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Abstract We use Galerkin approximations to show the existence of solution for a class of
elliptic equations on bounded domains in R? with subcritical or critical exponential nonlin-
earities. We are able to solve the problem under more general assumptions usually assumed
in the variational the approach, but not in our paper.
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1 Introduction

We prove the existence of solution of the problem

—Av =2xv? + f(v) in Q
v>0 in Q (1)
v=20 on 092,
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where Q C R? is a bounded domain with smooth boundary, A > 0is a parameter, 0 < ¢ < 1,
f 10, 00) — R is a continuous function, and

0 < f(s)s < Cls|” exp(e s2) )

where 2 < p < +ooand o > 0.
We state our main result.

Theorem 1.1 Suppose that f : [0, 00) — R is a continuous function satisfying (2). Then
there exists A* > 0 such that for every » € (0, \*), the problem (1) has a positive weak
solution u € H} () N H*(R).

Elliptic problems of the type

—Av =g(x,v)in Q

v=>0 on 092, G

in Q c R? where g(x, v) is continuous and behaves like exp(a|v|2) as |[v| — +oo have
been studied by many authors, see [6,10-12,16,19]. One of the main ingredients is the
Trudinger—Moser inequality introduced in [18,21], namely. Given u € HO1 (€2), then

cr\u\z 1
e € L' () forevery o > 0, “)
and there exists a positive constant L such that
sup / 1P gy < L forevery o < 4. 5)
Il g1 <12

We say that g has subcritical growth at 4-cc if for every o > 0

g, 8)]
lim
s—>+00 0§

0
and g has critical growth at 4-o0 if there exists ¢ > 0 such that

fim B v 6o and  fim E&

3 >— = +ooVo < op.
s—>+00 0SS s—>400 0

The only assumptions we assume are that 0 < g < 1, f is continuous and satisfies the
growth assumption (2), and thus the nonlinearity g(s) = As? + f(s) of problem (1) can have
subcritical or critical behavior at 4-00.

Most papers treat problem (3) by means of variational methods, and then usually it is
assumed that g has subcritical or critical growth and sometimes g(s) > c|s|?, where ¢ > 0
is a constant, see [12]. Another common assumption on g is the so-called Ambrosetti—
Rabinowitz condition

dR > 0and € > 2 suchthat 0 < 0G(x,s) < sg(x,s) V|s| > Rand x € Q,

where G(s) = [; g(1)dr, see [10-12].

Even when the Ambrosetti-Rabinowitz can be dropped, some conditions have to be
assumed to give compactness of the Palais-Samle sequences or Cerami sequences, see for
instance [16] where they assume

g : Q x Ris continuous and g(x, 0) = 0;
dtp > 0and M > O such that 0 < G(x,s) < Mg(x,s) V|s| > tpand x € Q;
0<2G(x,s) <sg(x,s) V|s| >0and x € Q.
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A problem in © = R? without Ambrosetti—Rabinowitz condition and exponential growth on
g different from (2) has been addressed in [15].

We are able to solve (1) under weaker assumptions by using the Galerkin method. For
that matter, we approximate f by Lipschitz functions in Sect. 2. We solve the approximating
problems (11) in Sect. 3. Section 4 is devoted to prove Theorem 1.1, and in doing so, we
show that the solutions v, of problem (11) are bounded away from zero and converge to a
positive solution of (1).

Problem (1) is also studied in RZ, see for instance [1,2,4,8,22]. Problems with nonlinear-
ities with exponential growth are also important in conformal geometry [9,17].

2 Approximating functions

To prove Theorem 1.1, we approximate f by Lipschitz functions f; : R — R defined by

—k[G (=k—3) = G(=h)].if s < —k

—k[G(s—1)~-G)]. if-k<s=<-}
_#s[6(=3) -G (=p)]. if—p=s=0
T =106 (3) -6 (})]. if0<s< L. 6)
K[G(s+ 1) -G,  iff<s<k
k[G (k+ ) = GW)], if s > k.

where G(s) = [; f(&)d§.

