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Abstract We use Galerkin approximations to show the existence of solution for a class of
elliptic equations on bounded domains in R

2 with subcritical or critical exponential nonlin-
earities. We are able to solve the problem under more general assumptions usually assumed
in the variational the approach, but not in our paper.

Keywords Dirichlet problem · Galerkin approximation · Trudinger–Moser inequality ·
Exponential growth · Conformal geometry

Mathematics Subject Classification 35B38 · 35J92 · 35B33 · 35J62

1 Introduction

We prove the existence of solution of the problem

⎧
⎨

⎩

−�v = λvq + f (v) in �

v > 0 in �

v = 0 on ∂�,

(1)
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where� ⊂ R
2 is a bounded domain with smooth boundary, λ > 0 is a parameter, 0 < q < 1,

f : [0,∞) → R is a continuous function, and

0 ≤ f (s)s ≤ C |s|p exp(α s2) (2)

where 2 < p < +∞ and α > 0.
We state our main result.

Theorem 1.1 Suppose that f : [0,∞) → R is a continuous function satisfying (2). Then
there exists λ∗ > 0 such that for every λ ∈ (0, λ∗), the problem (1) has a positive weak
solution u ∈ H1

0 (�) ∩ H2(�).

Elliptic problems of the type
{−�v = g(x, v) in �

v = 0 on ∂�,
(3)

in � ⊂ R
2 where g(x, v) is continuous and behaves like exp(α|v|2) as |v| → +∞ have

been studied by many authors, see [6,10–12,16,19]. One of the main ingredients is the
Trudinger–Moser inequality introduced in [18,21], namely. Given u ∈ H1

0 (�), then

eσ |u|2 ∈ L1(�) for every σ > 0, (4)

and there exists a positive constant L such that

sup
‖u‖

H1
0 (�)

≤1

∫

�

eσ |u|2dx ≤ L for every σ ≤ 4π. (5)

We say that g has subcritical growth at +∞ if for every σ > 0

lim
s→+∞

|g(x, s)|
eσ s2

= 0

and g has critical growth at +∞ if there exists σ0 > 0 such that

lim
s→+∞

|g(x, s)|
eσ s2

= 0 ∀ σ > σ0 and lim
s→+∞

|g(x, s)|
eσ s2

= +∞ ∀ σ < σ0.

The only assumptions we assume are that 0 < q < 1, f is continuous and satisfies the
growth assumption (2), and thus the nonlinearity g(s) = λsq + f (s) of problem (1) can have
subcritical or critical behavior at +∞.

Most papers treat problem (3) by means of variational methods, and then usually it is
assumed that g has subcritical or critical growth and sometimes g(s) ≥ c|s|p , where c > 0
is a constant, see [12]. Another common assumption on g is the so-called Ambrosetti–
Rabinowitz condition

∃R > 0 and θ > 2 such that 0 < θG(x, s) ≤ sg(x, s) ∀|s| ≥ R and x ∈ �,

where G(s) = ∫ s
0 g(t)dt , see [10–12].

Even when the Ambrosetti–Rabinowitz can be dropped, some conditions have to be
assumed to give compactness of the Palais-Samle sequences or Cerami sequences, see for
instance [16] where they assume

g : � × R is continuous and g(x, 0) = 0;
∃t0 > 0 and M > 0 such that 0 < G(x, s) ≤ Mg(x, s) ∀|s| ≥ t0 and x ∈ �;

0 < 2G(x, s) ≤ sg(x, s) ∀|s| ≥ 0 and x ∈ �.
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A problem in � = R
2 without Ambrosetti–Rabinowitz condition and exponential growth on

g different from (2) has been addressed in [15].
We are able to solve (1) under weaker assumptions by using the Galerkin method. For

that matter, we approximate f by Lipschitz functions in Sect. 2. We solve the approximating
problems (11) in Sect. 3. Section 4 is devoted to prove Theorem 1.1, and in doing so, we
show that the solutions vn of problem (11) are bounded away from zero and converge to a
positive solution of (1).

Problem (1) is also studied in R
2, see for instance [1,2,4,8,22]. Problems with nonlinear-

ities with exponential growth are also important in conformal geometry [9,17].

