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Abstract We initiate a low-order regularity theory for vectorial minimizers of the functional

w �→
ˆ

M
G(z,w(z),dw(z)) dμg (z),

where w : M → N and M and N are orientable Riemannian manifolds, in the case where
G is only asymptotically convex. In particular, we prove three interrelated regularity results.
The first result establishes partial Morrey regularity estimates, and Hölder continuity, for
minimizers. For the second result by utilizing the obtained partial Hölder continuity, we
prove a partial Caccioppoli-type inequality for minimizers. Finally, this result then allows
us to deduce a higher integrability result for the gradient of minimizers of this functional.
Since we work in the asymptotically convex setting, our results apply to far more general
integrands than previously available in the literature for this type of problem.
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1 Introduction

With m ≥ 2, let (M,g) be a bounded, connected, smooth, and positively oriented m-
dimensional Riemannian manifold with metric tensor g ∈ C∞(M; T ∗M � T ∗M) (In
Sect. 2, we summarize the notation used). Let dμg represent the volume form forM. In this
paper, we investigate the regularity of minimizers of the functional

w �→
ˆ

M
G(z,w(z),dw(z)) dμg (z), (1.1)

among weakly differentiable mappings w : M → N , where N is a (not necessarily
bounded) smooth orientable n-dimensional Riemannian manifold isometrically embedded
in R

�. Throughout this work, we assume that ∂N = ∅—i.e., N has empty boundary. Our
assumptions on the integrand G: M × N × (R� ⊗ T ∗M) → R appearing in (1.1) are quite
flexible. For each z ∈ M and ξ ∈ R

� ⊗ T ∗M, put

|ξ |
R�⊗T ∗

z M :=
[

m∑
i=1

〈
ξ

(
∂

∂zi

)
, ξ

(
∂

∂zi

)〉
R�

] 1
2

, (1.2)

where
{

∂
∂zi

}m

i=1
is an orthonormal basis for the tangent space TzM. Let A : M × N →

(R� �R
�)⊗ (T ∗M�T ∗M) be uniformly positive definite, in the sense that there is a� > 0

such that

A(z,w)(ξ ⊗ ξ) ≥ �|ξ |2
R�⊗T ∗

z M

for all (z,w)∈M×N and each ξ ∈R
� ⊗ T ∗M. The primary assumption, roughly speaking,

is that for each z∈M the function ξ �→ G(z,w, ξ) behaves like
[
A(z,w)(ξ ⊗ ξ)

] p
2 , for some

p ≥ 2,whenever |ξ |p
R�⊗T ∗

z M
is sufficiently large inmagnitude.Tobemore precise,we assume

the following: there is a γ > 0 such that for each ε > 0, there is a σε ∈ L p,γ (M) so that∣∣∣G(z,w, ξ) − [A(z,w)(ξ ⊗ ξ)
] p
2

∣∣∣ < ε|ξ |p
R�⊗T ∗

z M
,

whenever |ξ |
R�⊗T ∗

z M > σε(z). Here L p,γ (M) refers to a Morrey space on M as defined
in Sect. 2. The other main assumption is the following natural growth condition: there is a
� > 0 and σ ∈ L p,γ (M) such that
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|G(z,w, ξ)| ≤ σ(z) + �|ξ |p
R�⊗T ∗

z M

for each (z,w, ξ) ∈ M × N × (R� ⊗ T ∗M). If the admissible mappings were not required
to satisfy a manifold constraint and, in addition, the asymptotic relatedness was with respect
to the map ξ �→ (ξ ⊗ ξ)

p
2 only, then these conditions would be essentially sufficient to

establish everywhere Hölder continuity of a minimizer—see, for example, [22,23]. In this
paper, however, we consider mappings into the target manifold N , and it is well known that
one can only expect partial regularity results in this case—that is, regularity within an open
set of full measure.

The purpose of this work is to initiate a low-order regularity theory for integral functionals,
whose integrands are only asymptotically convex, in the Riemannian manifold setting. As
mentioned in the previous paragraph, we achieve this in the context where G may retain
dependence on w even as |ξ | → +∞, an allowance, which, as we describe in the sequel, is
relatively rare even in the much simpler Euclidean setting.

More specifically, our investigation produces three interconnected results. Suppose that
u : M → N is a minimizer for (1.1). Let Mρ(z0) ⊆ M be the relatively open geodesic
ball of radius ρ centered at z0. Our first result establishes partial Morrey regularity for the
minimizer. More specifically, we show that whenever z0 ∈ M is such that

ρ p−m
ˆ

BM
ρ (z0)

|du(z)|p
R�⊗T ∗

z M
dμg (z) (*)

is sufficiently small, then this quantity remains small (in fact it decays) as the geodesic radius
of the domain of integration decreases. Using the fact that the quantity in (*) can be made
as small as we wish throughout sufficiently small neighborhoods of each Lebesgue point of
du, we obtain the partial Morrey regularity for du. A by-product of this result is that u is
partially Hölder continuous with a closed singular set that has Hausdorff dimension of at
most m − p. Our second result shows that the differential of the minimizer u also satisfies a
partial Caccioppoli inequality. As with the Morrey regularity result, we show that whenever
the quantity in (*) is sufficiently small, the Caccioppoli inequality holds. Now, the Morrey
regularity result ensures that (*) remains small as the radius of the domain of integration
decreases. It follows that the Caccioppoli inequality holds throughout an open neighborhood
of the set of Lebesgue points of du. As with the Morrey regularity result, we can say that the
set on which the Caccioppoli inequality fails to hold is closed and has Hausdorff dimension
of at most m − p. Our final result invokes a well-known argument utilizing Gehring’s lemma
to obtain partial higher integrability of du from the Caccioppoli inequality.

Let us alsomention at this juncture the basic strategy used to obtain our results. Essentially,
we follow a blow-up strategy to deduce our primary results. In particular, Lemmata 3.1 and
3.2 constitute some of the central, novel contributions of this work, and to deduce these
results, we analyze the behavior of an appropriate blow-up sequence, namely

vi (x) := u(ϕ−1
0 (ϕ0(zi ) + ρix)) − ai

δi
;

see (3.1) in the sequel. In the definition of the collection {vi }∞i=1 we have that ϕ0 is an element
of a local coordinate chart, whereas u is a minimizer of (1.1). The blow-up technique in
regularity theory is by now classical in the sense that it has been used for some time—see, for
example, either Evans and Gariepy [15] or Fusco and Hutchinson [29] for clearly written and
typical examples of the blow-up technique in regularity theory. Nonetheless, our utilization

123



1408 M. D. Foss, C. S. Goodrich

of the technique in this work is significantly complicated by the fact that both the domain
and codomain of u are Riemannian manifolds.

In particular, Lemma3.1 establishes that, under appropriate hypotheses,which are detailed
in Sect. 3, the blow-up sequence {vi }∞i=1 has the property that its weak limit, say v, is a (B, p)-
harmonic function—see (2.4). This leads to v possessing good regularity properties, which
are then utilized in the proof of the partial Hölder continuity result of Sect. 4. The difficulty
in proving Lemma 3.1 is the care that is required in constructing an arbitrary comparison
map. In particular, a careful sequence of steps is required to construct this comparison map
and then, at last, to demonstrate the minimality of v.

On the other hand, Lemma3.2 demonstrates that ifwe consider the same blow-up sequence
{vi }∞i=1 as in the proof of Lemma 3.1, then under appropriate hypotheses, it holds that vi → v

strongly in W 1,p
loc

(Bm
1 ;R�

)
. This lemma is then used to produce the partial Caccioppoli

inequality, which then, finally, produces a higher integrability result.
Another difficulty that occurs in our arguments is that great care is required in switching

from the manifold to the local Euclidean space and back again; of course, this issue is moot if
one works solely with the Euclidean problem. The particular problem is that when we make
this switch, the radius of, say, a geodesic ball in the manifold does not remain invariant when
transforming this ball, via a local homeomorphism, to a coordinate ball in the Euclidean
space. Then when, inevitably, we wish to pass back to the manifold, the radii again vary.
Moreover, we can only assert a range within which the altered radii must live. In any case,
keeping track of these changing radii requires careful arguments and bookkeeping to ensure
that the many inequalities which arise in the arguments are carefully justified. This especially
requires great care in the proof of the partial Caccioppoli result, alluded to above, wherein we
must switch between the manifold and a suitable local coordinate chart and yet back again,
all the while keeping very careful track of the change of the associated radii of the balls in
the integral estimates.

Having described the general thrust of our results together with the associated techniques
weutilize to obtain them,wenowcontextualize our results by discussing the existing literature
on the type of problem investigated in this paper. Let us first mention the problem of partial
regularity in the Euclidean setting. In particular, it has been known since De Giorgi’s [8]
fundamental work in the late 1960s that vectorial minimizers to variational problems need
not be everywhere continuous. Instead, it is typically shown that there exists an open set Ω0

of full measure on which the minimizer possesses some degree of regularity and outside of
which theminimizermaybe singular; depending upon the structure conditions imposed on the
problem, everywhere regularity may also be achievable at times. For example, in addition to
the now-classical works by Giaquinta and Giusti [31,32] and Giaquinta andModica [33–35],
these sorts of problems have been studied in the context of VMO structure conditions [3–
5,7,43,53–57], boundary regularity [2], irregular growth [18], parabolic-type problems [48],
singular set estimation [46], elliptic systems [21], asymptotic convexity [19,23], and obstacle
problems [10,11]. The monographs by Giaquinta [30] and Giusti [38] provide excellent
overviews of the whole of regularity theory. Furthermore, Mingione [50,51] has produced
two very readable survey papers regarding regularity theory for minimizers of functionals as
well as weak solutions of elliptic PDEs.

A typical assumption tomakewhen studying the regularity ofminimizers of the functional

u �→
ˆ

Ω

f (x,u, Du) dx (1.3)

is that the map (x,u, ξ) �→ f (x,u, ξ) is convex in ξ . It is thus of interest to investigate
regularity in the setting where f fails to satisfy a convexity assumption. Along these lines,
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On partial Hölder continuity and a Caccioppoli inequality 1409

the notion of asymptotic relatedness, which implies a sort of convexity “at infinity”, has
proved to be the source of a most fruitful idea in regularity theory. Essentially, and as made
precise in Definition 2.10, we assume that as |ξ | → +∞ the map (x,u, ξ) �→ f (x,u, ξ)

“looks like” a more regular map, say (x,u, ξ) �→ G(x,u, ξ), and in this way, we are able to
move most of the typical hypotheses one would make about f onto the map G; in fact, the
notion of asymptotic relatedness has even proved to be useful in the somewhat disparate area
of boundary value problems for ordinary differential equations—see [39–42]. As concerns
its use in the context of regularity theory, the concept of asymptotic relatedness was first
introduced byChipot and Evans [6]. Raymond [58] later investigated the regularity properties
of minimizers of the functional

u �→
ˆ

Ω

f (Dv) + g(x, v) dx,

where f is asymptotically related to the p-energy map ξ �→ |ξ |p and g is a Carathéodory
function; it is worth noting that Raymond treated the superquadratic setting—i.e., where
p > 2. In fact, the subquadratic setting was treated later by Pasarelli di Napoli and Verde
[52]. More recent results in the context of asymptotic relatedness assumptions may be found
in the works of Scheven and Schmidt [60,61].

We should also like to mention that in the Euclidean setting, i.e., where M := R
n and

N := R
N , Foss and Goodrich have recently proved in [20] that for the functional (1.3)

partial Hölder regularity is enjoyed by a minimizing map u : Ω ⊆ R
n → R

N under very
weak structure hypotheses—namely, that the map (x,u, ξ) �→ f (x,u, ξ) is asymptotically
related to the functional a(x,u)F(ξ), where F has p-Uhlenbeck structure and the map
(x,u) �→ a(x,u) is continuous and uniformly bounded on Ω × R

N . Due to the recent
investigations ofScheven andSchmidt [60] aswell asDolzmannet al. [9], the partial regularity
results produced by Foss and Goodrich are sharp in the setting studied in [20]. Moreover, the
results of [20] are also of interest since they allow f to maintain dependence on u even as
|ξ | → +∞.

In contrast to the richness of existing results in the Euclidean setting, when it comes to the
regularity properties of minimizers of the very general functional given in (1.1), wherein the
minimizer maps between Riemannian manifolds, the existing results are much more scarce
and, in particular, restricted in nature. In part, we direct the reader to Simon’s monograph
[65] for some general results on p-energies and properties of harmonic maps, each of which
we briefly discuss next.

In particular, we begin by recalling that a series of classic papers by both Uhlenbeck [68]
and by Schoen and Uhlenbeck [62–64] provide, among other results, regularity theorems for
minimizers of the functional

E2(u,Ω) :=
ˆ

Ω

|du|2 dμg (z), (1.4)

where it is assumed that u : Ω ⊆ M → N ; hereM andN are Riemannian manifolds. The
treatment of (1.4) is quite broad since, in fact, the integrand may be replaced by F(|du|) for
some sufficiently regularmap ξ �→ F(ξ), and, in addition, systemsofPDEsassociated to (1.4)
are considered in [62–64,68]. For instance, in [62] they obtain, under suitable hypotheses,
a smoothness result concerning a harmonic minimizer u; they also address the Hausdorff
dimension of the singular set. In [63] boundary regularity is addressed, whereas, finally,
in [64] they extend their previous studies to the case in which the target manifold, N , is
either a sphere or a closed hemisphere. These early works by Schoen and Uhlenbeck are
fundamental, but, naturally, they only concern a restricted class of functionals, and so, more
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1410 M. D. Foss, C. S. Goodrich

complicated functionals as well as functionals whose integrands are less regular are not
considered. It should also be mentioned that Evans [14] considered (1.4) and demonstrated
that if the target manifold—i.e.,N—is the m − 1 sphere, Sm−1, then one finds that a weakly
harmonic mapping u is of class C∞ (V ;Sm−1

)
, where V ⊆ Ω ⊆ R

n is open and satisfies
the Hausdorff measure estimate H n−2(Ω\V ) = 0. A similar energy, namely

E(u,Ω) :=
ˆ

Ω

1

2

m∑
α=1

‖(du(x)) (eα) ‖2Tu(x)N dμg (x),

where u : R
m → (N ,F ), where (N ,F ) is a Finsler manifold with F a Finsler structure,

was considered by Tachikawa [66], who proved partial Hölder continuity of minimizers
together with an associated Hausdorff estimate on the singular set; a similar problem is
treated by Tachikawa in [67], wherein boundary regularity is treated. Although we shall not
be interested in Finsler manifolds in this paper, we observe that [66,67] treat functionals,
whose integrands have a very special, though admittedly important, form.

Later, in a series of papers by Fuchs [24–27], the problem of regularity of minimizers of
the p-energy functional

E p(u,Ω) :=
ˆ

Ω

|du|p dμg (z), (1.5)

as well as the regularity of minimizers of the so-called splitting functional

Fp(u,Ω) :=
ˆ

Ω

(
aαβ Bi j (·,u)dαuidβu j

) p
2
dx (1.6)

were treated, where again it is assumed that u : M → N , in whichM andN are Riemannian
manifolds. One of the keys to Fuchs’ analysis is the construction and proof of a suitable
Caccioppoli-type inequality, the conclusion of which is realized as 

B r
2
(x)

|du|p dμg (x) ≤ 1

2

 

Br (x)

|du|p dμg (x) + Cr−p
 

Br (x)

|u − (u)r |p dμg (x). (1.7)

In addition, Fuchs [28], utilizing a result of Evans [14], also demonstrated a.e. C 1 regularity
of p-harmonic maps, whose codomain is the sphere Sk−1. In any case, once again and as
with the earlier work of Schoen and Uhlenbeck, Fuchs’ work only permits one to treat a
restricted class of functionals.

Another article worth mentioning is a contribution by Duzaar and Mingione [12]. In
this paper, the authors consider minimizers of the p-energy (1.5) for maps of the form
u : Ω → M, where Ω is an open subset of Rn , n ≥ 2, and M is a compact, smooth
Riemannian manifold of dimension at least two. In particular, they deduce an appropriate
p-harmonic approximation lemma. They then present some regularity results for such maps.
A related article by Rivière and Strzelecki [59] addresses certain properties of p-harmonic
maps in the manifold setting.

Similarly, Fardoun and Regbaoui [16] have recently considered the regularity of minimiz-
ers of the p-energy

E p(u) := 1

p

ˆ
M

|du|p dμg (z) (1.8)

whereu : M → N is amapbetween compactRiemannianmanifoldsM andN . The authors,
in particular, argue the C 1,α(Ω;N ) regularity of a minimizer u for some 0 < α < 1, with
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Ω ⊆ M open, provided that the range of u is contained in a small geodesic ball about some
point of N .

Finally, we mention the well-known paper of Luckhaus [49]. In fact, Luckhaus’ work
will be most helpful to us here, for, as is mentioned in Sect. 3, we use certain of the ideas
developed in [49] as a starting point for constructing and proving the main results of this
paper; in particular, the so-called Luckhaus Lemma [49, Lemma 1] is central for our purposes
here. In any case, Luckhaus considered the general functional

u �→
ˆ
M

G(z,u(z),du(z)) dμg (z), (1.9)

where u maps between Riemannian manifolds M and N . Essentially, it is assumed that
G satisfies standard p-growth and a blow-up condition with respect to its third argument.
Moreover, and crucially different from our work in this paper, it is also assumed that the map
(x,u, ξ) �→ G(x,u, ξ) is convex in ξ for all pairs (x,u) ∈ Ω × N .

In consideration of the preceding paragraphs, we note a substantial difference between
the manifold and Euclidean settings. Indeed, although it is surely the case that the regularity
theory for asymptotically convex functionals is incomplete in the Euclidean setting, there
nonetheless exists a rich and deep existing literature on these problems, and many substan-
tial results have been established. By contrast, the corresponding theory in the Riemannian
manifold setting is essentially void, existing results instead relying on the underlying func-
tional possessing special forms, such as the p-energy in (1.5) or the splitting functional in
(1.6). Even in the case of Luckhaus’ study, it is nonetheless assumed that the partial map
ξ �→ G(·, ·, ξ) is convex. In summary, then, the results of this paper are the first to treat the
asymptotically convex problem in the Riemannian manifold setting. Moreover, in addition
to the regularity results we provide, the partial Caccioppoli and reverse Hölder inequalities
that we provide are of independent interest in and of themselves, given their centrality in the
study of the regularity of minimizing maps.

To conclude this section, we briefly mention the outline of the remainder of this paper. In
Sect. 2 we collect several preliminary lemmata, definitions, and notations that will be used
throughout the remainder of the paper. In Sect. 3 we prove two key lemmata that form the
basis for the proofs of the partial Caccioppoli and reverse Hölder inequalities as well as the
partial regularity results in Sects. 4 and 5. The proofs of these lemmata begin with Luckhaus’
ideas in [49], but eventually require considerable and careful modification of the ideas in
[49]. Finally, in Sects. 4 and 5 we use the two lemmata of Sect. 3 to prove very generally
applicable partial Caccioppoli and reverse Hölder inequalities as well as the partial Hölder
continuity result.