The following approximation result was proved in [20].

Lemma 2.1 Let f : R — R be a continuous function such that sf (s) > 0 for every s € R.
Then there exists a sequence fi : R — R of continuous functions satisfying

(i) sfi(s) > 0 foreverys € R;
(ii) Yk € N3¢k > O such that | fi(§) — fr(m)| < ckl§ — nl forevery &, n € R;
(iii) fx converges uniformly to f in bounded subsets of R.

The sequence f; of the previous lemma has some additional properties.

Lemma 2.2 Ler f : R — R be a continuous function satisfying (2) for every s € R. Then
the sequence fy of Lemma 2.1 satisfies

1.

>

(i) Vk e N, 0 <sfi(s) < Cils|? exp(da s2) for every |s| >
(ii) Yk € N, 0 < sfi(s) < Cals|* exp(da s?) for every |s| <

>

el

where C and C; are positive constants independent of k.

Proof of Lemma 2.2 Everywhere in this proof the constant C is the one of (2).
First step. Suppose that —k < s < —%.

By the mean value theorem, there exists n € (s — %, s) such that

1 1
fi(s) = —k [G (s - %) - G(S)] = —kG'(n) (s T S) =fm

and

sfe(s) = sf ().
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Since s — % <n<s<0and f(n) <0, wehave sf(n) < nf(n). Therefore,

sfi(s) < nf(m) < ClnlP exp(a )

1 1
<Cl|s— z|pexp (a s — E'Z)

1\? 1\?
<C (Isl + E) expl « (Isl + E)
< CQIs? exp(a (2Is)?)
= C2P|s|” exp(da |s]?).
1

Second step. Assume 1 <s=< k.
By the mean value theorem, there exists n € (s, s+ %) such that

1 1
Jie(s) =k [G (s + %) - G(S)} =kG'(n) (S tr S) =fn

and

sfr(s) = sf ().
Since0 <s <n<s+ % and f(n) > 0, we have sf(n) < nf(n). Therefore,

sfi(s) <nf () < Clnl” exp(e n|*)
< Cls + ~17exp (s + + 2
) bl X oS -

= K oP k

< CQIs? exp(a (2Is])%)

= C2P|s|P exp(4a |s|?).

Third step. Suppose that |s| > k, then

—k[G (—k — }) = G(=h)]. if s < —k

k(G (k+ 1) — G, if s> k. @

Ji(s) = (

If s < —k, by the mean value theorem, there exists n € (—k — %, —k) such that

1 |
Jr(s) =k [G (—k - E) - G(—k)] = —kG'(n) (—k i (—k)) = f()
and
sfi(s) = sf ().
Since —k — % <n<-—-k<0andk < |n| <k+ %, we conclude that

| _
—Clnl” exp(a In1*) = Cls|In|"~" exp(a |nl*)

|s
]

Cls| (k + i)p_l exp(a (k 4 i)z)
< Clsi (|s| + ;)p_l exp(a (|s| + i)z)

IA

sfi(s) = %nf ()

IA
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< Clsl2ls)?~ " exp(e 2Is])?)
< C2771s|P exp(dar |s]%). )

If s > k, by the mean value theorem, there exists € (k, k + %) such that

1 1
Je(s) =k [G (k + E) - G(k)] =kG'(n) (k T k) = f().
By computations similar to conclude (8) one has
sfi(s) =sf(n) = %nf(n) < HCInlpeXP(a Inl*) < €277 s|” exp(da |s[).

