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Abstract We deal with the problem of existence of periodic solutions for the scalar differ-
ential equation x ′′ + f (t, x) = 0 when the asymmetric nonlinearity satisfies a one-sided
superlinear growth at infinity. The nonlinearity is asked to be next to resonance, and a
Landesman–Lazer type of condition will be introduced in order to obtain a positive answer.
Moreover we provide also the corresponding result for equations with a singularity and
asymptotically linear growth at infinity, showing a further application to radially symmetric
systems.
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1 Introduction

In this paperwe are going to studydifferent types of scalar second-order differential equations.
We are interested in nonlinearities which, roughly speaking, are next to resonance. We will
provide different results of existence of periodic solutions extending some previous well-
known theorems in literature treating the case of nonresonant nonlinearities. We will first
focus our attention on nonlinearities defined on the whole real line; in particular, we will start
looking for periodic solutions of the scalar differential equation

x ′′ + f (t, x) = 0, (1)

where f :R×R → R is a continuous function which is T -periodic in the first variable. Then,
in Sect. 3, we will show how such a result can be adapted to the case of nonlinearities with a

B Andrea Sfecci
sfecci@dipmat.univpm.it

1 Dipartimento di Ingegneria Industriale e Scienze Matematiche, Università Politecnica delle Marche,
Via Brecce Bianche 12, 60131 Ancona, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10231-016-0551-1&domain=pdf


2008 A. Sfecci

singularity. Finally, we will provide a further application to radially symmetric second-order
systems.

It is well known by classical results [2,16,18] that the asymmetric oscillator

x ′′ + μx+ − νx− = 0

has nontrivial solutions if the couple (μ, ν) belongs to the so-called Dancer–Fucik spectrum

� =
⋃

j∈N
C j ,

where

C0 = {
(μ, ν) ∈ R

2 :μν = 0
}

and, for j ≥ 1,

C j =
{
(μ, ν) ∈ R

2 : μ > 0, ν > 0 such that
π

T

(
1√
μ

+ 1√
ν

)
= 1

j

}
.

In particular, it consists of the two axes, i.e.,C0, and of an infinite number of curvesC j having
a vertical asymptote μ = μ j and a horizontal one ν = ν j with μ j = ν j = ( jπ/T )2.

The study of asymmetric nonlinearities f satisfying

ν↓ ≤ lim inf
x→−∞

f (t, x)

x
≤ lim sup

x→−∞
f (t, x)

x
≤ ν↑,

μ↓ ≤ lim inf
x→+∞

f (t, x)

x
≤ lim sup

x→+∞
f (t, x)

x
≤ μ↑,

for some suitable constants in [0,+∞], providing the existence of periodic solutions to
Eq. (1), presents a wide literature (see e.g., [1,2,4–6,11,16] or the survey [18] and the refer-
ences therein). The existence is strictly related to the position of the rectangle (or generalized
rectangle) W = [μ↓, μ↑] × [ν↓, ν↑] with respect to the set �:

• if the distance between the setsW and� is positive (nonresonance), we have the existence
of at least one periodic solution (cf. [1,4,6]);

• if W is bounded and W ∩ � = {(μ↓, ν↓)} or W ∩ � = {(μ↑, ν↑)} (simple resonance),
the existence of a periodic solution can be obtained by the introduction of a Landesman–
Lazer type of condition (cf. [5]) or of an Ahmad–Lazer–Paul type of condition (cf. [17]);

• if W is bounded and W ∩ � = {(μ↓, ν↓), (μ↑, ν↑)} (double resonance), the existence
of a periodic solution can be obtained by the introduction of a double Landesman–Lazer
type of condition (cf. [7,8,10]).

In this paperwewill present an existence result of periodic solutions for the double-resonance
case in which W is unbounded. Such a situation presents three possible interpretations: non-
linearities with one-sided superlinear growth, nonlinearities with a singularity and equations
with impacts. In this paper we will present the first two situations, and the last one has been
considered by the author recently in [19]. We are going to treat nonlinearities satisfying the
following asymptotic asymmetric behavior.

(A) Assume

lim
x→−∞

f (t, x)

x
= +∞ (2)
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and that there exists a constant c > 0 and an integer N > 0 such that

μN x − c ≤ f (t, x) ≤ μN+1x + c, (3)

for every x > 0 and every t ∈ [0, T ], where μ j = ( jπ/T )2.

Notice that the specular case can also be considered as well. The case of a nonlinearity sat-
isfying a nonresonant one-sided superlinear growth was studied, e.g., in [6]. However, the
literature is richer in the case of equations with a singularity. In particular, some generaliza-
tions of the result by Del Pino et al. [3], to the case of simple resonance, have been provided
by Wang [21] by the introduction of Lazer–Leach conditions, and by Fonda and Garrione
in [9], where the authors provide a Landesman–Lazer type of condition. To the best of our
knowledge an existence result for nonlinearities satisfying a double-resonance condition has
not been provided yet.

We are now ready to state the first of the main results of this paper. We address the reader
to Sect. 3 for corresponding theorems related to scalar equations with a singularity and to
Sect. 4 for some applications to radially symmetric systems.

Theorem 1.1 Assume (A) and, for every ϕ ∈ [0, T ], the Landesman–Lazer conditions
∫ T

0
lim inf
x→+∞

(
f (t, x) − μN x

)
φN (t + ϕ) dt > 0, (4)

∫ T

0
lim sup
x→+∞

(
f (t, x) − μN+1x

)
φN+1(t + ϕ) dt < 0, (5)

where φ j is defined as

φ j (t) =
{
sin

(√
μ j t

)
t ∈ [0, T/j]

0 t ∈ [T/j, T ],
extended by T -periodicity to the whole real line. Then, Eq. (1) has at least one T -periodic
solution.

