2) > 1

} ∪ {
x ∈ � : M(|F |2) > δ2

}
.

If we use the weak 1-1 estimate, the standard L2 estimate, and Hölder’s inequality, we see
that

|C | ≤ c

N 2

∫
�

|Duε |2dx ≤ c

N 2

∫
�

|F |2dx

≤ c

N 2 |�| p−2
p ‖F‖2L p(�) ≤ cδ2

N 2 < η|B1|, (4.50)

inwhich δ > 0 is sufficiently small. This confirms the first condition ofLemma3.2.Moreover,
the second condition of Lemma 3.2 directly follows from Lemma 4.7. Applying Lemma 3.2,
we see that

|C | < η1|D|, where η1 =
(

10

1 − δ

)n

η ≤
(
80

7

)n

η,

when δ < 1
8 [21].

On the other hand, because (1.1) has the invariance property under normalization, we
obtain the same results for ( uε

N , F
N ), ( uε

N2 ,
F
N2 ), ( uε

N3 ,
F
N3 ), . . . inductively. Using this iteration

argument, the following power decay estimates of M(|Duε |2) are produced :∣∣∣{x ∈ � : M(|Duε |2) > N 2k
}∣∣∣

≤ ηk1

∣∣{x ∈ � : M(|Duε |2) > 1
}∣∣ +

k∑
i=1

ηi1

∣∣∣{x ∈ � : M(|F |2) > δ2N 2(k−i)
}∣∣∣ .

If we apply Lemma 3.1 to

g = M(|Duε |2), λ = N 2, θ = 1, and q = p

2
,

then a direct computation yields

‖M(|Duε |2)‖
p
2

L
p
2 (�)

≤ c

⎛
⎝|�| +

∑
k≥1

N 2k p
2

∣∣∣{x ∈ � : M(|Duε |2) > N 2k
}∣∣∣

⎞
⎠

≤ c

⎛
⎝1 +

∑
k≥1

Nkpηk1

∣∣{x ∈ � : M(|Duε |2) > 1
}∣∣
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+
∑
k≥1

Nkp
k∑

i=1

ηi1

∣∣∣{x ∈ � : M(|F |2) > δ2N 2(k−i)
}∣∣∣ )

=: S1 + S2.

S1 ≤ c

⎛
⎝1 +

∑
k≥1

Nkpηk1

∣∣{x ∈ � : M(|Duε |2) > 1
}∣∣

⎞
⎠

≤ c

⎛
⎝1 + |�|

∑
k≥1

Nkpηk1

⎞
⎠ .

S2 ≤ c
∑
k≥1

Nkp
k∑

i=1

ηi1

∣∣∣{x ∈ � : M(|F |2) > δ2N 2(k−i)
}∣∣∣

= c
∑
i≥1

(
N pη1

)i ∑
k≥i

(N p)k−i
∣∣∣{x ∈ � : M(|F |2) > δ2N 2(k−i)

}∣∣∣
= c

∑
i≥1

(
N pη1

)i ∑
j≥0

(N p) j

∣∣∣∣∣
{
x ∈ � : M

(∣∣∣∣ Fδ
∣∣∣∣
2
)

> N 2 j

}∣∣∣∣∣
≤ c

∑
i≥1

(
N pη1

)i ∥∥∥∥∥M
(∣∣∣∣ Fδ

∣∣∣∣
2
)∥∥∥∥∥

L
p
2 (�)

≤ c
∑
i≥1

(
N pη1

)i ‖F‖2L p(�)

δ2
≤ c

∑
i≥1

(
N pη1

)i
.

Therefore, we have

‖M(|Duε |2)‖
p
2

L
p
2 (�)

≤ c

⎛
⎝1 +

∑
k≥1

(
N pη1

)k⎞⎠ ≤ c

because we know N pη1 = N p
(

10
1−δ

)n
η ≤ N p

( 80
7

)n
η = 1

2 from (4.28). Hence, we can

select a corresponding small δ = δ(ν, L ,m, n, p) > 0 from Lemmas 4.7 and (4.50). Using
the strong p-p estimate of (3.1), we have

‖Duε‖L p(�) ≤ c

for some constant c > 0. This completes the proof. ��
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