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Abstract We study the asymptotic behavior of the counting function of tensor products of
operators, in the cases where the factors are either pseudodifferential operators on closed
manifolds or pseudodifferential operators of Shubin type on R

n , respectively. We obtain, in
particular, the sharpness of the remainder term in the corresponding Weyl formulae, which
we prove by means of the analysis of some explicit examples.
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1 Introduction

Let P be a positive self-adjoint operator of order m > 0 with domain Hm(M) ↪→ L2(M),
M a Riemannian, n-dimensional smooth closed manifold. Assume that the resolvent of P is
compact, so that the spectrum is discrete and given by a sequence of eigenvalues with finite
multiplicities. Let {λ j } j∈N = σ(P) be the set of the eigenvalues of P , repeated according to
their multiplicity. The counting function NP (τ ) is defined as

NP (τ ) =
∑

λ j∈σ(P)∩[0,τ )

1 =
∑

λ j<τ

1. (1)

The Weyl law, see, e.g., [15,16], describes the asymptotic expansion of the counting
function NP (τ ), as τ goes to infinity. It is well known that the leading term of the asymptotic
expansion of (1) depends on the dimension of themanifold, on the order of the operator and on
its principal symbol, see, e.g., [16]. Similar formulae can be obtained in many other different
settings, see [24] and [2] for a detailed analysis and several developments. To mention a
few specific situations, see [18,26] for the case of the Shubin calculus on R

n , [7] for the
anisotropic Shubin calculus, [5,8,21] for the SG-operators on R

n and the manifolds with
ends, [10] for operators on conic manifolds, [20] for operators on cusp manifolds, [9] for
operators on asymptotic hyperbolic manifolds and [4,6] for bisingular operators.

In this paper, we study the counting function of the tensor product of r pseudodifferential
operators.We consider the cases of Hörmander operators on closedmanifolds and of the Shu-
bin calculus onRn . In the case r = 2, for classical Hörmander operators on closed manifolds,
the operators we consider are a subclass of the so-called bisingular operators, studied by
Rodino in [23] (see also [22]) in connection with the multiplicative property of the Atiyah–
Singer index [3]. An asymptotic expansion of the counting function of bisingular operators
was obtained by the first author in [4]. The basic tool was the spectral ζ -function, in the spirit
of Guillemin’s so-called soft proof of the Weyl law [13]. This method allows determining
the leading term of the asymptotic expansion in the non-symmetric case (corresponding to a
simple first pole of the spectral ζ -function). In the symmetric case, the spectral ζ -function has
a first pole of order 2. Using a theorem due to Aramaki [1], it has been possible to determine
the leading term, which has a behavior of type τ p log τ , as well as the second term, which
has a behavior of type τ p , p being the first pole of the spectral ζ -function. However, it was
not possible, through the aforementioned method, to give a good estimate of the remainder
term. We notice that the asymptotic behavior of the counting function in the bisingular case
has some similarities with theWeyl law in the setting of SG-classical operators on manifolds
with ends [5,8].

A version of bisingular operators, based on Shubin pseudodifferential calculus onRn , was
introduced in [6]. The counting function was studied also in this setting, obtaining results
analogous to those which hold for the “standard” bisingular calculus.

In this paper, we consider the same class of operators studied in [11], namely, tensor
products of r pseudodifferential operators, that is,

A = A1 ⊗ · · · ⊗ Ar .

In the sequel, we will assume either that each A j is a classical Hörmander pseudodifferen-
tial operator on a n j -dimensional closedmanifoldsMj , that is, A j ∈ L

m j
cl (Mj ), j = 1, . . . , r ,

or that each A j belongs to a classical global Shubin class on R
n j , that is, A j ∈ G

m j
cl (Rn j ),

j = 1, . . . , r . We also assume that A is positive, self-adjoint and Fredholm. It is straight-
forward to check that the Fredholm property of A implies that A j is invertible for any
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Sharp Weyl estimates for . . . 797

j = 1, . . . , r . We illustrate here our results in the case r = 2, see Sect. 4 below for the
statements which hold for an arbitrary number of factors.

Denoting by σ (A1) = {
λ j
}
j∈N and σ (A2) = {μk}k∈N the spectra of A1 and A2, with

eigenvalues repeated according with their multiplicities, we easily obtain that the spectrum
of A is given by

σ(A) = {λ j · μk
}
( j,k)∈N2 .

Therefore,

NA(τ ) =
∑

ρ∈σ(A)∩[0,τ )

1 =
∑

λ j ·μk<τ

1. (2)

Assume that A = A1 ⊗ A2 is positive, self-adjoint and Fredholm, with A1 ∈ Lm1
cl (M1),

A2 ∈ Lm2
cl (M2), m1,m2 > 0, dim M1 = n1, dim M2 = n2 and n1

m1
> n2

m2
. Our first main

result, proved in Theorem 2, states that, under such assumptions,

NA(τ ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

C1

n1
ζ

(
A2,

n1
m1

)
τ

n1
m1 + O

(
τ

n1−1
m1

)
if

n2
m2

<
n1 − 1

m1
,

C1

n1
ζ

(
A2,

n1
m1

)
τ

n1
m1 + O

(
τ

n1−1
m1 log τ

)
if

n2
m2

= n1 − 1

m1
,

C1

n1
ζ

(
A2,

n1
m1

)
τ

n1
m1 + O

(
τ

n2
m2

)
if

n2
m2

>
n1 − 1

m1
,

(3)

for τ → +∞. In (3), ζ denotes the spectral ζ -function and

C1 = 1

(2π)n1

∫

M1

∫

S
n1−1

dθ1dx1

[am1(x1, θ1)]
n1
m1

.

A similar statement holds for the tensor product of two Shubin operators with pos-
itive order. Moreover, using spherical harmonics, we show that the estimate (3) is
sharp.

In [11], Gramchev, Pilipović, Rodino and Vindas considered the same class of operators,
finding a slightly weaker estimate for the remainder term of the Weyl formula. Explicitly,
they prove that, under the assumptions stated above,

NA(τ ) = C1

n1
ζ

(
A2,

n1
m1

)
τ

n1
m1 + O(τ δ)

where max
{
n1−1
m1

, n2
m2

}
< δ < n1

m1
.

The asymptotic expansion in (3) is related with the position of the first poles of the spectral
ζ -function associated with A1 and A2, as sketched in the following pictures.
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The key point in the proof of our results is the following equivalence, explained in (13):

NA (τ ) =
∑

λ j ·μk<τ

1 =
∑

μk<τ

NA2

(
τ

μk

)
.

The argument is then a careful application of the well-known sharp Weyl law. A main
aspect is the possibility to estimate the reminder term, in the Weyl law of A2 evaluated in
τ
μk

, uniformly with respect to μk .
The paper is organized as follows. In Sect. 2, we shortly recall the Weyl laws in the case

of the Hörmander calculus on closed manifolds and of the Shubin calculus on R
n . We also

study the asymptotic behavior of the sum

∑

μk<τ

1

μc
k

for different ranges of c ∈ R, where {μk}k∈N is the spectrum of an operator in the calculus
we consider. In Sect. 3, we prove our main results in the case of tensor products of two
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Sharp Weyl estimates for . . . 799

factors. In Sect. 4, we extend the results to the case of tensor products of r > 2 factors. In
Sect. 5, we show that our estimates of the remainder term of theWeyl law are sharp, focusing
again on the case of tensor products of two factors. Finally, we collect in the Appendix some
remarks concerning the connection of this analysis with lattice problems, in particular with
the Dirichlet divisor problem in the classic setting and in the anisotropic case.