Fourth step. Assume —% <s5s< ;, then

_[©s[6 (-} -G (=D if -} =5 <0
o= Late p o i o e ©
E < s < 0, by the mean value theorem, there exists n € (— k, %) such that
fils) = Ks (1) =ks6m (2~ (1)) =+
k(s 3 =k"sG (n 3 X = sf(m).
Therefore,
2 2
sfi(s) = —ks® f(n) = —k— O kﬁnf(n)
2
< Ckls|*n|”~" exp(a n|*) < Ck|s|2(%>']—1 exp(a [n]*)
2 2
< C2p_1|s|2exp(o{ (7) )
k
< C2P7 s exp(da) < C27 L exp(4a)|s|® exp(da |s|%). (10)

fo<s< 1 , by the mean value theorem, there exists n € ( ) such that

12 =y TN — 2 / I
Ji(s) =k S[G(k) G(k)]—k sG (n)(k k)—ka(n)-

By similar computations to conclude (10) one obtains

52

sfi(s) = ks* f(n) = kﬁnf(n) < €277 exp(da)|s|* exp(de |s]).

The proof of the lemma follows by taking C; = C27 ad C; = C2P~!, where C is given in
2). O

3 Approximate equation

To prove Theorem 1.1, we first show the existence of a solution of the following auxiliary
problem
—Av=27+ f(v)+ 1 in Q
v>0 in Q (11)
v=20 on 0€2,

where f, are given by Lemma 2.1 and Lemma 2.2.
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1742 A. L. A. de Araujo, M. Montenegro

We will use the Galerkin method together with the following fixed point theorem, see [20]
and [14, Theorem5.2.5]. A similar approach was already used in [3].

Lemma 3.1 Let F : RY — RY be a continuous function such that (F (£), §) = 0 for every
£ R with |E| =r for some r > 0. Then, there exists z in the closed ball B,(0) such that
F(z9) = 0.

The main result in this section is the following.

Lemma 3.2 There exist A* > 0 and n* € N such that (11) has a weak nonnegative and
nontrivial solution for every A € (0, A*) and n > n*.

Proof of Lemma 3.2 Let B = {wy, wa, ..., Wy, ...} be an orthonormal basis of HO1 (R2) and
define

Wi = [wi, w2, ..., wp],
to be the space generated by {wy, wa, ..., w,;,}. Define the function F : R™ — R™ such that

F (&) = (F1(8), F2(8), ..., Fu(§)), where § = (§1, &2, ..., §n) € R,

1
Fj(&):/Vvaj—k/(er)qwj—/ fn(v+)wj—f/ wi, j=12,...,m
Q Q Q nJjQ

and v = er-"zl & w; belongs to W,,,. Therefore,

1
(F(). &) =/ |Vv|2—A/(v+>‘f“ —/ fn<v+)v+——/ v, (12)
Q Q Q nJjqo

where vy = max{v, 0} and v_ = v; — v.
Given v € W,,,, we define

Q+:[x€Q:|v(x)|zl]
n

n

and

n

Q‘:[er:|v(x)|<1].
n

Thus, we rewrite (12) as

(F(5),8) =(F(&).8)p+(F(&). &N

where

1
(F(§),€)p =/ |Vv|2—)~/ (vm“—/ fn<v+>v+—f/ v
QF QF QF n Jor

and

1
(F(&), &)y =/7 |W|2—x/7(v+>q+‘ —/7 frop)vg — 7/71,,
QVl Qn Qn n Q

n

Step 1. Since 0 < g < 1, then
q+1 q+1 _ q+1 q+1
L ort s [t =i g, = i, (13)
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By virtue of Lemma 2.2 (i), we get

| e =1 [ el expldalvs Pras
QF QF

P _1
< C (/ |v+|f’“)"+ (/ exp(4a<p+1)|v+|2>dx) "
Q Q

= Cillolly i1 g /Qexp(4ot(p + Dfv7)dx . (14)
It follows from (13) and (14) that

+1
(F©.61p = [ 1VoF = 2cololft,
" I (15)

2 1 C3
= il g, ([ eptar+ Do) = Sy,

where Cy, C1, and C3 are constants depending only on C, p, and |€2].
Step 2. Since 0 < g < 1, then

1
+1 +1
/Q;m)q s/gjvrf <19 (16)

n

By virtue of Lemma 2.2 (ii), we get
1
/ fn(p)vy < Cz/ vy * exp(dafvy [F)dx < C, eXp(40!)|Q|n7- a7
Q@ Q
It follows from (16) and (17) that