It is possible to relax the Landesman–Lazer conditions (4) and (5) in the previous theorem,
requiring that the nonlinearity f satisfies the following additional hypothesis.

(H) For every τ ∈ [0, T ] and for every ζ > 0, consider the set I(τ, ζ ) = [τ − ζ, τ + ζ ] and
the functions

f1,ζ,τ (x) = min
t∈I(τ,ζ )

f (t, x) f2,ζ,τ (x) = max
t∈I(τ,ζ )

f (t, x)

with their primitives Fi,ζ,τ (x) = ∫ x
0 fi,ζ,τ (ξ) dξ . We assume that

lim
ζ→0

(
lim

x→−∞
F2,ζ,τ (x)

F1,ζ,τ (x)

)
= 1

uniformly in τ ∈ [0, T ].
The variant of Theorem 1.1 is thus given by the next one.

Theorem 1.2 Assume (A), (H) and, for every ϕ ∈ [0, T ], the Landesman–Lazer condi-
tions (4) and (5) where φ j is defined as

φ j (t) = ∣∣sin
(√

μ j t
)∣∣ .

Then, Eq. (1) has at least one T -periodic solution.
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Let us briefly explain the main differences between the two types of Landesman–Lazer
conditions adopted in the previous theorems. The one involved in Theorem 1.1 is stronger
than the one introduced in Theorem 1.2. In fact, it is easy to verify that the first implies the
second. Hence, we can replace the stronger Landesman–Lazer conditions of Theorem 1.1,
with the weaker ones by introducing the additional assumption (H). Roughly speaking, it
requires that the superlinear behavior of the nonlinearity at−∞ is an infinity of the same order
when t varies, as explained in the following example, where we show some nonlinearities
satisfying (or not) such a hypothesis.

Example 1.3 Suppose that there exists a function h :R → R satisfying

lim
x→−∞

h(x)

x
= +∞,

such that

0 < lim inf
x→−∞

f (t, x)

h(x)
≤ lim sup

x→−∞
f (t, x)

h(x)
< +∞.

Then, (H) holds. As a particular situation, we can consider a nonlinearity f which can be
split (when x < 0) as f (t, x) = q(t)h(x) + p(t, x) with q(t) > 0 and limx→−∞ p(t,x)

h(x)
= 0

uniformly in t .
As a direct example, (H) holds for nonlinearities f not depending on t when x < 0, or

nonlinearities as f (t, x) = (1 + sin2(t))x5 + x3, or f (t, x) = x3 + sin2(t)x2.
Otherwise, for example, if f (t, x) = x3 + sin2(t)x5 when x < 0, then f does not satisfy

(H).

2 Proof of Theorems 1.1 and 1.2

By degree theoretic arguments, the proof consists in finding a common a priori bound for all
the T -periodic solutions of the differential equations

x ′′ + gλ(t, x) = 0, (6)

where λ ∈ [0, 1] and
gλ(t, x) = λ f (t, x) + (1 − λ)h(t, x),

with

h(t, x) =

⎧
⎪⎨

⎪⎩

f (t, x) x < −1

μx + x[μx − f (t, x)] −1 ≤ x ≤ 0

μx x > 0

defining μ = (μN + μN+1)/2.
In particular we will find a Rgood > 0 such that every T -periodic solution of (6) satisfies

x(t)2+x ′(t)2 < R2
good for every t . In 1993, Fabry and Habets proved in [6] that there exists at

least one T -periodic solution to (6) with λ = 0, by the use of degree arguments. In particular,
they found a similar a priori bound RFH for all the solutions of

x ′′ + λ̃h(t, x) + (1 − λ̃)(μx+ − νx−) = 0,

with λ̃ ∈ [0, 1] and (μ, ν) /∈ �, thus solving the case of nonresonant nonlinearities. Hence,
simply asking Rgood > RFH , using Leray–Schauder degree theory, the proof of Theorems 1.1
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and 1.2 easily follows. In Sect. 2.1, we will provide some preliminary lemmas which make
use of some phase–plane techniques; then, in Sect. 2.2 we will prove the existence of the
common a priori bound.

2.1 Some preliminary lemmas

In this section we present some estimates on the behavior of the solutions to (6) provided
by the use of some phase–plane techniques. We will not present all the proofs, and we leave
some of them to the reader as an exercise of mere computation, referring to other papers for
comparisons. By the way, some of the statements are well known in literature.

Let us set

f1(x) = min
t∈[0,T ] f (t, x) and f2(x) = max

t∈[0,T ] f (t, x),

and then, by (2), there exists d < 0 such that

f1(x) < f (t, x) < f2(x) < 0

for every x < d , with limx→−∞ f2(x)/x = +∞. Define the primitives Fi (x) = ∫ x
d fi (ξ)dξ .

Notice that F1 > F2 are decreasing functions when x < d .
For every solution x of Eq. (6) the couple (x, y) = (x, x ′) is a solution of the planar

system
{

x ′ = y

−y′ = gλ(t, x).
(7)

We will say that

(x, y) is R-large, if x2(t) + y2(t) > R2 for every t ∈ [0, T ], (8)

where (x, y) is a solution of (7).
We will also consider the parameterization of such solutions in polar coordinates

{
x(t) = ρ(t) cos θ(t)

y(t) = ρ(t) sin θ(t)

where the angular velocity and the radial velocity of 0-large solutions are given by

−θ ′(t) = y2(t) + x(t)gλ(t, x(t))

x2(t) + y2(t)
,

ρ′(t) = y(t)[x(t) − gλ(t, x(t))]√
x2(t) + y2(t)

.