2 Preliminaries

In this section, we collect some notations and preliminary definitions that will be used
throughout this paper. We also provide some fundamental lemmata, such as the well-known
Luckhaus lemma, which also are utilized at several points in the sequel. All manifolds are
assumed to be smooth and oriented. The Riemannian manifolds (M,g) andN , as described
in the introduction, are fixed for the remainder of the paper. As indicated before, we take
advantage of theNash-Moser embedding theorem and assume thatN is isometrically embed-
ded in R

�. The texts by Jost [45] and Lee [47] are excellent references for the material that
we briefly review in this section.
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1412 M. D. Foss, C. S. Goodrich

2.1 Euclidean sets

Given k ≥ m, we use Bm
ρ (x) ⊂ R

k to denote an m-ball of radius ρ centered at x ∈ R
k that

is open with respect to the relative topology of each m-dimensional hyperplane in R
k . An

m-sphere, i.e., the boundary of an (m + 1)-ball, of radius ρ centered at x is represented by
Sm

ρ (x).When a statement is independent of the center x or the center can be easily determined
from the context, then we will typically just use Bm

ρ and Sm
ρ . For similar reasons, we may

also suppress the dimension of the ball or sphere. We will use B(x) and S(x) for a unit ball
and a unit sphere, respectively, centered at x.

For a Euclidean space R j , we use | · | for the standard Euclidean, or Frobenius, norm and
〈·, ·〉 for the standard inner product. Given A ⊆ R

j and x0 ∈ R
j , we define the minimum

distance from x0 to A by

dist (x0,A) := inf
x∈A |x − x0|.

If A is Lebesgue measurable, then we denote its Lebesgue measure by |A|. Finally, given a
linear subspace Y ⊆ R

j , we set

x0 + Y := {x0 + y ∈ R
j : y ∈ Y}.

2.2 Manifolds and mappings

Given two vector spaces A and B, we use A ⊗ B to denote the space of tensor products of
members fromAwith members from B. We useA�B ⊆ A⊗B for the symmetric products
of elements of A with elements of B and A ∧ A ⊆ A ⊗ B for the antisymmetric products.
For brevity, we write ⊗2A for A ⊗ A, and given an element a ∈ A, we may use ⊗2a for
a ⊗ a. A similar convention will be used for A � A.

Suppose thatQ is an m-dimensional Riemannian manifold with metric r . We use TqQ for
the tangent space toQ at q ∈ Q and T ∗

q Q for the cotangent (dual) space. The tangent bundle
for Q is denoted by TQ; the cotangent bundle is represented by T ∗Q. At each q ∈ Q, the
metric r ∈ C∞(Q;�2T ∗Q) is a positive definite symmetric bilinear form defined on TqQ.
For each q ∈ Q, the metric induces an inner product 〈·, ·〉TqQ : TqQ× TqQ → R defined by

〈
q1, q2

〉
TqQ := r (q)(q1 ⊗ q2) for each q1, q2 ∈ TqQ.

The associated norm is denoted by | · |TqQ. Let distQ(q1, q2) denote the geodesic distance
between q1, q2 ∈ Q. We define the geodesic ball of radius ρ > 0 centered at q0 ∈ Q by

BQ
ρ (q0) := {q ∈ Q : distQ(q0, q) < ρ

}
.

When convenient, we will instead use Bρ(q0), and as with the Euclidean ball, when appro-
priate we may suppress the center q0 and just use Bρ . The topology on Q that we use is
the smallest one in which the geodesic balls are open. An open submanifold of Q is a sub-
manifold Q′ ⊆ Q that is open in the topology on Q. Given A ⊆ Q, we use A to denote its
closure in Q and int (A) for its interior. The boundary of A is denoted by ∂A. If Q′ is an
open submanifold of Q such that Q′ is compact with respect to the topology on Q, we say
that Q′ is compactly contained in Q and write Q′ � Q.

We use dμr to denote the volume form and μr for the associated Riemannian measure
on (Q, r ). Whenever we refer to a measure onQ, we mean μr . For a measurable set E ⊆ Q,
we have
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On partial Hölder continuity and a Caccioppoli inequality 1413

μr (E) :=
ˆ

E

dμr (q).

A set Q0 ⊆ Q is said to have full measure in Q if μr (Q \ Q0) = 0. Given a mapping
w ∈ L1(Q;R�) and a measurable set E ⊆ Q, with μr (E) > 0, we define the mean value of
w over E by

(w)E :=
 

E

w(q) dμr (q) := 1

μr (E)

ˆ

E

w(q) dμr (q).

For convenience, if E = BQ
ρ (q0) for some q0 ∈ Q and ρ > 0, then we might use (w)q0,ρ , or

just (w)ρ , for (w)BQ
ρ (q0)

. Similar notation will be used for averages of balls in an Euclidean
space.

Let k ∈ N and R, an n-dimensional Riemannian manifold, be given. If u ∈ C k(Q;R),
then the differential map du ∈ C k−1(Q; TR ⊗ T ∗Q) is the unique map that satisfies

[du(q0)(ξ)]( f ) = ξ(( f ◦ u)(q0))

for each q0 ∈ Q, ξ ∈ Tq0Q, and f ∈ C 1(R;R). We extend this notation to also represent a
weak differential. If R is identified with an isometric embedding in R

�, then as indicated in
the Introduction, we define the Hilbert–Schmidt norm of du at q0 by

|du(q0)|R�⊗T ∗
q0
Q :=

[
m∑

i=1

∣∣∣∣du(q0)
(

∂

∂qi

)∣∣∣∣
2
] 1

2

.

Here
{

∂
∂qi

}m

i=1
is an orthonormal basis for Tq0Q. Let (V,ϕ) be a local coordinate chart on

Q, with q0 ∈ V , and let
{

∂
∂xi

}m

i=1
be an orthonormal basis for Tϕ(q)R

m for each q ∈ V . We

denote the local coordinates in V by ϕ(q) = (x1(q), . . . , xm(q)). With x = ϕ(q), the metric
r is represented in local coordinates by a matrix r with components

ri1,i2(x) = r (ϕ−1(x))
(

∂

∂xi1
⊗ ∂

∂xi2

)

for 1 ≤ i1, i2 ≤ m. The inverse r−1 of this matrix has components r i1,i2 . In these local
coordinates, the norm of du(q0) = du(ϕ−1(x0)) defined above is given by

∣∣du(ϕ−1(x0))
∣∣
R�⊗T ∗

q0
Q =

⎡
⎣ m∑

i1,i2=1

r i1,i2(x0)
〈
∂[u ◦ ϕ−1]

∂xi1
(x0),

∂[u ◦ ϕ−1]
∂xi2

(x0)
〉
R�

⎤
⎦

1
2

.

Suppose that Q is identified with an embedding into R
j . We define ΠQ : R j → 2Q by

ΠQ(q) := {y ∈ Q : |q − y| = dist (q,Q)} .

In general, this projection onto Q is multi-valued. There are, however, open sets U ⊆ R
j

such that Q ⊂ U and ΠQ is uni-valued on U . Set ΩQ ⊆ R
� to be the union of all such

sets. We will also use ΠQ to denote the corresponding uni-valued nearest-point projection
map ΠQ : ΩQ → Q. It can be verified that ΠQ is differentiable and Lipschitz on ΩQ (see
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1414 M. D. Foss, C. S. Goodrich

e.g., [1]). Now suppose that P � Q. Then, according to [17], there is a δ > 0 such that for
each q ∈ ∂ΩQ \ Q, we have dist (q,P) > δ. Moreover, the following limits hold:

lim
ρ→0+ sup

p∈P
sup
{
ρ−1

∣∣x − ΠQ(x)
∣∣ : x ∈ B j

ρ(p) ∩ [p + TpQ]
}

= 0 (2.1)

and

lim
ρ→0+ sup

p∈P
sup
{∣∣q − [dΠQ(x)]q∣∣ : x∈B j

ρ(p) ∩ [p + TpQ], q ∈ TpQ and |q| ≤ 1
}

= 0.

(2.2)

Here we have identified TpQ with an m-dimensional linear subspace of R j for each p ∈ P .

2.3 Function spaces

Definition 2.1 Given an open bounded set U ⊆ R
m , for each p ∈ [1,+∞) and γ ∈ [0, m],

we define the Morrey space

L p,γ (U ;R j ) :=

⎧⎪⎨
⎪⎩w ∈ L p(U ;R j ) : sup

x0∈U
ρ>0

ρ−γ

ˆ

U∩Bρ(x0)

|w(x)|p dx < +∞

⎫⎪⎬
⎪⎭ ,

For each γ ∈ [0,∞), we also define the Campanato space

L p,γ (U ;R j ) :=

⎧⎪⎨
⎪⎩w∈ L p(U ;R j ) : sup

x0∈U
ρ>0

ρ−γ

ˆ

U∩Bρ(x0)

∣∣∣w(x) − (w)U∩Bρ(x0)

∣∣∣p dx < +∞

⎫⎪⎬
⎪⎭ .

We write w ∈ L p,γ
loc (U ;R j ) if w ∈ L p,γ (V ;R j ) for each V � U . The local version of

L p,γ (U ;R j ) is analogously defined.

The extension of theMorrey andCampanato spaces to compactRiemannianmanifoldswas
developed in [37]. For the remainder of this section, let (Q, r ) be a compact m-dimensional
Riemannian manifold.

Definition 2.2 For each p ∈ [1,∞) and γ ∈ [0, m], set

L p,γ (Q;R j ) :=

⎧⎪⎪⎨
⎪⎪⎩w ∈ L p(Q;R j ) : sup

q0∈Q
ρ>0

ρ−γ

ˆ

BQ
ρ (q0)

|w(q)|p dμr (q) < +∞

⎫⎪⎪⎬
⎪⎪⎭

and for γ ∈ [0,∞), put

L p,γ (Q;R j ) :=

⎧⎪⎪⎨
⎪⎪⎩w ∈ L p(Q;R j ) : sup

q0∈Q
ρ>0

ρ−γ

ˆ

BQ
ρ (q0)

|w(q) − (w)q0,ρ |p dμr (q) < +∞

⎫⎪⎪⎬
⎪⎪⎭ .

Using the geodesic distance, we define Hölder continuity on Q.

Definition 2.3 For each α ∈ (0, 1], we define

C 0,α(Q;R j ) :=

⎧⎪⎨
⎪⎩w ∈ C (Q;R j ) : sup

q1,q2∈Q
q1 �=q2

|w(q1) − w(q2)|
distQ(q1, q2)α

< +∞

⎫⎪⎬
⎪⎭ .
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On partial Hölder continuity and a Caccioppoli inequality 1415

In [37] it is shown that Definition 2.3 is essentially equivalent to Hölder continuity in local
coordinates.

Proposition 2.4 Suppose that w ∈ C 0,α(Q;R j ) for some α ∈ (0, 1]. For each q0 ∈ Q, there
is a local coordinate chart (V,ϕ) on Q such that q0 ∈ V and w ◦ ϕ−1 ∈ C 0,α(ϕ(V);R j ).

We next introduce a couple of Sobolev-type spaces that we need.

Definition 2.5 For each p ∈ [1,+∞), set

W 1,p(M;N ) :=
{
w ∈ W 1,p(M;R�) : u(z) ∈ N for a.e. z ∈ M

}
.

Since T ∗
q Q is isomorphic to R

m for each q ∈ Q, we may identify R
j ⊗ T ∗

q Q with R
j×m and

make the following

Definition 2.6 For each p ∈ [1,∞) and γ ∈ [0, m], we define the following Sobolev–
Morrey space:

W 1,(p,γ )(Q;R j ) :=
{
w ∈ W 1,p(Q;R j ) : dw ∈ L p,γ (Q;R j ⊗ T ∗Q)

}
.

The compactness ofQ and the Poincaré inequality in Euclidean spaces yields the following

Theorem 2.7 Let p ∈ [1,∞) be given. There is an R(Q) > 0 and K (Q, j, p) < ∞ such
that for each w ∈ W 1,p(Q;R j ) and 0 < r < R the following scale-invariant Poincaré
inequality holds for each q0 ∈ Q: 

Br (q0)

|w(q) − (w)q0,r |p dμr(q) ≤ Kr p
 

Br (q0)

|dw(q)|p
R j ⊗T ∗

q Q
dμr(q).

Finally, we collect several embedding results.

Proposition 2.8 Let p ∈ [1,∞) be given.

(i) For each γ ∈ [0, m], the space W 1,(p,γ )(Q;R j ) is continuously embedded into the space
L p,p+γ (Q;R j ).

(ii) For each γ ∈ (m, m + p) the space L p,γ (Q;R j ) is isomorphic to C
0, γ−m

p (Q;R j ).

Remark 2.9 Combining the above embeddings, it follows that W 1,(p,γ )(Q;R j ) is continu-

ously embedded into C
0, γ+p−m

p (Q;R j ), for each γ ∈ (m − p, m) (or for each γ ∈ (0, m) if
p > m).

2.4 General assumptions

Next we define asymptotical relatedness.

Definition 2.10 Let F, G : M × N × (R� ⊗ T ∗M) → R and γ ∈ [0, n] be given. We say
that F and G are (p, γ )-asymptotically related if the following is satisfied: there is a family
{σε}ε>0 ⊂ L p,γ (M) such that for each ε > 0 and each z ∈ M it holds that

|G(z,w, ξ) − F(z,w, ξ)| < ε|ξ |p
R�⊗T ∗

z M

whenever |ξ |
R�⊗T ∗

z M > σε(z).
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1416 M. D. Foss, C. S. Goodrich

Remark 2.11 Note that because the function σε in the above definition is only required to
belong to the Morrey space L p,γ , it is possible that σε is essentially unbounded at some
points in M. Thus at some z ∈ M, the condition in Definition 2.10 may, in fact, impose no
asymptotic restriction on F and G whatsoever.

Remark 2.12 Using the triangle inequality, the condition for (p, γ )-asymptotic relatedness
is an equivalence relation.

We now discuss the structural conditions that we assume the integrand G satisfies.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

For the remainder of the paper, fix p ∈ [2,∞), γ ∈ (m − p, m), � >

0 and σ ∈ L1,γ (M)—see Remark 2.13 in case m < p. Let A ∈
C
(
M × N ;

(
�2

R
�
)

⊗ (�2T ∗M))
be given, and suppose that

(A1) for each (z,w) ∈ M × N and ξ ∈ R
� ⊗ T ∗

z M
�−2|ξ |2

R�⊗T ∗
z M ≤ A(z,w)(⊗2ξ) ≤ �2|ξ |2

R�⊗T ∗
z M;

(A2) and for somemonotone increasing concave functionω ∈ C (M×N ; [0, 1])with
ω(0) = 0 it holds that

|A(z1,w1) − A(z2,w2)|(�2R�)⊗(�2T ∗M) ≤ �2ω (distM(z1, z2) + |w1 − w2|)
for each (z1,w1), (z2,w2) ∈ M × N .

We assume that G : M × N × (R� ⊗ T ∗M) → R satisfies the following:

(A3) for each (z,w, ξ) ∈ M × N ×
(
R

� ⊗ T ∗
z M

)
|G(z,w, ξ)| ≤ σ(z) + �|ξ |p

R�⊗T ∗
z M

;

(A4) and G is (p, γ )-asymptotically related to (z,w, ξ) �→ {
A(z,w)(⊗2ξ)

} p
2 .

Remark 2.13 If p > m, then we only require γ ∈ [0, m). The restriction on γ ensures
p − m + γ > 0.

For the rest of the paper, the function ω and the family {σε}ε>0 provided by Definition 2.10
are fixed.

Define the functional I : W 1,p(M;N ) → R by

I [w] :=
ˆ

M
G(z,w(z),dw(z)) dμg (z) (2.3)

for all w ∈ W 1,p(M;N ). Throughout the sequel, we assume that u ∈ W 1,p(M;N ) is a
local minimizer for I . By this, we mean that

I [u] ≤ I [w]
for each w ∈ W 1,p(M;N ) satisfying supp (u − w) � M. Of course, if M is a compact
manifold, then supp (u − w) is a compact subset of M for all w ∈ W 1,p(M;N ). For each
B ∈ (�2

R
n
)⊗ (�2

R
m
)
, we also define the functional J [·;B] : W 1,p

(Bm
1 ;Rn

)→ R by

J [w;B] :=
ˆ

Bm
1

[
B
(⊗2dw(x)

)] p
2 dx. (2.4)
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On partial Hölder continuity and a Caccioppoli inequality 1417

We will refer to minimizers of J [·;B] as (B, p)-harmonic.

2.5 Preliminary lemmata

In the following lemma, we introduce α �→ �α� for the floor function and H m−1 for the
(m −1)-dimensional Hausdorff measure. This lemma provides a transition map between two
functions specified on the boundary of an annulus. The key result is that this can be done
with some control on the L p norm of the differential of the transition map as well as some
control on how far the values of the transition map deviate from its boundary values.

Lemma 2.14 (Luckhaus Lemma) [49, Lemma 1] Let v,w ∈ W 1,p
(
Sm−1
1 ;R j

)
, λ ∈ (0, 1

2

]
,

β ∈
( �p−1�

p , 1
)

, and η ∈ (0, 1) be given. Define the constant K by

K p :=
ˆ

Sm−1
1

{
|dv(x)|p + |dw(x)|p + |v(x) − w(x)|p

ηp

}
dH m−1(x). (2.5)

Then there are constants c1 := c1( j, m, p) and c2 := c2( j, m, p, β), and a map ψ ∈
W 1,p

(Bm
1 \ Bm

1−λ;R j
)

satisfying

(i)

ψ(x) =
{
v
(

x
1−λ

)
, x ∈ Sm−1

1−λ

w(x), x ∈ Sm−1
1

(ii) ˆ

Bm
1 \Bm

1−λ

|dψ |p dx ≤ c1K p
(
1 + ηp

λp

)
λ

(iii) and

ψ(B1 \ B1−λ) ⊆ v(S1) ∪ w(S1) ∪
{
y ∈ R

j : dist (y, v(S1)) + dist (y,w(S1)) < R0

}
,

where R0 = c2Kη1−βλ
�p−1�−(m−1)

p .

The next lemma provides a Morrey regularity estimate for (B, p)-harmonic maps from a
unit ball into a Euclidean space.

Lemma 2.15 Let a positive definite B ∈ (�2
R

n) ⊗ (�2
R

m) be given. Suppose that v ∈
W 1,p(Bm

1 ;Rn) is a local minimizer for the functional J [·;B]. Then for each α ∈ [0, 1) (or
α ∈ [ p−m

p , 1) if p > m) there is a constant c3 = c3(n, m, p, α,B) such that
ˆ

Bm
ρ

|dv(x)|p dx < c3ρ
m−(1−α)p

ˆ

Bm
1

|dv(x)|p dx

for all ρ ∈ (0, 1); i.e., v ∈ W 1,(p,m−(1−α)p)
loc (Bm

1 ;Rn).

Remark 2.16 Lemma 2.15 is an application of Lemma 2 from [49] using the following
estimate for the minimizer v:

sup
x∈Bm

1/2

[
B(⊗2dv(x))

] p
2 ≤ C( j, m, p,B)

ˆ

Bm
1

[
B(⊗2dv(x))

] p
2 dx.
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1418 M. D. Foss, C. S. Goodrich

This estimate is obtained via a minor modification of Uhlenbeck’s regularity argument,
in [68], for solutions to elliptic systems (see also [36] and [44]).

The final lemma for this section establishes the coercivity for the integrand G. Recall that
we are working under the assumptions (A1)–(A4).

