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Abstract In this paper, we consider the following Schrödinger–Poisson system{−�u + V (x)u + φu = f (u) in R
3,

−�φ = u2 in R
3.

We investigate the existence of multiple bound state solutions, in particular sign-changing
solutions. By using the method of invariant sets of descending flow, we prove that this system
has infinitely many sign-changing solutions. In particular, the nonlinear term includes the
power-type nonlinearity f (u) = |u|p−2u for the well-studied case p ∈ (4, 6), and the less
studied case p ∈ (3, 4), and for the latter case, few existence results are available in the
literature.

Mathematics Subject Classification 35J20 · 35J60

1 Introduction and main results

In this paper, we are concerned with the existence of bound state solutions, in particular
sign-changing solutions, to the following nonlinear Schrödinger–Poisson system
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{−�u + V (x)u + φu = f (u) in R
3,

−�φ = u2 in R
3.

(1.1)

In the last two decades, system (1.1) has been studied extensively due to its strong physical
background. From a physical point of view, it describes systems of identical charged particles
interacting each other in the case that magnetic effects could be ignored and its solution is a
standing wave for such a system. The nonlinear term f models the interaction between the
particles [28]. The first equation of (1.1) is coupledwith a Poisson equation, whichmeans that
the potential is determined by the charge of the wave function. The term φu is nonlocal and
concerns the interaction with the electric field. For more detailed physical aspects of systems
like (1.1) and for further mathematical and physical interpretation, we refer to [3,12,13] and
the references therein.

In recent years, there has been increasing attention to systems like (1.1) on the existence
of positive solutions, ground states, radial and non-radial solutions and semiclassical states.
Ruiz [26] considered the following problem

{−�u + u + λφu = |u|p−2u in R
3,

−�φ = u2 in R
3 (1.2)

and gave existence and nonexistence results, depending on the parameters p ∈ (2, 6) and
λ > 0. In particular, if λ ≥ 1

4 , the author showed that p = 3 is a critical value for the
existence of positive solutions. By using the concentration compactness principle, Azzollini
and Pomponio [5] proved the existence of a ground state solution of (1.1) when f (u) =
|u|p−2u and p ∈ (3, 6). But no symmetry information concerning, this ground state solution
was given. In [27], Ruiz studied the profile of the radial ground state solutions to (1.2) as
λ → 0 for p ∈ ( 18

7 , 3
)
. Using variational method together with a perturbation argument,

Ambrosetti [2] investigated the multiplicity of solutions and semiclassical states to systems
like (1.1). Here, we would also like to mention the papers [4,14,15,17,21,29] for related
topics.

Another topic which has increasingly received interest in recent years is the existence of
sign-changing solutions of systems like (1.1). Recall that a solution (u, φ) to (1.1) is called
a sign-changing solution if u changes its sign. Using a Nehari-type manifold and gluing
solution pieces together, Kim and Seok [20] proved the existence of radial sign-changing
solutions with prescribed numbers of nodal domains for (1.1) in the case where V (x) = 1,
f (u) = |u|p−2u, and p ∈ (4, 6). Ianni [16] obtained a similar result to [20] for p ∈ [4, 6),
via a heat flow approach together with a limit procedure. Recently, with a Lyapunov–Schmidt
reduction argument, Ianni and Vaira [18] constructed non-radial multi-peak solutions with
arbitrary large numbers of positive peaks and arbitrary large numbers of negative peaks to
the Schrödinger–Poisson system

{−ε2�u + u + φu = f (u) in R
N ,

−�φ = aN u2 in R
N (1.3)

for ε > 0 small, where 3 ≤ N ≤ 6 and aN is a positive constant. All the sign-changing solu-
tions obtained in [16,18,20] have certain types of symmetries; they are either O(N )-invariant
or G-invariant for some finite subgroup G of O(N ), and thus the system is required to have
a certain group invariance. Based on variational method and Brouwer degree theory, Wang
and Zhou [30] obtained a least energy sign-changing solution to (1.1) without any symmetry
by seeking minimizer of the energy functional on the sign-changing Nehari manifold when
f (u) = |u|p−2u and p ∈ (4, 6). More recently, in the case where the system is considered
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Infinitely many sign-changing solutions for the nonlinear... 777

on bounded domains � ⊂ R
3, Alves and Souto [1] obtained a similar result to [30] for a

more general nonlinear term f .
To the best of our knowledge, there is no result in the literature on the existence of multiple

sign-changing solutions as bound states to problem (1.1) without any symmetry and thus to
prove the existence of infinitely many sign-changing solutions to problem (1.1) without any
symmetry is the first purpose of the present paper. Since the approaches in [1,16,20,30], when
applied to the monomial nonlinearity f (u) = |u|p−2u, are only valid for p ≥ 4, we want to
provide an argument which covers the case p ∈ (3, 4) and this is the second purpose of the
present paper. Moreover, our method does not depend on existence of the Nehari manifold.

In what follows, we assume V ∈ C(R3,R+) satisfies the following condition.

(V0) V is coercive, i.e., lim|x |→∞ V (x) = ∞.

Moreover, we assume f satisfies the following hypotheses.

( f1) f ∈ C(R,R) and lims→0
f (s)

s = 0.

( f2) lim sup|s|→+∞
| f (s)|
|s|p−1 < ∞ for some p ∈ (3, 6).

( f3) There existsμ > 3 such that t f (t) ≥ μF(t) > 0 for all t �= 0,where F(t) = ∫ t
0 f (s)ds.

As a consequence of ( f2) and ( f3), one has 3 < μ ≤ p < 6. Our first result reads as

Theorem 1.1 If (V0) and ( f1)–( f3) hold and μ > 4, then problem (1.1) has one sign-
changing solution. If moreover f is odd, then problem (1.1) has infinitely many sign-changing
solutions.

Remark 1.1 Assumption (V0) is used only in deriving compactness (the (PS) condition) of
the energy functional associated with (1.1). If R3 in problem (1.1) is replaced with a smooth
bounded domain � ⊂ R

3, Theorem 1.1 without (V0) and any symmetry assumption on �

still holds.

( f3) is the so-calledAmbrosetti–Rabinowitz condition ((AR) for short). Since the nonlocal
term

∫
R3 φuu2 in the expression of I (see Sect. 2) is homogeneous of degree 4, ifμ from ( f3)

satisfies μ > 4 then (AR) guarantees boundedness of (PS)-sequences as well as existence
of a mountain pass geometry in the sense that I (tu) → −∞ as t → ∞ for each u �= 0. If
μ < 4, (PS)-sequences may not be bounded and one has I (tu) → ∞ as t → ∞ for each
u �= 0. To overcome these difficulties, in the case μ < 4, we impose on V an additional
condition

(V1) V is differentiable, ∇V (x) · x ∈ Lr (R3) for some r ∈ [ 32 ,∞] and
2V (x) + ∇V (x) · x ≥ 0 for a.e. x ∈ R

3.