An easy computation gives us the following.

Remark 2.1 There exists R0 > 0 such that every R0-large solution of (7) rotates clockwise
(i.e., −θ ′(t) > 0).

In what follows the constant R0 will be enlarged in order to obtain some additional
properties on R0-large solutions.
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Fig. 1 A R0-large solution and the instants t1, . . . , t8

Consider a R0-large solution (x, y); then, there exist some instants ti (see Fig. 1) such
that

x(t1) = d, y(t1) > 0,
x(t2) = 0, y(t2) > 0,
x(t3) > 0, y(t3) = 0,
x(t4) = 0, y(t4) < 0,
x(t5) = d, y(t5) < 0,
x(t6) < 0, y(t6) = 0,
x(t7) = d, y(t7) > 0,
x(t8) = 0, y(t8) > 0.

The following lemma can be obtained easily (see e.g., [10,11] for details).

Lemma 2.2 For every ε > 0, it is possible to find Rε > R0, such that every Rε-large solution
of (7) satisfies

t5 − t1 ∈
(

π√
μN+1

− ε,
π√
μN

+ ε

)
=

(
T

N + 1
− ε,

T

N
+ ε

)

and t7 − t5 < ε.

Hence, we obtain easily the next one, choosing ε sufficiently small.

Lemma 2.3 It is possible to find R0, such that every R0-large T -periodic solution of (7)
performs exactly N or N + 1 rotations around the origin in the phase–plane.

With a similar reasoning, we can prove the following.
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Lemma 2.4 For every ε > 0, it is possible to find Rε > R0, such that every Rε-large solution
of (7) satisfies

T

N + 1
− ε < t4 − t2 <

T

N
+ ε and t8 − t4 < ε.

The following lemma gives us some information on the dynamics when x > d .

Lemma 2.5 It is possible to find R0-large enough to have the existence of some positive
constants θ0 and �0 such that every R0-large solution to (7), when written in polar coordinates,
satisfies

−ϑ ′(t) > ω0 and |ρ′(t)| ≤ �0ρ(t)

when x(t) > d. So that, for κ = �0/ω0,
∣∣∣∣

dρ

d(−θ)

∣∣∣∣ < κρ.

We leave the proof to the reader as an exercise. We refer to [11,13] for details.

Remark 2.6 A direct consequence of the previous lemma is that

e−κπ/2 x(t3) ≤ |y(t j )| ≤ eκπ/2 x(t3), with j = 2, 4,

if (x, y) is R0-large.

Let us now focus our attention on the dynamics when x < d . We are going to prove
that there exists a functions T such that y(t7) < T (y(t5)), thus permitting to find a second
function L such that y(t8) ≤ L(y(t2)). We will have consequently a control on the behavior
of solutions escaping from the origin. We start defining the energy functions

Hi (x, y) = 1

2
y2 + Fi (x), i = 1, 2.

Then, we have

d

dt
H1(x(t), y(t)) < 0 if y(t) > 0,

d

dt
H1(x(t), y(t)) > 0 if y(t) < 0 (9)

and
d

dt
H2(x(t), y(t)) < 0 if y(t) < 0,

d

dt
H2(x(t), y(t)) > 0 if y(t) > 0. (10)

These functions give us a control on the behavior of the solutions, see Fig. 2a. In particular,
we have that

−√
2F1(x(t6)) < y(t5) < −√

2F2(x(t6)),√
2F2(x(t6)) < y(t7) <

√
2F1(x(t6)),

thus giving us y(t7) < T (y(t5)), where

T (υ) =
√
2F1

(
F−1
2 (υ2/2)

)
≥ υ.

By the estimate in Lemma 2.5, we have
√

y(t5)2 + d2 < eκπ+a y(t2) and y(t8) <

ea
√

y(t7)2 + d2, where a = κ arcsin(d/R0). Summing up, we obtain

y(t8) ≤ L(y(t2)) with L(υ) = ea

√
T 2

(√
e2(κπ+a) υ2 − d2

)
+ d2. (11)
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Fig. 2 a The level subsets χ1 and χ2 of the energy functions H1 and H2 control the behavior of the solution
(x, y) of system (7) when x < d. b The solution, while it rotates around the origin, is guided by some curves,
thus permitting to obtain the estimate in (11). The curves γ1 and γ2 can be found by using the estimate in
Lemma 2.5

The same argument can be obtained by gluing together some guiding curves in the plane
(x, y) following an idea introduced in [11] and developed in [12,13,20] in different situations.
Figure 2b illustrates this idea.

Moreover, by (2), we can suppose R0 sufficiently large to have

2F(−r) − r2 > 2F(x) − x2 for every r ≥ R0 and x ∈ (−r, d). (12)

In particular, once fixed r ≥ R0, we have

Hi (x, y) < Hi (−r, 0), i = 1, 2,

for every (x, y) satisfying x2 + y2 < r2 and x < d . In other words, if R0 is sufficiently
large, the level subsets χi of the energy functions Hi passing through the point (−R0, 0) do
not enter the open ball of radius R0, see Fig. 3b. By (2), we can also suppose that

2F2(−R0) > R2
0e

2(κπ+a). (13)

We can now state the following lemma.
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Fig. 3 a If x(τ0) > 0 or x(τ0) > d with y(τ0) < 0, then the solution re-enters the ball of radius R0 before
exiting the bigger ball of radius R(R0), excluding this situation. b In the other cases, the level curves χ1
and χ2, respectively, of the energy functions H1 and H2, drive the solutions, permitting us to find the desired
estimate y(τ2) < ŷ

Lemma 2.7 There exists R(R0) > R0 such that every T -periodic solution of (7) such that
x2(t0) + y2(t0) > R(R0) at a certain time t0 is a R0-large solution.