Lemma 2.17 There is a constant c4 > 0 such that the function G satisfies the following
coercivity condition: for each (z,w, ξ) ∈ M × N × (R� ⊗ T ∗M) we find that

G(z,w, ξ) ≥ c4|ξ |p
R�⊗T ∗M − c4σ(z).

Proof Omitted—see, for example, [20, Lemma 2.7]. ��
Notation 2.18 In the sequel, the number C ≥ 1 shall represent a constant that may change
from line to line. In general, we shall not indicate the dependence of C on the other constants
in a given argument. However, we make the declaration that C shall depend neither on the
functions involved in the argument, e.g., w and u, nor on the radius of the balls utilized in the
arguments. Any other specific dependence that is important in the argument shall be noted. In
particular, constants of which we especially wish to keep track shall be denoted by c1, c2, and
so forth, and in this latter case the dependence shall be explicitly noted—e.g., c1 := c1(m).

3 Main lemmata

In this section, we prove two key lemmata. These will provide the principal ingredients for
proving the main results of this paper in Sects. 4 and 5.

3.1 Statement and Proof of Lemma 3.1

Our first lemma shows that the weak limit of the blow-up sequence, based on the minimizer
u, is a minimizer for the functional J [·;A0]. The map A0 is defined by A frozen at an
appropriate point. This will be used to prove an appropriate decay estimate in Sect. 4 that
subsequently yields the partial Hölder continuity result.

Lemma 3.1 Let M′ � M and {δi , ρi }∞i=1 ⊂ (0, 1), such that δi , ρi → 0+, be given. Also
let {zi }∞i=1 ⊂ M′, with a single local coordinate chart (V0,ϕ0) on M such that zi ∈ V0 and
Bm

ρi
(ϕ0(zi )) � ϕ0(V0), be given. For each i ∈ N:

(a) We assume that (u)zi ,ρi
∈ ΩN , and define ai ∈ N by ai := ΠN

(
(u)zi ,ρi

)
.

(b) Let vi ∈ W 1,p(Bm
1 ;R�) be defined by

vi (x) := u(ϕ−1
0 (ϕ0(zi ) + ρix)) − ai

δi
. (3.1)

Assume:

(c) We have limi→∞ ρ
p−m+γ

i /δ
p
i = 0. (Recall that γ was fixed so that p − m + γ > 0.)

(d) There is a z0 ∈ M such that limi→∞ distM(zi , z0) = 0.
(e) There is an a0 ∈ N such that ai → a0 in R

�.
(f) There is a v ∈ W 1,p(Bm

1 ; Ta0N ) such that vi ⇀ v in W 1,p(Bm
1 ;R�), upon identifying

Ta0N with an n-dimensional subspace of R�.

Let A0 ∈ (�2
R

n
)⊗(�2

R
m
)

be the local coordinate representation, with respect to (V0,ϕ0),
of A(z0, a0). Then, upon identifying Ta0N with R

n, the mapping v is a local minimizer of
J [·;A0].
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Proof Our proof is an adaptation of an argument used in [49]. Themain issues to be addressed
are thatM is not assumed to be aEuclidean set and the generality of the asymptotic relatedness
condition that G satisfies. Because the proof is lengthy, we break it into several constituent
parts.

3.1.1 Nearest-point projection map

Define the sequence {xi }∞i=1 ⊂ ϕ0(V0) by xi := ϕ0(zi ). From assumption (d), we conclude
that there is an x0 ∈ ϕ0(V0) such that xi → x0 in R

m . Assumption (e) implies {ai }∞i=1 is a
bounded sequence. Hence, there is an N ′ � N such that {ai }∞i=1 ⊂ N ′. We may select a
sequence {Li }∞i=1 so that limi→∞ Li = ∞ and yet still have limi→∞ δi Li = 0 and, from (2.1)
and (2.2),

lim
i→∞ sup

{
1

δi
|y − ΠN (y)| : y ∈ B�

3δi Li
(ai ) ∩ [ai + Tai N ]

}
= 0 (3.2)

and

lim
i→∞ sup

{
|q − [dΠN (y)]q| : y ∈ B�

3δi Li
(ai ) ∩ [ai + Tai N ], q ∈ Tai N and |q| ≤ 1

}
= 0.

(3.3)

In Sect. 2.2, we definedΩN to be the domain ofΠN . Since we are ultimately only interested
in the limit as i → ∞ and since N ′ is compact, without loss, for each i ∈ N we may
assume that B�

3δi Li
(ai ) ⊂ ΩN . Since ΠN is uniformly Lipschitz on

⋃∞
i=1 B3δi Li (ai ), there

is a constant CΠ ≥ 1 such that

|ΠN (y1) − ΠN (y2)| ≤ CΠ |y1 − y2|
for each y1, y2 ∈⋃∞

i=1 B3δi Li (ai ).

3.1.2 Mappings

w: The comparison map for v
Let w ∈ W 1,p(Bm

1 ; Ta0N ) such that supp (v − w) � B1 be given and fixed. Select ρ̂ ∈
(0, 1) so that supp (v − w) ⊂ B ρ̂ . Thus, v(x) = w(x) for a.e. x ∈ B1 \ B ρ̂ . Since vi ⇀ v in
W 1,p (assumption (f)), it follows that {vi }∞i=1 is bounded in W 1,p . By the Rellich-Kondrachov
theorem, there is an unrelabeled subsequence so that vi → v in L p(Bm

1 ;R�). We may now
pick ρ ∈ ( ρ̂ , 1) so that both of the following hold:

lim
i→∞

ˆ

Sm−1
ρ

|vi − w|p dH m−1 = 0 (3.4)

and

sup
i∈N

ˆ

Sm−1
ρ

{|vi |p + |w|p + |dvi |p + |dw|p} dH m−1 < ∞. (3.5)

To show that v is a minimizer, we need to take advantage of the assumption that each
ai + δivi is a local minimizer for the functional I , where we recall that I is defined in (2.3).
The map w, however, does not satisfy the constraint that ai + δiw maps into N . Therefore
ai +δiw cannot be used directly as a comparisonmap. To overcome this requires transforming
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1420 M. D. Foss, C. S. Goodrich

ai + δiw into a sequence of maps that are comparable to ai + δivi . Moreover, this needs to
be done in such a way that, as i ∈ N gets large, this transformation approaches an identity,
in some sense. At each stage of the transformation, we will establish the convergence, in
W 1,p(Bm

ρ ;R�), of the new sequence of maps to the original w.

w̃i : The rotated truncations of w
Definition of w̃i : The first component of this transformation involves mapping the
image ofw from Ta0N to Tai N and then truncating to ensure the projection map can be used.
By viewing, for each y ∈ N , the tangent space TyN as an n-dimensional linear subspace of
R

�, this can be accomplished through a rotation. Define Qy ∈ R
� ⊗ R

� as the rotation—i.e.,
orientation preserving isometry—operator that maps Ta0N onto TyN . Since ai → a0 in R

�,
the smoothness of N implies

lim
i→∞ sup

{|Qai q − q| : q ∈ Ta0N and |q| ≤ 1
} = 0. (3.6)

Define the sequence of truncated rotated maps {w̃i }∞i=1 ⊂ W 1,p(B1; Tai N )∩ L∞(B1; Tai N )

by

w̃i (x) := (Li/C2
Π)Qai w(x)

max
{|w(x)|, Li/C2

Π

} , (3.7)

so ‖w̃i‖L∞(B1) ≤ Li/C2
Π , for each i ∈ N, and ΠN (ai + δi w̃i (x)) is well defined for each

x ∈ Bm
1 .

Convergence of w̃i : We now verify that w̃i → w in W 1,p . Denote the identity map by
I . From (3.7), we see that

Q−1
ai

w̃i (x) =
⎧⎨
⎩
w(x), |w(x)| ≤ Li/C2

Π

Li/C2
Π

|w(x)| w(x), |w(x)| > Li/C2
Π

(3.8)

and

d [Q−1
ai

w̃i (x)] =
⎧⎨
⎩
dw(x), |w(x)| < Li/C2

Π

Li/C2
Π

|w(x)|
[
I − ⊗2w(x)

|w(x)|2
]
dw(x), |w(x)| > Li/C2

Π.

Thus, limi→∞
∣∣∣{x ∈ B1 : w(x) �= Q−1

ai
w̃i (x) or dw(x) �= d [Q−1

ai
w̃i (x)]

}∣∣∣ = 0 and

lim
i→∞

ˆ

B1

∣∣∣Q−1
ai

w̃i − w
∣∣∣p dx ≤ lim

i→∞

ˆ

B1∩
{
|w(x)|> Li

C2
Π

}|w|p dx = 0.

Also

lim
i→∞

ˆ

B1

∣∣∣d [Q−1
ai

w̃i ] − dw
∣∣∣p dx ≤ lim

i→∞

ˆ

B1∩
{
|w(x)|> Li

C2
Π

}
∣∣∣∣I − ⊗2w

|w|2
∣∣∣∣

p

|dw|p dx

≤ C lim
i→∞

ˆ

B1∩
{
|w(x)|> Li

C2
Π

}|dw|p dx = 0.
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Hence Q−1
ai

w̃i → w in W 1,p(B1; Ta0N ). Combining this with (3.6) implies w̃i → w in
W 1,p(B1;R�).

wi : The oscillations in ΠN (ai + w̃i )

Definition of wi : The next step is to project each ai + δi w̃i ontoN . As was mentioned
before, this projection is well defined, so we may define {wi }∞i=1 ⊂ W 1,p

(Bm
1 ;R�

)
by

wi (x) := ΠN (ai + δi w̃i (x)) − ai

δi
. (3.9)

We note that the Lipschitz continuity of ΠN implies ‖wi‖L∞(B1) ≤ Li/CΠ for each i ∈ N.
Convergence of wi : To facilitate the production of a transition map between wi and vi ,
we will show both wi → w in W 1,p(Bm

1 ;R�) and wi − vi → 0 in L p(Sm−1
ρ ;R�). Based on

the convergence of w̃ already established, we have

lim
i→∞

ˆ

B1

|wi − w|p dx ≤ C lim
i→∞

ˆ

B1

|wi − w̃i |p dx

= C lim
i→∞

ˆ

B1

∣∣∣∣ΠN (ai + δi w̃i ) − [ai + δi w̃i ]
δi

∣∣∣∣
p

dx.

Since ai + δi w̃i (x) ∈ B�
3δi Li

∩ [ai + Tai N ] for each x ∈ B1, the limit (3.2) implies wi → w

in L p(B1;R�). Next we again use the convergence of w̃i → w in W 1,p to conclude that

lim
i→∞

ˆ

B1

|dwi − dw|p dx = lim
i→∞

ˆ

B1

|dwi − d w̃i |p dx

= lim
i→∞

ˆ

B1

∣∣[dΠN (ai + δi w̃i )
]
d w̃i − d w̃i

∣∣p dx.

Now, d w̃i (x) ∈ Tai N for each x ∈ B1, so it follows from (3.3) that dwi → dw in
L p(B1;R�×m). Thus, wi → w in W 1,p(B1;R�).

We now argue that wi → vi in L p(Sm−1
ρ ;R�). From (3.4), we write

lim
i→∞

ˆ

Sm−1
ρ

|wi − vi |p dH m−1 ≤ C lim
i→∞

ˆ

Sm−1
ρ

∣∣∣∣ΠN (ai + δi w̃i ) − [ai + δi w̃i ]
δi

∣∣∣∣
p

dH m−1

+ C lim
i→∞

ˆ

Sm−1
ρ

|w̃i − w|p dH m−1.

Weagaindeduce from (3.2) that thefirst limit (on the right-hand side) vanishes.Recalling (3.6)
yields

lim
i→∞

ˆ

Sm−1
ρ

|wi − vi |p dH m−1 ≤ C lim
i→∞

ˆ

Sm−1
ρ

|w̃i − w|p dH m−1

≤ C lim
i→∞

ˆ

Sm−1
ρ

|Q−1
ai

w̃i − w|p dH m−1.
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1422 M. D. Foss, C. S. Goodrich

Now (3.8) and (3.5) implies

lim
i→∞

ˆ

Sm−1
ρ

|wi − vi |p dH m−1 ≤ C lim
i→∞

ˆ

Sm−1
ρ ∩

{
|w(x)|> Li

C2
Π

}|w|p dH m−1 = 0.

w∗
i : The transition map between wi and vi

Definition of w∗
i : We are now in position to produce a map that provides a transition

from wi to vi on an annular region within Bm
1 . Define {ηi }∞i=1 by

η
p
i :=

ˆ

Sm−1
ρ

|vi − wi |p dH m−1. (3.10)

From the convergence wi −vi → 0 in L p(Sm−1
ρ ;R�) just established, we have limi→∞ ηi =

0. Let the sequence {λi }∞i=1 ⊂ (0, 1) be defined by

λi := 1

1 + | ln ηi | ,

so that

lim
i→∞ λi = 0 and lim

i→∞
ηi

λi
= 0. (3.11)

For the transitionmap,weuse theLuckhausLemma.Fixβ ∈
( �p−1�

p , 1
)
.Define the sequence

{Ki }∞i=1 ⊂ R so that

K p
i = 1

ρ p

ˆ

Sm−1
1

{
|dvi (ρx)|p + |dwi (ρx)|p + |vi (ρx) − wi (ρx)|p

η
p
i

}
dH m−1(x).

Invoking Lemma 2.14 yields transition maps {ψ i }∞i=1 ∈ W 1,p(Bm
1 \ Bm

1−λi
;R�) satisfying

ψ i (x) =
{
wi

(
ρx

1−λi

)
, x ∈ Sm−1

1−λi

vi (ρx), x ∈ Sm−1
1 ,

(3.12)

ˆ

Bm
1 \Bm

1−λi

|dψ i |p dx ≤ c1K p
i

(
1 + η

p
i

λ
p
i

)
λi , (3.13)

and

ψ i (B1 \ B1−λi ) ⊆ vi (Sρ) ∪ wi (Sρ) ∪ {y ∈ R
� : dist (y, vi (Sρ)) + dist (y,wi (Sρ)) < Ri }.

(3.14)

Here

Ri = c2Kiη
1−β
i λ

�p−1�−(m−1)
p

i ,
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where β was fixed above. We now let w∗
i ∈ W 1,p(Bm

1 ;R�) be given by the following defini-
tion.

w∗
i (x) :=

⎧⎪⎪⎨
⎪⎪⎩
wi

(
x

1−λi

)
, x ∈ Bm

ρ(1−λi )

ψ i

(
x
ρ

)
, x ∈ Bm

ρ \ Bm
ρ(1−λi )

vi (x), x ∈ Bm
1 \ Bm

ρ

(3.15)

Note that for x ∈ Sm
ρ(1−λi )

, we find that ψ i (
x
ρ
) = wi (

x
1−λi

); and for x ∈ Sm
ρ , we have

ψ i (
x
ρ
) = vi (x). Also since 1 − β > 0, we conclude that

lim
i→∞ η

1−β
i λ

�p−1�−(m−1)
p

i = 0.

Moreover, supi∈N Ki < ∞. It follows that limi→∞ Ri = 0. Again, as we are interested in
the limit as i → ∞, we may assume without loss of generality that Ri < 1 ≤ Li/CΠ for
each i ∈ N. Recall that ‖wi‖L∞ ≤ Li/CΠ . The bound on the range of ψ i in (3.14) implies
that for each x ∈ Bρ \ Bρ(1−λi )

either |w∗
i (x)| ≤ 2Li/CΠ or w∗

i (x) ∈ vi (Sρ).

As each of ai + δiwi and ai + δivi has range inN , we conclude that ai + δiw∗
i (Bm

1 ) ⊂ ΩN .
The map we ultimately use to compare with each vi is δ−1

i [ΠN (ai + δiw∗
i ) − ai ].

Convergence of w∗
i : First we argue that w∗

i → w in W 1,p(Bm
ρ ;R�). Let us check the

convergence of w∗
i → w in L p . Based on the definition in (3.15) and the convergence of

wi → w in W 1,p(B1;R�), we write

lim
i→∞

ˆ

Bρ

∣∣w∗
i − w

∣∣p dx

= lim
i→∞

ˆ

Bρ(1−λi )

∣∣∣∣wi

(
x

1 − λi

)
− wi (x)

∣∣∣∣
p

dx

︸ ︷︷ ︸
:=I1,i

+ lim
i→∞

ˆ

Bρ\Bρ(1−λi )

∣∣∣∣ψ i

(
x
ρ

)
− w(x)

∣∣∣∣
p

dx.

︸ ︷︷ ︸
:=I2,i

Clearly, we have that
[
wi (

x
1−λi

) − wi (x)
]

→ 0 for a.e. x ∈ Bρ . We also see that∣∣∣wi (
x

1−λi
) − wi (x)

∣∣∣p ≤ C
{
|w(x)|p + |w( x

1−λi
)|p
}
. The Lebesgue dominated convergence

theorem implies limi→∞ I1,i = 0.
We now examine limi→∞ I2,i . The bound on the range of ψ i in (3.14) implies that

either |ψ i (x)| ≤ |vi (x)| or |ψ i (x)| < |wi (x)| + 1 (3.16)

for each x ∈ Bρ \ Bρ(1−λi ). Since vi → v ∈ L p(Bm
1 ;R�), wi → w ∈ L p(Bm

1 ;R�), and
limi→∞ |Bρ \ Bρ(1−λi )| = 0, we have

lim
i→∞

ˆ

Bρ\Bρ(1−λi )

{|vi |p + |wi |p + |w|p} dx = 0.
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1424 M. D. Foss, C. S. Goodrich

From this limit and (3.16), we may estimate

lim
i→∞ I2,i ≤ C lim

i→∞ |Bρ \ Bρ(1−λi )| + C lim
i→∞

ˆ

Bρ\Bρ(1−λi )

{|vi |p + |wi |p + |w|p} dx = 0.

Thus, w∗
i → w in L p(Bm

ρ ;R�).
Now we turn to the convergence of dw∗

i → dw in L p . As before, the convergence of
wi → w in W 1,p and the definition of wi yields

lim
i→∞

ˆ

Bρ

∣∣dw∗
i − dw

∣∣p dx = lim
i→∞

ˆ

Bρ(1−λi )

∣∣∣∣d
[
wi

(
x

1 − λi

)]
− dwi (x)

∣∣∣∣
p

dx

︸ ︷︷ ︸
:=I3,i

+ lim
i→∞

ˆ

Bρ\Bρ(1−λi )

∣∣∣∣d
[
ψ i

(
x
ρ

)]
− dw(x)

∣∣∣∣
p

dx.

︸ ︷︷ ︸
:=I4,i

As was done with I1,i above, the Lebesgue dominated convergence theorem may be used to
argue that limi→∞ I3,i = 0. For the limit of I4,i , we recall that supi∈N Ki < ∞, so (3.11)
and the inequality in (3.13) imply

lim
i→∞ I4,i ≤ C lim

i→∞

ˆ

Bρ\Bρ(1−λi )

∣∣∣∣d
[
ψ i

(
x
ρ

)]∣∣∣∣
p

dx + C lim
i→∞

ˆ

Bρ\Bρ(1−λi )

|dw(x)|p dx

≤ C lim
i→∞

(
1 + η

p
i

λ
p
i

)
λi + C lim

i→∞

ˆ

Bρ\Bρ(1−λi )

|dw(x)|p dx = 0,

since w ∈ W 1,p(B1;R�) and limi→∞ |Bρ \Bρ(1−λi )| = 0. This completes the argument that
w∗

i → w in W 1,p(Bρ;R�).