This assumptionwas introduced in [31,32] in order to prove compactnesswith themonotonic-
ity trick of Jeanjean [19]. That ∇V (x) · x ∈ Lr (R3) for some r ∈ [ 32 ,∞] plays a role only in
deriving the Pohozǎev identity for solutions of (4.1) in Sect. 4, and it can clearly be weakened
since solutions of (4.1) decay at infinity. Nevertheless, we do not want to go further in that
direction. We state our second result as follows.

Theorem 1.2 If (V0)–(V1) and ( f1)–( f3) hold, then problem (1.1) has one sign-changing
solution. If in addition f is odd, then problem (1.1) has infinitely many sign-changing solu-
tions.
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Remark 1.2 The class of nonlinearities f satisfying the assumptions of Theorem 1.2 includes
the monomial nonlinearity f (u) = |u|p−2u with p ∈ (3, 4). Even in this special case,
Theorem 1.2 seems to be the first attempt in finding sign-changing solutions to (1.1).

The idea of the proofs of Theorems 1.1 and 1.2 is to use suitable minimax arguments in the
presence of invariant sets of a descending flow for the variational formulation. In particular,
we make use of an abstract critical point theory developed by Liu et al. [23]. The method
of invariant sets of descending flow plays an important role in the study of sign-changing
solutions of elliptic problems; we refer to [6–11,24,25] and the references therein. However,
with the presence of the coupling term φu, the techniques of constructing invariant sets of
descending flow in [6–11,24,25] cannot be directly applied to system (1.1), which makes the
problem more complicated. The reason is that φu is a non-local term and the decomposition∫

R3
φu |u|2 =

∫
R3

φu+|u+|2 +
∫
R3

φu−|u−|2

does not hold in general for u ∈ H1(R3). To overcome this difficulty, we adopt an idea
from [23] to construct an auxiliary operator A (see Sect. 2), which is the starting point in
constructing a pseudo-gradient vector field guaranteeing existence of the desired invariant
sets of the flow. Since f ∈ C(R,R) and A is merely continuous, A itself cannot be used
to define the flow. Instead, A is used in a similar way to [8] to construct a locally Lipschitz
continuous operator B inheriting the main properties of A, and we use B to define the flow.
Finally, by minimax arguments in the presence of invariant sets, we obtain the existence
of sign-changing solutions to (1.1), proving Theorem 1.1. For the proof of Theorem 1.2,
the above framework is not directly applicable due to changes of geometric nature of the
variational formulation. We use a perturbation approach by adding a term growing faster
than monomial of degree 4 with a small coefficient λ > 0. For the perturbed problems, we
apply the program above to establish the existence of multiple sign-changing solutions, and
a convergence argument allows us to pass limit to the original system.

The paper is organized as follows. Section 2 contains the variational framework of our
problem and some preliminary properties of φu . Section 3 is devoted to the proof of Theorem
1.1. In Sect. 4, we use a perturbation approach to prove Theorem 1.2.

2 Preliminaries and functional setting

In this paper, we make use of the following notations.

• ‖u‖p := (∫
R3 |u|p

)1/p for p ∈ [2,∞) and u ∈ L p(R3);

• ‖u‖ := (‖u‖22 + ‖∇u‖22
)1/2

for u ∈ H1(R3);
• C, C j denote (possibly different) positive constants.

For any given u ∈ H1(R3), the Lax–Milgram theorem implies that there exists a unique
φu ∈ D1,2(R3) such that −�φu = u2. It is well known that

φu(x) =
∫
R3

u2(y)

4π |x − y|dy.

We now summarize some properties of φu , which will be used later. See, for instance, [26]
for a proof.

Lemma 2.1 (1) φu(x) ≥ 0, x ∈ R
3;
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Infinitely many sign-changing solutions for the nonlinear... 779

(2) there exists C > 0 independent of u such that∫
R3

φuu2 ≤ C‖u‖4;

(3) if u is a radial function, then so is φu;

(4) if un → u strongly in L
12
5 (R3), then φun → φu strongly in D1,2(R3).

Define the Sobolev space

E =
{

u ∈ D1,2(R3) :
∫
R3

V (x)u2 < ∞
}

with the norm

‖u‖E =
(∫

R3

(|∇u|2 + V (x)u2)) 1
2

.

This is a Hilbert space, and its inner product is denoted by (·, ·)E .

Remark 2.1 By (V0), the embedding E ↪→ Lq(R3) (2 ≤ q < 6) is compact. This fact
implies the (PS) condition; see, e.g., [10]. As in [9], (V0) can be replaced with the weaker
condition:

(V0)
′ There exists r > 0 such that for any b > 0,

lim|y|→∞ m
({x ∈ R

3 : V (x) ≤ b} ∩ Br (y)
) = 0,

where Br (y) = {x ∈ R
3 : |x − y| < r} and m is the Lebesgue measure in R

3.

Let us define

D( f, g) =
∫
R3

∫
R3

f (x)g(y)

4π |x − y|dxdy.

In particular, for u ∈ H1(R3), D(u2, u2) = ∫
R3 φuu2. Moreover, we have the following

properties. For a proof, we refer to [22, p. 250] and [27].

Lemma 2.2 (1) D( f, g)2 ≤ D( f, f )D(g, g) for any f, g ∈ L
6
5 (R3);

(2) D(uv, uv)2 ≤ D(u2, u2)D(v2, v2) for any u, v ∈ L
12
5 (R3).

Substituting φ = φu into system (1.1), we can rewrite system (1.1) as the single equation

− �u + V (x)u + φuu = f (u), u ∈ E . (2.1)

We define the energy functional I on E by

I (u) = 1

2

∫
R3

(|∇u|2 + V (x)u2) + 1

4

∫
R3

φuu2 −
∫
R3

F(u).

It is standard to show that I ∈ C1(E,R) and

〈I ′(u), v〉 =
∫
R3

(∇u · ∇v + V (x)uv + φuuv − f (u)v) , u, v ∈ E .

It is easy to verify that (u, φu) ∈ E × D1,2(R3) is a solution of (1.1) if and only if u ∈ E is
a critical point of I .
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3 Proof of Theorem 1.1

In this section, we prove the existence of sign-changing solutions to system (1.1) in the case
μ > 4, working with (2.1).

3.1 Properties of operator A

We introduce an auxiliary operator A, which will be used to construct the descending flow for
the functional I . Precisely, the operator A is defined as follows: for any u ∈ E , v = A(u) ∈ E
is the unique solution to the equation

− �v + V (x)v + φuv = f (u), v ∈ E . (3.1)

Clearly, the three statements are equivalent: u is a solution of (2.1), u is a critical point of I ,
and u is a fixed point of A.

Lemma 3.1 The operator A is well defined and is continuous and compact.

Proof Let u ∈ E and define

J0(v) = 1

2

∫
R3

(|∇v|2 + (V (x) + φu)v2
) −

∫
R3

f (u)v, v ∈ E .

Then J0 ∈ C1(E,R). By ( f1)–( f2) and Remark 2.1, J0 is coercive, bounded below, weakly
lower semicontinuous, and strictly convex. Thus, J0 admits a unique minimizer v = A(u) ∈
E , which is the unique solution to (3.1). Moreover, A maps bounded sets into bounded sets.