Proof Set R(R0) = LN+2(ŷ) with ŷ = ea
√
2F1(−R0) + d2. Argue by contradiction and

suppose the existence of a T -periodic solution (x, y) of (7), such that, for some instants τ0
and τ1 with τ0 < τ1 ≤ τ0 + T , it satisfies x2(τ0) + y2(τ0) = R2

0 , and x2(t) + y2(t) > R2
0

for t ∈ (τ0, τ1) and x2(τ1) + y2(τ1) > R(R0).
By Lemma 2.1, set τ2 > τ0 the smallest instant such that x(τ2) = 0 and y(τ2) > 0. We

prove now that y(τ2) < ŷ.
First of all, it could not be x(τ0) > 0, or x(τ0) > d with y(τ0) < 0: The solution would

enter the ball of radius R0 too early (see Fig. 3a). In fact, using Lemma 2.5, we can find an
instant τ3 ∈ (τ0, τ2), with x(τ3) = d and −eκπ+a R0 < y(τ3) < 0. Then, by (13) and the
estimates in (9) and (10), we obtain the contradiction: The solution re-enters the ball guided
by the level curve of H2(x, y) = H2(d,−eκπ+a R0), denoted by χ0 in Fig. 3a.

The possibility of having x(τ0) ≤ d with y(τ0) < 0 is avoided by the guiding-level curve
H2(x, y) = H2(−R0, 0), denoted by χ2 in Fig. 3b. So, it remains the case x(τ0) ≤ 0 with
y(τ0) ≥ 0. In this situation the guiding-level curve H1(x, y) = H1(−R0, 0), denoted by χ1

in Fig. 3b, controls the solution when x < d and then by the estimate in Lemma 2.5 we
obtain y(τ2) < ŷ.

Now, in the interval [τ2, τ1] the solution performs a certain number of complete rotations
around the origin, which is less than N + 2 thanks to Lemma 2.3. Hence, by (11), y(τ1) <

LN+2(y(τ2)) < LN+2(ŷ) = R(R0) thus giving a contradiction. �

Some easy consequences of the previous lemma are the followings.

Remark 2.8 If a T -periodic solution x of (6) satisfies ‖x‖∞ > R(R), then Lemmas 2.3, 2.5
and Remark 2.6 hold for (x, y) = (x, x ′) solution of (7).
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Remark 2.9 Suppose to have a sequence xn of T -periodic solutions of (7) such that
limn max[0,T ](x2n (t) + y2n (t)) = +∞ then limn ‖xn‖∞ = +∞.

The proof of this last remark easily follows by noticing that Lemma 2.7 holds similarly
for every R > R0.

Repeating some of the arguments contained in the proof of Lemma 2.7, we can see that
x(t6) > M(x(t3)) where M(υ) = F−1

2

( 1
2 (e

κπ+2a υ2 − d2)
)
. In particular

lim
r→+∞

M(r)

r
= 0.

As an immediate consequence, we have the following lemma.

Lemma 2.10 Suppose to have a sequence xn of T -periodic solutions to (6), with
limn ‖xn‖∞ = +∞, then

lim
n

min xn(t)

‖xn‖∞
= 0.

2.2 The a priori bound

The proof of Theorems 1.1 and 1.2 is given essentially by the validity of the following
proposition.

Proposition 2.11 There exists Rgood sufficiently large, such that every T -periodic solution
of (7) satisfies x2(t) + y2(t) < Rgood for every t ∈ [0, T ].
Proof We argue by contradiction and suppose that there exists a sequence of T -periodic
solutions (xn, yn) of (7), with λ = λn , such that max[0,T ] x2n (t) + y2n (t) > n2. We have
immediately, by Remark 2.9, that limn ‖xn‖∞ = +∞. Let us denote by t̄n the point of
maximum of xn , i.e., such that xn(t̄n) = ‖xn‖∞. We can assume, by Lemma 2.7, all these
functions to be R0-large. In particular, by Lemma 2.3, all the solutions must perform N or
N + 1 rotations around the origin.

Consider the sequence of normalized functions

vn = xn

‖xn‖∞
,

which are solutions to

v′′
n + gλn (t, xn(t))

‖xn‖∞
= 0. (14)

We have, by Lemma 2.10, vn ≤ 1 = vn(t̄n) and limn min vn = 0. Clearly, v′
n = yn/‖xn‖∞

and, byRemark 2.6, ‖v′
n‖∞ ≤ eκπ/2. For this reason, up to subsequence, vn convergesweakly

in H1 and uniformly to a T -periodic nonnegative function v, with ‖v‖∞ = 1. Moreover,
we can assume that λn → ¯lambda and that all the solutions vn draw in the phase–plane the
same number of rotations around the origin K ∈ {N , N + 1}.

We can find some instants tn
r and sn

r such that the solutions vn , in the phase–plane (x, y),
cross the positive y semi-axis at tn

r and the negative y semi-axis at sn
r , i.e.,

tn
1 < sn

1 < tn
2 < sn

2 < · · · < tn
K < sn

K < tn
K+1 = tn

1 + T, (15)

such that, for every r ∈ {1, . . . , K },
xn(t) > 0 for every t ∈ (tn

r , sn
r ),

xn(t) < 0 for every t ∈ (sn
r , tn

r+1).
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Up to subsequences, we can assume that tn
r → ξ̌r and sn

r → ξ̂r such that

ξ̌1 ≤ ξ̂1 ≤ ξ̌2 ≤ ξ̂2 ≤ · · · ≤ ξ̌K ≤ ξ̂K ≤ ξ̌K+1 = ξ̌1 + T .