2 Preliminary results

We recall well-known results on the sharp Weyl law in the case of operators on closed
manifolds and of operators of Shubin type on R

n , see, e.g., Hörmander [15], Hellfer and
Robert [18], see also [17].

Theorem 1 (SharpWeyl law) Let A be a positive self-adjoint elliptic classical pseudodiffer-
ential operator in Lm

cl(M), with M aclosedmanifold of dimension n, and letσ (A) = {λ j
}
j∈N

be its spectrum. Then,

NA(λ) =
∑

λ j<λ

1 = CA

n
λ

n
m + RA (λ) , (4)

where

CA = 1

(2π)n

∫

M

∫

Sn−1

dθdx

[am (x, θ)] n
m

,

with am the principal homogeneous symbol of A, and

lim sup
λ→+∞

∣∣∣NA (λ) − CA
n λ

n
m

∣∣∣

λ
n−1
m

= lim sup
λ→+∞

|RA (λ)|
λ

n−1
m

< +∞. (5)

Analogously, let P ∈ Gm
cl(R

n) be a positive self-adjoint elliptic classical pseudodifferential
operator of Shubin type on R

n with m > 0, and let σ (P) = {μk}k∈N be its spectrum. Then,

NP (λ) =
∑

μk<λ

1 = KP

2n
λ

2n
m + RP (λ) , (6)

where

KP = 1

(2π)2n

∫

S2n−1

dθ

[pm (θ)] 2n
m

,

with pm the principal homogeneous symbol of P, and

lim sup
λ→+∞

∣∣∣NP (λ) − KP
2n λ

2n
m

∣∣∣

λ
2n−1
m

= lim sup
λ→+∞

|RP (λ)|
λ

2n−1
m

< +∞.

The next Propositions 1 and 2 will be crucial in our proof of the Weyl law with sharp
remainder for tensor products. They follow as consequence of well-known properties of the
spectra of positive self-adjoint operators. We examine in detail only the case of Hörmander
pseudodifferential operators on closed manifold, since the argument for the case of Shubin
operators is similar.
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800 U. Battisti et al.

Proposition 1 Let M be a closed manifold of dimension n, and A ∈ Lm
cl(M), m > 0, be

elliptic, positive and self-adjoint, with spectrum σ(A) = {μk}k∈N. Define

FA(τ, c) =
∑

μk<τ

1

μc
k

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

F1 (τ ) if c >
n

m
,

F2 (τ ) if c = n

m
,

F3 (τ ) if c <
n

m
.

(7)

Then,

lim sup
τ→+∞

ζ(A, c) − F1 (τ )

τ
n
m −c

= κ1, lim sup
τ→+∞

F2 (τ )

log τ
= κ2, lim sup

τ→+∞
F3 (τ )

τ
n
m −c

= κ3,

for suitable positive constants κ1, κ2, κ3. That is, for τ → +∞,

ζ(A, c) − F1(τ ) = O
(
τ

n
m −c
)

, F2(τ ) = O (log τ) , F3(τ ) = O
(
τ

n
m −c
)

.

Proof If c > n
m it is immediate that the series

∑∞
k=0

1
μc
k
is convergent, in view of the

holomorphic properties of the spectral ζ -function associated with A. To prove the asymptotic
properties of ζ(A, c) − F1(τ ), we switch to B = A1/m , so that the order of B is one and
σ(B) = μ

1/m
k . We have

ζ(A, c) − F1(τ ) =
∑

μk≥τ

1

μc
k

=
∑

μ
1/m
k ≥τ 1/m

1
(
μ
1/m
k

)c m

=
∫ +∞

τ 1/m

1

μc m
dNB(μ). (8)

Since B is of order one, it is well known that

NB(λ + 1) − NB(λ) ≤ � {σ(B) ∩ [λ, λ + 1]} = O(λn−1), λ → +∞ (9)

(see, e.g., [12, § 12]). Using (9) and the properties of Stieltjes integral, we obtain, for τ →
+∞,

ζ(A, c) − F1(τ ) =
∫ +∞

τ 1/m

1

μc m
dNB(μ)

≤
∞∑

j=[τ 1/m ]−1

sup
μ∈[ j, j+1]

(
1

μc m

)
(NB( j + 1) − NB( j))

≤ κ

∞∑

j=[τ 1/m ]−1

1

j c m−n+1

≤ κ

∫ +∞

[τ 1/m ]−1

1

(t − 1)c m−n+1 dt

= κ
1

c m − n
[τ 1/m − 2]n−m c ∈ O

(
τ

n
m −c
)

.

where [a] denotes the minimum integer such that [a] ≥ a.
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Sharp Weyl estimates for . . . 801

To prove the results for F2 and F3 we can assume, without loss of generality, that μ0 =
μ̃0 = 1. Using again the properties of the Stieltjes integral, we write

FA(τ, c) =
∫ τ 1/m

1

1

μc m
dNB(μ) ≤

[τ 1/m ]∑

j=1

sup
μ∈[ j, j+1]

(
1

μc m

)
(NB( j + 1) − NB( j)) .

Let us initially suppose that c > 0, so that 1
xc is a decreasing function on [1,+∞). In

view of (9), we have

∫ τ 1/m

1

1

μc m
dNB(μ) ≤

[τ 1/m ]∑

j=1

1

j c m
O( jn−1) ≤ κ̃

[τ 1/m ]∑

j=1

1

j c m−n+1

≤ κ̃

(∫ [τ 1/m ]

1
tn−c m−1dt + 1

)
. (10)

By integration, we find

FA(τ, c) =
∫ τ 1/m

1

1

μc m
dNB(μ) ≤

⎧
⎪⎨

⎪⎩

κ̃1

n − c m
τ

n
m −c if 0 < c <

n

m
,

κ̃2
m log τ if c = n

m
,

as claimed. Finally, if c ≤ 0, then 1
μc is a non-decreasing function and also in this case,

similar to (10), we obtain

FA(τ, c) ≤ κ

∫ [τ 1/m ]

1
(x + 1)n−c m−1 dx ≤ κ̃3

n − c m
τ

n
m −c.

The proof is complete. 	

Proposition 2 Let P ∈ Gm

cl(R
n) be an elliptic, positive and self-adjoint Shubin operator of

order m > 0, with spectrum given by σ(P) = {λ j } j∈N. Define

FP (τ, c) =
∑

λ j<τ

1

λcj
=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

F1 (τ ) if c >
2n

m
,

F2 (τ ) if c = 2n

m
,

F3 (τ ) if c <
2n

m
.

(11)

Then,

lim sup
τ→+∞

ζ(P, c) − F1 (τ )

τ
2n
m −c

= κ1, lim sup
τ→+∞

F2 (τ )

log τ
= κ2, lim sup

τ→+∞
F3 (τ )

τ
2n
m −c

= κ3,

for suitable positive constants κ1, κ2, κ3. That is, for τ → +∞,

ζ(P, c) − F1(τ ) = O
(
τ

2n
m −c

)
, F2(τ ) = O (log τ) , F3(τ ) = O

(
τ

2n
m −c

)
.