ΠN (ai + δiw∗
i ): The comparison map for vi

Finally, we demonstrate the convergence δ−1
i [ΠN (ai +δiw∗

i )−ai ] → w in W 1,p(Bρ;R�).
For each i ∈ N and each x ∈ Bρ(1−λi ), we find that ai + δiw∗

i (x) is already in N , so
δ−1

i [ΠN (ai +δiw∗
i (x))−ai ] = w∗

i (x). From the convergence ofw∗
i that was just established,

we conclude that

lim
i→∞

∥∥∥∥ΠN (ai + δiw∗
i ) − [ai − δiw]
δi

∥∥∥∥
W 1,p

(
Bρ(1−λi )

;R�
) = 0.

It remains to show the convergence on Bρ \ Bρ(1−λi ), for which we again use the fact that
the measure of this set vanishes in the limit. Since ΠN is Lipschitz, for x ∈ Bρ \ Bρ(1−λi )

we have the estimate

δ−1
i

∣∣ΠN (ai + δiw∗
i (x)) − ai

∣∣ ≤ CΠ |w∗
i (x)|.

Now w∗
i → w in L p(Bρ;R�) implies

lim
i→∞

ˆ

Bρ\Bρ(1−λi )

{|w∗
i |p + |w|p} dx = 0.
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On partial Hölder continuity and a Caccioppoli inequality 1425

Hence,

lim
i→∞

ˆ

Bρ\Bρ(1−λi )

∣∣∣∣ΠN (ai + δiw∗
i ) − [ai − δiw]
δi

∣∣∣∣
p

dx ≤ C lim
i→∞

ˆ

Bρ\Bρ(1−λi )

{|w∗
i |p + |w|p} dx = 0.

This verifies that δ−1
i [ΠN (ai + δiw∗

i ) − ai ] → w in L p(Bρ;R�). To finish the argument, we
again use the fact that ΠN is Lipschitz to estimate

lim
i→∞

ˆ

Bρ\Bρ(1−λi )

∣∣∣∣d
[

ΠN (ai + δiw∗
i ) − ai

δi

]
− dw

∣∣∣∣
p

dx

≤ C lim
i→∞

ˆ

Bρ\Bρ(1−λi )

{∣∣∣∣d
[
ψ i

(
x
ρ

)]∣∣∣∣
p

+ |dw|p
}
dx.

Using the same argument that showed limi→∞ I4,i = 0, we see that the above limit vanishes
as well. This establishes the convergence δ−1

i [ΠN (ai + δiw∗
i ) − ai ] → w in W 1,p(Bρ;R�).

With this in hand, we now are ready to begin comparing J [v;A0] to J [w;A0].
Comparison between J [v;A0] and J [w;A0]
3.1.3 Definitions

Before proceeding to compare J [v;A0] to J [w;A0], we need to make a fewmore definitions.
Given z ∈ V0 and w ∈ R

�, we will require a representation of A(z,w) and g(z) in local coor-
dinates. With { ∂

∂x j }m
j=1 an orthonormal basis for TxRm for each x ∈ ϕ0(V0), and { dwα}�α=1

an orthonormal basis for T ∗
wR

� for each w ∈ R
�, we define the components of the tensor-

valued maps A ∈ C
(
ϕ0 (V0) × R

�; (�2
R

�
)⊗ (�2

R
m
))

and g ∈ C∞ (ϕ0 (V0) ;�2
R

m
)
by

Aα1,α2
j1, j2

(x,w) := A
(
ϕ−1
0 (x),w

)(
dwα1 ⊗ dwα2 ⊗ ∂

∂x j1
⊗ ∂

∂x j2

)

and

g j1, j2(x) := g
(
ϕ−1
0 (x)

)( ∂

∂x j1
⊗ ∂

∂x j2

)
.

The components of the inverse matrix g−1 are denoted by g j1, j2 for 1 ≤ j1, j2 ≤ m. We put
A0 := A(x0, a0) and g0 := g(x0). For convenience let ζ i ∈ C∞ (Rm;Rm) be given by

ζ i ( x̂ ) := xi + ρi x̂

for each i ∈ N. Also define {Ai }∞i=1 ⊂ C
(Bm

1 × R
�; (�2

R
�
)⊗ (�2

R
m
))

and {gi }∞i=1 ⊂
C∞(Bm

1 ;�2
R

m) by

Ai ( x̂ , ŵ ) := A(ζ i ( x̂ ), ai + δi ŵ ) and gi ( x̂ ) := g(ζ i ( x̂ )). (3.17)

Let g−1
i denote the inverse of gi . The uniform continuity of g on ϕ0(V) implies

lim
i→∞ sup

x̂∈Bm
1

∣∣∣√det gi ( x̂ ) −√det g0
∣∣∣ = 0. (3.18)

Assumption (A2) implies that for each r > 0

sup
x̂∈Bm

1

sup
ŵ∈B�

r

|Ai ( x̂ , ŵ ) − A0|≤�2ω
(
distM

(
ϕ−1
0 (xi +ρi x̂ ) , ϕ−1

0 (x0)
)
+|ai + δi ŵ −a0|

)
.
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1426 M. D. Foss, C. S. Goodrich

Recalling that xi → x0 in R
m and that by hypothesis ϕ−1

0 ∈ C∞ (ϕ0(V0);N
)
and ai → a0

in R
�, we deduce that for each r > 0

lim
i→∞ sup

x̂∈Bm
1

sup
ŵ∈B�

r

|Ai ( x̂ , ŵ ) − A0| = 0. (3.19)

Assumption (A1) implies A0 is positive definite.
For each i ∈ N, define ui ∈ W 1,p(ϕ−1

0 (Bm
ρi

(xi ));N ) by

ui (z) := ΠN (ai + δiw∗
i (ζ

−1
i (ϕ0(z)))).

For each ε > 0, also define the sequence of measurable sets {Eε,i }∞i=1 by

Eε,i :=
⎧⎨
⎩x ∈ Bm

ρ :
∣∣∣dui

(
ϕ−1
0

(
ζ i (x)

))∣∣∣
R�⊗T ∗

ϕ−1
0 (ζ i (x))

M
> σε(ϕ

−1
0 (ζ i (x)))

⎫⎬
⎭⊆Bm

ρ . (3.20)

For each x ∈ Bm
1 we compute

d
[

ΠN (ai + δiw∗
i (x)) − ai

δi

]
= d

[
ui (ϕ

−1
0 (ζ i (x))) − ai

δi

]

= ρi

δi
dui (ϕ

−1
0 (ζ i (x)))dϕ−1

0 (ζ i (x))

For each i ∈ N, define ξ i ∈ L p(Bm
1 ;R� ⊗ R

m) by

ξ i (x) := dui (ϕ
−1
0 (ζ i (x)))dϕ−1

0 (ζ i (x)),

so

d
[

ΠN (ai + δiw∗
i (x)) − ai

δi

]
= ρi

δi
ξ i (x).

Since δ−1
i [ΠN (ai + δiwi ) − ai ] → w in W 1,p(Bm

ρ ;R�), we deduce that

lim
i→∞

∥∥∥∥∥ui ◦ ϕ−1
0 ◦ ζ i − ai

δi
− w

∥∥∥∥∥
W 1,p(Bm

ρ ;R�)

= 0 and lim
i→∞

∥∥∥∥ρi

δi
ξ i − w

∥∥∥∥
L p;R�⊗Rm

= 0.

(3.21)

We note that the representation of ϕ0 in local coordinates is x and moreover that the map
dϕ0 ∈ C∞(ϕ−1

0 (Bm
ρi

(xi ));Rm ⊗ T ∗M) is the identity matrix I ∈ R
m ⊗ R

m in local coor-
dinates.

3.1.4 Main estimates

Let ε > 0 be given. We write
ˆ

Bρ

{
A0(⊗2dw(x))

} p
2 dx = lim

i→∞

ˆ

Bρ

{
A0

(
⊗2d

[
ΠN (ai + δiw∗

i ) − ai

δi

])} p
2

dx

= lim
i→∞

ρ
p
i

δ
p
i

√
det g0

ˆ

Bρ

{
A0
(⊗2ξ i

)} p
2
√
det g0 dx

︸ ︷︷ ︸
:=I I1,i

. (3.22)
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Using the convergence in (3.21) and the uniform convergence of
√
det gi → √

det g0 and
of Ai to A0, in (3.18) and (3.19), we conclude that

lim
i→∞

∣∣∣∣∣
{
x ∈ Bρ :

∣∣∣∣∣Ai

(
x,

ui (ϕ
−1
0 (ζ i (x))) − ai

δi

)√
det gi (x) − A0

√
det g0

∣∣∣∣∣ > 1

i

}∣∣∣∣∣ = 0.

We also have from (3.21) that ρi
δi

ξ i → w in L p(Bm
ρ ;R� ⊗ R

m). Thus,

lim
i→∞

ρ
p
i

δ
p
i

I I1,i = lim inf
i→∞

ρ
p
i

δ
p
i

ˆ

Eε,i

{
Ai

(
x,

ui (ϕ
−1
0 (ζ i (x))) − ai

δi

)(⊗2ξ i (x)
)} p

2√
det gi (x) dx.

︸ ︷︷ ︸
:=I I2,i

+ √
det g0 lim inf

i→∞
ρ

p
i

δ
p
i

ˆ

Bρ\Eε,i

{
A0
(⊗2ξ i (x)

)} p
2 dx

≥ I I2,i (3.23)

Recall that dϕ0 is I in local coordinates. Turning to I I2,i , we change variables to get

I I2,i = 1

ρm
i

ˆ

ϕ−1
0 (ζ i (Eε,i ))

{
A(z,ui (z))

(
⊗2
[
dui (z)dϕ−1

0 (ϕ0(z))dϕ0(z)
])} p

2
dμg (z)

= 1

ρm
i

ˆ

ϕ−1
0 (ζ i (Eε,i ))

{
A(z,ui (z))

(⊗2dui (z)
)} p

2 dμg (z).

For each i ∈ N, put

ϕi := ζ−1
i ◦ ϕ0.

The asymptotic convexity assumption in (A4) implies

{
A(z,ui (z))

(⊗2dui (z)
)} p

2 > G(z,ui (z),dui (z)) − ε|dui (z)|p
R�⊗T ∗

z M

for every z ∈ ϕ−1
i (Eε,i ). Hence,

I I2,i ≥ 1

ρm
i

ˆ

ϕ−1
i (Eε,i )

G(z,ui (z),dui (z)) dμg (z) − ε

ρm
i

ˆ

ϕ−1
i (Eε,i )

|dui (z)|p
R�⊗T ∗

z M
dμg (z)

≥ 1

ρm
i

ˆ

ϕ−1
i (Bρ(1+λi ))

G(z,ui (z),dui (z)) dμg (z) − 1

ρm
i

ˆ

ϕ−1
i (Bρ(1+λi )\Bρ)

G(z,ui (z),dui (z)) dμg (z)

− 1

ρm
i

ˆ

ϕ−1
i (Bρ\Eε,i )

G(z,ui (z),dui (z)) dμg (z) − ε

ρm
i

ˆ

ϕ−1
i (Eε,i )

|dui (z)|p
R�⊗T ∗

z M
dμg (z).

Rewriting definition (3.1), for each z ∈ ϕ−1
i (Bρ) we get

ai + δivi (ϕi (z)) = u(z).
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1428 M. D. Foss, C. S. Goodrich

Thus,

δidvi (ϕi (z))dϕi (z) = du(z).

Since u is a local minimizer for I , and ui = u on B1 \Bρ , for each i ∈ N, we must have that

ˆ

ϕ−1
i (Bρ)

G(z,ui ,dui ) dμg ≥
ˆ

ϕ−1
i (Bρ)

G(z,u,du) dμg

=
ˆ

ϕ−1
i (Bρ)

G(z, ai + δivi ◦ ϕi , δid [vi ◦ ϕi ]) dμg .

Therefore,

I I2,i ≥ 1

ρm
i

ˆ

ϕ−1
i (Bρ)

G(z, ai + δivi (ϕi (z)), δidvi (ϕi (z))dϕi (z)) dμg (z)

︸ ︷︷ ︸
:=I I3,i

− 1

ρm
i

ˆ

ϕ−1
i (Bρ\Eε,i )

G(z,ui (z),dui (z)) dμg (z)

︸ ︷︷ ︸
I I4,i

− ε

ρm
i

ˆ

ϕ−1
i (Eε,i )

|dui (z)|p
R�⊗T ∗

z M
dμg (z)

︸ ︷︷ ︸
:=I I5,i

.

(3.24)

We now work to estimate I I3,i from below in terms of J [v,B0]. For each i ∈ N, set

Fi :=
⎧⎨
⎩x ∈ Bm

ρ : δi

∣∣∣dvi (x)dϕi (ϕ
−1
i (x))

∣∣∣
R�⊗T ∗

ϕ−1
i (x)

M
> σε(ϕ

−1
i (x))

⎫⎬
⎭ ⊆ Bm

ρ .

Assumption (A4) yields

G(z, ai + δivi (ϕi (z)), δidvi (ϕi (z))dϕi (z))

> δ
p
i

{
A(z, ai + δivi (ϕi (z)))

(⊗2 [dvi (ϕi (z))dϕi (z)
])} p

2

−εδ
p
i

∣∣dvi (ϕi (z))dϕi (z)
∣∣p
R�⊗T ∗

z M

for each z ∈ ϕ−1
i (Fi ). It follows that

I I3,i ≥ δ
p
i

ˆ

ϕ−1
i (Fi )

{
A(z, ai + δivi ◦ ϕi )

(⊗2d [vi ◦ ϕi ]
)} p

2 dμg

−
ˆ

ϕ−1
i (Bρ\Fi )

G(z, ai + δivi ◦ ϕi , δid [vi ◦ ϕi ]) dμg − εδ
p
i

ˆ

ϕ−1
i (Fi )

|d [vi ◦ ϕi ]|p
R�⊗T ∗

z M dμg .

The identification of ϕ0 with x in local coordinates implies the identity element I ∈ T ∗M⊗
T ∗M is represented by dϕ−1

0 ∈ C∞(Bρi (xi ); T ∗M⊗R
m). Upon changing variables again
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On partial Hölder continuity and a Caccioppoli inequality 1429

we obtain

I I3,i ≥ δ
p
i ρm

i

ˆ

Bρ

{
Ai (x, vi (x))

(
⊗2
[
dvi (x)dϕi (ϕ

−1
i (x))dϕ−1

0 (x)
])} p

2 √
det gi (x) dx

︸ ︷︷ ︸
:=I I6,i

− δ
p
i

ˆ

ϕ−1
i (Bρ\Fi )

{
A(z, ai + δivi (ϕi (z)))

(⊗2 [dvi (ϕi (z))dϕi (z)
])} p

2 dμg (z)

︸ ︷︷ ︸
:=I I7,i

−
ˆ

ϕ−1
i (Bρ\Fi )

G(z, ai + δivi (ϕi (z)), δidvi (ϕi (z))dϕi (z)) dμg (z)

︸ ︷︷ ︸
I I8,i

− εδ
p
i

ˆ

ϕ−1
i (Fi )

∣∣dvi (ϕi (z))dϕi (z)
∣∣p
R�⊗T ∗

ϕ−1(x)
M dμg (z)

︸ ︷︷ ︸
:=I I9,i

. (3.25)

3.1.5 Final comparison

Collecting the above estimate along with the estimates (3.22), (3.23), and (3.24) gives us
ˆ

Bρ

{
A0(⊗2dw)

} p
2 dx

≥ 1√
det g0

{
lim inf

i→∞ ρ
p
i I I6,i − lim sup

i→∞
ρ

p−m
i

δ
p
i

I I4,i − ε lim sup
i→∞

ρ
p−m
i

δ
p
i

I I5,i

− lim sup
i→∞

ρ
p−m
i I I7,i − lim sup

i→∞
ρ

p−m
i

δ
p
i

I I8,i − ε lim sup
i→∞

ρ
p−m
i I I9,i

}
. (3.26)

We observe that

dϕi (ϕ
−1
i (x)) = 1

ρi
dϕ0(ϕ

−1
0 (x)).

Thus,

dϕi (ϕ
−1
i (x))dϕ−1

0 (x) = 1

ρi
I

for each x ∈ Bρ . The uniform convergence in each of (3.18) and (3.19) along with the strong
convergence of vi → v in L p implies

lim inf
i→∞ ρ

p
i I I6,i = √det g0 lim inf

i→∞

ˆ

Bρ

{
A0
(⊗2dvi (x)

)} p
2 dx.

123



1430 M. D. Foss, C. S. Goodrich

Since A0 is positive definite, this integral is weakly lower semicontinuous in L p . It follows
from the weak convergence vi ⇀ v in L p , provided by assumption (f), that

lim inf
i→∞ ρ

p
i I I6,i ≥ √det g0

ˆ

Bρ

{
A0
(⊗2dv(x)

)} p
2 dx.

The growth condition in (A3) allows us to estimate

ρ
p−m
i

δ
p
i

I I4,i ≤ ρ
p−m
i

δ
p
i

ˆ

ϕ−1
i (Bρ\Eε,i )

{
σ(z) + � |dui (z)|p

R�⊗T ∗
z M
}
dμg (z)

≤ ρ
p−m
i

δ
p
i

ˆ

ϕ−1
0 (Bρi (xi ))

{
σ(z) + �|σε(z)|p} dμg (z).

Herewe used the inequality |dui (z)|R�⊗T ∗
z M ≤ σε(z), which holds for each z ∈ ϕ−1

i (Bρ\Ei )

by the definition of Eε,i in (3.20); we have also used the fact that from the definitions of ϕ0,
ϕi , and ζ i we notice that

ϕ−1
i

(Bρ\Eε,i
) = ϕ−1

0

(
ζ i

(Bρ\Eε,i
)) ⊆ ϕ−1

0

(Bρi ρ (xi )
) ⊆ ϕ−1

0

(Bρi (xi )
)
.

Since ϕ−1
0 (Bρi (xi )) ⊂ V0 ⊆ M′ and M′ is compactly contained in M, there must be

a constant C ′ < ∞ such that ϕ−1
0 (Bρi (xi )) ⊆ BM

C ′ρi
(zi ) for each i ∈ N. By hypothesis

σ, |σε|p ∈ L1,γ (M) and limi→∞ ρ
p−m+γ

i /δ
p
i = 0. Hence,

lim sup
i→∞

ρ
p−m
i

δ
p
i

I I4,i ≤ lim sup
i→∞

ρ
p−m
i

δ
p
i

ˆ

BM
C ′ρi

(zi )

{
σ(z) + �|σε(z)|p} dμg (z)

≤ C lim sup
i→∞

ρ
p−m+γ

i

δ
p
i

= 0.

Completely analogous arguments yield

lim sup
i→∞

ρ
p−m
i I I7,i = lim sup

i→∞
ρ

p−m
i

δ
p
i

I I8,i = 0.

Next we see that

ρ
p−m
i

δ
p
i

I I5,i ≤ ρ
p−m
i

δ
p
i

ˆ

Bρρi (xi )

∣∣∣dui (ϕ
−1
0 (ζ ))

∣∣∣p
R�⊗T ∗

ϕ−1
0 (ζ )

M
√
det g(ζ ) dζ .