2 Approximating functions

To prove Theorem 1.1, we approximate f by Lipschitz functions fk : R → R defined by

fk(s) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−k
[
G

(−k − 1
k

) − G(−k)
]
, if s ≤ −k

−k
[
G

(
s − 1

k

) − G(s)
]
, if −k ≤ s ≤ − 1

k
k2s

[
G

(− 2
k

) − G
(− 1

k

)]
, if − 1

k ≤ s ≤ 0
k2s

[
G

( 2
k

) − G
( 1
k

)]
, if 0 ≤ s ≤ 1

k .

k
[
G

(
s + 1

k

) − G(s)
]
, if 1

k ≤ s ≤ k
k

[
G

(
k + 1

k

) − G(k)
]
, if s ≥ k.

(6)

where G(s) = ∫ s
0 f (ξ)dξ .

The following approximation result was proved in [20].

Lemma 2.1 Let f : R → R be a continuous function such that s f (s) ≥ 0 for every s ∈ R.
Then there exists a sequence fk : R → R of continuous functions satisfying

(i) s fk(s) ≥ 0 for every s ∈ R;
(ii) ∀ k ∈ N ∃ck > 0 such that | fk(ξ) − fk(η)| ≤ ck |ξ − η| for every ξ, η ∈ R;
(iii) fk converges uniformly to f in bounded subsets of R.

The sequence fk of the previous lemma has some additional properties.

Lemma 2.2 Let f : R → R be a continuous function satisfying (2) for every s ∈ R. Then
the sequence fk of Lemma 2.1 satisfies

(i) ∀ k ∈ N, 0 ≤ s fk(s) ≤ C1|s|p exp(4α s2) for every |s| ≥ 1
k ;

(ii) ∀ k ∈ N, 0 ≤ s fk(s) ≤ C2|s|2 exp(4α s2) for every |s| ≤ 1
k ,

where C1 and C2 are positive constants independent of k.

Proof of Lemma 2.2 Everywhere in this proof the constant C is the one of (2).
First step. Suppose that −k ≤ s ≤ − 1

k .
By the mean value theorem, there exists η ∈ (

s − 1
k , s

)
such that

fk(s) = −k

[

G

(

s − 1

k

)

− G(s)

]

= −kG ′(η)

(

s − 1

k
− s

)

= f (η)

and

s fk(s) = s f (η).

123



1740 A. L. A. de Araujo, M. Montenegro

Since s − 1
k < η < s < 0 and f (η) < 0, we have s f (η) ≤ η f (η). Therefore,

s fk(s) ≤ η f (η) ≤ C |η|p exp(α |η|2)
≤ C |s − 1

k
|p exp

(

α |s − 1

k
|2

)

≤ C

(

|s| + 1

k

)p

exp

(

α

(

|s| + 1

k

)2
)

≤ C(2|s|)p exp(α (2|s|)2)
= C2p|s|p exp(4α |s|2).

Second step. Assume 1
k ≤ s ≤ k.

By the mean value theorem, there exists η ∈ (
s, s + 1

k

)
such that

fk(s) = k

[

G

(

s + 1

k

)

− G(s)

]

= kG ′(η)

(

s + 1

k
− s

)

= f (η)

and

s fk(s) = s f (η).

Since 0 < s < η < s + 1
k and f (η) > 0, we have s f (η) ≤ η f (η). Therefore,

s fk(s) ≤ η f (η) ≤ C |η|p exp(α |η|2)
≤ C |s + 1

k
|p exp

(

α |s + 1

k
|2

)

≤ C(2|s|)p exp(α (2|s|)2)
= C2p|s|p exp(4α |s|2).

Third step. Suppose that |s| ≥ k, then

fk(s) =
{−k

[
G

(−k − 1
k

) − G(−k)
]
, if s ≤ −k

k[G (
k + 1

k

) − G(k)], if s ≥ k.
(7)

If s ≤ −k, by the mean value theorem, there exists η ∈ (−k − 1
k ,−k

)
such that

fk(s) = k

[

G

(

−k − 1

k

)

− G(−k)

]

= −kG ′(η)

(

−k − 1

k
− (−k)

)

= f (η)

and

s fk(s) = s f (η).