3 Spectral asymptotics for the tensor product of two operators

We start considering the case of the tensor product of two operators. Let M1, M2 be two
compact manifolds of dimension n1, n2, respectively. Let A = A1 ⊗ A2, A j ∈ L

m j
cl (Mj ),
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802 U. Battisti et al.

m j > 0, j = 1, 2. Assume that the spectra of A1 and A2 are sequences of eigenvalues and
set

σ(A1) = {λ j } j∈N, σ (A2) = {μk}k∈N,

so that

σ(A) = {λ j · μk : λ j ∈ σ(A1), μk ∈ σ(A2)
}
.

For simplicity, we start with the case m1 = 1 and n1 > n2
m2

. Let c be an arbitrary positive
constant and B an operator with spectrum σ(B) = {μk}k∈N; then, σ(c B) = {c · μk}k∈N.
There is a simple and useful formula relating the counting functions Nc B and NB , namely

Nc B(τ ) =
∑

c·μk<τ

1 =
∑

μk<
τ
c

1 = NB

(τ

c

)
. (12)

In particular, (12) implies that, without loss of generality, we can assume1 λ j > 1 and
μk > 1 for all j, k. Let us now summarize the hypotheses on the factors A1, A2.

Assumptions 1

M1, M2 smooth closed manifolds of dimensions n1, n2, respectively ;
A = A1 ⊗ A2, A1 ∈ L1

cl(M1), A2 ∈ Lm2
cl (M2), m2 > 0, n1 >

n2
m2

;
A1, A2 positive, self-adjoint, elliptic ;
σ (A1) = {λ j

}
j∈N , σ (A2) = {μk}k∈N , λ j > 1, μk > 1, for all j, k.

Since λ j , μk > 1 for all j, k, using (12), we have2

NA(τ ) =
∑

λ j ·μk<τ

1 =
∑

μk<τ

⎛

⎝
∑

λ j ·μk<τ

1

⎞

⎠

=
∑

μk<τ

Nμk A1(τ ) =
∑

μk<τ

NA1

(
τ

μk

)
. (13)

Proposition 3 Let A, A1 and A2 be as in Assumptions 1. Then,

NA(τ ) =
∑

μk<τ

(
C1

n1

(
τ

μk

)n1
+ 1

μ
n1−1
k

rk(τ )

)
,

with

C1 = 1

(2π)n1

∫

M1

∫

S
n1−1

dθ1dx1

[am1(x1, θ1)]
n1
m1

, (14)

and rk(τ ) isO (τ n1−1
)
, uniformly with respect to μk . That is, there exists a positive constant

C such that

|rk(τ )| ≤ Cτ n1−1, for all k ∈ N. (15)

1 In fact, if that condition were not true, we could consider the operator c2A, with c = (min{λ j , μk } − ε)−1,
ε > 0 small enough.
2 Recall that λ j > 1 for all j . In the first term of (13) we can reduce the summation to μk < τ since,
otherwise, we would have λk · μk ≥ τ for all k, and the second summation would be zero.
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Sharp Weyl estimates for . . . 803

Proof By (13) we have

NA(τ ) =
∑

μk<τ

NA1

(
τ

μk

)
.

Using (4), we can write

NA(τ ) =
∑

μk<τ

(
C1

n1

τ n1

μ
n1
k

+ RA

(
τ

μk

))
. (16)

Equation (5) implies that

|RA(t)| ≤ κtn1−1, t > 1,

for a suitable constant κ . Since μk < τ ⇒ τ
μk

> 1 in the summation (16), we can write

∣∣∣∣RA

(
τ

μk

)∣∣∣∣ ≤ C

(
τ

μk

)n1−1

.

Hence, setting

rk(τ ) = μ
n1−1
k RA

(
τ

μk

)
,

we have the assertion. 	

Lemma 1 Let A, A1, A2 be as in Assumptions 1, and assume n1 >

n2
m2

. Then, we have, for

τ → +∞,

NA(τ ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C1

n1
ζ (A2, n1) τ n1 + O(τ n1−1) if

n2
m2

< n1 − 1,

C1

n1
ζ (A2, n1) τ n1 + O (τ n1−1 log τ

)
if

n2
m2

= n1 − 1,

C1

n1
ζ (A2, n1) τ n1 + O

(
τ

n2
m2

)
if

n2
m2

> n1 − 1,

where C1 is given by (14).

Proof Using Proposition 3, we obtain

NA(τ ) =
∑

μk<τ

(
C1

n1

(
τ

μk

)n1
+ 1

μk
n1−1 rk (τ )

)
,

where rk(τ ) is uniformly O (τ n1−1
)
for τ → +∞, in the sense of (15). We can then write

∣∣∣∣NA(τ ) − C1

n1
ζ(A2, n1)τ

n1

∣∣∣∣ =
∣∣∣∣∣
∑

μk<τ

(
C1

n1

τ n1

μ
n1
k

+ 1

μ
n1−1
k

rk(τ
n1−1)

)
− C1

n1
ζ(A2, n1)τ

n1

∣∣∣∣∣

≤ C1

n1
τ n1
∣∣FA2(τ, n1) − ζ(A2, n1)

∣∣+
∣∣∣∣∣
∑

μk<τ

1

μ
n1−1
k

rk(τ
n1−1)

∣∣∣∣∣

≤ C1

n1
τ n1
∣∣FA2(τ, n1) − ζ(A2, n1)

∣∣+ Cτ n1−1FA2(τ, n1 − 1).

(17)
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Let us start with the case n1 − 1 > n2
m . Using (17), we find

lim sup
τ→+∞

∣∣∣NA(τ ) − C1
n1

ζ(A2, n1)τ n1
∣∣∣

τ n1−1 ≤ C1

n1
lim sup
τ→+∞

τ
∣∣ζ(A2, n1) − FA2(τ, n1)

∣∣

+C lim sup
τ→+∞

FA2(τ, n1 − 1).

Since

n1 > n1 − 1 >
n2
m2

⇒ n2
m2

− n1 < −1,

ζ(A2, n1) − F1(τ ) = O
(

τ
n2
m2

−n1
)
for τ → +∞, in view of Proposition 1. It follows that

lim sup
τ→+∞

τ |ζ(A2, n1) − F1(τ )| ≤ C̃ lim sup
τ→+∞

τ
n2
m2

−n1+1 = 0,

which implies

lim sup
τ→+∞

∣∣∣NA(τ ) − C1
n1

ζ(A2, n1)τ n1
∣∣∣

τ n1−1 ≤ C lim sup
τ→+∞

FA2(τ, n1 − 1) = Cζ(A2, n1 − 1).

Since n1 − 1 > n2
m2

, ζ(A2, n1 − 1) is finite, and we have the desired assertion.
In the case n1 − 1 = n2

m2
, from (17) we analogously get

lim sup
τ→+∞

∣∣∣NA(τ ) − C1
n1

ζ(A2, n1)τ n1
∣∣∣

τ n1−1 log τ

≤ C1

n1
lim sup
τ→+∞

τ

log τ

∣∣ζ(A2, n1) − FA2(τ, n1)
∣∣+ C lim sup

τ→+∞
1

log τ
FA2

(
τ,

n2
m2

)
.

Since n1 > n1 − 1 = n2
m2

, in view of Proposition 1 we find

ζ(A2, n1) − F1(τ ) = O (τ−1) , FA2

(
τ,

n2
m2

)
= F2(τ ) = O (log τ) ,

so that

lim sup
τ→+∞

∣∣∣NA(τ ) − C1
n1

ζ(A2, n1)τ n1
∣∣∣

τ n1−1 log τ
≤ C̃,

as claimed.
Finally, in the case n1 − 1 < n2

m2
, (17) gives

lim sup
τ→+∞

∣∣∣NA(τ ) − C1
n1

ζ(A2, n1)τ n1
∣∣∣

τ
n2
m2

≤ C1

n1
lim sup
τ→+∞

τ
n1− n2

m2
∣∣ζ(A2, n1) − FA2(τ, n1)

∣∣

+C lim sup
τ→+∞

τ
n1−1− n2

m2 FA2(τ, n1 − 1).