By Lemma 2.4, we have limn tn
r+1 − sn

r = 0, then ξ̂r = ξ̌r+1. Let us simply denote ξr =
ξ̂r = ξ̌r+1. Clearly, v(ξr ) = 0. By the estimate in Lemma 2.4, we can easily conclude that
necessarily ξr+1 − ξr = T/K .

Being ‖v‖∞ = 1 we are sure that there exists an index r such that v > 0 in the interval
Jr = (ξr , ξr+1). Let us state the following claims, which will be proved in Sect. 2.3, for the
reader convenience. We emphasize that the proof of these claims is a crucial part of the proof
of Theorems 1.1 and 1.2.

Claim 2.12 Suppose that v is positive in at least one instant of an interval Jr = (ξr , ξr+1),
then v(t) > 0 for every t ∈ Jr .

Claim 2.13 If (H) holds, then we have v > 0 in the interval Jr = (ξr , ξr+1), for every index
r . Moreover, the right and left derivatives at ξr exist with −v′(ξ−

r ) = v′(ξ+
r ).

We will now prove that v solves v′′ + μK v = 0 for almost every t . By the use of
some functions with compact support in Jr , we can prove (see [9] for details) that v ∈
H2
loc(Jr ) ∩ C1(Jr ) is a weak solution of v′′ + p(t)v = 0 in any interval Jr , where p(t) is

such that μN ≤ p(t) ≤ μN+1.
We need to show that p(t) = μK for almost every t ∈ Jr . Consider one of the intervals

Jr in which v remains positive (Claim 2.12 guarantees that v remains positive in the whole
interval Jr ). We will simply denote the extremals of Jr with α and β, i.e., we set (α, β) = Jr

for the reader convenience. We have β −α = T/K . Introducing modified polar coordinates
{

v(t) = 1√
μK

ρ̃(t) cos(ϑ̃(t))

v′(t) = ρ̃(t) sin(ϑ̃(t))

we obtain, integrating −ϑ̃ ′ on [α, β], if K = N

π = √
μN

∫ β

α

p(t)v(t)2 + v′(t)2

μN v(t)2 + v′(t)2
dt ≥ √

μN
T

N
= π

and if K = N + 1

π = √
μN+1

∫ β

α

p(t)v(t)2 + v′(t)2

μN+1v(t)2 + v′(t)2
dt ≤ √

μN+1
T

N + 1
= π,

thus giving us, in both cases, p(t) = μK for almost every t ∈ [α, β]. In particular, for every
t ∈ Jr , if (H) holds

v(t) = sin
(√

μN+1(t − ξr )
)
, (16)

thanks to Claim 2.13, while, if it does not hold, we have only

v(t) = cr sin
(√

μN+1(t − ξr )
)
, (17)

with cr ∈ [0, 1] and at least one of them is equal to 1, being ‖v‖∞ = 1. Moreover, we have
necessarily λn → λ̄ = 1.

We still consider the interval (α, β) = Jr for a certain index r . The function v is a solution
of the Dirichlet problem:

{
v′′ + μK v = 0

v(α) = 0, v(β) = 0.

123



2018 A. Sfecci

Denote by 〈 · , · 〉 and ‖ · ‖2, respectively, the scalar product and the norm in L2(α, β).
Call φK the solution of the previous Dirichlet problem with ‖φK ‖2 = 1 and introduce the
projection of xn and vn on the eigenspace generated by φK :

x0n = 〈 xn , φK 〉 φK and v0n = 〈 vn , φK 〉 φK .

Being v = ‖v‖2φK , we have v0n → v uniformly in [α, β] and v0n ≥ 0, for n sufficiently large.
Multiplying Eq. (6) by v0n and integrating in the interval [α, β] we obtain

∫ β

α

gλn (t, xn(t))v0n(t) dt = −
∫ β

α

(x0n )′′(t)v0n(t) dt

= −
∫ β

α

x0n (t)(v0n)′′(t) dt =
∫ β

α

μK x0n (t)v0n(t) dt

=
∫ β

α

μK xn(t)v0n(t) dt.

Defining rn(t, x) = gλn (t, x) − μK x we have

∫ β

α

rn(t, xn(t))v0n(t) dt = 0

and, applying Fatou’s lemma,
∫ β

α

lim sup
n→∞

rn(t, xn(t))v0n(t) dt ≥ 0 ≥
∫ β

α

lim inf
n→∞ rn(t, xn(t))v0n(t) dt.

It is easy to see that for every s0 ∈ (α, β) it is possible to find n̄(s0) such that xn(s0) > 0
for every n > n̄(s0). So, pointwise, for n large enough rn(t, xn(t)) = λn f (t, xn(t)) + (1 −
λn)μxn(t) − μK xn(t). Hence, being v0n → v and λn → 1, we have, if K = N

∫ β

α

lim inf
x→+∞[ f (t, x) − μN x]v(t) dt ≤ 0

and if K = N + 1
∫ β

α

lim sup
x→+∞

[ f (t, x) − μN+1x]v(t) dt ≥ 0.

The previous estimates contradict the hypotheses in (4) if K = N or in (5) if K = N + 1.
Notice that, by Claim 2.13, if (H) holds, then this reasoning can be repeated for every interval
Jr thus obtaining the contradiction being v as in (16) and not as in (17). �

2.3 Proof of Claims 2.12 and 2.13

In this section we prove Claims 2.12 and 2.13. We have preferred to postpone their proof
because the arguments we will use are totally independent by the rest of the proof of Propo-
sition 2.11. This section is inspired by some recent results obtained by the author in [19] for
impact systems at resonance (see also [12]).