1 1 1
(F(), &)y = /7 |Vo]* — MR- — G eXp(405)|§2|r72 — 195 (18)

Qp
Thus, (15) and (18) imply

1

2 g+1 p 2 Pt
(F(§),&) = ||v||H0|(Q) - )»C0||U||H01(Q) - CIHUHHOI(Q) (/Q exp(4a(p + 1)|v] )dx)

C3 1 1 1
- 7”1]”]-[0'(9) - MQ'W - CZCXP(4C¥)|Q|n7 - |Q|n7o
(19)

Assume now that ||v||H(}(Q) = r for some r > 0 to be chosen later. We have

2
/exp(4a(p+l)|v|2)dx=/exp 4a(p + Dr? L dx (20)
Q Q ||U||H01(Q)

and in order to apply the Trudinger—Moser inequality (5), we must have 4o (p + 1)r2 < 477.
Consequently,

7'[ %
r<|{——]) .
B (OI(P-H))
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Then

2
sup / exp | 4a(p + Dr? v dx < L.
ol o<1/ 2 Vil @)

(@)=

Hence,
1 (& 1 1 1
(F(§),€) = r2 = ACorit! — CILTT PP =22 p — A|Q|———C, exp(4a)|Q2|— — L2 .
n ndg+1 n2 n2

We need to choose r such that
2
1 r
r?— CIL7 P > 5

in other words,

1
thus, let r = min 1 , ( T )2 , and hence
L(zc.u]ﬂ)p'z a(p+)
2
r C 1 1 1
T g+l _ 23 - 0l
(F®).€) = 5 = ACor Zr = M@y — Coexpa)| Q5 — 12—,

Now, defining p = % — ACor?t!, we choose A* > 0 such that p > 0for A < A*. Therefore,
we choose

* rl=a
4Co "

Now we choose n* € N such that

Cs

1 1 1 p
MRl + Crexp@a)|Q] - + 191 <

Ea
for every n > n*. Let £ € R™, such that |£| = r, then for A < A* and n > n™ we obtain

w@xaz§>o. @1

Forevery n € N, f,, is a Lipschitz function, and then by Lemma 3.1 for every m € N there
exists y € R™ with |y| < r such that F(y) = 0, that is, there exists v, € W,, verifying

<
| ”HOI(Q) <r forevery m € N

and such that
1
/vaVw =A/(vm+)qw—|—/ fn(vm_‘_)w—l—f/ w, Yw e W,. (22)
Q Q Q nJjgo

Since W,,, C HO1 (2) Vm € N and r does not depend on m, then (v,,) is a bounded sequence
in HOl (€2). Then, for some subsequence, there exists v € HOl (£2) such that

vm — v weakly in Hj () (23)
and

um — v in L*(R) and ae.in . (24)
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Let k € N, then for every m > k we obtain
1
/ Vv, Vwi = )»/ (W) wy +/ S (U w + */ w, Ywi € Wy. (25)
Q Q Q n.Jjq
It follows from (23) that
/ Vv, Vw, — / VuVwg as m — oo (26)
Q Q
and by (24) one obtains
/ JnOmp)we — / fn(vp)wy as m — oo. (27)
Q Q
Indeed, by Lemma 2.1 (ii) it follows that | f;; (Um+) — fn(v4)| < ¢plvms — v |; hence,

‘/ fn(var)wk_/ S () wg
Q Q

and then (24) implies (27). By (23), (27), and Sobolev compact imbedding, letting m — oo
one has

1 1
}»/(vm+)qwk+/ fn(vm+)wk+*/ wg — )»/(v+)qwk+/ .fn(v+)wk+*/ W
Q Q nJq Q Q n 9(28)

= callwiliz2@)llvm — vllp2(@) as m — oo

By (25), (26), and (28)
1
/ VoVwg Zk/(v+)"wk+/ fn(v+)wk+*/ wi, Ywg € Wi. (29)
Q Q Q nJjq
Since [ Wy ke is dense in HO1 (2), we conclude that