Using the local coordinate representation produces:

ρ
p−m
i

δ
p
i

I I5,i

≤ ρ
p−m
i

δ
p
i

ˆ

Bρρi (xi )

⎧⎨
⎩

m∑
j1, j2=1

g j1, j2(ζ )

〈
∂[ui ◦ ϕ−1

0 ]
∂ζ j1

(ζ ),
∂[ui ◦ ϕ−1

0 ]
∂ζ j2

(ζ )

〉
R�

⎫⎬
⎭

p
2 √

det g(ζ ) dζ
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On partial Hölder continuity and a Caccioppoli inequality 1431

= ρ
p−m
i

δ
p
i

×
ˆ

Bρρi (xi )

〈[
dui (ϕ

−1
0 (ζ ))dϕ−1

0 (ζ )
] [

g−1(ζ )
]
,dui (ϕ

−1
0 (ζ ))dϕ−1

0 (ζ )
〉 p
2

R�⊗Rm

√
det g(ζ ) dζ .

Continuing with a change of variables using ζ i = xi + ρix yields

ρ
p−m
i

δ
p
i

I I5,i

≤
ˆ

Bρ

〈
d
[

ΠN (ai + δiwi (x)) − ai

δi

] [
g−1

i (x)
]
,d
[

ΠN (ai + δiwi (x)) − ai

δi

]〉 p
2

R�⊗Rm

√
det gi (x) dx.

Thus,

lim sup
i→∞

ρ
p−m
i

δ
p
i

I I5,i ≤ √det g0

ˆ

Bρ

〈
dw(x)g−1

0 ,dw(x)
〉 p
2

R�⊗Rm
dx

= √det g0

ˆ

Bρ

{
g−1
0 [dw(x) ⊗ dw(x)]

} p
2
dx.

The analysis of lim supi→∞ ρ
p−m
i I I9,i is similar. We obtain

lim sup
i→∞

ρ
p−m
i I I9,i ≤ lim sup

i→∞

ˆ

Bρ

〈
dvi (x)g

−1
i (x),dvi (x)

〉 p
2

R�⊗Rm

√
det gi (x) dx

≤ √det g0 sup
i∈N

ˆ

Bρ

{
g−1
0

[
dvi (x) ⊗ dvi (x)

]} p
2
dx.

Using the above estimates in (3.26) yields

ˆ

Bρ

{
A0
(⊗2dv

)} p
2 dx ≤

ˆ

Bρ

{
A0
(⊗2dw

)} p
2 dx + ε

ˆ

Bρ

{
g−1
0

[
dw ⊗ dw

]} p
2
dx

+ε sup
i∈N

ˆ

Bρ

{
g−1
0

[
dvi ⊗ dvi

]} p
2
dx.

Put A0 := A(z0, a0). Thus, A0 is just the restriction of A0 to (�2Ta0N ) ⊗ (�2
R

m), and
so A0

(⊗2dv
) = A0

(⊗2dv
)
and A0

(⊗2dw
) = A0

(⊗2dw
)
. The last estimate is valid for

each ε > 0 and supi∈N ‖dvi‖L p(Bm
1 ;R�) < ∞. We may therefore take the limit as ε → 0+ to

get

J [v;A0] ≤ J [w;A0].
As this demonstrates the desired minimality of v, the proof is thus complete. ��
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1432 M. D. Foss, C. S. Goodrich

3.2 Statement and Proof of Lemma 3.2

The second lemma shows that if the blow-up sequence converges weakly to some map, then
it actually converges strongly. This second lemma is, in part, used in establishing the partial
Caccioppoli inequality.

Lemma 3.2 Let M′ � M and {δi , ρi }∞i=1 ⊂ (0, 1), such that δi , ρi → 0+, be given. Also
let {zi }∞i=1 ⊂ M′, with a single local coordinate chart (V0,ϕ0) on M such that zi ∈ V0

and Bm
ρi

(ϕ0(zi )) � ϕ0(V0), be given. For each i ∈ N: let {a0} ∪ {ai }∞i=1 ⊂ N , z0 ∈ M
and {vi }∞i=1 ⊂ W 1,p(Bm

1 ;R�) along with assumptions (a)–(f) be as described in Lemma 3.1.

Then we have the strong convergence vi → v in W 1,p
loc (Bm

1 ;R�).

Proof Several elements of the setup that we need are the same as were used in the proof of
Lemma 3.1. We will therefore take advantage of some of the definitions already made in that
proof. As with the proof of Lemma 3.1 we have broken the proof into several steps.

First we observe that the Rellich-Kondrachov theorem yields vi → v in L p(Bm
1 ;R�). It

only remains to verify that dvi → dv in L p(Bm
ρ̂ ;R� ⊗ R

m) for each ρ̂ ∈ (0, 1).

3.2.1 Definitions

Select ρ̂ ∈ (0, 1), which is henceforth fixed but otherwise arbitrary. It is enough to show
dvi → dv in L p(Bm

ρ ;R� ⊗ R
m) for some ρ ∈ ( ρ̂ , 1). Since vi → v in L p , we may find a

number ρ ∈ ( ρ̂ , 1) such that

lim
i→∞

ˆ

Sm−1
ρ

|vi − v|p dH m−1 = 0

and

sup
i∈N

ˆ

Sm−1
ρ

{|vi |p + |v|p + |dvi |p + |dv|p} dH m−1 < ∞.

For Lemma 3.1, we modified a given w ∈ W 1,p(Bm
1 ; Ta0N ) into a sequence {w∗

i }∞i=1 via a
series of transformations. Since v is a choice for a map in W 1,p(Bm

1 ; Ta0N ), we use the exact
same transformations to produce a sequence {v∗

i }∞i=1 ⊂ W 1,p(Bm
1 ;R�) with the following

properties: for each i ∈ N, it holds that

(i) ai + δiv∗
i (x) ∈ ΩN for all x ∈ B1;

(ii) v∗
i (x) = vi (x) for all x ∈ B1 \ Bρ ;

(iii) ΠN (ai + δiv∗
i (x)) is well defined for each x ∈ Bρ ;

(iv) limi→∞ ‖v∗
i − v‖W 1,p(Bm

ρ ;R�) = 0; and

(v) limi→∞
∥∥∥ΠN (ai +δi v∗i )−ai

δi
− v
∥∥∥

W 1,p(Bρ ;R�)
= 0.

Before estimating ‖dvi − dv‖p
L p(R�⊗Rm )

, we recall a few more definitions that were

used in the proof of Lemma 3.1. The sequences {ζ i }∞i=1 ⊂ C∞(Rm;Rm) and {ϕi }∞i=1 ⊂
C∞(V0;Rm) are given by

ζ i ( x̂ ) := xi + ρi x̂ and ϕi (z) := ζ−1
i (ϕ0(z)).
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On partial Hölder continuity and a Caccioppoli inequality 1433

For each i ∈ N, define the map wi ∈ W 1,p
(
ϕ−1

i (Bm
1 (xi ));N

)
by

wi (z) := ΠN
(
ai + δiv∗

i (ϕi (z))
)
. (3.27)

Note that wi is well defined by property (iii) for v∗
i .

Let {Ai }∞i=1 ⊂ C
(Bm

1 × R
�; (�2

R
�
)⊗ (�2

R
m
))

and {gi }∞i=1 ⊂ C∞ (Bm
1 ;�2

R
m
)
be

defined as in (3.17). Thus the convergences in (3.18) and (3.19) are both valid. These in
combination with the strong convergence vi → v in L p(B1;R�) imply

lim
i→∞

∣∣∣∣
{
x ∈ B1 : |Ai (x, vi (x)) − A0| >

1

i

}∣∣∣∣ = 0. (3.28)

Let A0 ∈ (�2
R

�)⊗ (�2
R

m) be the local coordinate representation, with respect to (V0,ϕ0),
of A(z0, a0).

3.2.2 Upper bound for limi→∞
´
Bρ

|dvi − dv| dx

The positive definiteness of A, and hence Ai , allows us to write

ˆ

Bρ

|dvi − dv|p dx

≤ C(p)�p
ˆ

Bρ

1ˆ

0

(1 − s)p
{
Ai (x, vi (x)) ⊗2 [sdvi (x) + (1 − s)dv(x)

]} p−2
2

[
Ai (x, vi (x)) ⊗2 (dvi (x) − dv(x))2

]
ds dx

≤ C(p,�)

ˆ

Bρ

1ˆ

0

(1 − s)
d2

ds2
{
Ai (x, vi ) ⊗2 [sdvi (x) + (1 − s)dv(x)

]} p
2 ds dx

= C
ˆ

Bρ

{[
Ai (x, vi (x)) ⊗2 dvi (x)

] p
2 − [Ai (x, vi (x)) ⊗2 dv(x)

] p
2

−p
[
Ai (x, vi (x)) ⊗2 dv(x)

] p−2
2 Ai (x, vi (x))

[
dv(x) ⊗ (dvi (x) − dv(x))

]}
dx.

The convergence in (3.28) and the boundedness assumption in (A1) imply both that

lim
i→∞

∥∥Ai (·, vi ) ⊗2 dv − A0 ⊗2 dv
∥∥

L
p
2 (B1)

= 0

and that

lim
i→∞

∥∥∥∥[Ai (·, vi ) ⊗2 dv
] p−2

2 Ai (·, vi )dv − [A0 ⊗2 dv
] p−2

2 A0dv
∥∥∥∥

L
p

p−1 (B1;R�)

= 0.

123



1434 M. D. Foss, C. S. Goodrich

Now the weak convergence dvi ⇀ dv in L p implies the last integral above vanishes as
i → ∞. Recalling the uniform convergence in (3.18) gives

lim
i→∞

ˆ

Bρ

|dvi − dv|p dx

≤ C lim
i→∞

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1√
det g0

ˆ

Bρ

[
Ai (x, vi ) ⊗2 dvi

] p
2
√
det gi dx

︸ ︷︷ ︸
:=I1,i

−
ˆ

Bρ

[
A0 ⊗2 dv

] p
2 dx

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

.

(3.29)

By definition

dvi (x) = ρi

δi
du(ϕ−1

i (x))dϕ−1
0 (ζ i (x)).

Changing variables in I1,i gives us

I1,i = ρ
p−m
i

δ
p
i

ˆ

ϕ−1
i (Bρ)

{
A(z,u(z))

[
⊗2du(z)dϕ−1

0 (ϕ0(z))dϕ0(z)
]} p

2
dμg (z)

= ρ
p−m
i

δ
p
i

ˆ

ϕ−1
i (Bρ)

{
A(z,u(z)) ⊗2 du(z)

} p
2 dμg (z).

Let ε > 0 be given. Define the sequences {Ei , Fi }∞i=1 ⊆ Bm
ρ by

Ei :=
⎧⎨
⎩x ∈ Bm

ρ :
∣∣∣du(ϕ−1

i (x))
∣∣∣
R�⊗T ∗

ϕ−1
i (x)

M
> σε(ϕ

−1
i (x))

⎫⎬
⎭

and

Fi :=
⎧⎨
⎩x ∈ Bm

ρ :
∣∣∣dwi (ϕ

−1
i (x))

∣∣∣
R�⊗T ∗

ϕ−1
i (x)

M
> σε(ϕ

−1
i (x))

⎫⎬
⎭ .

Using the growth condition in (A1) and the asymptotic property in (A4) we may write

I1,i = ρ
p−m
i

δ
p
i

ˆ

ϕ−1
i (Bρ\Ei )

[
A(z,u) ⊗2 du

] p
2
dz + ρ

p−m
i

δ
p
i

ˆ

ϕ−1
i (Ei )

[
A(z,u) ⊗2 du

] p
2
dz

≤ ρ
p−m
i

δ
p
i

[
�p

ˆ

ϕ−1
i (Bρ )

|σε|p dμg +
ˆ

ϕ−1
i (Bρ )

G(z,u,du) dμg + ε

ˆ

ϕ−1(Bρ )

|du|p
R�⊗T ∗

z M dμg

]
.
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Property (ii) implies wi (z) = u(z) for each z ∈ ϕ−1
i (B1 \Bρ). Since u is a minimizer for the

functional I , we have the bound

I1,i ≤ �p ρ
p−m
i

δ
p
i

ˆ

ϕ−1
i (Bρ)

|σε|p dμg

+ ρ
p−m
i

δ
p
i

ˆ

ϕ−1
i (Bρ)

G(z,wi ,dwi ) dμg

︸ ︷︷ ︸
:=I2,i

+ε
ρ

p−m
i

δ
p
i

ˆ

ϕ−1(Bρ)

|du|p
R�⊗T ∗

z M
dμg . (3.30)

Assumptions (A3) and (A4) yield

I2,i =
ˆ

ϕ−1
i (Bρ\Fi )

G(z,wi ,dwi ) dμg +
ˆ

Fi

G(z,wi ,dwi ) dμg

≤
ˆ

ϕ−1
i (Bρ)

(
σ + �|σε|p) dμg +

ˆ

ϕ−1
i (Bρ)

[
A(z,wi ) ⊗2 dwi

] p
2 dμg

+ ε

ˆ

ϕ−1
i (Bρ)

|dwi |p
R�⊗T ∗

z M
dμg .

We now provide an estimate of the middle integral appearing in the upper bound for I2,i
above. First of all, observe that from the definition of wi in (3.27), we have

dwi (z) = δi

ρi
dΠN

(
ai + δiv∗

i

(
ϕi (z)

))
dv∗

i

(
ϕi (z)

)
dϕ0(z).

Second of all, we introduce a change of variables into the middle integral appearing on the
right-hand side of the upper bound for I2,i by means of the substitution x = ϕi (z). Observe
that it then holds that

dμg (z) = 1

ρ−m
i

∣∣∣dϕ0

(
ϕ−1

i (x)
)∣∣∣−1

dx,

which corresponds to the volume correction factor from the substitution and in which we use

the notation
∣∣∣dϕ0

(
ϕ−1

i (x)
)∣∣∣−1 :=

[
det
(
dϕ0

(
ϕ−1

i (x)
))]−1

. We then obtain that

ˆ

ϕ−1
i (Bρ)

[
A(z,wi ) ⊗2 dwi

] p
2 dμg

= δ
p
i

ρ
p−m
i

ˆ

Bρ

[
Ai

(
x,

ΠN
(
ai + δiv∗

i (x)
)− ai

δi

)
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⊗2 dΠN
(
ai + δiv∗

i (x)
)
dv∗

i (x)dϕ0

(
ϕ−1

i (x)
)

︸ ︷︷ ︸
= ρi

δi
dwi

(
ϕ−1

i (x)
)

] p
2

·
∣∣∣dϕ0

(
ϕ−1

i (x)
)∣∣∣−1√

det gi dx

= δ
p
i

ρ
p−m
i

ˆ

Bρ

[
Ai

(
x,

ΠN
(
ai + δiv∗

i (x)
)− ai

δi

)
⊗2 ρi

δi
dwi

(
ϕ−1

i (x)
)] p

2 √
det gi dx,

where we have used the fact that in local coordinates ϕ0 is the identity map, and, hence, dϕ0
is represented by the identity matrix in R

m ⊗ R
m , as was mentioned earlier in the proof of

Lemma 3.1. In summary, we obtain

I2,i ≤
ˆ

ϕ−1
i (Bρ)

(
σ + �|σε|p) dμg + ε

ˆ

ϕ−1
i (Bρ)

|dwi |p
R�⊗T ∗

z M
dμg

+ δ
p
i

ρ
p−m
i

ˆ

Bρ

[
Ai

(
x,

ΠN
(
ai + δiv∗

i (x)
)− ai

δi

)
⊗2 ρi

δi
dwi

(
ϕ−1

i (x)
)] p

2 √
det gi dx.

Let us also notice at this juncture that

d

[
ΠN

(
ai + δiv∗

i (x)
)− ai

δi

]
= 1

δi
d
[
ΠN

(
ai + δiv∗

i (x)
)− ai

]

= 1

δi
dΠN

(
ai + δiv∗

i (x)
) · δidv∗

i (x)

= ρi

δi
dwi

(
ϕ−1

i (x)
)

,

which since

d

[
ΠN

(
ai + δiv∗

i

)− ai

δi

]
− dv → 0

in L p
(Bρ

)
implies that

lim
i→∞

∥∥∥∥ρi

δi
dwi ◦ ϕ−1

i − dv
∥∥∥∥

L p(Bρ)

= 0,

a fact that shall be used momentarily.

3.2.3 The convergence dvi → dv in L p
loc (B1;R� ⊗ R

m)

Using the last estimate for (3.30) and inserting the result into (3.29) yields

lim
i→∞

ˆ

Bρ

|dvi − dv|p dx

≤ C lim sup
i→∞

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1√
det g0

ˆ

Bρ

⎡
⎣Ai

⎛
⎝x, wi

(
ϕ−1

i (x)
)

− ai

δi

⎞
⎠⊗2 ρi

δi
dwi

(
ϕ−1

i (x)
)⎤⎦

p
2 √

det gi dx

︸ ︷︷ ︸
:=I3,i
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−
ˆ

Bρ

[
A0 ⊗2 dv

] p
2 + ε

ρ
p−m
i

δ
p
i

√
det g0

ˆ

ϕ−1
i (Bρ )

[
|du|p

R�⊗T ∗
z M + |dwi |p

R�⊗T ∗
z M

]
dμg

︸ ︷︷ ︸
I4,i

+ ρ
p−m
i

δ
p
i

√
det g0

ˆ

ϕ−1
i (Bρ )

(
σ + 2�|σε|p) dμg

︸ ︷︷ ︸
I5,i

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Essentially the same argument that showed that lim supi→∞
ρ

p−m
i
δ

p
i

I I4,i = 0 in the proof of

Lemma 3.1 also shows that lim supi→∞
ρ

p−m
i
δ

p
i

I5,i = 0 here. The analysis of I4,i is analogous

to what was used for I I5,i and I I9,i for proof of Lemma 3.1. We get

lim sup
i→∞

ρ
p−m
i

δ
p
i

I4,i ≤ √det g0

⎧⎪⎨
⎪⎩supi∈N

ˆ

Bρ

{
g−1
0

[
dvi ⊗ dvi

]} p
2
dx

+
ˆ

Bρ

{
g−1
0

[
dv ⊗ dv

]} p
2
dx

⎫⎪⎬
⎪⎭ .

Turning to I3,i , property (v) and the uniform convergence both in (3.18) and (3.19) together
with the previous demonstration that ρi

δi
dwi ◦ ϕ−1

i → dv in L p
(Bρ

)
jointly imply

lim sup
i→∞

I3,i =
ˆ

Bρ

[
A0 ⊗2 dv

] p
2 dx.

Hence,

lim
i→∞

ˆ

Bρ

|dvi − dv|p dx ≤ ε sup
i∈N

ˆ

Bρ

{
g−1
0

[
dvi ⊗ dvi

]} p
2
dx + ε

ˆ

Bρ

{
g−1
0

[
dv ⊗ dv

]} p
2
dx.

Since supi∈N ‖dvi‖L p(B1;R�⊗Rm ) < ∞, by taking the limit ε → 0+ we conclude that

lim
i→∞

ˆ

Bρ

|dvi − dv|p dx = 0.