In the following, we prove that A is continuous. Let {un} ⊂ E with un → u ∈ E strongly
in E . Let v = A(u) and vn = A(un). We need to prove ‖vn − v‖E → 0. We have

‖v − vn‖2E =
∫
R3

(φun vn − φuv)(v − vn) +
∫
R3

( f (u) − f (un))(v − vn)

= I1 + I2.

By Lemmas 2.1 and 2.2,

I1 ≤
∫
R3

(φun v − φuv)(v − vn)

= D(u2
n − u2, v(v − vn))

≤ D
(
u2

n − u2, u2
n − u2) 1

2 D (v(v − vn), v(v − vn))
1
2

≤ D
(
(un − u)2, (un − u)2

) 1
4 D

(
(un + u)2, (un + u)2

) 1
4

×D
(
v2, v2

) 1
4 D

(
(v − vn)2, (v − vn)2

) 1
4

≤ C1‖un − u‖‖un + u‖‖v‖‖v − vn‖
≤ C1‖un − u‖E‖v − vn‖E .

Now, we estimate the second term I2. Let φ ∈ C∞
0 (R) be such that φ(t) ∈ [0, 1] for t ∈ R,

φ(t) = 1 for |t | ≤ 1 and φ(t) = 0 for |t | ≥ 2. Setting

g1(t) = φ(t) f (t), g2(t) = f (t) − g1(t).
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Infinitely many sign-changing solutions for the nonlinear... 781

By ( f1)–( f2), there exists C2 > 0 such that |g1(s)| ≤ C2|s| and |g2(s)| ≤ C2|s|5 for s ∈ R.
Then,

I2 =
∫
R3

(g1(u) − g1(un))(v − vn) +
∫
R3

(g2(u) − g2(un))(v − vn)

≤
(∫

R3
|g1(un) − g1(u)|2

) 1
2
(∫

R3
|v − vn |2

) 1
2

+
(∫

R3
|g2(un) − g2(u)| 65

) 5
6
(∫

R3
|v − vn |6

) 1
6

≤ C3‖v − vn‖E

[(∫
R3

|g1(un) − g1(u)|2
) 1

2 +
(∫

R3
|g2(un) − g2(u)| 65

) 5
6
]

.

Thus,

‖v − vn‖E ≤ C4

[
‖u − un‖E +

(∫
R3

|g1(un) − g1(u)|2
) 1

2

+
(∫

R3
|g2(un) − g2(u)| 65

) 5
6
]

.

Therefore, by the dominated convergence theorem, ‖v − vn‖E → 0 as n → ∞.
Finally, we show that A is compact. Let {un} ⊂ E be a bounded sequence. Then {vn} ⊂ E

is a bounded sequence, where, as above, vn = A(un). Passing to a subsequence, by Remark
2.1, wemay assume that un → u and vn → v weakly in E and strongly in Lq(R3) as n → ∞
for q ∈ [2, 6). Consider the identity∫

R3

(∇vn · ∇ξ + V vnξ + φun vnξ
) =

∫
R3

f (un)ξ, ξ ∈ E . (3.2)

Since un → u strongly in L
12
5 (R3), it follows fromLemma2.1 (4) and the Sobolev imbedding

theorem that φun → φu strongly in L6(R3). Since, in addition, vn → v strongly in L
12
5 (R3),

using the Hölder inequality, we have∣∣∣∣
∫
R3

(φun vn − φuv)ξ

∣∣∣∣ ≤ ‖φun ‖6‖vn − v‖ 12
5
‖ξ‖ 12

5
+ ‖φun − φu‖6‖v‖ 12

5
‖ξ‖ 12

5
→ 0

for any ξ ∈ E . Taking limit as n → ∞ in (3.2) yields∫
R3

(∇v · ∇ξ + V vξ + φuvξ) =
∫
R3

f (u)ξ, ξ ∈ E .

This means v = A(u) and thus

‖v − vn‖2E =
∫
R3

(
φuv(vn − v) − φun vn(vn − v)

) +
∫
R3

( f (un) − f (u))(vn − v).

Hence, in the same way as above, ‖v − vn‖E → 0, i.e., A(un) → A(u) in E as n → ∞. ��
Remark 3.1 Obviously, if f is odd then A is odd.

Lemma 3.2 (1) 〈I ′(u), u − A(u)〉 ≥ ‖u − A(u)‖2E for all u ∈ E;
(2) ‖I ′(u)‖ ≤ ‖u − A(u)‖E (1 + C‖u‖2E ) for some C > 0 and all u ∈ E.
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Proof Since A(u) is the solution of Eq. (3.1), we see that

〈I ′(u), u − A(u)〉 = ‖u − A(u)‖2E +
∫
R3

φu(u − A(u))2, (3.3)

which implies 〈I ′(u), u − A(u)〉 ≥ ‖u − A(u)‖2E for all u ∈ E . For any ϕ ∈ E , we have

〈I ′(u), ϕ〉 = (u − A(u), ϕ)E +
∫
R3

φu(u − A(u))ϕ

= (u − A(u), ϕ)E + D(u2, (u − A(u))ϕ).

By Lemmas 2.1 and 2.2,
∣∣D(u2, (u − A(u))ϕ)

∣∣ ≤ C‖u‖2E‖u − A(u)‖E‖ϕ‖E .

Thus, ‖I ′(u)‖ ≤ ‖u − A(u)‖E (1 + C‖u‖2E ) for all u ∈ E . ��

Lemma 3.3 For a < b and α > 0, there exists β > 0 such that ‖u − A(u)‖E ≥ β if u ∈ E,
I (u) ∈ [a, b] and ‖I ′(u)‖ ≥ α.

Proof For u ∈ E , by ( f3), we have

I (u) − 1

μ
(u, u − A(u))E

=
(
1

2
− 1

μ

)
‖u‖2E +

(
1

4
− 1

μ

) ∫
R3

φuu2

+ 1

μ

∫
R3

φuu(u − A(u)) +
∫
R3

(
1

μ
f (u)u − F(u)

)

≥
(
1

2
− 1

μ

)
‖u‖2E +

(
1

4
− 1

μ

) ∫
R3

φuu2 + 1

μ

∫
R3

φuu(u − A(u)).

Then,

‖u‖2E +
∫
R3

φuu2 ≤ C1

(
|I (u)| + ‖u‖E‖u − A(u)‖E +

∣∣∣∣
∫
R3

φuu(u − A(u))

∣∣∣∣
)

. (3.4)

By Hölder’s inequality and Lemmas 2.1 and 2.2,

∣∣∣∣
∫
R3

φuu(u − A(u))

∣∣∣∣ ≤
(∫

R3
φu(u − A(u))2

) 1
2
(∫

R3
φuu2

) 1
2

≤ C2‖u‖E‖u − A(u)‖E

(∫
R3

φuu2
) 1

2

.