Since −k − 1
k < η < −k < 0 and k < |η| < k + 1

k , we conclude that

s fk(s) = s

η
η f (η) ≤ |s|

|η|C |η|p exp(α |η|2) = C |s||η|p−1 exp(α |η|2)

≤ C |s|
(

k + 1

k

)p−1

exp

(

α

(

k + 1

k

)2
)

≤ C |s|
(

|s| + 1

k

)p−1

exp

(

α

(

|s| + 1

k

)2
)
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≤ C |s|(2|s|)p−1 exp(α (2|s|)2)
≤ C2p−1|s|p exp(4α |s|2). (8)

If s ≥ k, by the mean value theorem, there exists η ∈ (
k, k + 1

k

)
such that

fk(s) = k

[

G

(

k + 1

k

)

− G(k)

]

= kG ′(η)

(

k + 1

k
− k

)

= f (η).

By computations similar to conclude (8) one has

s fk(s) = s f (η) = s

η
η f (η) ≤ |s|

|η|C |η|p exp(α |η|2) ≤ C2p−1|s|p exp(4α |s|2).

Fourth step. Assume − 1
k ≤ s ≤ 1

k , then

fk(s) =
{
k2s

[
G

(− 2
k

) − G
(− 1

k

)]
, if − 1

k ≤ s ≤ 0
k2s

[
G

( 2
k

) − G
( 1
k

)]
, if 0 ≤ s ≥ 1

k .
(9)

If − 1
k ≤ s ≤ 0, by the mean value theorem, there exists η ∈ (− 2

k ,− 1
k ) such that

fk(s) = k2s

[

G

(

−2

k

)

− G

(

−1

k

)]

= k2sG ′(η)

(

−2

k
−

(

−1

k

))

= −ks f (η).

Therefore,

s fk(s) = −ks2 f (η) = −k
s2

η
η f (η) ≤ k

s2

|η|η f (η)

≤ Ck|s|2|η|p−1 exp(α |η|2) ≤ Ck|s|2(2
k
)p−1 exp(α |η|2)

≤ C2p−1|s|2 exp
(

α

(
2

k

)2
)

≤ C2p−1|s|2 exp(4α) ≤ C2p−1 exp(4α)|s|2 exp(4α |s|2). (10)

If 0 ≤ s ≤ 1
k , by the mean value theorem, there exists η ∈ ( 1k ,

2
k ) such that

fk(s) = k2s[G(
2

k
) − G(

1

k
)] = k2sG ′(η)(

2

k
− 1

k
) = ks f (η).

By similar computations to conclude (10) one obtains

s fk(s) = ks2 f (η) = k
s2

|η|η f (η) ≤ C2p−1 exp(4α)|s|2 exp(4α |s|2).

The proof of the lemma follows by taking C1 = C2p ad C2 = C2p−1, where C is given in
(2). ��

3 Approximate equation

To prove Theorem 1.1, we first show the existence of a solution of the following auxiliary
problem ⎧

⎨

⎩

−�v = λvq + fn(v) + 1
n in �

v > 0 in �

v = 0 on ∂�,

(11)

where fn are given by Lemma 2.1 and Lemma 2.2.
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We will use the Galerkin method together with the following fixed point theorem, see [20]
and [14, Theorem5.2.5]. A similar approach was already used in [3].

Lemma 3.1 Let F : Rd → R
d be a continuous function such that 〈F(ξ), ξ 〉 ≥ 0 for every

ξ ∈ R
d with |ξ | = r for some r > 0. Then, there exists z0 in the closed ball Br (0) such that

F(z0) = 0.

The main result in this section is the following.

Lemma 3.2 There exist λ∗ > 0 and n∗ ∈ N such that (11) has a weak nonnegative and
nontrivial solution for every λ ∈ (0, λ∗) and n ≥ n∗.

Proof of Lemma 3.2 Let B = {w1, w2, . . . , wm, . . . } be an orthonormal basis of H1
0 (�) and

define

Wm = [w1, w2, . . . , wm],
to be the space generated by {w1, w2, . . . , wm}. Define the function F : Rm → R

m such that
F(ξ) = (F1(ξ), F2(ξ), . . . , Fm(ξ)), where ξ = (ξ1, ξ2, ..., ξm) ∈ R

m ,

Fj (ξ) =
∫

�

∇v∇w j − λ

∫

�

(v+)qw j −
∫

�

fn(v+)w j − 1

n

∫

�

w j , j = 1, 2, . . . ,m

and v = ∑m
i=1 ξiwi belongs to Wm . Therefore,

〈F(ξ), ξ 〉 =
∫

�

|∇v|2 − λ

∫

�

(v+)q+1 −
∫

�

fn(v+)v+ − 1

n

∫

�

v, (12)

where v+ = max{v, 0} and v− = v+ − v.
Given v ∈ Wm , we define

�+
n =

{

x ∈ � : |v(x)| ≥ 1

n

}

and

�−
n =

{

x ∈ � : |v(x)| <
1

n

}

.