The functions vn = xn/‖xn‖∞ solve Eq. (14), which we rewrite in a simpler form

v′′
n + hn(t, vn) = 0,

where, for every n,
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|hn(t, v)| ≤ d(v + 1) for every t ∈ [0, T ] and v ≥ 0, (18)

for a suitable constant d > 0.

Remark 2.14 Let [a, b] ⊂ Jr such that v is positive in [a, b]. The sequence vn C1-converges
to v in [a, b].
Proof We have already seen that (vn)n is bounded in C1, and by (18) as an immediate
consequence we get |v′′

n (t)| ≤ |hn(t, vn)| ≤ 2d for every t ∈ [a, b]. So, being vn bounded
in C2 in such a interval, by the Ascoli-Arzelà theorem, we have that vn C1-converges to v in
[a, b]. �


We can now prove the first of the two claims.

Proof of Claim 2.12 Let s̄ ∈ Jr be the point of maximum of v restricted to the interval Jr

with v(s̄) = v̄. Suppose that v vanishes at s0 ∈ Jr , and let U0 be a closed neighborhood
of s0 contained in Jr . We assume without loss of generality that U0 ⊂ (s̄, ξr+1), the case
U0 ⊂ (ξr , s̄) follows similarly. Notice that v′

n(t) < −e−κπ/2v̄/2 < 0 in U0 as a consequence
of Lemma 2.5 (cf. Remark 2.6), so that the previous lemma forces v to be negative on a right
neighborhood of s0, thus giving us a contradiction. �


The following lemma gives us the estimates on the left and right derivatives when v

vanishes.

Lemma 2.15 Suppose that v is positive in the interval Jr = (ξr , ξr+1), then the following
limits exist

v′(ξ+
r ) = lim

t→ξ+
r

v′(t) > 0 and v′(ξ−
r+1) = lim

t→ξ−
r+1

v′(t) < 0.

Proof We will prove only the existence of the second limit, and the other case follows
similarly. In the interval Jr the function v has a positive maximum; thus, we can assume that
maxJr v > M andmaxJr vn > M for a suitable constant M ∈ (0, 1) for large indexesn. Using
Remark 2.6, we obtain that −v′

n(sn
r+1) ∈ [M/c, cM], where c = eκπ/2. So, we can assume

up to subsequence that limn −v′
n(sn

r+1) = ȳ > 0. We now prove that limt→ξ−
r+1

−v′(t) = ȳ.

Fix ε > 0 and s ∈ (0, ε). It is possible to find, for every n sufficiently large, that the following
inequalities hold:

sn
r+1 > ξr+1 − s > sn

r+1 − 2ε,∣∣v′
n(ξr+1 − s) − v′(ξr+1 − s)

∣∣ < ε,∣∣v′
n

(
sn
r+1

) + ȳ
∣∣ < ε.

Moreover, by (18), for every δ > 0
∣∣v′

n

(
sn
r+1

) − v′
n

(
sn
r+1 − δ

)∣∣ < 2dδ,

thus giving us that
∣∣v′(ξr+1 − s) + ȳ

∣∣ < (4d + 2)ε.

The previous inequality holds for every ε > 0 and s ∈ (0, ε). The lemma is thus proved. �

In what follows we study how the validity of hypothesis (H) gives more information on

the function v.
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Lemma 2.16 Assume (H), then for every index r ,

lim
n

−v′
n

(
sn
r

)

v′
n

(
tn
r+1

) = lim
n

−x ′
n

(
sn
r

)

x ′
n

(
tn
r+1

) = 1.

Proof Fix r and define the interval In = (sn
r , tn

r+1), whose length tends to zero for n large.
Using the notation introduced in Fig. 1, by the estimates in Lemma 2.5, we can obtain

a−(yn(t4)) ≤
√

yn(t5)2 + d2 ≤ a+(yn(t4)),

where a−(υ) = e−a(υ)υ and a+(υ) = ea(υ)υ with a(υ) = κ arcsin(d/υ). Moreover, by the
same argument which gave us (11), we have

T In
2,1 (yn(t5)) ≤ yn(t7) ≤ T In

1,2 (yn(t5)),

where

T In
i, j (α) =

√

2FIn
i

((
FIn

j

)−1
(α2/2)

)
,

with FIn
i = Fi,ζn ,τn defined as in (H), being I(τn, ζn) = In . Then, again by Lemma 2.5, we

have

a−
(√

yn(t7)2 + d2

)
≤ yn(t8) ≤ a+

(√
yn(t7)2 + d2

)
.

Notice that limυ→∞ a±(υ) = 1, and by (H) we have also

lim
n

lim
α→∞

T In
i, j (α)

α
= 1.

Hence, the desired estimate follows. �

The previous estimate is the main ingredient we need to prove the following lemma.

Lemma 2.17 Assume (H). Suppose that v is positive for a certain t0 ∈ Jr = (ξr , ξr+1),
then ξr and ξr+1 are isolated zeros. Hence, by Claim 2.12, as an immediate consequence v

is positive in every interval Jr .

Proof We just prove that ξr+1 is an isolated zero. By the argument presented in the proof of
Lemma 2.15, if the left derivative v′(ξ−

r+1) = −η < 0, then we can assume−v′
n(sn

r+1) > η/2
forn large enough. Suppose by contradiction that there exists ε0 ∈ (0, η/8d),withd as in (18),
such that v(ξr+1 + ε0) = 0. For every n large enough we have |tn

r+2 − ξr+1| < ε0/4 and
by Lemma 2.16 v′

n(tn
r+1) > η/2. Being |v′′

n | ≤ 2d when vn is positive we can show that if
s < η/4d , then vn(tn

r+2 + s) > s η/4. By construction ξr+1 + ε0 = tn
r+2 + s0 for a certain

s0 ∈ (ε0/2, η/4d), so that we obtain vn(ξr+1 + ε0) = vn(tn
r+2 + s0) > ηε0/8 for every n

large enough, thus contradicting vn → v. �

We can now prove the remaining claim.