Thus, it follows from (3.4) that

‖u‖2E ≤ C3
(|I (u)| + ‖u‖E‖u − A(u)‖E + ‖u‖2E‖u − A(u)‖2E

)
. (3.5)

If there exists {un} ⊂ E with I (un) ∈ [a, b] and ‖I ′(un)‖ ≥ α such that ‖un − A(un)‖E → 0
as n → ∞, then it follows from (3.5) that {‖un‖E } is bounded, and by Lemma 3.2, we see
that ‖I ′(un)‖ → 0 as n → ∞, which is a contradiction. Thus, the proof is completed. ��
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Infinitely many sign-changing solutions for the nonlinear... 783

3.2 Invariant subsets of descending flow

To obtain sign-changing solutions, wemake use of the positive and negative cones as in many
references such as [7,8,11,23]. Precisely, define

P+ := {u ∈ E : u ≥ 0} and P− := {u ∈ E : u ≤ 0}.
Set for ε > 0,

P+
ε := {u ∈ E : dist(u, P+) < ε} and P−

ε := {u ∈ E : dist(u, P−) < ε},
where dist(u, P±) = inf

v∈P± ‖u −v‖E . Obviously, P−
ε = −P+

ε . Let W = P+
ε ∪ P−

ε . Then, W

is an open and symmetric subset of E and E\W contains only sign-changing functions. On
the other hand, the next lemma shows that for ε small, all sign-changing solutions to (2.1)
are contained in E\W .

Lemma 3.4 There exists ε0 > 0 such that for ε ∈ (0, ε0),

(1) A(∂ P−
ε ) ⊂ P−

ε and every nontrivial solution u ∈ P−
ε is negative,

(2) A(∂ P+
ε ) ⊂ P+

ε and every nontrivial solution u ∈ P+
ε is positive.

Proof Since the two conclusions are similar, we only prove the first one. By ( f1)–( f2), for
any fixed δ > 0, there exists Cδ > 0 such that

| f (t)| ≤ δ|t | + Cδ|t |p, t ∈ R.

Let u ∈ E and v = A(u). By Remark 2.1, for any q ∈ [2, 6], there exists mq > 0 such that

‖u±‖q = inf
w∈P∓ ‖u − w‖q ≤ mq inf

w∈P∓ ‖u − w‖E = mqdist(u, P∓). (3.6)

Obviously, dist(v, P−) ≤ ‖v+‖E . Then, by ( f3), we estimate

dist(v, P−)‖v+‖E ≤ ‖v+‖2E = (v, v+)E

=
∫
R3

(
f (u)v+ − φuvv+)

≤
∫
R3

f (u)v+ ≤
∫
R3

f (u+)v+

≤
∫
R3

(
δ|u+| + Cδ|u+|p−1) |v+|

≤ δ‖u+‖2‖v+‖2 + Cδ‖u+‖p−1
p ‖v+‖p

≤ C
(
δdist(u, P−) + Cδdist(u, P−)p−1) ‖v+‖E .

It follows that

dist(A(u), P−) ≤ C
(
δdist(u, P−) + Cδdist(u, P−)p−1) .

Thus, choosing δ small enough, there exists ε0 > 0 such that for ε ∈ (0, ε0),

dist(A(u), P−) ≤ 1

2
dist(u, P−) for any u ∈ P−

ε .

This implies that A(∂ P−
ε ) ⊂ P−

ε . If there exists u ∈ P−
ε such that A(u) = u, then u ∈ P−.

If u �≡ 0, by the maximum principle, u < 0 in R
3. ��
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Denote the set of fixed points of A by K , which is exactly the set of critical points of I .
Since A is merely continuous, A itself is not applicable to construct a descending flow for I ,
and we have to construct a locally Lipschitz continuous operator B on E0 := E\K which
inherits the main properties of A.

Lemma 3.5 There exists a locally Lipschitz continuous operator B : E0 → E such that

(1) B(∂ P+
ε ) ⊂ P+

ε and B(∂ P−
ε ) ⊂ P−

ε for ε ∈ (0, ε0);
(2) 1

2‖u − B(u)‖E ≤ ‖u − A(u)‖E ≤ 2‖u − B(u)‖E for all u ∈ E0;
(3) 〈I ′(u), u − B(u)〉 ≥ 1

2‖u − A(u)‖2E for all u ∈ E0;
(4) if f is odd then B is odd.

Proof The proof is similar to the proofs of [6, Lemma 4.1] and [8, Lemma 2.1]. We omit the
details. ��
3.3 Existence of one sign-changing solution

In this subsection, we will find one sign-changing solution of (2.1) via minimax method
incorporated with invariant sets of descending flow. First of all, we introduce the critical
point theorem [23, Theorem 2.4]. For more details, we refer to [23].

Let X be a Banach space, J ∈ C1(X,R), P, Q ⊂ X be open sets, M = P ∩ Q,
� = ∂ P ∩ ∂ Q and W = P ∪ Q. For c ∈ R, Kc = {x ∈ X : J (x) = c, J ′(x) = 0} and
J c = {x ∈ X : J (x) ≤ c}. In [23], a critical point theory on metric spaces was given, but
here we only need a Banach space version of the theory.

Definition 3.1 ([23]) {P, Q} is called an admissible family of invariant sets with respect to
J at level c provided that the following deformation property holds: if Kc\W = ∅, then,
there exists ε0 > 0 such that for ε ∈ (0, ε0), there exists η ∈ C(X, X) satisfying

(1) η(P) ⊂ P , η(Q) ⊂ Q;
(2) η |J c−2ε= id;
(3) η(J c+ε\W ) ⊂ J c−ε .

Theorem A ([23]) Assume that {P, Q} is an admissible family of invariant sets with respect
to J at any level c ≥ c∗ := infu∈� J (u) and there exists a map ϕ0 : � → X satisfying

(1) ϕ0(∂1�) ⊂ P and ϕ0(∂2�) ⊂ Q,
(2) ϕ0(∂0�) ∩ M = ∅,
(3) supu∈ϕ0(∂0�) J (u) < c∗,

where � = {(t1, t2) ∈ R
2 : t1, t2 ≥ 0, t1 + t2 ≤ 1}, ∂1� = {0} × [0, 1], ∂2� = [0, 1] × {0}

and ∂0� = {(t1, t2) ∈ R
2 : t1, t2 ≥ 0, t1 + t2 = 1}. Define

c = inf
ϕ∈�

sup
u∈ϕ(�)\W

J (u),

where � := {
ϕ ∈ C(�, X) : ϕ(∂1�) ⊂ P, ϕ(∂2�) ⊂ Q, ϕ|∂0� = ϕ0|∂0�

}
. Then c ≥ c∗

and Kc\W �= ∅.