Since n1 > n2
m2

> n1 − 1, Proposition 1 implies

ζ(A2, n1) − F1(τ ) = O
(

τ
n2
m2

−n1
)

, FA2 (τ, n1 − 1) = F3 (τ ) = O
(
τ

n2
m −n1+1

)
.
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Therefore,

lim sup
τ→+∞

∣∣∣NA(τ ) − C1
n1

ζ(A2, n1)τ n1
∣∣∣

τ
n2
m2

< +∞.

The proof is complete. 	

We can now prove our main result.

Theorem 2 Let M1, M2 be two closed manifolds of dimension n1, n2, respectively. Let
A = A1 ⊗ A2, where A j ∈ L

m j
cl (Mj ), m j > 0, j = 1, 2, are positive, self-adjoint, invertible

operators, with
n1
m1

>
n2
m2

. Then, for τ → +∞,

NA(τ ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

C1

n1
ζ

(
A2,

n1
m1

)
τ

n1
m1 + O

(
τ

n1−1
m1

)
if

n2
m2

<
n1 − 1

m1
,

C1

n1
ζ

(
A2,

n1
m1

)
τ

n1
m1 + O

(
τ

n1−1
m1 log τ

)
if

n2
m2

= n1 − 1

m1
,

C1

n1
ζ

(
A2,

n1
m1

)
τ

n1
m1 + O

(
τ

n2
m2

)
if

n2
m2

>
n1 − 1

m1
,

where C1 is given by (14).

Proof Without loss of generality,we can assumem1 = 1, possibly considering an appropriate
power of A, see [4]. Moreover, again without loss of the generality, we can assume that all
the eigenvalues are strictly larger than one, so that the Assumptions 1 are fulfilled. Then, the
claim follows from Lemma 1. 	


The case of the tensor product of two Shubin operators can be treated in a completely
similar fashion, using Proposition 2 in place of Proposition 1, and the Weyl law (6) which
holds in this setting.

Theorem 3 Let P = P1 ⊗ P2 and Pj ∈ G
m j
cl (Rn j ), m j > 0, j = 1, 2, be positive, self-

adjoint, invertible operators, with
2n1
m1

>
2n2
m2

. Then, for τ → +∞,

NP (τ ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

K1

2n1
ζ

(
P2,

2n1
m1

)
τ

2n1
m1 + O

(
τ

2n1−1
m1

)
if

2n2
m2

<
2n1 − 1

m1
,

K1

2n1
ζ

(
P2,

2n1
m1

)
τ

2n1
m1 + O

(
τ

2n1−1
m1 log τ

)
if

2n2
m2

= 2n1 − 1

m1
,

K1

2n1
ζ

(
P2,

2n1
m1

)
τ

2n1
m1 + O

(
τ

2n2
m2

)
if

2n2
m2

>
2n1 − 1

m1
,

where

K1 = 1

(2π)2n1

∫

S
2n1−1

dθ1

[pm1(θ1)]
2n1
m1

.

4 Spectral asymptotics for the tensor product of r operators

As in the previous sections, to avoid redundancy we will prove in detail our results for tensor
products of r factors only in the case of operators belonging to the Hörmander calculus on
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806 U. Battisti et al.

closed manifolds. We will then omit the proof of the analogous Theorem 4 for the case of
operators belonging to the Shubin calculus, which can be obtained by similar arguments.

The main tool in the study of the extension of Theorem 2 to the product of r ≥ 2 factors
is a refined version of Proposition 1. Let us first state the hypotheses.

Assumptions 2

M1, . . . , Mr smooth closed manifolds of dimensions n1, . . . , nr , respectively ;
A = A1 ⊗ · · · ⊗ Ar , A j ∈ L

m j
cl (Mj ), m j > 0, j = 1, . . . , r;

A j positive, self-adjoint, elliptic , j = 1, . . . , r;
σ
(
A j
) =

{
jμk j

}

k j∈N
, jμ1 > 1, j = 1, . . . , r.

Proposition 4 Let A, A j , j = 1, . . . , r , be as in Assumptions 2. Set

p = max

{
n1
m1

, . . . ,
nr
mr

}
, S =

{
j ∈ {1, . . . , r} : n j

m j
= p

}
, s = �S,

and define, for τ → +∞,

FA(τ, c) =
∑

1μk1 · ... · rμkr <τ

1

(1μk1)
c · . . . · (rμkr )

c
=

⎧
⎪⎨

⎪⎩

F1(τ ) if p < c,

F2(τ ) if p = c,

F3(τ ) if p > c.

Then,

lim sup
τ→+∞

∣∣∣
∏r

j=1 ζ(A j , c) − F1(τ )

∣∣∣

τ p−c (log τ)s−1 = κ1,

lim sup
τ→+∞

F2 (τ )

(log τ)s
= κ2,

lim sup
τ→+∞

F3 (τ )

τ p−c (log τ)s−1 = κ3,

that is, for τ → +∞,

r∏

j=1

ζ(A j , c) − F1(τ ) = O (τ p−c (log τ)s−1) ,

F2(τ ) = O ((log τ)s
)
, F3(τ ) = O (τ p−c (log τ)s−1) .

Proof We will make use of the straightforward inequality

FA(τ, c) =
∑

1μk1 · ... · rμkr <τ

1

(1μk1)
c · . . . · (rμkr )

c
≤

r∏

j=1

∑

jμk j <τ

1

( jμk j )
c
, (18)

as well as of the following consequence of the absolute convergence of the involved series,

r∏

j=1

ζ(A j , c) = lim
τ→+∞

r∏

j=1

∑

jμk j <τ

1

( jμk j )
c

=
∑ 1

(1μk1)
c · . . . · (rμkr )

c
, (19)
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where c belongs to the holomorphic domain of the functions ζ(A j , z), j = 1, . . . , r , and
the last summation in (19) is taken on all the r -tuples of eigenvalues (1μk1 , . . . ,

rμkr ) ∈
σ(A1) ⊕ · · · ⊕ σ(Ar ).

Case p = c. Let us split the last term in (18) as

r∏

j=1

∑

jμk j <τ

1

( jμk j )
c

=
⎛

⎜⎝
∏

j /∈S

∑

jμk j <τ

1

( jμk j )
c

⎞

⎟⎠ ·
⎛

⎝
∏

t∈S

∑

tμkt <τ

1

(tμkt )
c

⎞

⎠ .

Recalling that
n j
m j

< c for all j /∈ S, that is, c belongs to the holomorphic

domain of ζ(A j , ·) for j /∈ S, and that nt
mt

= c for all t ∈ S, using Proposition
1 we have

⎛

⎜⎝
∏

j /∈S

∑

jμk j<τ

1

( jμk j )
c

⎞

⎟⎠ ·
⎛

⎝
∏

t∈S

∑

tμkt <τ

1

(tμkt )
c

⎞

⎠ =
⎛

⎝
∏

j /∈S
ζ(A j , c)

⎞

⎠· O ((log τ)s
)

= O ((log τ)s
)
,

which implies our claim in this case, in view of (18).