Thus, limi→∞ ‖dvi −dv‖L p(B ρ̂ ;R�⊗Rm ) = 0, and since ρ̂ ∈ (0, 1)was arbitrary, the lemma
is proved. ��

4 Partial Hölder continuity

In this section, we prove partial Hölder continuity for a minimizer u ∈ W 1,p(M;N ) for I .
Having proved Lemmata 3.1 and 3.2 in Sect. 3, we are now in possession of the principal
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1438 M. D. Foss, C. S. Goodrich

ingredients needed to deduce the Hölder continuity. We must first establish a decay estimate,
which we label Lemma 4.1; we then demonstrate in the proof of Theorem 4.2 that the decay
estimate can be iterated to obtain the desired Morrey estimate. Finally, with the Morrey
regularity of du shown, we are then at last able to deduce the partial Hölder continuity of u
in the standard way.

4.1 Decay lemma

We begin by stating and proving the relevant decay lemma.

Lemma 4.1 Let α ∈
(
0, p−m+γ

p

)
, κ > 0, and M′ � M be given. Suppose that u is a

minimizer of (1.1). Then there exist constants r0, δ0 > 0, and c5 > 1, with the following
property: if r < r0 and Br (z0) ⊂ M′, then

(a)

| (u)z0,r0 | < κ

and

(b)

rαp + r p−m
ˆ

BM
r (z0)

|du(z)|p
R�⊗T ∗

z M
dμg < δ0,

together imply that(
r

c5

)p−m ˆ

BM
r

c5
(z0)

|du(z)|p
R�⊗T ∗

z M
dμg ≤ c−αp

5 r p−m
ˆ

BM
r (z0)

|du(z)|p
R�⊗T ∗

z M
dμg+

(
r

c5

)αp

.

Proof The proof of this decay lemma is inspired by the proof of [49, Proposition 1]. In
particular, as in the proof of [49, Proposition 1], we prove the decay lemma by contradiction.
Furthermore, much of the divergence from Luckhaus’ argument in [49] has been isolated in
Lemma 3.1. For convenience in the sequel, we introduce statement (S), which is the desired
implication of this lemma:

(S)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

there exist constants r0, δ0 > 0, and c5 > 1, with the following property: if r < r0
and Br (z0) ⊂ M′, then

rαp + r p−m
ˆ

BM
r (z0)

|du(z)|p
R�⊗T ∗

z M
dμg < δ0 and | (u)z0,r | ≤ κ

together imply (
r

c5

)p−m ˆ

BM
r

c5
(z0)

|du(z)|p
R�⊗T ∗

z M
dμg

≤ c−αp
5 r p−m

ˆ

BM
r (z0)

|du(z)|p
R�⊗T ∗

z M
dμg +

(
r

c5

)αp

.
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We need to translate this statement into suitable local coordinates. Let
{
(V ẑ ,ϕ ẑ )

}
ẑ∈M be

a smooth atlas of geodesic orthonormal (Riemannian normal) coordinate charts (see, e.g. [45]
or [47]). For each ẑ ∈ M, let g ẑ ∈ C∞(ϕ ẑ (V ẑ );�2

R
m) be the representation of the metric

g with respect to the local coordinate chart (V ẑ ,ϕ ẑ ). Without loss of generality, we may
assume that V ẑ has been selected so that

1

2
|y|2 ≤ [g ẑ (x)

]
(y ⊗ y) ≤ 2|y|2, (4.1)

for each x ∈ ϕ ẑ (V ẑ ) and all y ∈ R
m . Thus, in particular,

BM
1
2 r

(z) ⊂ ϕ−1
ẑ (Bm

r (ϕ ẑ (z))) ⊂ BM
2r (z), (4.2)

whenever BM
2r (z) ⊆ V ẑ . Since M′ is compactly contained in M, we may extract a finite

family
{
(V j ,ϕ j )

} j
j=1

from
{
(V ẑ ,ϕ ẑ )

}
ẑ∈M such that M′ ⊆ ⋃ j

j=1 V j . Moreover, we may

select an r0 > 0 such that for each z0 ∈ M′ we find that BM
r0 (z0) ⊂ V j0 for some j0 ∈

{1, . . . , j}. We use (4.1) and (4.2) to deduce that (S) will follow from a verification of the
following statement:

(S’)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

There exist constants ρ0, δ
′
0 > 0, and c′

5 > 4, with the following property: if
ρ < ρ0 and ϕ−1

j (Bm
ρ (x0)) ⊂ M′ for some j ∈ {1, . . . , j}, then∣∣∣∣(u ◦ ϕ−1

j

)
x0,ρ/2

∣∣∣∣ ≤ 4mκ

and

ραp + ρ p−m
ˆ

B 1
2 ρ

(x0)

|du(ϕ−1
j (x))dϕ−1

j (x)|p
R�⊗Rm dx < δ′

0

together imply

(
ρ

c′
5

)p−m ˆ

B 2ρ
c′5

(x0)

∣∣∣du(ϕ−1
j (x))dϕ−1

j (x)
∣∣∣p
R�⊗Rm

dx

≤ (c′
5

)−αp
ρ p−m

ˆ

B 1
2 ρ

(x0)

∣∣∣du(ϕ−1
j (x))dϕ−1

j (x)
∣∣∣p
R�⊗Rm

dx +
(

ρ

c′
5

)αp

.
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1440 M. D. Foss, C. S. Goodrich

Let us suppose that (S’) is not true. Then the following alternative must hold:

(Alt)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

There exist sequences {δi , ρi } ⊂ (0, 1), with δi , ρi → 0+ as i → ∞, and {zi } ∈ M′
satisfying the following for each i ∈ N:

• there is a ji ∈ {1, . . . , j} such that ϕ−1
ji

(Bm
ρi

(ϕ ji (zi ))) ⊂ M′
• ∣∣∣∣(u ◦ ϕ−1

ji

)
ϕ ji

(zi ),
ρi
2

∣∣∣∣ ≤ 4mκ (4.3)

•
ρ

αp
i + ρ

p−m
i

ˆ

B 1
2 ρi

(ϕ ji
(zi ))

|du(ϕ−1
ji

(x))dϕ−1
ji

(x)|p
R�⊗Rm dx = δ

p
i (4.4)

but

•
ρ

′p−m
i

ˆ

B 2ρi
c′5

(ϕ ji
(zi ))

∣∣∣du(ϕ−1
ji

(x))dϕ−1
ji

(x)
∣∣∣p
R�⊗Rm

dx >

(
1

c′
5

)αp

δ
p
i , (4.5)

where the sequence
{
ρ′

i

}∞
i=1 is defined by

ρ′
i := ρi

c′
5
.

The constant c′
5 > 4 will be determined later in the proof. We assume (Alt) holds and will

reach a contradiction.
Since M′ is compactly contained in M, there is a z0 ∈ M′ such that

lim
i→∞ distM(zi , z0) = 0.

It is, therefore, no loss of generality to assume that there is a single coordinate chart (V,ϕ),

among {(V j ,ϕ j )} j
j=1, and an r0 > 0 such that BM

r0 (z0) ⊂ V . In addition, we may assume

that
⋃∞

i=1 BM
2ρi

(zi ) ⊂ BM
r0 (z0). Let us define the sequence {xi }∞i=1 ∈ R

m by xi := ϕ(zi ).
Then limi→∞ xi = x0 =: ϕ(z0). We immediately observe that (4.4) implies

 

B ρi
2

(xi )

∣∣∣∣ρi

δi
du(ϕ−1(x))dϕ−1(x)

∣∣∣∣
p

R�⊗Rm
dx ≤ C and ρα

i ≤ δi (4.6)

for each i ∈ N, and where the constant C appearing in (4.6) depends only on m. Observe in
particular that, since pα < p − m + γ , we must have

lim
i→∞

ρ
p−m+γ

i

δ
p
i

= 0.

We now argue that
(
u ◦ ϕ−1

)
xi ,ρi

∈ ΩN for i large enough. For each x ∈ Bρi (xi ), we
estimate

dist
((
u ◦ ϕ−1)

xi ,
ρi
2

,N
)

≤
∣∣∣(u ◦ ϕ−1)

xi ,
ρi
2

− u(ϕ−1(x))
∣∣∣
R�

.
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Hence,

dist
((
u ◦ ϕ−1)

xi ,
ρi
2

,N
)p ≤

 

B ρi
2

(xi )

∣∣∣u(ϕ−1(x)) − (u ◦ ϕ−1)
xi ,

ρi
2

∣∣∣p
R�

dx,

and Theorem 2.7 and (4.6) imply that

dist
((
u ◦ ϕ−1)

xi ,
ρi
2

,N
)p ≤ 2−p Kρ

p
i

 

B ρi
2

(xi )

∣∣du(ϕ−1(x))dϕ−1(x)
∣∣p
R�⊗Rm dx

≤ C2−p K δ
p
i .

It follows that limi→∞ dist
((
u ◦ ϕ−1

)
xi ,

ρi
2

,N
)

= 0, so there is no loss in assuming that{(
u ◦ ϕ−1

)
xi ,

ρi
2

}∞
i=1

⊂ ΩN . For each i ∈ N, we may therefore define

ai := ΠN
((
u ◦ ϕ−1)

xi ,
ρi
2

)
.

Moreover, the continuity of ΠN and the uniform bound in (4.3) allows us to further assume
that there is an a0 ∈ N such that limi→∞ |ai − a0| = 0.

Define {ζ i }∞i=1 ⊂ C∞(Rm;Rm) and {ϕi }∞i=1 ⊂ C∞(V;Rm) by

ζ i (x) := xi + 1

2
ρix and ϕi (z) := ζ−1

i (ϕ(z)).

We define the blow-up sequence {vi }∞i=1 ⊂ W 1,p(B1;R�) by

vi (x) := u(ϕ−1
i (x)) − ai

δi
.

Let us verify that there is a v ∈ W 1,p(Bm
1 ; Ta0N ) such that vi ⇀ v in W 1,p(Bm

1 ;R�). Let
g ∈ C∞(ϕ(V);�2

R
m) be the local representation of g , so g is uniformly bounded and

positive definite by (4.1). By definition and a change of variables
ˆ

Bm
1

|vi |p dx = 2m

ρm
i δ

p
i

ˆ

Bm
ρi
2

(xi )

∣∣∣u ◦ ϕ−1 − ΠN
((
u ◦ ϕ−1)

xi ,
ρi
2

)∣∣∣p dx

= 2m

ρm
i δ

p
i

ˆ

Bm
ρi
2

(xi )

∣∣∣ΠN (u ◦ ϕ−1) − ΠN
((
u ◦ ϕ−1)

xi ,
ρi
2

)∣∣∣p dx.

Recall that ΠN is Lipschitz continuous. Theorem 2.7 and (4.6) imply
ˆ

Bm
1

|vi |p dx ≤ C

δ
p
i

 

Bm
ρi
2

(xi )

∣∣∣u ◦ ϕ−1 − (u ◦ ϕ−1)
xi ,

ρi
2

∣∣∣p dx

≤ C Kρ
p
i

δ
p
i

 

Bm
ρi
2

(xi )

∣∣du(ϕ−1(x))dϕ−1(x)
∣∣p dx ≤ C K . (4.7)
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1442 M. D. Foss, C. S. Goodrich

We also deduce from (4.6) that
ˆ

Bm
1

|dvi |p dx ≤ Cρ
p
i

δ
p
i

 

Bm
ρi
2

(xi )

∣∣du(ϕ−1(x))dϕ−1(x)
∣∣p dx

≤ C.

Hence, {vi }∞i=1 is uniformly bounded in W 1,p(B1;R�). Therefore, there is a subsequence,
which we do not relabel, and a map v ∈ W 1,p(B1;R�) such that vi ⇀ v in W 1,p(B1;R�).

We now argue that the range of v is actually contained a.e. in Ta0N . As in Lemma 3.1,
for each y ∈ N we define Qy ∈ R

� ⊗R
� as the rotation operator that maps Ta0N onto TyN .

From (4.7), we deduce thatˆ

Bm
1

∣∣∣u(ϕ−1
i (x)) − a0

∣∣∣p dx ≤ C K δ
p
i + C |ai − a0|p.

Since N is smooth, we find that y �→ Q−1
y ∈ C∞(N ;R� ⊗ R

�). It follows that x �→
Q−1

u(ϕ−1
i (x))

∈ L∞(Bm
1 ;R� ⊗ R

�) and that for a.e. x ∈ Bm
1 we have

lim
i→∞

∣∣∣∣Q−1
u(ϕ−1

i (x))
− I
∣∣∣∣ = 0.

For each i ∈ N define qi ∈ L p(B1; Ta0N ) by

qi (x) :=
1ˆ

0

Q−1
u(ϕ−1

i (sx))

([
du(ϕ−1

i (sx))dϕ−1(sx)
]
x
)
ds.

Nowwe use qi to provide an estimate in L p as to how far the range of vi is from Ta0N . Since
vi (0) = 0 for each i ∈ N, we have

ˆ

Bm
1

∣∣vi (x) − qi (x)
∣∣p dx =

ˆ

Bm
1

∣∣∣∣∣∣
1ˆ

0

[
I − Q−1

u(ϕ−1
i (sx))

] ([
du(ϕ−1

i (sx))dϕ−1(sx)
]
x
)
ds

∣∣∣∣∣∣
p

dx

≤
1ˆ

0

ˆ

Bm
1

∣∣∣∣I − Q−1
u(ϕ−1

i (sx))

∣∣∣∣
p ∣∣∣du(ϕ−1

i (sx))dϕ−1(sx)
∣∣∣p dx ds.

Thus,

lim
i→∞

∣∣vi (x) − qi (x)
∣∣p dx = 0,

and we conclude that v ∈ W 1,p(Bm
1 ; Ta0N ).

The sequences {ρi , δi , ai , zi , vi }∞i=1 and the coordinate chart (V,ϕ) satisfy all the hypothe-
ses in both Lemma 3.1 and Lemma 3.2. We therefore conclude that v is a local minimizer
for the functional J [·;A0], with A0 := A(z0, a0), and moreover that we have the strong
convergence vi → v in W 1,p

loc (Bm
1 ;R�).

Finally, we work toward determining a value for c′
5 that produces a contradiction. Recall

that

ρ′
i := ρi

c′
5

∈
(
0,

ρi

4

)
,
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with c′
5 > 4 yet to be determined. From (4.4) and (4.5) and the definition of vi , we have

(c′
5)

−αp ≤ lim
i→∞ ρ

′p−m
i

ˆ
B2ρ′

i
(xi )

∣∣∣∣ 1δi
du(ϕ−1(x))dϕ−1(x)

∣∣∣∣
p

dx

= (c′
5)

m−p lim
i→∞ ρ

p−m
i

ˆ
B 2

c′5
ρi

(xi )

∣∣dvi (ϕi (ϕ
−1(x)))dϕi (ϕ

−1(x))dϕ−1(x)
∣∣p dx.

Recalling the definitions of ϕi and ζ i , we find that

ζ−1
i (x) = ϕi (ϕ

−1(x)) = 2(x − xi )

ρi
and dϕi (ϕ

−1(x))dϕ−1(x) = 2

ρi
I.

Thus, upon changing variables and using the strong convergence vi → v in W 1,p
loc (Bm

1 ;R�),
we obtain

(c′
5)

−αp ≤ 2p(c′
5)

m−p lim
i→∞

⎛
⎜⎝ρ−m

i

ˆ
B 2

c′5
ρi

(xi )

∣∣∣dvi (ζ
−1
i (x))

∣∣∣p dx

⎞
⎟⎠

= 2p−m(c′
5)

m−p lim
i→∞

ˆ
B 4

c′5

|dvi (x)|p dx = 2p−m(c′
5)

m−p
ˆ
B 4

c′5

|dv(x)|p dx.

Select α ∈ (α, 1). By Lemma 2.15, there is a constant c3 such that

(c′
5)

−αp ≤ 2p−mc3(c
′
5)

m−p
(
4

c′
5

)m−(1−α)p ˆ
Bm
1

|dv(x)|p dx = Cc3(c
′
5)

−α p,

from which it follows that

(c′
5)

(α−α)p ≤ Cc3,

where C and c3 are constants that are independent of c′
5. Since α − α > 0, it follows that

c′
5 > 4 may be selected large enough to yield a contradiction. Consequently, we deduce that
statement (S) is true, and since this implies that the conclusion of Lemma 4.1 holds, it follows
that the proof is complete. ��
4.2 Partial regularity result

Our next result, which we label Theorem 4.2, proves that any minimizer u of (1.1) must be
Hölder continuous at a.e. z ∈ M; the precise statement of the result specifies not only the
degree of Hölder continuity that can be expected but also describes the points at which this
regularity fails. To prove this result, we follow the well-known technique of demonstrating
that we can inductively iterate Lemma 4.1. This implies that, essentially, at any Lebesgue
point for the gradient du such that the quantity lim supρ→0+

∣∣(u)z0,ρ
∣∣ remains bounded,

we may conclude that du satisfies a Morrey regularity estimate on a small ball about the
Lebesgue point. This will then allow us to conclude the partial Hölder continuity of u.
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1444 M. D. Foss, C. S. Goodrich

Theorem 4.2 Let α ∈
(
0, p−m+γ

p

)
. Suppose that u is a minimizer of (1.1). Define the set

M∗
0 ⊆ M by

M∗
0 :=

⎧⎪⎪⎨
⎪⎪⎩z0 ∈ M : lim inf

ρ→0+ ρ p−m
ˆ

BM
ρ (z0)

|du(z)|p
R�⊗T ∗

z M
dμg(z) = 0

⎫⎪⎪⎬
⎪⎪⎭

∩
{
z0 ∈ M : lim sup

ρ→0+

∣∣(u)z0,ρ
∣∣
R� < +∞

}
.

Then there exists an open submanifold M0 of M such that M∗
0 ⊆ M0 and for each number

β ∈ (0,min{m − p, αp}) we find that

u ∈ W 1,(p,αp+m−p−β)
loc (M0) and u ∈ C

0,1− p+β−αp
p

loc (M0) .

In addition, it holds that

H m−p (M\M0) = 0.

Proof We first need to show that we can inductively iterate the estimate provided by
Lemma 4.1. To carry out this program, we proceed in a manner similar to [29, Lemma 6.1],
though certain of the details here are more complicated. In order to accomplish this, we shall
appeal to Lemma 4.1.

To this end, recall from Lemma 4.1 that for each z0 ∈ M′ � M, there exist numbers κ

and δ0 such that whenever

(a) ∣∣(u)z0,r
∣∣ < κ

and

(b)

rαp + r p−m
ˆ
BM

r (z0)
|du(z)|p

R�⊗T ∗
z M

dμg (z) < δ0,

collectively hold, then there is r0 such that for each r ∈ (0, r0) the decay estimate(
r

c5

)p−m ˆ

BM
r

c5
(z0)

|du(z)|p
R�⊗T ∗

z M
dμg

≤ c−αp
5 r p−m

ˆ

BM
r (z0)

|du(z)|p
R�⊗T ∗

z M
dμg +

(
r

c5

)αp

,

thus follows; this we called statement (S) in the proof of Lemma 4.1. With this in mind,
henceforth let z0 ∈ M be a fixed but arbitrary point such that (a)–(b) above hold; the choice
of δ0 will be specified later in the proof—see, specifically, inequality (4.15) in the sequel.
Now, fix a number ρ0 satisfying 0 < ρ0 < r0. Then by means of Lemma 4.1 we conclude
that the estimate
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(
ρ0

c5

)p−m ˆ

BM
ρ0
c5

(z0)

|du(z)|p
R�⊗T ∗

z M
dμg (z)

≤ c−αp
5 ρ0

p−m
ˆ

BM
ρ0

(z0)

|du(z)|p
R�⊗T ∗

z M
dμg +

(
ρ0

c5

)αp

(4.8)

holds. We shall inductively iterate estimate (4.8).
So, for this purpose let us define

ρi := 1

c5
ρi−1.