Now, we use Theorem A to prove the existence of a sign-changing solution to problem (2.1),
and for this, we take X = E , P = P+

ε , Q = P−
ε , and J = I . We will show that {P+

ε , P−
ε }

is an admissible family of invariant sets for the functional I at any level c ∈ R. Indeed, if
Kc\W = ∅, then Kc ⊂ W . Since μ > 4, by Remark 2.1, it is easy to see that I satisfies the
(PS)-condition and therefore Kc is compact. Thus, 2δ := dist(Kc, ∂W ) > 0.
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Lemma 3.6 If Kc\W = ∅, then there exists ε0 > 0 such that, for 0 < ε < ε′ < ε0, there
exists a continuous map σ : [0, 1] × E → E satisfying

(1) σ(0, u) = u for u ∈ E;
(2) σ(t, u) = u for t ∈ [0, 1], u /∈ I −1[c − ε′, c + ε′];
(3) σ(1, I c+ε\W ) ⊂ I c−ε;

(4) σ(t, P+
ε ) ⊂ P+

ε and σ(t, P−
ε ) ⊂ P−

ε for t ∈ [0, 1].

Proof The proof is similar to the proof of [23, Lemma 3.5]. For the sake of completeness,
we give the details here. For G ⊂ E and a > 0, let Na(G) := {u ∈ E : dist(u, G) < a}.
Then Nδ(Kc) ⊂ W . Since I satisfies the (PS)-condition, there exist ε0, α > 0 such that

‖I ′(u)‖ ≥ α for u ∈ I −1([c − ε0, c + ε0])\N δ
2
(Kc).

By Lemmas 3.3 and 3.5, there exists β > 0 such that

‖u − B(u)‖E ≥ β for u ∈ I −1([c − ε0, c + ε0])\N δ
2
(Kc).

Without loss of generality, assume that ε0 ≤ βδ
32 . Let

V (u) = u − B(u)

‖u − B(u)‖E
for u ∈ E0 = E\K ,

and take a cut-off function g : E → [0, 1], which is locally Lipschitz continuous, such that

g(u) =
{
0, if u /∈ I −1[c − ε′, c + ε′] or u ∈ N δ

4
(Kc),

1, if u ∈ I −1[c − ε, c + ε] and u /∈ N δ
2
(Kc).

Decreasing ε0 if necessary, one may find a ν > 0 such that I −1[c − ε0, c + ε0] ∩ Nν(K ) ⊂
Nδ/4(Kc), and this can be seen as a consequence of the (PS) condition. Thus, g(u) = 0 for
any u ∈ Nν(K ). By Lemma 3.5, g(·)V (·) is locally Lipschitz continuous on E .

Consider the following initial value problem

{
dτ

dt
= −g(τ )V (τ ),

τ (0, u) = u.
(3.7)

For any u ∈ E , one sees that problem (3.7) admits a unique solution τ(·, u) ∈ C(R+, E).
Define σ(t, u) = τ( 16ε

β
t, u). It suffices to check (3) and (4) since (1) and (2) are obvious.

To verify (3), we let u ∈ I c+ε\W . By Lemma 3.5, I (τ (t, u)) is decreasing for t ≥ 0. If

there exists t0 ∈ [0, 16ε
β

] such that I (τ (t0, u)) < c − ε then I (σ (1, u)) = I
(
τ

(
16ε
β

, u
))

<

c−ε. Otherwise, for any t ∈ [0, 16ε
β

], I (τ (t, u)) ≥ c−ε. Then, τ(t, u) ∈ I −1[c−ε, c+ε] for
t ∈ [0, 16ε

β
].We claim that for any t ∈

[
0, 16ε

β

]
, τ(t, u) /∈ N δ

2
(Kc). If, for some t1 ∈

[
0, 16ε

β

]
,

τ(t1, u) ∈ N δ
2
(Kc), then, since u /∈ Nδ(Kc),

δ

2
≤ ‖τ(t1, u) − u‖E ≤

∫ t1

0
‖τ ′(s, u)‖E ds ≤ t1 ≤ 16ε

β
,
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which contradicts the fact that ε < ε0 ≤ βδ
32 . So g(τ (t, u)) ≡ 1 for t ∈

[
0, 16ε

β

]
. Then by (2)

and (3) of Lemma 3.5,

I

(
τ

(
16ε

β
, u

))
= I (u) −

∫ 16ε
β

0

〈
I ′(τ (s, u)), V (τ (s, u))

〉

≤ I (u) −
∫ 16ε

β

0

1

8
‖τ(s, u) − Bτ(s, u)‖E

≤ c + ε − 16ε

β

β

8
= c − ε.

Finally, (4) is a consequence of (1) of Lemma 3.5 (see [24] for a detailed proof). ��
Corollary 3.1 {P+

ε , P−
ε } is an admissible family of invariant sets for the functional I at any

level c ∈ R.

Proof The conclusion follows from Lemma 3.6. ��
In the following, we will construct ϕ0 satisfying the hypotheses in Theorem A. Choose

v1, v2 ∈ C∞
0 (R3)\{0} satisfying supp(v1)∩supp(v2) = ∅ andv1 ≤ 0, v2 ≥ 0.Letϕ0(t, s) :=

R(tv1+ sv2) for (t, s) ∈ �, where R is a positive constant to be determined later. Obviously,
for t, s ∈ [0, 1], ϕ0(0, s) = Rsv2 ∈ P+

ε and ϕ0(t, 0) = Rtv1 ∈ P−
ε .

Lemma 3.7 For q ∈ [2, 6], there exists mq > 0 independent of ε such that ‖u‖q ≤ mqε for
u ∈ M = P+

ε ∩ P−
ε .

Proof This follows from (3.6). ��
Lemma 3.8 If ε > 0 is small enough, then I (u) ≥ ε2

2 for u ∈ � = ∂ P+
ε ∩ ∂ P−

ε , that is,

c∗ ≥ ε2

2 .

Proof For u ∈ ∂ P+
ε ∩ ∂ P−

ε , we have ‖u±‖E ≥ dist(u, P∓) = ε. By ( f1)–( f2), we have
F(t) ≤ 1

3m2
2
|t |2 + C1|t |p for all t ∈ R. Then, using Lemma 3.7, we see that

I (u) ≥ ε2 − 1

3
ε2 − C2ε

p ≥ ε2

2
,

for ε small enough. ��
Proof of Theorem 1.1 (Existence part) It suffices to verify assumptions (2)–(3) in applying
Theorem A. Observe that ρ = min{‖tv1 + (1− t)v2‖2 : 0 ≤ t ≤ 1} > 0. Then, ‖u‖2 ≥ ρR
for u ∈ ϕ0(∂0�) and it follows from Lemma 3.7 that ϕ0(∂0�) ∩ M = ∅ for R large enough.
By ( f3), we have F(t) ≥ C1|t |μ − C2 for any t ∈ R. For any u ∈ ϕ0(∂0�), by Lemma 2.1,

I (u) ≤ 1

2
‖u‖2E + C3‖u‖4E −

∫
supp(v1)∪supp(v2)

F(u)

≤ 1

2
‖u‖2E + C3‖u‖4E − C1‖u‖μ

μ + C4,

which together with Lemma 3.8 implies that, for R large enough and ε small enough,

sup
u∈ϕ0(∂0�)

I (u) < 0 < c∗.

According to Theorem A, I has at least one critical point u in E\(P+
ε ∪ P−

ε ), which is a
sign-changing solution of Eq. (2.1). Then (u, φu) is a sign-changing solution of system (1.1).