Case p > c. To simplify notation, we can suppose, without loss of generality, p = n1
m1

.

Recalling the assumption jμk j > 1, j = 1, . . . , r , we observe that

1μk1 · . . . · rμkr < τ ⇔
⎡

⎣
r∏

j=2

( jμk j ) < τ ∧ 1 < 1μk1 <
τ∏r

j=2(
jμk j )

⎤

⎦ .

In fact, the ⇐ implication is immediate, while

1μk1 · . . . · rμkr < τ ∧ 1μk1 > 1

⇒ 1 < 1μk1 <
τ∏r

j=2(
jμk j )

⇒ 1 < 1μk1 <
τ∏r

j=2(
jμk j )

∧
r∏

j=2

( jμk j ) < τ.

Then, we can write

FA(τ, c) = F3(τ )

=
∑

2μk2 ·...·rμkr <τ

1

(2μk2)
c · . . . · (rμkr )

c

∑

1<1μk1< τ
2μk2

·...·rμkr

1

(1μk1)
c

=
∑

∏r
j=2(

jμk j )<τ

1∏r
j=2(

jμk j )
c

∫ τ∏r
j=2( jμk j

)

1

1

μc
dNA1(μ).
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Switching to B = (A1)
1
m1 , recalling that then σ(B) = {(1μk1)

1
m1 } and3

∫ τ∏r
j=2( jμk j

)

1

1

μc
dNA1(μ) =

∫
[

τ∏r
j=2( jμk j

)

] 1
m1

1

1

μc m1
dNB(μ),

using (9) with n1 in place of n, it turns out that, for τ → +∞,

F3(τ ) =
∑

∏r
j=2(

jμk j )<τ

1∏r
j=2(

jμk j )
c
O
((

τ∏r
j=2(

jμk j )

)p−c)

=
⎡

⎢⎣
∑

2μk2 ·...·rμkr <τ

1

(2μk2)
p · . . . · (rμkr )

p

⎤

⎥⎦O (τ p−c) .

Using the result of the case p = c above, with s−1 in place of s, we conclude

F3(τ ) = O (τ p−c (log τ)s−1) ,

as claimed.
Case p < c. Since c >

n j
m j

for all j = 1, . . . , r , c belongs to the holomorphic domain of
all the functions ζ(A j , z), j = 1, . . . , r . Then, by (19), in this case we have,
for all τ ,
r∏

j=1

ζ
(
A j , c

)− FA(τ, c) =
r∏

j=1

ζ
(
A j , c

)− F1(τ )

=
∑ 1

(1μk1)
c · . . . · (rμkr )

c
−

∑

1μk1 · ... · rμkr <τ

1

(1μk1)
c · . . . · (rμkr )

c

=
∑

1μk1 · ... · rμkr ≥τ

1

(1μk1)
c · . . . · (rμkr )

c
.

We will prove the claim by induction on the number of operators. The case
r = 2 is proven in Proposition 1. Let us then suppose that the desired estimate
holds true for a tensor product of r − 1 operators, r ≥ 2, and let us prove that
it holds true also for a tensor product of r operators.
We can again suppose, without loss of generality, p = n1

m1
. Since, clearly,

1μk1 · . . . · rμkr ≥ τ ⇒

1μk1 ≥ τ∏r
j=2(

jμk j )
∧
⎡

⎣
r∏

j=2

( jμk j ) < τ ∨
r∏

j=2

( jμk j ) ≥ τ

⎤

⎦ ,

3 That is,

∑

1<1μk1< τ
2μk2

·...·rμkr

= 1

(1μk1 )
c

=
∑

1<(1μk1 )
1
m1 <

[
τ

2μk2
·...·rμkr

] 1
m1

= 1
[
(1μk1 )

1
m1

]c m1

similar to the proof of Proposition 1.
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we can write
r∏

j=1

ζ(A j , c) − F1 (τ )

=
∑

∏r
j=2(

jμk j )<τ

1∏r
j=2(

jμk j )
c

∫ +∞
τ∏r

j=2( jμk j
)

1

μc
dNA1 (μ) (20)

+
∑

∏r
j=2(

jμk j )≥τ

1∏r
j=2(

jμk j )
c

∫ +∞
τ∏r

j=2( jμk j
)

1

μc
dNA1 (μ) . (21)

Let us first consider (20). Arguing as in the previous case p > c, and using
the case p = c with s − 1 in place of s, we find, for τ → +∞,

∑
∏r

j=2(
jμk j )<τ

1∏r
j=2(

jμk j )
c

∫ +∞
τ∏r

j=2( jμk j
)

1

μc
dNA1 (μ)

=
∑

∏r
j=2(

jμk j )<τ

1∏r
j=2(

jμk j )
c
O
((

τ∏r
j=2

jμk j

)p−c)

= O (τ p−c (log τ)s−1) ,

which is the desired estimate.Wenow show that (21) fulfills the same estimate.
Using the fact that ζ(A1, c) is finite, we can estimate (21) as

∑
∏r

j=2(
jμk j )≥τ

1∏r
j=2(

jμk j )
c

∫ +∞
τ∏r

j=2( jμk j
)

1

μc
dNA1 (μ)≤

∑
∏r

j=2(
jμk j )≥τ

1∏r
j=2(

jμk j )
c
ζ(A1, c).

(22)

By the inductive hypothesis, we see that (22) is O (τ p̃−c (log τ )̃s−1) for

τ → +∞, where p̃ = max
{

n j
m j

}r
j=2

≤ p and s̃ < s. Therefore, it is

also O (τ p−c (log τ)s−1) for τ → +∞, and the same of course holds for
(21), in view of the above estimate.

The proof is complete. 	

Assumptions 3 Let A, A1, . . . , Ar be as in Assumptions 2, and suppose that there exists
l ∈ {1, . . . , r} such that

nl
ml

> max

{
n j

m j

}

j∈{1,...,r}\{l}
.

For notational simplicity, in the next two statements we also assume, without loss of
generality, that l = 1. As in the previous section, we first consider the case whenm1 = 1. We
will denote byμj≥2 the product

∏r
j=2

jμk j , where j≥2 denotes themulti-index (k2, . . . , kr ) ∈
N
r−1. The following proposition is an extension of Proposition 5.

Proposition 5 Let A, A1, . . . , Ar be as in Assumptions 3. Then,

NA(τ ) =
∑

μj≥2<τ

⎛

⎝C1

n1

(
τ

μj≥2

)n1
+ 1

μ
n1−1
j≥2

rj≥2 (τ )

⎞

⎠ ,
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where C1 is given by (14) and rj≥2 is O
(
τ n1−1

)
, uniformly with respect to μj≥2 , for any j≥2.

That is, there exists a positive constant C such that

|rj≥2 (τ ) | ≤ Cτ n1−1, for all j≥2 ∈ N
r−1.

Proposition 5 implies the next lemma, which is a multidimensional version of Lemma 1.
We omit the proof, since the argument is analogue to the one used to prove Lemma 1, similar
to what has been done in the proof of Proposition 4.

Lemma 2 Let A, A1, . . . , Ar be as in Assumptions 3. Let us suppose that m1 = 1 and
n1 >

n j
m j

, j = 2, . . . , r and set

p = max

{
n j

m j

}

j=2,...,r
, S =

{
j = 2, . . . , r : n j

m j
= p

}
, s = �S.