Proof of Claim 2.13 The first part of the statement is given by Lemma 2.17. The estimate
on the derivatives easily follows by Lemmas 2.15 and 2.16, remembering that in the proof of
Lemma 2.15 we have shown that limn = v′

n(sn
r ) = v′(ξ−

r ) and limn = v′
n(tn

r+1) = v′(ξ+
r ). �
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3 Nonlinearities with a singularity

In this section we provide a result of existence of periodic solutions to scalar differential
equations with a singularity in the spirit of Theorems 1.1 and 1.2. In particular, we consider
the differential equation

x ′′ + f (t, x) = 0, (19)

where f :R × (0,+∞) → R is a continuous function, T -periodic in the first variable. The
nonlinearity f presents a strong singularity at x = 0, in the following sense.

(A0) There exist δ > 0 and two continuous functions f1, f2 : (0, δ) → R such that

f1(x) < f (t, x) < f2(x) < 0, for every t ∈ R and x ∈ (0, δ),

satisfying

lim
x→0+ fi (x) = −∞ and

∫ δ

0
fi (ξ) dξ = −∞, i = 1, 2.

We assume that the nonlinearity f has an asymptotically linear growth at infinity, as
follows.

(A∞) There exist a constant c > 0 and an integer N > 0 such that

μN x − c ≤ f (t, x) ≤ μN+1x + c,

for every x > 1 and every t ∈ [0, T ].
The corresponding Theorem 1.1 can be reformulated for the differential Eq. (19) in this

way.

Theorem 3.1 Assume both (A0) and (A∞). Moreover, for every ϕ ∈ [0, T ], assume the
Landesman–Lazer conditions

∫ T

0
lim inf
x→+∞

(
f (t, x) − μN x

)
φN (t + ϕ) dt > 0, (20)

∫ T

0
lim sup
x→+∞

(
f (t, x) − μN+1x

)
φN+1(t + ϕ) dt < 0, (21)

where φ j is defined as

φ j (t) =
{
sin

(√
μ j t

)
t ∈ [0, T/j]

0 t ∈ [T/j, T ]
extended by T -periodicity to the whole real line. Then, Eq. (19) has at least one T -periodic
solution.

As in the previous section, we can introduce an additional assumption on the behavior of
f near zero, in order to obtain a different version of the previous theorem.

(H̃) For every τ ∈ [0, T ] and for every ζ > 0, consider the set I(τ, ζ ) = [τ − ζ, τ + ζ ] and
the functions

f1,τ,ζ (x) = min
t∈I(τ,ζ )

f (t, x) f2,τ,ζ (x) = max
t∈I(τ,ζ )

f (t, x)
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with their primitives Fi,τ,ζ (x) = ∫ x
δ

fi,τ,ζ (ξ) dξ . We assume that

lim
ζ→0

(
lim
x→0

F2,τ,ζ (x)

F1,τ,ζ (x)

)
= 1

uniformly in τ ∈ [0, T ].
Hence, the corresponding Theorem 1.2 is the following.

Theorem 3.2 Assume (A0), (A∞) and (H̃), and, for every ϕ ∈ [0, T ], the Landesman–Lazer
conditions (20) and (21) where φ j is defined as

φ j (t) = ∣∣sin
(√

μ j t
)∣∣ .

Then, Eq. (19) has at least one T -periodic solution.

Let us here show some nonlinearities satisfying (or not) hypothesis (H̃), cf. Example 1.3.

Example 3.3 Suppose that there exists a function h : (0,+∞) → R satisfying

lim
x→0+ h(x) = −∞,

such that

0 < lim inf
x→0

f (t, x)

h(x)
≤ lim sup

x→0

f (t, x)

h(x)
< +∞.

Then, (H̃) holds. As a particular case, suppose that f can be split (for 0 < x < 1) as
f (t, x) = q(t)h(x) + p(t, x) with q(t) > 0 and lim

x→0

p(t,x)
f (x)

= 0 uniformly in t . In particular

we can consider nonlinearities not depending on t when 0 < x < 1, or nonlinearities as
f (t, x) = −(1 + sin2(t))x−5 − x−3, or f (t, x) = −x−3 − sin2(t)x−2.
Otherwise, if for example f (t, x) = −x−3 − sin2(t)x−5 when 0 < x < 1, then f does

not satisfies (H̃).

The previous theorems can be viewed as the generalization of the result provided by
Del Pino et al. [3] to nonlinearities near resonance. Recently an existence result by the
introduction of Lazer–Leach conditions has been proved by Wang in [21], and we recall the
result obtained by Fonda and Garrione in [9] where the authors provide a Landesman–Lazer
condition on one side, roughly speaking, with respect to the smaller eigenvalue. In particular
the previous theorems can be viewed as an answer to [9, Remark 2.5].

3.1 Proof of Theorems 3.1 and 3.2

The proof of Theorems 3.1 and 3.2 follows step-by-step the proof of Theorems 1.1 and 1.2,
with some wise adjustments. Hence, we will provide only a sketch. We refer to [14] for
detailed computations in this setting.