��
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3.4 Existence of infinitely many sign-changing solutions

In this section, we prove the existence of infinitely many sign-changing solutions to system
(1.1). For this, we will make use of [23, Theorem 2.5], which we recall below.

Wewill use the notations fromSect. 3.3.AssumeG : X → X to be an isometric involution,
that is, G2 = id and d(Gx, Gy) = d(x, y) for x, y ∈ X . We assume J is G-invariant on X
in the sense that J (Gx) = J (x) for any x ∈ X . We also assume Q = G P . A subset F ⊂ X
is said to be symmetric if Gx ∈ F for any x ∈ F . The genus of a closed symmetric subset
F of X\{0} is denoted by γ (F).

Definition 3.2 ([23]) P is called aG-admissible invariant setwith respect to J at level c, if the
following deformation property holds, there exist ε0 > 0 and a symmetric open neighborhood
N of Kc\W with γ (N ) < ∞, such that for ε ∈ (0, ε0) there exists η ∈ C(X, X) satisfying

(1) η(P) ⊂ P , η(Q) ⊂ Q;
(2) η ◦ G = G ◦ η;
(3) η |J c−2ε= id;
(4) η(J c+ε\(N ∪ W )) ⊂ J c−ε .

Theorem B ([23]) Assume that P is a G-admissible invariant set with respect to J at any
level c ≥ c∗ := infu∈� J (u) and for any n ∈ N, there exists a continuous map ϕn : Bn :=
{x ∈ R

n : |x | ≤ 1} → X satisfying

(1) ϕn(0) ∈ M := P ∩ Q, ϕn(−t) = Gϕn(t) for t ∈ Bn,
(2) ϕn(∂ Bn) ∩ M = ∅,
(3) supu∈FixG∪ϕn(∂ Bn) J (u) < c∗, where FixG := {u ∈ X : Gu = u}.
For j ∈ N, define

c j = inf
B∈� j

sup
u∈B\W

J (u),

where

� j :=
{

B
∣∣∣ B = ϕ(Bn\Y ) for some ϕ ∈ Gn, n ≥ j, and open Y ⊂ Bn

such that − Y = Y and γ (Ȳ ) ≤ n − j

}

and

Gn :=
{
ϕ

∣∣∣ ϕ ∈ C(Bn, X), ϕ(−t) = Gϕ(t) for t ∈ Bn,

ϕ(0) ∈ M and ϕ|∂ Bn = ϕn |∂ Bn

}
.

Then for j ≥ 2, c j ≥ c∗, Kc j \W �= ∅ and c j → ∞ as j → ∞.

To apply Theorem B, we take X = E , G = −id , J = I and P = P+
ε . Then M = P+

ε ∩ P−
ε ,

� = ∂ P+
ε ∩ ∂ P−

ε , and W = P+
ε ∪ P−

ε . In this subsection, f is assumed to be odd, and,
as a consequence, I is even. Now, we show that P+

ε is a G-admissible invariant set for the
functional I at any level c. Since Kc is compact, there exists a symmetric open neighborhood
N of Kc\W such that γ (N ) < ∞.

Lemma 3.9 There exists ε0 > 0 such that for 0 < ε < ε′ < ε0, there exists a continuous
map σ : [0, 1] × E → E satisfying

(1) σ(0, u) = u for u ∈ E.
(2) σ(t, u) = u for t ∈ [0, 1], u /∈ I −1[c − ε′, c + ε′].
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(3) σ(t,−u) = −σ(t, u) for (t, u) ∈ [0, 1] × E.
(4) σ(1, I c+ε\(N ∪ W )) ⊂ I c−ε .

(5) σ(t, P+
ε ) ⊂ P+

ε , σ(t, P−
ε ) ⊂ P−

ε for t ∈ [0, 1].
Proof The proof is similar to the proof of Lemma 3.6. Since I is even, B is odd and thus σ

is odd in u.

Corollary 3.2 P+
ε is a G-admissible invariant set for the functional I at any level c.

Proof of Theorem 1.1 (Multiplicity part) According to Theorem B, if ϕn exists and satisfies
the assumptions in Theorem B then I has infinitely many critical points in E\(P+

ε ∪ P−
ε ),

which are sign-changing solutions to (2.1) and thus yield sign-changing solution to (1.1). It
suffices to construct ϕn . For any n ∈ N, choose {vi }n

1 ⊂ C∞
0 (R3)\{0} such that supp(vi ) ∩

supp(v j ) = ∅ for i �= j . We define ϕn ∈ C(Bn, E) as

ϕn(t) = Rn

n∑
i=1

tivi , t = (t1, t2, · · · , tn) ∈ Bn,

where Rn > 0. For Rn large enough, it is easy to check that all the assumptions of TheoremB
are satisfied. ��

4 Proof of Theorem 1.2

In this section, we do not assume μ > 4 and thus the argument of Sect. 3 which essentially
depends on the assumption μ > 4 is not valid in the present case. This obstacle will be
overcome via a perturbation approach which is originally due to [23]. The method from
Sect. 3 can be used for the perturbed problem. By passing to the limit, we then obtain sign-
changing solutions of the original problem (1.1).

Fix a number r ∈ (max{4, p}, 6). For any fixed λ ∈ (0, 1], we consider the modified
problem

− �u + V (x)u + φuu = f (u) + λ|u|r−2u, u ∈ E (4.1)

and its associated functional

Iλ(u) = I (u) − λ

r

∫
RN

|u|r .

It is standard to show that Iλ ∈ C1(E,R) and

〈I ′
λ(u), v〉 = 〈I ′(u), v〉 − λ

∫
RN

|u|r−2uv, u, v ∈ E .

For any u ∈ E , we denote by v = Aλ(u) ∈ E the unique solution to the problem

−�v + V (x)v + φuv = f (u) + λ|u|r−2u, v ∈ E .

As in Sect. 3, one verifies that the operator Aλ : E → E is well defined and is continuous
and compact. In the following, if the proof of a result is similar to its counterpart in Sect. 3,
it will not be written out.

Lemma 4.1 (1) 〈I ′
λ(u), u − Aλ(u)〉 ≥ ‖u − Aλ(u)‖2E for all u ∈ E;

(2) there exists C > 0 independent of λ such that ‖I ′
λ(u)‖ ≤ ‖u − Aλ(u)‖E (1 + C‖u‖2E )

for all u ∈ E.
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Lemma 4.2 For any λ ∈ (0, 1), a < b and α > 0, there exists β(λ) > 0 such that
‖u − Aλ(u)‖E ≥ β(λ) for any u ∈ E with Iλ(u) ∈ [a, b] and ‖I ′

λ(u)‖ ≥ α.

Proof Fix a number γ ∈ (4, r). For u ∈ E ,

Iλ(u) − 1

γ
(u, u − Aλ(u))E

=
(
1

2
− 1

γ

)
‖u‖2E +

(
1

4
− 1

γ

) ∫
R3

φuu2

+ 1

γ

∫
R3

φuu(u − Aλ(u)) +
∫
R3

(
1

γ
f (u)u − F(u)

)
+ λ

(
1

γ
− 1

r

)
‖u‖r

r .