Then, we have, for τ → +∞,

NA(τ ) =
⎧
⎨

⎩

CA τ n1 + O (τ n1−1) if p < n1 − 1,
CA τ n1 + O (τ n1−1 (log τ)s

)
if p = n1 − 1,

CA τ n1 + O (τ p (log τ)s−1) if p > n1 − 1,

where

CA = C1

n1

r∏

j=2

ζ
(
A j , n1

)

and C1 is given by (14).

Finally, using powers of the operator A, it is possible to extend the result to the case where
all the factors have arbitrary positive order, which is, together with Theorem 5 below for the
tensor product of r factors in the Shubin calculus, our next main result.

Theorem 4 Let M1, . . . , Mr be closed manifolds of dimension n1, . . . , nr , respectively. Let
A = A1 ⊗ · · · ⊗ Ar , where A j ∈ L

m j
cl (Mj ), m j > 0, j = 1, . . . , r , are positive, self-

adjoint, invertible operators, and assume that there exists l ∈ {1, . . . , r} such that nl
ml

>

max
{

n j
m j

}

j∈{1,...,r}\{l}. Set

p = max

{
n j

m j

}

j∈{1,...,r}\{l}
, S =

{
j = 1, . . . , r, j �= l : n j

m j
= p

}
, s = �S.

Then, for τ → +∞,

NA(τ ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

CA τ
nl
ml + O

(
τ

nl−1
ml

)
if p <

nl − 1

ml
,

CA τ
nl
ml + O

(
τ

nl−1
ml (log τ)s

)
if p = nl − 1

ml
,

CA τ
nl
ml + O (τ p (log τ)s−1) if p >

nl − 1

ml
,

where

CA = Cl

nl

∏

j=1,...,r
j �=l

ζ

(
A j ,

nl
ml

)
, Cl = 1

(2π)nl

∫

Ml

∫

S
nl−1

dθldxl

[aml (xl , θl)]
nl
ml

.
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Theorem 5 Let P = P1 ⊗ · · · ⊗ Pr and Pj ∈ G
m j
cl (Rn j ), m j > 0, j = 1, . . . , r , be

positive, self-adjoint, invertible operators, and assume that there exists l ∈ {1, . . . , r} such
that 2nl

ml
> max

{
2n j
m j

}

j∈{1,...,r}\{l}. Set

p = max

{
2n j

m j

}

j∈{1,...,r}\{l}
, S =

{
j = 1, . . . , r, j �= l : 2n j

m j
= p

}
, s = �S.

Then, for τ → +∞,

NP (τ ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

KP τ
2nl
ml + O

(
τ

2nl−1
ml

)
if p <

2nl − 1

ml
,

KP τ
2nl
ml + O

(
τ

2nl−1
ml (log τ)s

)
if p = 2nl − 1

ml
,

KP τ
2nl
ml + O (τ p (log τ)s−1) if p >

2nl − 1

ml
,

where

KP = Vl
2nl

∏

j=1,...,r
j �=l

ζ

(
Pj ,

2nl
ml

)
, Vl = 1

(2π)2nl

∫

S
2nl−1

dθl

[pml (θl)]
2nl
ml

.

5 Sharpness of the result

In this section, we show that the estimates obtained in Theorem 2 are sharp. To begin,
we choose two pseudodifferential operators on spheres, whose spectrum we can describe
explicitly. Namely, we set

A1 = (−ΔS2 + 2
)− 2

(
−ΔS2 + 1

4

) 1
2 ∈ L2

cl(S
2), A2 = −ΔS1 + 1 ∈ L2

cl(S
1),

where A1 is considered as an unbounded operator on L2(S2), where S2 is the two-dimensional
sphere, and A2 is considered as an unbounded operator on L2(S1), where S

1 is the one-
dimensional sphere. It is well known, see, e.g., [26, §3], that

σ
(−ΔS2

) = {k2 + k | k ∈ N, mult
(
k2 + k

) = (2k + 1)
}
,

σ
(−ΔS1

) = {n2 | n ∈ N, mult
(
n2
) = 2

}
,

wheremult (τ ) is the multiplicity of the eigenvalue τ . Therefore, by the functional calculus
of operators,

σ (A1) = {k2 − k + 1 | k ∈ N, mult
(
k2 − k + 1

) = (2k + 1)
}
, (23)

σ (A2) = {n2 + 1 | n ∈ N, mult
(
n2 + 1

) = 2
}
, (24)

since the eigenfunction of A1 and −ΔS2 are the same. Notice that all the eigenvalues of A1

are larger then 1; therefore,

NA1(τ ) = 0, τ ≤ 1. (25)
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Knowing precisely the eigenvalues of A1 together with their multiplicities, we can write,
for τ > 1,

NA1(τ ) =
∑

k2−k+1<τ

mult
(
k2 − k + 1

)

=
∑

k2−k+1<τ

(2k + 1) =
k̄∑

k=0

(2k + 1)

where

k̄2 − k̄ + 1 < τ ≤ (k̄ + 1
)2 − (k̄ + 1

)+ 1 = k̄2 + k̄ + 1, τ > 1.

That is,

NA1(τ ) =
k̄∑

k=0

(2k + 1) =
∑

k2+k≤k̄2+k̄

mult
(
k2 + k

) = N−Δ
S2

(
k̄2 + k̄ + 1

2

)
, (26)

provided that

k̄2 − k̄ + 1 < τ ≤ (k̄ + 1
)2 − (k̄ + 1

)+ 1 = k̄2 + k̄ + 1, τ > 1.

Using a well-known result on the counting function of the Laplacian on the spheres (see
[26]), we have, for each k̄ ∈ N,

N−Δ
S2

(
k̄2 + k̄ + 1

2

)
= k̄2 + 2k̄ + 1.

So, in view of (26), supposing τ > 1, we find

NA1(τ ) = k̄2 + 2k̄ + 1,

k̄2 − k̄ + 1 < τ ≤ (k̄ + 1
)2 − (k̄ + 1

)+ 1 = k̄2 + k̄ + 1.

The asymptotic expansion (4) implies that

NA1 (τ ) = τ + R (τ ) , R = O
(
τ

1
2

)
.

We can then obtain a bound for R(τ ):

R(τ ) = NA1 (τ ) − τ

= k̄2 + 2k̄ + 1 − τ, k̄2 − k̄ + 1 < τ ≤ k̄2 + k̄ + 1.

Therefore, for τ > 16,

R(τ ) ≥ k̄2 + 2k̄ + 1 − k̄2 − k̄ − 1 = k̄ >
3
√

τ

4
,

which implies, in particular, that the remainder is positive for τ > 16. We also have

R(τ ) < k̄2 + 2k̄ + 1 − k̄2 + k̄ − 1 = 2k̄ < 4
√

τ ,

and we can conclude that

3
√

τ

4
≤ R(τ ) ≤ 4

√
τ , τ > 16. (27)
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Summing up, we proved that

NA1(τ ) = τ + R(τ ), (28)

NA2(τ ) = 2 τ 1/2 + O(1), (29)

where the R(τ ) in (28) satisfies (27). Notice that both A1 and A2 are elliptic, invertible and
positive, so it is possible to consider powers of these operators of arbitrary exponent. Now,
we examine separately the three different situations that can arise.

Case n1
m1

> n2
m2

and n1−1
m1

> n2
m2

Let us consider the operator

B = A1 ⊗ A2
2.