Note that c5 > 1 so that ρi < ρi−1 and limi→∞ ρi = 0. In order to complete the inductive
iteration, we first need to check that the smallness condition on the quantity

∣∣(u)z0,ρi

∣∣ remains
controllable at each step of the iteration. This is essential if we are inductively reapply
Lemma 4.1. Therefore, assume Lemma 4.1 applies on the finite sequence of radii {ρi }i0

i=0
and, moreover, that

∣∣(u)z0,ρ0

∣∣ ≤ κ—i.e., the average is initially small. Then we first estimate

∣∣∣(u)z0,ρi0

∣∣∣ ≤ ∣∣(u)z0,ρ0

∣∣+ i0∑
j=1

∣∣(u)z0,ρ j − (u)z0,ρ j−1

∣∣

≤ κ +
i0∑

j=1

∣∣(u)z0,ρ j − (u)z0,ρ j−1

∣∣

≤ κ +
i0∑

j=1

K
1
p cm

5

⎛
⎜⎜⎝ρ

p−m
j−1

ˆ

BM
ρ j−1

(z0)

|du(z)|p
R�⊗T ∗

z M
dμg (z)

⎞
⎟⎟⎠

1
p

, (4.9)

where to obtain estimate (4.9) we have used Hölder’s inequality, Poincaré’s inequality, as
well as the fact that it can be shown that∣∣(u)z0,ρ j − (u)z0,ρ j−1

∣∣ = cm
5

 

BM
ρ j−1

(z0)

∣∣u(z) − (u)z0,ρ j−1

∣∣ dμg (z).

By reapplying statement (S) from Lemma 4.1 a total of ( j − 1)-times, we next obtain the
upper bound

ρ
p−m
j−1

ˆ

BM
ρ j−1

(z0)

|du(z)|p
R�⊗T ∗

z M
dμg (z)

≤ c−αp
5 ρ

p−m
j−2

ˆ

BM
ρ j−2

(z0)

|du(z)|p
R�⊗T ∗

z M
dμg (z) +

(
ρ j−2

c5

)αp

= c−αp
5

(
ρ j−3

c5

)p−m ˆ

BM
ρ j−3

c5

(z0)

|du(z)|p
R�⊗T ∗

z M
dμg (z) +

(
ρ j−2

c5

)αp
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≤ c−2αp
5 ρ

p−m
j−3

ˆ

BM
ρ j−3

(z0)

|du(z)|p
R�⊗T ∗

z M
dμg (z) + c−2αp

5 ρ
αp
j−3 + c−αp

5 ρ
αp
j−2

≤ · · ·

≤ c−( j−1)αp
5 ρ

p−m
0

ˆ

BM
ρ0

(z0)

|du(z)|p
R�⊗T ∗

z M
dμg (z) +

j−1∑
k=1

c−kαp
5 ρ

αp
j−k−1. (4.10)

Now, using the fact that ρ j−k = ck− j
5 ρ0 and putting this into the preceding estimate we

deduce that, for j ≥ 2,

ρ
p−m
j−1

ˆ

BM
ρ j−1

(z0)

|du(z)|p
R�⊗T ∗

z M
dμg (z)

≤ c−( j−1)αp
5 ρ

p−m
0

ˆ

BM
ρ0

(z0)

|du(z)|p
R�⊗T ∗

z M
dμg (z) +

j−1∑
k=1

c−kαp
5 ρ

αp
j−k−1

≤ c−( j−1)αp
5 ρ

p−m
0

ˆ

BM
ρ0

(z0)

|du(z)|p
R�⊗T ∗

z M
dμg (z) + ( j − 1)c−( j−1)αp

5 ρ
αp
0

≤ ( j − 1)c−( j−1)αp
5

⎡
⎢⎢⎣ρ

p−m
0

ˆ

BM
ρ0

(z0)

|du(z)|p
R�⊗T ∗

z M
dμg (z) + ρ

αp
0

⎤
⎥⎥⎦

︸ ︷︷ ︸
<δ0

< ( j − 1)c−( j−1)αp
5 δ0, (4.11)

where we have invoked the initial smallness estimate in the second-to-last inequality. Thus,
putting estimates (4.10)–(4.11) into (4.9) we deduce

∣∣∣(u)z0,ρi0

∣∣∣ ≤ κ +
i0∑

j=1

K
1
p cm

5

⎛
⎜⎜⎝ρ

p−m
j−1

ˆ

BM
ρ j−1

(z0)

|du(z)|p
R�⊗T ∗

z M
dμg (z)

⎞
⎟⎟⎠

1
p

≤ κ + K
1
p cm

5 δ
1
p
0

i0∑
j=1

( j − 1)
1
p

(
1

c5

)( j−1)α

≤ κ + K
1
p cm

5 δ
1
p
0

∞∑
j=1

( j − 1)
1
p

(
1

c5

)( j−1)α

. (4.12)

Now, recalling that 0 < c−1
5 < 1 and appealing to Fubini’s theorem, observe that we may

write

∞∑
j=1

( j − 1)

(
1

c5

)( j−1)α

≤
∞∑

k=1

∞∑
j=k

(
1

c5

) jα

= cα
5(

cα
5 − 1

)2 < +∞, (4.13)
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where we have used the fact that ( j − 1)
1
p ≤ j − 1. Thus, the series converges, and so, we

conclude that

∣∣∣(u)z0,ρi0

∣∣∣ ≤ κ + K
1
p cm

5 δ
1
p
0

∞∑
j=1

( j − 1)
1
p

(
1

c5

)( j−1)α

≤ κ + K
1
p cm+α

5 δ
1
p
0(

cα
5 − 1

)2 . (4.14)

Recalling that c5 has no dependence on δ0, without loss we may assume that δ0 was initially
so small that, say,

δ0 ≤
⎛
⎝κ

(
cα
5 − 1

)2
K

1
p cm+α

5

⎞
⎠

p

, (4.15)

whence

∣∣∣(u)z0,ρi0

∣∣∣ ≤ κ + K
1
p cm

5 δ
1
p
0

i0∑
j=1

( j − 1)
1
p

(
1

c5

)( j−1)α

≤ 2κ. (4.16)

This proves inductively that if on the first i0 − 1 balls the average of u remains sufficiently
small, then it continues to remain small on the i0-th ball. In particular, if we initially put
δ0 := δ0(2κ) rather than δ0 := δ0(κ) in the statement of Lemma 4.1, then (4.9)–(4.16) imply
that we will be able to reapply Lemma 4.1 at the i0-th step of the iteration.

In fact, inequality (4.16) now allows us to apply Lemma 4.1 but with δ0(2κ) replacing
δ0(κ) and ρi0 replacing ρ0. So, for notational convenience in this final part of the proof, put

τ := 1

c5
∈ (0, 1),

and define the function ϕ : [0,+∞) → [0,+∞) by

ϕ(ρ) :=
ˆ

BM
ρ (z0)

|du(z)|p
R�⊗T ∗

z M
dμg (z).

Then recalling again Lemma 4.1 we have the following preliminary estimate

(τρ0)
p−m ϕ (τρ0) ≤ ταpρ

p−m
0 ϕ (ρ0) + (τρ0)

αp ,

from which we may write

ϕ (τρ0) ≤ ταp−p+mϕ (ρ0) + (τρ0)
αp−p+m .

In observation of the estimates of the preceding paragraphs, we may repeatedly apply
Lemma 4.1 to obtain by induction the estimate

ϕ
(
τ kρ0

)
≤ τ k(αp−p+m)

[
ϕ (ρ0) + kραp−p+m

0

]
, (4.17)

for any k ∈ N. Indeed, to prove (4.17) we merely notice that it trivially holds in case k = 1
since this follows from Lemma 4.1, as above, whereas if we assume that (4.17) holds for
some arbitrary but fixed k ∈ N, then we may compute
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ϕ
(
τ k+1ρ0

)
≤ ταp−p+mϕ

(
τ kρ0

)
+
(
τ k+1ρ0

)αp−p+m

≤ ταp−p+m
(
τ k(αp−p+m)

[
ϕ (ρ0) + kραp−p+m

0

])
+
(
τ k+1ρ0

)αp−p+m

≤ τ (k+1)(αp−p+m)ϕ (ρ0) + (k + 1)τ (k+1)(αp−p+m)ρ
αp−p+m
0

≤ τ (k+1)(αp−p+m)
[
ϕ (ρ0) + (k + 1)ραp−p+m

0

]
, (4.18)

where in (4.18) the first inequality follows from an initial reapplication of Lemma 4.1, which
is allowable due to the fact thatwehave already shown that

∣∣(u)z0,ρi

∣∣ remains small throughout
the iteration. Furthermore, the second inequality in (4.18) follows from an application of the
induction hypothesis itself. Thus, (4.18) proves that the inductive iteration (4.17) holds.

Suppose now that we are given a number ρ∗ > 0 sufficiently small. Then we may find
k ∈ N such that τ k+1ρ0 ≤ ρ∗ < τ kρ0. Moreover, let β be a fixed but otherwise arbitrary
number satisfying β ∈ (0, m − p) and also αp − β > 0. From these and the preceding
estimates it follows that

ˆ

BM
ρ∗ (z0)

|du(z)|p
R�⊗T ∗

z M dμg (z)

≤ τ (k+1)αpτ−αpτ k(m−p)

ˆ

BM
ρ0

(z0)

|du(z)|p
R�⊗T ∗

z M dμg (z) + kτ (k+1)αpτ−αpτ k(m−p)ρ
αp−p+m
0

≤
(

ρ∗

ρ0

)αp

τ k(m−p)−αp
ˆ

BM
ρ0

(z0)

|du(z)|p
R�⊗T ∗

z M dμg (z) + k

(
ρ∗

ρ0

)αp

τ k(m−p)−αpρ
αp−p+m
0

≤
(

ρ∗

ρ0

)αp

τ (k+1)(m−p−β)−αpτ (k+1)βτ p−m
ˆ

BM
ρ0

(z0)

|du(z)|p
R�⊗T ∗

z M dμg (z)

+ k

(
ρ∗

ρ0

)αp

τ (k+1)(m−p−β)−αpτ (k+1)βτ p−mρ
αp−p+m
0

≤
(

ρ∗

ρ0

)αp (
ρ∗

ρ0

)m−p−β

τ (k+1)β+p−m−αp
ˆ

BM
ρ0

(z0)

|du(z)|p
R�⊗T ∗

z M dμg (z)

+ k

(
ρ∗

ρ0

)αp (
ρ∗

ρ0

)m−p−β

τ (k+1)β+p−m−αpρ
αp−p+m
0 ,

whence

1

(ρ∗)αp+m−p−β

ˆ

BM
ρ∗ (z0)

|du(z)|p
R�⊗T ∗

z M
dμg (z)

≤
(

1

τρ0

)αp

ρ
p+β−m
0 τ (k+1)β+p−m

ˆ

BM
ρ0

(z0)

|du(z)|p
R�⊗T ∗

z M
dμg (z) + kτ (k+1)β

ταp+m−p
ρ

β
0 .

In the preceding estimate, it is evident that

lim
k→∞ τ (k+1)β+p−m = 0.
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On the other hand, since β > 0 holds, an application of L’Hôpital’s rule implies that

lim
k→∞ kτ (k+1)β L’H= lim

k→∞
1

βτ−(k+1)β ln
(
τ−1
) = 0.

And from these observations, it follows that upon taking the supremum of both sides of the
above estimate we deduce that

sup
ρ∗∈(0,ρ0)

1

(ρ∗)αp+m−p−β

ˆ

BM
ρ∗ (z0)

|du(z)|p
R�⊗T ∗

z M
dμg (z)

≤ sup
ρ∗∈(0,ρ0)

⎧⎪⎪⎨
⎪⎪⎩
(

1

τρ0

)αp

ρ
p+β−m
0 τ (k+1)β+p−m

ˆ

BM
ρ0

(z0)

|du(z)|p
R�⊗T ∗

z M
dμg (z)

⎫⎪⎪⎬
⎪⎪⎭

+ sup
ρ∗∈(0,ρ0)

{
kτ (k+1)β

ταp+m−p
ρ

β
0

}

< +∞.

Now, by the continuity of the map ρ �→ ϕ(ρ) we infer that the above estimate holds on
an open neighborhood of z0, say Uz0 . Define the set M0 ⊆ M by

M0 :=
⋃
z0

Uz0 ,

where the union is taken over all z0 ∈ M such that (a)–(b) hold and, hence, the Morrey-type
estimate of the previous paragraph holds. Evidently M0 is open. In addition, the inclusion

M0 ⊇ M∗
0

obviously holds. Consider an arbitrary but fixed M′ such that M′ � M0. Then by the
compactness ofM′ it follows that there is a subcollection G := {Uzi

}n
i=1 such that G forms

an open cover for M′. But then we may assert that du ∈ L p,αp+m−p−β
(M′).

Finally, utilizing the arbitrariness of M′ the above argument implies that

du ∈ L p,αp+m−p−β
loc (M0) . (4.19)

At last from (4.19) we conclude that u satisfies

u ∈ W 1,(p,αp+m−p−β)
loc (M0) .

But combining this fact together with an application of Proposition 2.8 implies that

u ∈ C
0,1− p+β−αp

p
loc (M0) ,

which completes the partial regularity argument. Note that the embedding result of Propo-
sition 2.8 may be invoked since we earlier required that αp − β > 0, which implies that
αp + m − p − β > m − p. Furthermore, due to the structure of the set M∗

0, standard
arguments, which we omit (see, for example, [30, Theorem 2.2, §4.2]), imply the Hausdorff
measure estimate

H m−p (M\M∗
0

) = 0.
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But since M0 ⊇ M∗
0, this final estimate implies that

H m−p (M\M0) = 0.

And this completes the proof. ��
Remark 4.3 Notice that by the restrictions imposed on γ , it follows that

0 <
p − m + γ

p
< 1.

Remark 4.4 Notice that by the restrictions imposed on the various parameters in the statement
of Theorem 4.2, especially that α <

p−m+γ
p , we may estimate

1− p + β − αp

p
<

p − m + γ − β

p
= p − m + γ

p
− β

p
−→ p − m + γ

p
< 1, (4.20)

as β → 0+. Similarly, since the embedding theorem utilized at the end of the proof of
Theorem 4.2 only applies in case αp − β > 0, it follows that we may also estimate

1 − p + β − αp

p
= αp − β

p
> 0.

All in all, then, combining (4.20) togetherwithRemark 4.3,we see that by suitablymodulating
the Morrey exponent γ , which recall controls the strength of the Morrey regularity satisfied
by the map z �→ σε(z), the degree of partial Hölder continuity obtained in Theorem 4.2 can
be phrased as u ∈ C

0,ϑ(γ )
loc (M0), where ϑ(γ ) → 1− as γ → m−. In particular, it holds that

0 < ϑ(γ ) < 1.

Remark 4.5 In light of Remark 4.4, we see that the degree of partial Hölder continuity
enjoyed by a minimizer u and the dependence of this regularity on the regularity of σε is
precisely analogous to the Euclidean setting—cf., [20,43] and the references therein.

5 Partial Caccioppoli and reverse Hölder inequalities

Having obtained in Sect. 4 partial Hölder continuity of minimizers of the functional

w �→
ˆ

M
G(z,w(z),dw(z)) dμg (z),

in the present section, we deduce a partial Caccioppoli-type inequality for minimizers of this
same functional and from this estimate deduce partial higher integrability for a minimizer
u of (1.1). We point out that this result is only a “partial” Caccioppoli inequality since it
only is guaranteed to hold at those points z0 such that z0 ∈ M0—i.e., at z0 ∈ M such that,
essentially, the smallness conditions provided in (a) and (b) in the statement of Lemma 4.1
hold. In any case, since most of the technical estimates have already been dispatched in the
previous sections of this paper, the arguments required to deduce these final two results are
relatively brief and uncomplicated.

5.1 Partial Caccioppoli inequality

In order to prove the partial Caccioppoli inequality, Theorem 5.2, we first state and prove a
proposition,whichwill be required in the proof of Theorem5.2; the content of this proposition

123



On partial Hölder continuity and a Caccioppoli inequality 1451

is similar in spirit to that of [13, Lemma 6]. This proposition essentially allows us to transition
from an integral on the manifold M to an integral on a local coordinate chart by suitably
rescaling the radius of the ball BM

R , while at the same time transferring the average value of
u from a geodesic ball onM to a coordinate ball, this latter point being the key contribution
of the proposition.

Proposition 5.1 Let u be a minimizer of problem (1.1) and let M′ � M be arbitrary but
fixed. Then there exists a constant c6 := c6(p) such that for any R > 0 and z0 ∈ M satisfying
BM

R (z0) ⊆ M′, it holds that
 

BM
R (z0)

∣∣u − (u)MR
∣∣p dμg(z) ≥ 1

2c6

 

Bm
R
2

(x0)

∣∣∣u ◦ ϕ−1 − (u ◦ ϕ−1)
x0, R

2

∣∣∣p dx,

where x0 = ϕ (z0) for (V,ϕ) a local coordinate chart with z0 ∈ V .

Proof Let u be as in the statement of the proposition. For the point z0 ∈ M given in the
statement of the proposition, put x0 := ϕ (z0), where ϕ is a homeomorphism from a suitable
local coordinate chart (V,ϕ); as in the previous results in this paper, since this proposition
really need only hold for R > 0 small, there is no loss in assuming that R is sufficiently
small such that BM

R (z0) ⊆ V . Let MM
p ∈ N represent the unique minimizer for the map

M �→
 

BM
R (z0)

|u(z) − M |p dμg (z).