Then, by ( f1)–( f2),

‖u‖2E +
∫
R3

φuu2 + λ‖u‖r
r

≤ C1

(
|Iλ(u)| + ‖u‖E‖u − Aλ(u)‖E + ‖u‖p

p +
∣∣∣∣
∫
R3

φuu(u − Aλ(u))

∣∣∣∣
)

.

Since
∣∣∣∣
∫
R3

φuu(u − Aλ(u))

∣∣∣∣ ≤ C2‖u‖E‖u − Aλ(u)‖E

(∫
R3

φuu2
) 1

2

,

one sees that

‖u‖2E +
∫
R3

φuu2 + λ‖u‖r
r

≤ C3
(|Iλ(u)| + ‖u‖p

p + ‖u‖E‖u − Aλ(u)‖E + ‖u‖2E‖u − Aλ(u)‖2E
)
. (4.2)

If there exists {un} ⊂ E with Iλ(un) ∈ [a, b] and ‖I ′
λ(un)‖ ≥ α such that ‖un − Aλ(un)‖E →

0 as n → ∞, then it follows from (4.2) that, for large n,

‖un‖2E +
∫
R3

φun u2
n + λ‖un‖r

r ≤ C4(1 + ‖un‖p
p).

Claim: {un} is bounded in E . Otherwise, assume that ‖un‖E → ∞ as n → ∞. Then

‖un‖2E +
∫
R3

φun u2
n + λ‖un‖r

r ≤ C5‖un‖p
p. (4.3)

By (4.3), there exists C(λ) > 0 such that for large n,

‖un‖22 + ‖un‖r
r ≤ C(λ)‖un‖p

p.

Let t ∈ (0, 1) be such that

1

p
= t

2
+ 1 − t

r
.

Then, by the interpolation inequality,

‖un‖22 + ‖un‖r
r ≤ C(λ)‖un‖p

p ≤ C(λ)‖un‖tp
2 ‖un‖(1−t)p

r ,

from which it follows that there exist C1(λ), C2(λ) > 0 such that, for large n,

C1(λ)‖un‖
2
r
2 ≤ ‖un‖r ≤ C2(λ)‖un‖

2
r
2 .
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Thus ‖un‖p
p ≤ C3(λ)‖un‖22 and, by (4.3) again,

‖un‖2E +
∫
R3

φun u2
n + λ‖un‖r

r ≤ C4(λ)‖un‖22.

Let wn = un‖un‖E
. The last inequality implies that

‖wn‖22 ≥ (C4(λ))−1 (4.4)

and ∫
R3

φwn w
2
n ≤ C5(λ)‖un‖−2

E . (4.5)

From (4.5), we have
∫
R3 φwn w

2
n → 0 as n → ∞. Since ‖wn‖E = 1, we assume thatwn → w

weakly in E and strongly both in L
12
5 (R3) and in L2(R3). Note that∣∣∣∣

∫
R3

(φwn w
2
n − φww2)

∣∣∣∣ ≤
∫
R3

|φwn − φw|w2
n +

∫
R3

φw|w2
n − w2|

≤‖φwn − φw‖6‖wn‖212
5

+ ‖φw‖6‖wn − w‖ 12
5
‖wn + w‖ 12

5
.

Since wn → w strongly in L
12
5 (R3) and, by Lemma 2.1, φwn → φw strongly in L6(R3), we

have ∫
R3

φww2 = lim
n→∞

∫
R3

φwn w
2
n = 0,

which impliesw = 0. But (4.4) implies ‖w‖22 ≥ (C4(λ))−1, and thus we have a contradiction
and finish the proof of the claim. The claim combinedwith Lemma 4.1 implies ‖I ′

λ(un)‖ → 0
as n → ∞, which is again a contradiction. ��

Lemma 4.3 There exists ε1 > 0 independent of λ such that for ε ∈ (0, ε1),

(1) Aλ(∂ P−
ε ) ⊂ P−

ε and every nontrivial solution u ∈ P−
ε is negative.

(2) Aλ(∂ P+
ε ) ⊂ P+

ε and every nontrivial solution u ∈ P+
ε is positive.

Lemma 4.4 There exists a locally Lipschitz continuous map Bλ : E\Kλ → E, where
Kλ := Fix(Aλ), such that

(1) Bλ(∂ P+
ε ) ⊂ P+

ε , Bλ(∂ P−
ε ) ⊂ P−

ε for ε ∈ (0, ε1);
(2) 1

2‖u − Bλ(u)‖E ≤ ‖u − Aλ(u)‖E ≤ 2‖u − Bλ(u)‖E for all u ∈ E\Kλ;
(3) 〈I ′

λ(u), u − Bλ(u)〉 ≥ 1
2‖u − Aλ(u)‖2E for all u ∈ E\Kλ;

(4) if f is odd then Bλ is odd.

We are ready to prove Theorem 1.2.

Proof of Theorem 1.2 (Existence part) Step 1. We use Theorem A for J = Iλ. We claim
that {P+

ε , P−
ε } is an admissible family of invariant sets for the functional Iλ at any level c. In

view of the approach in Sect. 3 and the fact that we have already had Lemmas 4.1–4.4, we
need only to prove that for any fixed λ ∈ (0, 1), Iλ satisfies the (PS)-condition. Assume that
there exist {un} ⊂ E and c ∈ R such that Iλ(un) → c and I ′

λ(un) → 0 as n → ∞. Similar
to the proof of Lemma 4.2, we have, for γ ∈ (4, r),
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Iλ(un) − 1

γ
〈I ′

λ(un), un〉

=
(
1

2
− 1

γ

)
‖un‖2E +

(
1

4
− 1

γ

) ∫
R3

φun u2
n

+
∫
R3

(
1

γ
f (un)un − F(un)

)
+ λ

(
1

γ
− 1

r

)
‖un‖r

r .

By ( f1)–( f2),

‖un‖2E +
∫
R3

φun u2
n + λ‖un‖r

r ≤ C1
(|Iλ(un)| + ‖un‖E‖I ′

λ(un)‖ + ‖un‖p
p
)
.

Hence, for large n,

‖un‖2E +
∫
R3

φun u2
n + λ‖un‖r

r ≤ C2(1 + ‖un‖p
p).

As in the proof of Lemma 4.2, one sees that {un} is bounded in E . Then, by Remark 2.1, one
can show that {un} has a convergent subsequence, verifying the (PS)-condition.