Clearly, n1
m1

= 2
2 = 1 > n2

m2
= 1

4 and n1−1
m1

= 1
2 > n2

m2
= 1

4 , so we are in the first case of
Theorem 2, which states that

NB(τ ) = ζ(A2
2, 1)τ + O (τ 1/2) . (30)

By Eqs. (23) and (24), we obtain

σ (B) = {(k2 − k + 1
) (
n2 + 1

)2 | k, n ∈ N,

mult
(
(k2 − k + 1)(n2 + 1)2

) = 2(2k + 1)}.
Therefore,

NB(τ ) =
n∈N, k∈N∑

(k2−k+1)(n2+1)
2
<τ

mult
((
k2 − k + 1

) (
n2 + 1

)2)

=
n∈N, k∈N∑

(k2−k+1)(n2+1)
2
<τ

2 (2k + 1)

= 2
n∈N, k∈N∑

(k2−k+1)< τ

(n2+1)2

mult
(
k2 − k + 1

)

= 2
n∈N∑

(n2+1)2<τ

NA1

(
τ

(
n2 + 1

)2

)
(31)

= 2

⎛

⎝
n∈N∑

(n2+1)2<τ

τ

(n2 + 1)2
+ R

(
τ

(n2 + 1)2

)⎞

⎠ . (32)

Notice that in (31) we have made use of (25) to reduce the summation. Let us now show
that the estimate (30) is indeed sharp, that is,

lim sup
τ→+∞

∣∣NB(τ ) − ζ
(
A2
2, 1
)
τ
∣∣

τ 1/2
> 0,
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by direct computation. In view of (32), we can write

lim sup
τ→+∞

∣∣NB(τ ) − ζ
(
A2
2, 1
)
τ
∣∣

τ 1/2

= lim sup
τ→+∞

∣∣∣2
∑

(n2+1)2<τ

(
τ

(n2+1)2
+ R

(
τ

(n2+1)2

))
− ζ

(
A2
2, 1
)
τ

∣∣∣
τ 1/2

= lim sup
τ→+∞

∣∣∣2
∑

(n2+1)2<τ
τ

(n2+1)2
− ζ

(
A2
2, 1
)
τ + 2

∑
(n2+1)2<τ R

(
τ

(n2+1)2

)∣∣∣
τ 1/2

.

(33)

We notice that

lim sup
τ→+∞

∣∣∣2
∑

(n2+1)2<τ
τ

(n2+1)2
− ζ

(
A2
2, 1
)
τ

∣∣∣
τ 1/2

= lim sup
τ→+∞

τ 1/2(FA2
2
(τ, 1) − ζ

(
A2
2, 1
)
),

where we have used the notation introduced in Sect. 2. By Proposition 1, FA2
2
(τ, 1) −

ζ
(
A2
2, 1
) = O

(
τ− 3

4

)
; therefore4,

lim sup
τ→+∞

∣∣∣2
∑

(n2+1)2<τ
τ

(n2+1)2
− ζ

(
A2
2, 1
)
τ

∣∣∣
τ 1/2

= 0.

Since, for all τ ,
∑

(n2+1)2<τ

2
τ

(n2 + 1)2
− ζ

(
A2
2, 1
)
τ ≤ 0,

(33) becomes

lim sup
τ→+∞

∣∣NB(τ ) − ζ
(
A2
2, 1
)
τ
∣∣

τ 1/2
≥ − lim sup

τ→+∞

ζ
(
A2
2, 1
)− 2

∑
(n2+1)2<τ

τ
(n2+1)2

τ 1/2

+ 2 lim sup
τ→+∞

∑

(n2+1)2<τ

∣∣∣R
(

τ
(n2+1)2

)∣∣∣
τ 1/2

≥ 3

2
lim sup
τ→+∞

∑

(n2+1)2<τ

τ 1/2

(n2 + 1)τ 1/2

= 3

2
ζ

(
A2
2,

1

2

)
.

Here, we have used the estimates (27), and the quantities n1
m1

= 1 and n1−1
n2

= 1
2 are

larger than n2
m2

= 1
4 . The latter implies that ζ

(
A2
2,

1
2

)
is a finite, positive quantity5, in view of

the holomorphic properties of the spectral ζ -function of elliptic positive pseudodifferential
operators on closed manifolds, see [25]. This proves the desired result.

4 Actually, here one could prove directly that F1(τ ) − ζ
(
A22, 1

)
is asymptotic to τ

− 3
4 .

5 The convergence of the involved series is straightforward.
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Case n1
m1

> n2
m2

and n1−1
m1

= n2
m2

We consider the operator

C = A1 ⊗ A2.

Clearly, n1
m1

= 2
2 = 1 > n2

m2
= 1

2 and n1−1
m1

= 1
2 = n2

m2
so that we are in second case of

Theorem 2, which now states that

NC (τ ) = ζ(A2, 1)τ + O (τ 1/2 log τ
)
.

Using (23) and (24), we obtain explicitly the spectrum of C , namely

σ(C) = {(k2 − k + 1
) (
n2 + 1

) | mult
((
k2 − k + 1

) (
n2 + 1

)) = 2(2k + 1)
}
.

Therefore, using (25),

NC (τ ) =
n∈N,k∈N∑

(k2−k+1)(n2+1)<τ

2 (2k + 1)

= 2
n∈N,k∈N∑

(k2−k+1)< τ

n2+1

mult
(
k2 + k + 1

)

= 2
n∈N∑

(n2+1)<τ

NA1

(
τ

n2 + 1

)

= 2
n∈N∑

n2+1<τ

(
τ

n2 + 1
+ R

(
τ

n2 + 1

))
. (34)

Let us check directly that

lim sup
τ→+∞

|NC (τ ) − ζ(A2, 1)τ |
τ 1/2 log τ

> 0. (35)

Using (34) and (27), we can write

lim sup
τ→+∞

|NC (τ ) − ζ(A2, 1)τ |
τ1/2 log τ

= lim sup
τ→+∞

∣∣∣2
∑

n2+1<τ

(
τ

n2+1
+ R

(
τ

n2+1

))
− ζ(A2, 1)τ

∣∣∣

τ1/2 log τ

≥ − lim sup
τ→+∞

τ1/2
(
ζ(A2, 1) − 2

∑
n2+1<τ

1
n2+1

)

log τ

+ lim sup
τ→+∞

3

4
τ1/2

2
∑

n2+1<τ
1

(n2+1)
1/2

τ1/2 log τ

≥ −lim sup
τ→+∞

τ
1
2
2
∑

n2+1≥τ
1

n2+1

log τ
+lim sup

τ→+∞
3

2

∑
n2+1<τ

1
(n2+1)1/2

log τ

(36)
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Finally, using the results of Proposition 1 (or directly, by integral inequalities), we obtain
that

lim sup
τ→+∞

τ
1
2
2
∑

n2+1≥τ
1

n2+1

log τ
= lim

τ→+∞ τ
1
2
2
∑

n2+1≥τ
1

n2+1

log τ
= 0.

Moreover,

lim sup
τ→+∞

3

2

∑
n2+1<τ

1
n2+1

log τ
= 3

4
,

so that, by means of (36), the desired result is proven also in this second case.

Case n1
m1

> n2
m2

and n1−1
m1

< n2
m2

In this situation, we consider the operator

D = A1 ⊗ A
3
4
2 .