Thus, we rewrite (12) as

〈F(ξ), ξ 〉 = 〈F(ξ), ξ 〉P + 〈F(ξ), ξ 〉N ,

where

〈F(ξ), ξ 〉P =
∫

�+
n

|∇v|2 − λ

∫

�+
n

(v+)q+1 −
∫

�+
n

fn(v+)v+ − 1

n

∫

�+
n

v

and

〈F(ξ), ξ 〉N =
∫

�−
n

|∇v|2 − λ

∫

�−
n

(v+)q+1 −
∫

�−
n

fn(v+)v+ − 1

n

∫

�−
n

v.

Step 1. Since 0 < q < 1, then
∫

�+
n

(v+)q+1 ≤
∫

�

|v|q+1 = ‖v‖q+1
Lq+1(�)

≤ C1‖v‖q+1
H1
0 (�)

. (13)
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By virtue of Lemma 2.2 (i), we get
∫

�+
n

fn(v+)v+ ≤ C1

∫

�+
n

|v+|p exp(4α|v+|2)dx

≤ C1

(∫

�

|v+|p+1
) p

p+1
(∫

�

exp(4α(p + 1)|v+|2)dx
) 1

p+1

≤ C1‖v‖p
L p+1(�)

(∫

�

exp(4α(p + 1)|v|2)dx
) 1

p+1

. (14)

It follows from (13) and (14) that

〈F(ξ), ξ 〉P ≥
∫

�+
n

|∇v|2 − λC0‖v‖q+1
H1
0 (�)

− C1‖v‖p
H1
0 (�)

(∫

�

exp(4α(p + 1)|v|2)dx
) 1

p+1 − C3

n
‖v‖H1

0 (�),

(15)

where C0, C1, and C3 are constants depending only on C , p, and |�|.
Step 2. Since 0 < q < 1, then

∫

�−
n

(v+)q+1 ≤
∫

�−
n

|v|q+1 ≤ |�| 1

nq+1 . (16)

By virtue of Lemma 2.2 (ii), we get
∫

�−
n

fn(v+)v+ ≤ C2

∫

�−
n

|v+|2 exp(4α|v+|2)dx ≤ C2 exp(4α)|�| 1
n2

. (17)

It follows from (16) and (17) that

〈F(ξ), ξ 〉N ≥
∫

�−
n

|∇v|2 − λ|�| 1

nq+1 − C2 exp(4α)|�| 1
n2

− |�| 1
n2

. (18)

Thus, (15) and (18) imply

〈F(ξ), ξ 〉 ≥ ‖v‖2
H1
0 (�)

− λC0‖v‖q+1
H1
0 (�)

− C1‖v‖p
H1
0 (�)

(∫

�

exp(4α(p + 1)|v|2)dx
) 1

p+1

− C3

n
‖v‖H1

0 (�) − λ|�| 1

nq+1 − C2 exp(4α)|�| 1
n2

− |�| 1
n2

.

(19)
Assume now that ‖v‖H1

0 (�) = r for some r > 0 to be chosen later. We have

∫

�

exp(4α(p + 1)|v|2)dx =
∫

�

exp

⎛

⎝4α(p + 1)r2
(

v

‖v‖H1
0 (�)

)2
⎞

⎠ dx (20)

and in order to apply the Trudinger–Moser inequality (5), we must have 4α(p + 1)r2 ≤ 4π .
Consequently,

r ≤
(

π

α(p + 1)

) 1
2

.
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Then

sup
‖v‖

H1
0 (�)

≤1

∫

�

exp

⎛

⎝4α(p + 1)r2
(

v

‖v‖H1
0 (�)

)2
⎞

⎠ dx ≤ L .