Let us underline that, up to a rescaling of the x variable, it is not restrictive to assume
δ = 1 in (A0). In [14], Fonda and Toader provide an a priori bound to solutions of Eq. (19)
when the nonlinearity satisfies (A0) and the nonresonance condition

μN < μ↓ ≤ lim inf
x→+∞

f (t, x)

x
≤ lim sup

x→+∞
f (t, x)

x
≤ μ↑ < μN+1.
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As a particular case we find the nonlinearity

h(t, x) =

⎧
⎪⎨

⎪⎩

f (t, x) x < 1/2

(2x − 1)μx + (2 − 2x) f (t, x) 1/2 ≤ x ≤ 1

μx x > 1

with μ = (μN + μN+1)/2. Arguing as in Sect. 2, we can introduce a family of differential
equations

x ′′ + gλ(t, x) = 0, (22)

as in (6), and by standard arguments in degree theory, the proof can be easily obtained when
we can find an a priori bound to the solutions of (22). Arguing as in Sect. 2.1 we consider
the corresponding system

{
x ′ = y

−y′ = gλ(t, x).
(23)

which is now defined for (x, y) ∈ (0,+∞) × R. We consider the function

N (x, y) = 1

x2
+ x2 + y2,

so that, as in (8), we say that

(x, y) is N0 − large, if N (x, y) > N0 for every t ∈ [0, T ]. (24)

All the results contained in Sect. 2.1 (wisely adjusted) can be reformulated by the study
of the phase portrait when 0 < x < 1 and when x > 1. We list some of them for the reader
convenience.

Lemma 3.4 There exists N0 sufficiently large such that every N0-large solution of (23)
rotates clockwise around the point (1, 0) performing exactly N or N + 1 rotations.

Lemma 3.5 For every ε > 0 there existsNε such that everyNε-large solution (x, y) of (23),
performing a complete rotation around the point (1, 0) in the interval [t0, t2], satisfies

t1 − t0 ∈
(

T

N + 1
− ε,

T

N
+ ε

)
and t2 − t1 < ε,

for a certain t1 ∈ (t0, t2), being x > 1 in the interval (t0, t1) and 0 < x < 1 in (t1, t2).

We refer to [14] for the detailed computation giving us the previous lemmas. We simply
underline that the dynamics when 0 < x < 1 (respectively, when x > 1) remember the
dynamics of the one-sided superlinear scalar equation previously studied when x < 0 (resp.
when x > 0). By the construction of some guiding functions we can prove the following
estimates. Notice that the use of guiding functions was adopted also in [14], by the use of a
general method presented by Fonda and the author in [11].

Lemma 3.6 There exists N (N0) > N0 such that every T -periodic solution of (23) such
that N (x(t0), y(t0)) > N (N0) at a certain time t0 is a N0-large solution.

Lemma 3.7 Suppose to have a sequence xn of T -periodic solutions to (23) such that
limn max[0,T ] N (xn(t), yn(t)) = +∞ then limn ‖xn‖∞ = +∞.
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All the four preceding lemmas are themain ingredients to obtain the desired a priori bound
which is given by the next statement.

Proposition 3.8 There exists Ngood sufficiently large, such that every T -periodic solution
of (23) satisfies N (x(t), y(t)) < Ngood for every t ∈ [0, T ].

The proof follows the one of Proposition 2.11: We assume the existence of a sequence of
solutions arbitrarily large in the sense of (24), and we introduce the normalized sequence
vn = xn/‖xn‖∞ converging to a certian nonnegative function v.We can introduce the instants
tn
r and sn

r as in (15) requiring now that xn(t) > 1 for every t ∈ (tn
r , sn

r ) and 0 < xn(t) < 1
for every t ∈ (sn

r , tn
r+1). Similarly, using Lemma 3.5, we can obtain the sequence of instants

ξr such that v(ξr ) = 0, being vn(tn
r ) = vn(sn

r ) = 1/‖xn‖∞ → 0 for n → ∞. So, whenever
we need to consider an interval when v is positive, we can assume the index n sufficiently
large to have xn > 1 and argue similarly as in Sect. 2.2. The analogues of results in Sect. 2.3
follow similarly.

4 Final remarks

We desire now to show an application of Theorems 3.1 and 3.2 to radially symmetric systems
thanks to a general technique introduced in [14,15] by Fonda and Toader. We consider the
differential equation

x′′ + f (t, |x|) x
|x| = 0, (25)

where x ∈ R
d and f :R × (0,+∞) → R is a continuous function, T -periodic in the first

variable. By the radial symmetry of the equation, every solution of (25) is contained in a
plane, so we can pass to polar coordinates and consider solutions to the following system

⎧
⎪⎨

⎪⎩
ρ′′ − L2

ρ3 + f (t, ρ) = 0 ρ > 0

ρ2ϑ ′ = L ,

(26)

where L ∈ R is the angular momentum. We are interested in the existence of periodic
solutions performing a certain number ν of revolutions around the origin in the time kT and
T -periodic in the ρ variable, i.e., such that

ρ(t + T ) = ρ(t),
ϑ(t + kT ) = ϑ(t) + 2πν.

(27)

Applying the Fonda–Toader general principle for rotating solutions (cf. [15, Theorem 2]),
we obtain as a corollary the following theorem, extending to nonlinearities near resonance
the previous result provided in [14, Theorem 2] by the same authors.

Theorem 4.1 If the nonlinearity f in (25) satisfies the hypotheses of Theorem 3.1 (or Theo-
rem 3.2), then for every integer ν, there exists an integer kν such that for every integer k ≥ kν

equation (25) has a kT -periodic solution xk,ν which makes exactly ν revolutions around the
origin in the period kT . In particular the corresponding solution of system (26) satisfies the
periodicity conditions (27). Moreover there exists a constant R, independent by the choice
of ν, such that 1/R < |xk,ν(t)| < R for every t, and if Lk,ν denotes the angular momentum
of the solution xk,ν , then limk→∞ Lk,ν = 0.
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