/Vva:A/(v+)qw+/ fn(v+)w+l/ w, Yw e H (). (30)
Q Q Q nJjq

Furthermore, v > 0 in €2. In fact, since v_ € HO1 (£2), then from (30) we obtain

/VvVv, :k/(v+)qv7+/ fn(v+)v7+l/ v_.
Q Q Q n.Jq

1
2
—llv_ = VoVu_ = _+ - _ >0,
o1 ) /sz /an(er)v n/Qv >

then v_ = 0 a.e. in Q. O

Hence,

4 Proof of the main result

In this section, we prove Theorem 1.1. We will use the unique solution w of the problem

—Aw=w? in
w >0 in Q 31
w=20 on 02,

for 0 < g < 1, see for instance [7]. The solution w allows us to bound from below the
solutions v, of (11).
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1746 A. L. A. de Araujo, M. Montenegro

The following lemma of [20, Theorem1.1] is used to show that v,, converges to a solution
v of (1).

Lemma 4.1 Let Q be a bounded open set in RN, uy : Q@ — R be a sequence function, and
gk : R — R be a sequence of functions such that gy (uy) are measurable in Q for every k € N.
Assume that gr(ux) — v a.e. in Q and fQ |gr (ur)urldx < C for a constant C independent
of k. And suppose that for every B C R, B bounded, there is a constant Cp depending only
on B such that |gi(x)| < Cp, forallx € Bandk € N. Thenv € LY(Q) and gr(ux) — vin
LY(Q).

Proof of Theorem 1.1 By Lemma 3.2, equation (11) has a weak solution v,, € HO1 (2) for

eachn € N. Since 0 < ¢ < 1 and f, is Lipschitz, then vl + Ja(op) + % e LP(2) with

p > 2. Hence, v, € C"*(Q) with 0 < & < 1, see [13]. Therefore, v, € H(} (Q) N CheQ).
We have by (23) that

Um — v, weakly in H{ () as m — oo. (32)
Therefore,
1oall g @y < liminf vnl gy gy <7 ¥n €N,
and r does not depend on n. Thus, there exists v € HOl (£2) such that
v, — v weakly in HOl (2) as n — o0. (33)
By Sobolev compact imbedding for 1 <s < +o00,

vy, — v in L*(2) and a.e. in Q.

Note that
—Av, > )va, in Q
v, >0 in Q (34
v, =0 on 9%2.

1 .
By rescaling, thus w,, = A4-Tv, and we obtain

implying
—Aw, > wl. (35)

By Lemma 3.3 of [5], it follows that w, > w Vn € N, that is,

1
1—

v, > AT9w ae.in Q, Vn € N. (36)

Letting n — 400 in (36), we obtain

1 .
v>AT-ew ae. in Q

%

showing that v > 0 in Q.
We prove now that v is a solution of (1). Since

v, — v a.e.in Q,
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we have

fn(up(x)) = f(v(x)) ae.in €2, 37

by the uniform convergence of Lemma 2.1 (iii).
Recall from (30) that

/Vv,,Vw:A/(v,,)‘Uu—}—/ fn(v,,)w—i—l/ w, Ywe Hé(Q). (38)
Q Q Q nJjo

Taking w = v, in (38) and since v, is bounded in HO1 (2), we obtain

/ Sa(up)vpdx < C, (39)
Q

for every n € N, where C > 0 is a constant independent of n. By (37), (39), and by the
expression of f, defined in (6), the assumptions of Lemma 4.1 are satisfied, implying

fa(vn) = f(v) in L'(Q). (40)

It follows from (4) that e”2 e L'(€2), and in view of (2) and Holder inequality, we conclude
that f(v) € L2(Q).
By (38), we have

/Vva:)»/v"wﬁ—/f(v)w, VweHol(Q). 41)
Q Q Q

Since f(v) € L?(2) and A v? € L%(S2), we conclude from (41) that v € H?(2) and
—Av =20 + f(v).

The proof of the theorem is complete. O
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