Hence,

〈F(ξ), ξ 〉 ≥ r2 − λC0r
q+1 − C1L

1
p+1 r p−C3

n
r − λ|�| 1

nq+1−C2 exp(4α)|�| 1
n2

− |�| 1
n2

.

We need to choose r such that

r2 − C1L
1

p+1 r p ≥ r2

2
;

in other words,

r ≤ 1

(2C1L
1

p+1 )
1

p−2

;

thus, let r = min

{

1

2(2C1L
1

p+1 )
1

p−2
,
(

π
α(p+1)

) 1
2

}

, and hence

〈F(ξ), ξ 〉 ≥ r2

2
− λC0r

q+1 − C3

n
r − λ|�| 1

nq+1 − C2 exp(4α)|�| 1
n2

− |�| 1
n2

.

Now, defining ρ = r2
2 −λC0rq+1, we choose λ∗ > 0 such that ρ > 0 for λ < λ∗. Therefore,

we choose

λ∗ = r1−q

4C0
.

Now we choose n∗ ∈ N such that

C3

n
r + λ|�| 1

nq+1 + C2 exp(4α)|�| 1
n2

+ |�| 1
n2

<
ρ

2
,

for every n ≥ n∗. Let ξ ∈ R
m , such that |ξ | = r , then for λ < λ∗ and n ≥ n∗ we obtain

〈F(ξ), ξ 〉 ≥ ρ

2
> 0. (21)

For every n ∈ N, fn is a Lipschitz function, and then by Lemma 3.1 for everym ∈ N there
exists y ∈ R

m with |y| ≤ r such that F(y) = 0, that is, there exists vm ∈ Wm verifying

‖vm‖H1
0 (�) ≤ r for every m ∈ N

and such that
∫

�

∇vm∇w = λ

∫

�

(vm+)qw +
∫

�

fn(vm+)w + 1

n

∫

�

w, ∀ w ∈ Wm . (22)

Since Wm ⊂ H1
0 (�) ∀m ∈ N and r does not depend on m, then (vm) is a bounded sequence

in H1
0 (�). Then, for some subsequence, there exists v ∈ H1

0 (�) such that

vm ⇀ v weakly in H1
0 (�) (23)

and
vm → v in L2(�) and a.e. in �. (24)
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Let k ∈ N, then for every m ≥ k we obtain
∫

�

∇vm∇wk = λ

∫

�

(vm+)qwk +
∫

�

fn(vm+)wk + 1

n

∫

�

wk, ∀ wk ∈ Wk . (25)

It follows from (23) that
∫

�

∇vm∇wk →
∫

�

∇v∇wk as m → ∞ (26)

and by (24) one obtains
∫

�

fn(vm+)wk →
∫

�

fn(v+)wk as m → ∞. (27)

Indeed, by Lemma 2.1 (i i) it follows that | fn(vm+) − fn(v+)| ≤ cn |vm+ − v+|; hence,
∣
∣
∣
∣

∫

�

fn(vm+)wk −
∫

�

fn(v+)wk

∣
∣
∣
∣ ≤ cn‖wk‖L2(�)‖vm − v‖L2(�) as m → ∞

and then (24) implies (27). By (23), (27), and Sobolev compact imbedding, letting m → ∞
one has

λ

∫

�

(vm+)qwk +
∫

�

fn(vm+)wk + 1

n

∫

�

wk → λ

∫

�

(v+)qwk +
∫

�

fn(v+)wk + 1

n

∫

�

wk .

(28)
By (25), (26), and (28)

∫

�

∇v∇wk = λ

∫

�

(v+)qwk +
∫

�

fn(v+)wk + 1

n

∫

�

wk, ∀ wk ∈ Wk . (29)

Since [Wk]k∈N is dense in H1
0 (�), we conclude that

∫

�

∇v∇w = λ

∫

�

(v+)qw +
∫

�

fn(v+)w + 1

n

∫

�

w, ∀ w ∈ H1
0 (�). (30)

Furthermore, v ≥ 0 in �. In fact, since v− ∈ H1
0 (�), then from (30) we obtain

∫

�

∇v∇v− = λ

∫

�

(v+)qv− +
∫

�

fn(v+)v− + 1

n

∫

�

v−.