Now let α0 ∈ R
� be given. Then the minimality of MM

p implies at once that

 

BM
R (z0)

|u − α0|p dμg (z) ≥
 

BM
R (z0)

∣∣∣u − MM
p

∣∣∣p dμg (z). (5.1)

At the same time,we observe that an application of both the triangle inequality and of Jensen’s
inequality implies the estimate

 

Bm
R
2

(x0)

∣∣∣u ◦ ϕ−1 − (u ◦ ϕ−1)
x0, R

2

∣∣∣p dx

=
 

Bm
R
2

(x0)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c6
∣∣∣u ◦ ϕ−1 − MM

p

∣∣∣p + c6

∣∣∣∣∣∣∣∣∣
 

Bm
R
2

(x0)

u ◦ ϕ−1 − MM
p d̃x

∣∣∣∣∣∣∣∣∣

p⎫⎪⎪⎪⎬
⎪⎪⎪⎭

dx

≤ c6

 

Bm
R
2

(x0)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∣∣∣u ◦ ϕ−1 − MM

p

∣∣∣p +
 

Bm
R
2

(x0)

∣∣∣u ◦ ϕ−1 − MM
p

∣∣∣p d̃x

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

dx

≤ 2c6

 

Bm
R
2

(x0)

∣∣∣u ◦ ϕ−1 − MM
p

∣∣∣p dx,
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whence  

Bm
R
2

(x0)

∣∣∣u ◦ ϕ−1 − MM
p

∣∣∣p dx ≥ 1

2c6

 

Bm
R
2

(x0)

∣∣∣u ◦ ϕ−1 − (u ◦ ϕ−1)
x0, R

2

∣∣∣p dx. (5.2)

Now, put α0 := (u)MR ∈ R
�. Then invoking both inequality (5.1) and inequality (5.2),

together with (4.1)–(4.2) from earlier in the proof of Lemma 4.1, we thus obtain 

BM
R (z0)

∣∣u − (u)MR
∣∣p dμg (z) ≥

 

BM
R (z0)

∣∣∣u − MM
p

∣∣∣p dμg (z)

≥
 

Bm
R
2

(x0)

∣∣∣u ◦ ϕ−1 − MM
p

∣∣∣p dx

≥ 1

2c6

 

Bm
R
2

(x0)

∣∣∣u ◦ ϕ−1 − (u ◦ ϕ−1)
x0, R

2

∣∣∣p dx,

as claimed. And this completes the proof. ��
Theorem 5.2 Let u ∈ W 1,p(Ω) be a minimizer for (1.1). Then the set M0 ⊆ M, defined
in the statement of Theorem 4.2, is an open submanifold of M, and for each M′ � M0 it
holds that for each z ∈ M′ there is a constant C < +∞ and R0 > 0 such that 

BM
R
4

(z)

|du|p
R�⊗T ∗

z M0
dμg(z) ≤ C

R p

 

BM
2R (z)

∣∣u − (u)z0,2R
∣∣p dμg(z)

for each R ≤ R0.

Proof From Theorem 4.2, for each β ∈ (0,min{αp, m − p}) we have that
du ∈ L p,αp+m−p−β(M′).

In particular, since αp − β > 0, there is an ε0 > 0 such that du ∈ L p,m−p+ε0(M′). Hence,
for each z0 ∈ M′, we find that

lim
R→0+

(
1

2R

)m−p ˆ

BM
2R (z0)

|du(z)|p
R�⊗T ∗

z M
dμg (z) = 0.

Suppose for the sake of contradiction that the statement in the lemma is false. Then we have
the following alternative: There is a sequence {Ri }∞i=1 ⊆ (0,+∞) such that Ri → 0+ and
{zi }∞ı=1 ⊆ M′ such that

 

BM
Ri
4

(zi )

|du|p
R�⊗T ∗

z M
dμg (z) >

C

R p
i

 

BM
2Ri

(zi )

∣∣u − (u)zi ,2Ri

∣∣p dμg (z), (5.3)

where the constant C < +∞ will be identified at the end of the proof. SinceM′ is compact,
upon taking a subsequence if necessary, we may assume that zi → z0 for some z0 ∈ M′.
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Moreover there is a sequence
{̃
δi
}∞

i=1 ⊆ (0,+∞) such that δ̃i → 0+ and

Rαp
i + (2Ri )

p−m
ˆ
BM
2Ri

(zi )

|du|p
R�⊗T ∗

z M
dμg (z) =: δ̃i

p → 0, (5.4)

where (5.4) follows, in part, from the initial estimate in this proof.
Just as in the proof of Lemma 4.1, wewill convert (5.3)–(5.4) to local coordinates. Further-

more, just as in the proof of Lemma 4.1 we may assume the existence of a single coordinate
chart (V,ϕ) such that

∞⋃
i=1

BM
2Ri

(zi ) ⊆ V.

With this inmind,we shall put xi := ϕ (zi ) in the sequel. In particular, by observing that (4.1)–
(4.2) may be again assumed, it follows that (5.3)–(5.4) may be phrased in local coordinates
by assuming that

Rαp
i + (2Ri )

p−m
ˆ

B2Ri (xi )

|du(ϕ−1
ji

(x))dϕ−1
ji

(x)|p
R�⊗Rm dx := δ

p
i → 0 (5.5)

but that  

B Ri
2

(xi )

|du(ϕ−1(x))dϕ−1(x)|p
R�⊗Rm dx

>
C

2c6R p
i

 

BRi (xi )

∣∣∣u ◦ ϕ−1 − (u ◦ ϕ−1)
xi ,Ri

∣∣∣p dx. (5.6)

Observe that to obtain inequality (5.6), we apply Proposition 5.1 to obtain the estimate 

BM
2Ri

(zi )

∣∣u − (u)Mzi ,2Ri

∣∣ dμg (z) ≥ 1

2c6

 

Bm
Ri

(xi )

∣∣∣u ◦ ϕ−1 − (u ◦ ϕ−1)
xi ,Ri

∣∣∣p dx.

Similar to the previous proofs, for each i ∈ N define ϕi and ζ i by

ϕ−1
i (z) := ϕ−1 (ζ i (z)

)
and ζ i (x) := xi + Rix,

and then define the blow-up sequence {vi }∞i=1 ⊂ W 1,p(B1;R�) by

vi (x) := u(ϕ−1
i (x)) − ai

δi
= u

(
ϕ−1 (xi + Rix)

)− ai

δi
,

where, but for the change in radius, as in the proof of Lemma 4.1 we put

ai := ΠN
((
u ◦ ϕ−1)

xi ,Ri

)
.

Observe that the collection {vi }∞i=1 is defined essentially as in the proof of Lemma 4.1. In
fact, due to the definition of δi in (5.5) we deduce that

 

B2Ri (xi )

∣∣∣∣ Ri

δi
du(ϕ−1(x))dϕ−1(x)

∣∣∣∣
p

R�⊗Rm
dx ≤ C and Rα

i ≤ δi ,
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which is exactly (4.6) from earlier, modulo the change of radius in the integration set. In
particular, by precisely the same argument as provided in the proof of Lemma 4.1 we obtain
the existence of v ∈ W 1,p(Bm

1 ; Ta0N ) such that vi ⇀ v in W 1,p(Bm
1 ;R�). It then follows that

the sequences {ρi , δi , ai , zi , vi }∞i=1 and the coordinate chart (V,ϕ) satisfy all the hypotheses
in Lemma 3.2. We therefore conclude that vi converges strongly to v in W 1,p(Bm

1 ; Ta0N ).
We show, finally, that by the definition of vi together with the fact that vi → v strongly

in W 1,p
(Bm

1 ; Ta0N
)
a contradiction thus follows. To this end, let us first note that by the

definition of vi we have on the one hand that, for some constant c7 := c7(m), 

B Ri
2

(xi )

|du(ϕ−1(x))dϕ−1(x)|p
R�⊗Rm dx

= c7(
Ri
2

)m

ˆ

B Ri
2

(xi )

|du(ϕ−1(x))dϕ−1(x)|p
R�⊗Rm dx

= c7(
Ri
2

)m

ˆ

B 1
2

Rm
i

∣∣du (ϕ−1 (xi + Rix)
)
dϕ−1 (xi + Rix) Ri

∣∣p
R�⊗Rm dx · R−p

= c7R−p( 1
2

)m
ˆ

B 1
2

|δidvi (x)|p
R�⊗Rm dx

=
(

δi

Ri

)p  

B 1
2

|dvi |p
R�⊗Rm dx, (5.7)

where we have employed a change of variables, namely x̃ �→ xi + Rix. On the other hand,
again employing the same change of variables as in (5.7) above, notice that, for each i ∈ N,

ai − (u ◦ ϕ−1)
xi ,Ri

=
 

BRi (xi )

(
ai − u ◦ ϕ−1) dx

= c7
Rm

i

ˆ

B1

[
ai − u

(
ϕ−1 (xi + Rix)

)]
Rm

i dx

=
 

B1

(
ai − (u ◦ ϕ−1) (xi + Rix)

)
dx

=
 

B1

ai − [δivi (x) + ai ] dx

= −δi (vi )1 . (5.8)

Thus, (5.8) implies that, for each i ∈ N,

C

2c6R p
i

 

BRi (xi )

∣∣∣u ◦ ϕ−1 − (u ◦ ϕ−1)
xi ,Ri

∣∣∣p dx

= Cc7
2c6R p

i Rm
i

ˆ

B1

∣∣∣u (ϕ−1 (xi + Rix)
)− (u ◦ ϕ−1)

xi ,Ri

∣∣∣p · Rm
i dx
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= C

2c6R p
i

 

B1

∣∣∣∣∣∣∣∣
δivi (x) + ai − (u ◦ ϕ−1)

xi ,Ri︸ ︷︷ ︸
=−δi (vi )1

∣∣∣∣∣∣∣∣

p

dx

= C

2c6

(
δi

Ri

)p  

B1

|vi (x) − (vi )1|p dx. (5.9)

Putting (5.7) and (5.9) together, we deduce that the contradiction hypothesis (5.6) may be
rescaled to read(

δi

Ri

)p  

B 1
2

|dvi |p
R�⊗Rm dx >

C

2c6

(
δi

Ri

)p  

B1

|vi (x) − (vi )1|p dx,

from which it follows that
 

B 1
2

|dvi |p
R�⊗Rm dx >

C

2c6

 

B1

|vi (x) − (vi )1|p dx. (5.10)

Now recall that vi → v strongly in W 1,p
(Bm

1 ; Ta0N
)
and, moreover, that v is (B, p)-

harmonic. This fact implies that v satisfies a reverse Hölder inequality, namely,

 

B 1
2

|dv|p
R�⊗Rm dx ≤ C̃

 

B1

|v(x) − (v)1|p dx,

for some constant C̃ > 0. But, at the same time, the strong convergence combined with (5.10)
implies that

 

B 1
2

|dv|p
R�⊗Rm dx ≥ C

2c6

 

B1

|v(x) − (v)1|p dx.

In light of the fact that v satisfies the above Caccioppoli inequality, by selecting the constant
C such that it satisfies the inequality C > 2c6C̃ , we obtain the desired contradiction at once.
And this completes the proof. ��
5.2 Reverse Hölder inequality and an example

Finally, we provide the statement and proof of the reverse Hölder inequality for a minimizer
of (1.1). We point out that this final result, Theorem 5.3, is really a statement about the higher
integrability of the gradient of a minimizer of functional (1.1). In particular, the conclusion
of this result asserts that such a minimizer with gradient a priori of class L p has, in fact,
gradient of class L p+ε for some ε > 0.

Theorem 5.3 Let u be a minimizer of (1.1). Then for each M′ � M0 and each z0 ∈ M′,
there exist numbers R0 > 0 and q > p and a constant C > 0 such that for each 0 < R < R0
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and z ∈ BM
R0

(z0) it holds that

 

BM
R
8

(z)

|du(z)|q
R�⊗T ∗

z M
dμg(z) ≤ C

⎛
⎜⎜⎝

 

BM
8R (z)

|du(z)|p
R�⊗T ∗

z M
dμg(z)

⎞
⎟⎟⎠

q
p

. (5.11)

In particular,

du ∈ Lq
loc (M0) .

Proof Prior to proving the result, we establish a preliminary estimate, which will be used in
the proof of inequality (5.11). Now, similar to the proof of Proposition 5.1, let MM

p, R
4
be a

minimizer of the map

M �→
 

BM
R
4

(z)

|u − M |p dμg (z).

We estimate by means of both the triangle inequality and Jensen’s inequality that

 

BM
R
4

(z)

∣∣∣∣u − (u)MR
4

∣∣∣∣
p

dμg (z)

≤ c6

 

BM
R
4

(z)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∣∣∣u(z) − Mp, R

4

∣∣∣p +
 

BM
R
4

(z)

∣∣∣∣u (z′)− MM
p, R

4

∣∣∣∣
p

dμg
(
z′
)
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

dμg (z)

≤ 2c6

 

BM
R
4

(z)

∣∣∣∣u − (u)MR
4

∣∣∣∣
p

dμg (z).

Then by utilizing the preceding inequality, invoking Proposition 5.1, switching back to the
manifoldM, and using theminimality of themap Mp, R

4
we collectively arrive at the estimate

 

BM
R (z)

∣∣u − (u)MR
∣∣p dμg (z) ≥ 1

2c6

 

BM
R
4

(z)

∣∣∣u − (u ◦ ϕ−1)
R
2

∣∣∣p dμg (z)

≥ 1

2c6

 

BM
R
4

(z)

∣∣∣∣u − MM
p, R

4

∣∣∣∣
p

dμg (z)

≥ 1

4c26

 

BM
R
4

(z)

∣∣∣∣u − (u)MR
4

∣∣∣∣
p

dμg (z),
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from which we obtain the estimate
 

BM
R
4

(z)

∣∣∣∣u − (u)MR
4

∣∣∣∣
p

dμg (z) ≤ 2c6

 

BM
R
4

(z)

∣∣∣u − (u ◦ ϕ−1)
R
2

∣∣∣p dμg (z).

This latter inequality then provides an upper bound dual to the lower bound established in
Proposition 5.1.

With this preliminary estimate dispatched, we now essentially follow the well-known
argument given in [38, §§6.3–6.4]. Since we only need the result to hold for a possibly small
number R0 := R0 (ρ0, z0) > 0, there is, once again, no loss in assuming the existence of

a single coordinate chart (V,ϕ) such that BM
4R̃0

(z) ⊆ V for each R̃0 ∈
(
0, R0

4

)
. Moreover,

estimates (4.1)–(4.2) are still applicable, and we shall use these repeatedly in the sequel.
So, on this coordinate chart, the partial Caccioppoli inequality of Theorem 5.2 assumes

the form  

Bm
R̃0
4

(ϕ(z))

|du(ϕ−1(x))dϕ−1(x)|p
R�⊗Rm dx

≤ C

R̃0
p

 

BM
2R̃0

(z)

∣∣u − (u)z0,2R̃0

∣∣p dμg (z)

≤ Cc6

R̃0
p

 

BM
2R̃0

(z)

∣∣u − (u ◦ ϕ−1)z0,4R̃0

∣∣p dμg (z)

≤ Cc6

R̃0
p

 

Bm
4R̃0

(ϕ(z))

∣∣∣u ◦ ϕ−1 − (u ◦ ϕ−1)
x0,4R̃0

∣∣∣p dx, (5.12)

where we have used the preliminary estimate (with a simple change of radii) from earlier in
this proof. Applying the Sobolev–Poincaré inequality [38, Theorem 3.17, (3.34)] to (5.12)
and absorbing the constant c6 into the constant C we obtain the estimate

 

B R̃0
4

(ϕ(z))

∣∣du (ϕ−1(x)
)
dϕ−1(x)

∣∣p
R�⊗Rm dx

≤ C

⎛
⎜⎜⎝

 

B4R̃0
(ϕ(z))

∣∣du (ϕ−1(x)
)
dϕ−1(x)

∣∣pμ

R�⊗Rm dx

⎞
⎟⎟⎠

1
μ

, (5.13)

where we put μ := m
m+p < 1. From (5.13) we thus obtain

 

B R̃0
4

(ϕ(z))

∣∣d [u ◦ ϕ−1]∣∣p
R�⊗Rm dx ≤ C

⎛
⎜⎜⎝

 

B4R̃0
(ϕ(z))

∣∣d [u ◦ ϕ−1]∣∣pμ

R�⊗Rm dx

⎞
⎟⎟⎠

1
μ

. (5.14)
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Finally, one may apply Gehring’s lemma—cf., [38, Lemma 6.2]—in order to deduce from
(5.14) that

 

B R̃0
4

(ϕ(z))

∣∣d [u ◦ ϕ−1]∣∣q
R�⊗Rm dx ≤ C

⎛
⎜⎜⎝

 

B4R̃0
(ϕ(z))

∣∣d [u ◦ ϕ−1]∣∣p
R�⊗Rm dx

⎞
⎟⎟⎠

q
p

, (5.15)

with q ∈ (p, p + η) for some η > 0. Pulling back to the manifold, we thus recover from
(5.15) the estimate

 

BM̃
R0
8

(z)

|du(z)|q
R�⊗T ∗

z M
dμg (z) ≤ C

⎛
⎜⎜⎜⎝

 

BM
8R̃0

(z)

|du(z)|p
R�⊗T ∗

z M
dμg (z)

⎞
⎟⎟⎟⎠

q
p

, (5.16)

which, as (5.16) is (5.11), completes the proof. ��
We conclude this section and this paper by providing a brief example to explicate the

implications of the results derived in this work.

Example 5.4 Let p ≥ 2 and r < p be given and fixed. Consider the map G : M × N ×(
R

� ⊗ T ∗M)→ R defined by

G(z,u, ξ) := {A(z,u)
(⊗2ξ

)} p
2 + {B(z,u)

(⊗2ξ
)} r

2 ,

where A, B : M × N → (�2
R

�
) ⊗ (�2T ∗M)

. Suppose that A satisfies conditions
(A1)–(A2). We claim that if B satisfies the Morrey regularity condition

∣∣supu∈N B(·,u)
∣∣ ∈

L
pr

2(p−r)
,γ

(M), then conditions (A1)–(A4) are satisfied.
To see that this is true, notice first of all that Cauchy-Schwarz implies that∣∣∣G(z,u, ξ) − {A(z,u)

(⊗2ξ
)} p

2

∣∣∣
|ξ |p

=
∣∣∣〈B(z,u),⊗2ξ

〉 r
2

∣∣∣
|ξ |p

≤ |B(z,u)| r
2
(∣∣⊗2ξ

∣∣) r
2

|ξ |p

≤ |B(z,u)| r
2
(|ξ |2) r

2

|ξ |p

= |B(z,u)| r
2 |ξ |r−p.

We conclude from the above inequality that σε may be defined by

σε(z) := sup
u∈N

(
1

ε
|B(z,u)| r

2

) 1
p−r

.

Since, by assumption, we must have σε ∈ L p,γ (M0), it follows that we need the condition

sup
z0∈M
ρ>0

sup
u∈N

1

ργ

ˆ

BM
ρ

(
1

ε
|B(z,u)|

) pr
2(p−r)

dμg (z) < +∞
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to hold. But since this condition is equivalent to∣∣∣∣ sup
u∈N

B(·,u)

∣∣∣∣ ∈ L
pr

2(p−r)
,γ

(M) ,

the claim holds. And this ensures that G is (p, γ )-asymptotically related to the map

(z,w, ξ) �→ {
A(z,w)(⊗2ξ)

} p
2 .

So, since G as defined above satisfies conditions (A1)–(A4), it follows that the associated
integral functional

ˆ

M

[{
A(z,u)

(⊗2ξ
)} p

2 + {B(z,u)
(⊗2ξ

)} r
2

]
dμg (z) (5.17)

has the property that if u is a minimizer of (5.17), then it holds that u ∈ C
0,1− p+β−αp

p
loc (M0)

for each β ∈ (0,min{m − p, αp}), as in the conclusion of Theorem 4.2. Furthermore, by
means of Theorem 5.2 and Theorem 5.3, we conclude that if u is a minimizer of (5.17), then
u satisfies a Caccioppoli inequality on the compact submanifold M0 and, in addition, the
map du possesses higher integrability in the sense of Theorem 5.3.

Remark 5.5 We note that while the map (z,u) �→ B(z,u) must be uniformly bounded
in u, it can experience blow-up in z at a given u ∈ N . Moreover, we see that even as
|ξ |

R�⊗T ∗
z M → +∞, the map (z,u, ξ) �→ G(z,u, ξ)may, nonetheless, retain its dependence

not only on the spatial variable z but also u, which is unusual even in the Euclidean setting.
And as mentioned in Sect. 1, this initiates a low-order regularity theory for asymptotically
convex functionals in the Riemannian manifold setting.
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