Clearly, n1
m1

= 2
2 = 1 > n2

m2
= 2

3 and n1−1
m1

= 1
2 < n2

m2
= 2

3 , so we are in the third case of
Theorem 2, which implies that

ND(τ ) = ζ

(
A

3
4
2 , 1

)
τ + O

(
τ

2
3

)
. (37)

It is immediate to observe that

σ(D) =
{(
k2 + k + 1

) (
n2 + 1

)3/4 |
mult

(
(k2 + k + 1)(n2 + 1)3/4

) = 2 (2k + 1)
}
. (38)

Therefore, using again (25), we obtain

ND(τ ) =
n∈N,k∈N∑

(k2−k+1)(n2+1)
3/4

<τ

2 (2k + 1)

= 2
n∈N,k∈N∑

(k2−k+1)< τ

(n2+1)
3/4

mult
(
k2 − k + 1

)

= 2
n∈N∑

(n2+1)
3/4

<τ

NA1

(
τ

(
n2 + 1

)3/4

)

= 2
n∈N∑

(n2+1)
3/4

<τ

(
τ

(
n2 + 1

)3/4 + R

(
τ

(
n2 + 1

)3/4

))
. (39)

Let us now compute directly

lim sup
τ→+∞

∣∣∣ND(τ ) − ζ
(
A3/4
2 , 1

)
τ

∣∣∣
τ 2/3

.
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By (39), we find

lim sup
τ→+∞

∣∣∣ND(τ ) − ζ(A3/4
2 , 1)τ

∣∣∣
τ 2/3

= lim sup
τ→+∞

∣∣∣∣∣2
∑

(n2+1)
3/4

<τ

(
τ

(n2+1)
3/4 + R

(
τ

(n2+1)
3
4

))
− ζ

(
A3/4
2 , 1

)
τ

∣∣∣∣∣
τ 2/3

= lim sup
τ→+∞

τ−2/3 ·

∣∣∣∣∣∣∣
2

∑

(n2+1)
3/4

<τ

τ
(
n2 + 1

)3/4 − ζ
(
A3/4
2 , 1

)
τ+

+ 2
∑

(n2+1)
3/4

<τ

R

⎛

⎝ τ
(
n2 + 1

) 3
4

⎞

⎠

∣∣∣∣∣∣∣
.

We also notice that

lim
τ→+∞

∣∣∣∣2
∑

(n2+1)
3/4

<τ
τ

(n2+1)
3/4 − ζ

(
A3/4
2 , 1

)
τ

∣∣∣∣
τ 2/3

= lim
τ→+∞

ζ
(
A3/4
2 , 1

)
τ − 2

∑
(n2+1)

3/4
<τ

τ

(n2+1)
3/4

τ 2/3

= lim
τ→+∞ 2 τ 1/3

∑

(n2+1)
3/4≥τ

1
(
n2 + 1

)3/4 ,

and that

∑

(n+1)3/2≥τ

1

(n + 1)3/2
≤

∑

(n2+1)
3/4≥τ

1
(
n2 + 1

)3/4 ≤
∑

n3/2≥τ

1

n3/2
.

Using the standard integral criteria of series convergence, one can easily check that

lim
τ→+∞ τ 1/3

∑

(n+1)3/2≥τ

1

(n + 1)3/2
= lim

τ→+∞ τ 1/3
∑

n3/2≥τ

1

n3/2
= 2.

Hence,

lim
τ→+∞ 2 τ 1/3

∑

(n2+1)
3/4≥τ

1
(
n2 + 1

)3/4 = 4. (40)

By a similar argument, we also have that

lim
τ→+∞ τ−1/6

∑

(n2+1)
3/4

<τ

1
(
n2 + 1

)3/8 = 4. (41)
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In view of (27), (40) and (41) we finally obtain

lim sup
τ→+∞

∣∣∣ND(τ ) − ζ(A3/4
2 , 1)τ

∣∣∣
τ 2/3

≥ lim sup
τ→+∞

ND(τ ) − ζ(A3/4
2 , 1)τ

τ 2/3

= − lim
τ→+∞ 2 τ 1/3

∑

(n2+1)
3/4≥τ

1
(
n2 + 1

)3/4

+ lim sup
τ→+∞

2

∑
(n2+1)

3/4
<τ

R

(
τ

(n2+1)
3/4

)

τ 2/3

≥ −4 + 3

2
lim sup
τ→+∞

τ−1/6
∑

(n2+1)
3/4

<τ

1
(
n2 + 1

)3/8

≥ −4 + 6 = 2 > 0. (42)

Equation (42) proves the desired result also in this last case.
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Appendix: The Dirichlet divisors problem

Counting functions of the type (2) suggest a spectral approach to a prominent type of lattice
problem, the so-called Dirichlet divisors problem. Let us suppose that the spectrum of both
A1 and A2 in (2) is formed by all strictly positive natural numbers, each with multiplicity
one. Then,

NA(τ ) =
∑

n·m<τ

1 = D(τ ).

The function D(τ ) is calledDirichlet divisor summatory function, and it is straightforward
to check that it amounts the number of points with integer coordinates belonging to the first
quadrant of the Cartesian plane which lie below the hyperbola xy = τ . In 1849, Dirichlet
proved that

D(τ ) = τ log τ + (2γ − 1)τ + O(τ 1/2), (43)

where γ is the Euler–Mascheroni constant, namely

γ = lim
τ→+∞

(
∑

0<n<τ

1

n
−
∫ τ

0

1

x
dx

)
,

or, equivalently,

γ = lim
z→1

(z − 1) ζR(z),

where ζR(z) is the Riemann ζ -function. Several papers aimed at finding the sharp remainder
term in (43), see [19] for an overview on this type of problems. Hardy, in [14], proved that
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O(τ
1
4 ) is a lower bound for the remainder in (43). It is conjectured that the sharp estimate

in this case is O(τ
1
4+ε) or, more precisely, O (τ 1/4 log τ

)
. The best-known result, due to

Huxley, is that the remainder is O(τα (log τ)β+1), where

α = 131

416
∼ 0, 3149 . . . β = 18627

8320
∼ 2, 2513 . . . .

In order to have a spectral interpretation of the Dirichlet divisor problem, a global bisin-
gular calculus based on Shubin calculus has been introduced in [6]. Then, the following
Hermite-type operator

Hj = 1

2

(
−∂2x j + x2j

)
+ 1

2
, j = 1, 2,

has been examined. Using Hermite polynomials, it turns out that σ(Hj ) = {n}n∈N∗ , j = 1, 2,
and each eigenvalue has multiplicity one. Therefore, σ(H1 ⊗ H2) = {n · m}(n,m)∈(N∗)2 and

NH1⊗H2(τ ) = D(τ ).

This clear spectralmeaning of theDirichlet divisor problemwasone of themainmotivation
of the papers [6,11]. For the connection between Dirichlet divisor problem and standard
bisingular operators on the product of closed manifolds, see [4]. Actually, since we deal with
the non-symmetric case, it is not possible to attack directly the traditional Dirichlet divisor
problem through the approach described in the previous sections, while our techniques are
well suited to treat generalized anisotropic Dirichlet divisors problems such as, for instance,

N
Hα
1 ⊗Hβ

2
(τ ) =

∑

nα ·mβ<τ

1, α �= β.

In [11], it is proven that

N
Hα
1 ⊗Hβ

2
(τ ) = ζ

(
α

β

)
τ

1
β + ζ

(
β

α

)
τ

1
α + O

(
τ

1
α+β

)
, (44)

where ζ is the meromorphic continuation of the Riemann ζ -function. Notice that (44) proves
the sharpness of the result stated in Theorem 3 in the case 2n2

m2
> 2n1−1

m1
.
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