Hence,

−‖v−‖2
H1
0 (�)

=
∫

�

∇v∇v− =
∫

�

fn(v+)v− + 1

n

∫

�

v− ≥ 0,

then v− ≡ 0 a.e. in �. ��

4 Proof of the main result

In this section, we prove Theorem 1.1. We will use the unique solution w̃ of the problem
⎧
⎨

⎩

−�w̃ = w̃q in �

w̃ > 0 in �

w̃ = 0 on ∂�,

(31)

for 0 < q < 1, see for instance [7]. The solution w̃ allows us to bound from below the
solutions vn of (11).
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1746 A. L. A. de Araujo, M. Montenegro

The following lemma of [20, Theorem1.1] is used to show that vn converges to a solution
v of (1).

Lemma 4.1 Let � be a bounded open set in R
N , uk : � → R be a sequence function, and

gk : R → R be a sequence of functions such that gk(uk) are measurable in� for every k ∈ N.
Assume that gk(uk) → v a.e. in � and

∫

�
|gk(uk)uk |dx < C for a constant C independent

of k. And suppose that for every B ⊂ R, B bounded, there is a constant CB depending only
on B such that |gk(x)| ≤ CB, for all x ∈ B and k ∈ N. Then v ∈ L1(�) and gk(uk) → v in
L1(�).

Proof of Theorem 1.1 By Lemma 3.2, equation (11) has a weak solution vn ∈ H1
0 (�) for

each n ∈ N. Since 0 < q < 1 and fn is Lipschitz, then λv
q
n + fn(vn) + 1

n ∈ L p(�) with
p > 2. Hence, vn ∈ C1,α(�) with 0 < α < 1, see [13]. Therefore, vn ∈ H1

0 (�) ∩ C1,α(�).
We have by (23) that

vm ⇀ vn weakly in H1
0 (�) as m → ∞. (32)

Therefore,

‖vn‖H1
0 (�) ≤ lim inf

m→∞ ‖vm‖H1
0 (�) ≤ r, ∀ n ∈ N,

and r does not depend on n. Thus, there exists v ∈ H1
0 (�) such that

vn ⇀ v weakly in H1
0 (�) as n → ∞. (33)

By Sobolev compact imbedding for 1 ≤ s < +∞,

vn → v in Ls(�) and a.e. in �.

Note that ⎧
⎨

⎩

−�vn ≥ λv
q
n , in �

vn > 0 in �

vn = 0 on ∂�.

(34)

By rescaling, thus wn = λ
1

q−1 vn and we obtain

−�

(
wn

λ
1

q−1

)

≥ λ

(
wn

λ
1

q−1

)q

implying
− �wn ≥ w

q
n . (35)

By Lemma 3.3 of [5], it follows that wn ≥ w̃ ∀ n ∈ N, that is,

vn ≥ λ
1

1−q w̃ a.e. in �, ∀ n ∈ N. (36)

Letting n → +∞ in (36), we obtain

v ≥ λ
1

1−q w̃ a.e. in �

showing that v > 0 in �.
We prove now that v is a solution of (1). Since

vn → v a.e. in �,
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we have
fn(vn(x)) → f (v(x)) a.e. in �, (37)

by the uniform convergence of Lemma 2.1 (i i i).
Recall from (30) that

∫

�

∇vn∇w = λ

∫

�

(vn)
qw +

∫

�

fn(vn)w + 1

n

∫

�

w, ∀ w ∈ H1
0 (�). (38)

Taking w = vn in (38) and since vn is bounded in H1
0 (�), we obtain

∫

�

fn(vn)vndx ≤ C, (39)

for every n ∈ N, where C > 0 is a constant independent of n. By (37), (39), and by the
expression of fn defined in (6), the assumptions of Lemma 4.1 are satisfied, implying

fn(vn) → f (v) in L1(�). (40)

It follows from (4) that ev2 ∈ L1(�), and in view of (2) andHölder inequality, we conclude
that f (v) ∈ L2(�).

By (38), we have
∫

�

∇v∇w = λ

∫

�

vqw +
∫

�

f (v)w, ∀ w ∈ H1
0 (�). (41)

Since f (v) ∈ L2(�) and λ vq ∈ L2(�), we conclude from (41) that v ∈ H2(�) and

−�v = λ vq + f (v).

The proof of the theorem is complete. ��
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