Step 2. Choose v1, v2 ∈ C∞
0 (B1(0))\{0} such that supp(v1) ∩ supp(v2) = ∅ and v1 ≤

0, v2 ≥ 0, where Br (0) := {x ∈ R
3 : |x | < r}. For (t, s) ∈ �, let

ϕ0(t, s)(·) := R2 (tv1(R·) + sv2(R·)) , (4.6)

where R is a positive constant to be determined later.Obviously, for t, s ∈ [0, 1],ϕ0(0, s)(·) =
R2sv2(R·) ∈ P+

ε andϕ0(t, 0)(·) = R2tv1(R·) ∈ P−
ε . Similar toLemma3.8, for small ε > 0,

Iλ(u) ≥ I1(u) ≥ ε2

2
for u ∈ � := ∂ P+

ε ∩ ∂ P−
ε , λ ∈ (0, 1),

which implies that c∗
λ := infu∈� Iλ(u) ≥ ε2

2 for λ ∈ (0, 1). Let ut = ϕ0(t, 1 − t) for
t ∈ [0, 1]. Then a direct computation shows that

(i)
∫
R3 |∇ut |2 = R3

∫
R3

(
t2|∇v1|2 + (1 − t)2|∇v2|2

)
,

(ii)
∫
R3 |ut |2 = R

∫
R3

(
t2v21 + (1 − t)2v22

)
,

(iii)
∫
R3 |ut |μ = R2μ−3

∫
R3 (tμ|v1|μ + (1 − t)μ|v2|μ),

(iv)
∫
R3 φut |ut |2 = R3

∫
R3 φũt |ũt |2, where ũt = tv1 + (1 − t)v2.

Since F(t) ≥ C3|t |μ − C4 for any t ∈ R, by (i)–(iv) we have, for λ ∈ (0, 1) and t ∈ [0, 1],

Iλ(ut ) ≤ 1

2
‖ut‖2E + 1

4

∫
R3

φut |ut |2 −
∫

BR−1 (0)
F(ut )

≤ R3

2

∫
R3

(
t2|∇v1|2 + (1 − t)2|∇v2|2

) + R3

4

∫
R3

φũt |ũt |2

+ R

2
max|x |≤1

V (x)

∫
R3

(
t2v21 + (1 − t)2v22

)

−C3R2μ−3
∫
R3

(
tμ|v1|μ + (1 − t)μ|v2|μ

) + C5R−3.

Since μ > 3, one sees that Iλ(ut ) → −∞ as R → ∞ uniformly for λ ∈ (0, 1), t ∈ [0, 1].
Hence, choosing R independent of λ and large enough, we have

sup
u∈ϕ0(∂0�)

Iλ(u) < c∗
λ := inf

u∈�
Iλ(u), λ ∈ (0, 1).
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Since ‖ut‖2 → ∞ as R → ∞ uniformly for t ∈ [0, 1], it follows from Lemma 3.7 that
ϕ0(∂0�)∩ M = ∅ for R large enough. Thus, ϕ0 with a large R independent of λ satisfies the
assumptions of Theorem A. Therefore, the number

cλ = inf
ϕ∈�

sup
u∈ϕ(�)\W

Iλ(u),

is a critical value of Iλ satisfying cλ ≥ c∗
λ, and there exists uλ ∈ E\(P+

ε ∪ P−
ε ) such that

Iλ(uλ) = cλ and I ′
λ(uλ) = 0.

Step 3. Passing to the limit as λ → 0. By the definition of cλ, we see that for λ ∈ (0, 1),

cλ ≤ c(R) := sup
u∈ϕ0(�)

I (u) < ∞.

We claim that {uλ}λ∈(0,1) is bounded in E . We first have

cλ = 1

2

∫
R3

(|∇uλ|2 + V (x)u2
λ

) + 1

4

∫
R3

φuλu2
λ −

∫
R3

(
F(uλ) + λ

r
|uλ|r

)
(4.7)

and ∫
R3

(|∇uλ|2 + V (x)u2
λ + φuλu2

λ − uλ f (uλ) − λ|uλ|r
) = 0. (4.8)

Moreover, we have the Pohozǎev identity

1

2

∫
R3

|∇uλ|2 + 3

2

∫
R3

V (x)u2
λ + 1

2

∫
R3

u2
λ∇V (x) · x

+ 5

4

∫
R3

φuλu2
λ −

∫
R3

(
3F(uλ) + 3λ

r
|uλ|r

)
= 0. (4.9)

Multiplying (4.7) by 3− μ
2 , (4.8) by −1 and (4.9) by μ

2 − 1 and adding them up, we obtain

(
3 − μ

2

)
cλ =

(
μ

4
− 1

2

) ∫
R3

(2V (x) + ∇V (x) · x)u2
λ

+
(

μ

2
− 3

2

) ∫
R3

φuλu2
λ +

(
1 − μ

r

)
λ

∫
R3

|uλ|r

+
∫
R3

(uλ f (uλ) − μF(uλ)) . (4.10)

Using (V1), ( f3) and the fact that 3 < μ ≤ p < r , one sees that {∫
R3 φuλu2

λ}λ∈(0,1) is
bounded. From this fact, it can be deduced from ( f3), (4.7), and (4.8) that {uλ}λ∈(0,1) is
bounded in E .

Assume that up to a subsequence, uλ → u weakly in E as λ → 0+. By Remark 2.1,
uλ → u strongly in Lq(R3) for q ∈ [2, 6). Then, by Lemma 2.1, φuλ → φu strongly in
D1,2(R3). By a standard argument, we see that I ′(u) = 0 and uλ → u strongly in E as

λ → 0+. Moreover, the fact that uλ ∈ E\(P+
ε ∪ P−

ε ) and cλ ≥ ε2

2 for λ ∈ (0, 1) implies

u ∈ E\(P+
ε ∪ P−

ε ) and I (u) ≥ ε2

2 . Therefore, u is a sign-changing solution of (2.1). ��
In the following, we prove the existence of infinitely many sign-changing solutions to

(2.1). We assume that f is odd. Thanks to Lemmas 4.1–4.4, we have seen that P+
ε is a

G−admissible invariant set for the functional Iλ (0 < λ < 1) at any level c.

Proof Theorem 1.2 (Multiplicity part) Step 1.We construct ϕn satisfying the assumptions in
Theorem B. For any n ∈ N, we choose {vi }n

1 ⊂ C∞
0 (R3)\{0} such that
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supp(vi ) ∩ supp(v j ) = ∅ for i �= j . Define ϕn ∈ C(Bn, E) as

ϕn(t)(·) = R2
n

n∑
i=1

tivi (Rn ·), t = (t1, t2, · · · , tn) ∈ Bn, (4.11)

where Rn > 0 is a large number independent of λ such that ϕn(∂ Bn) ∩ (P+
ε ∩ P−

ε ) = ∅ and

sup
u∈ϕn(∂ Bn)

Iλ(u) < 0 < inf
u∈�

Iλ(u).

Obviously, ϕn(0) = 0 ∈ P+
ε ∩ P−

ε and ϕn(−t) = −ϕn(t) for t ∈ Bn .
Step 2. For any j ∈ N and λ ∈ (0, 1), we define

c j (λ) = inf
B∈� j

sup
u∈B\W

Iλ(u),

where W := P+
ε ∪ P−

ε and � j is as in Theorem B. According to Theorem B, for any
0 < λ < 1 and j ≥ 2,

0 < inf
u∈�

Iλ(u) := c∗(λ) ≤ c j (λ) → ∞ as j → ∞

and there exists {uλ, j } j≥2 ⊂ E\W such that Iλ(uλ, j ) = c j (λ) and I ′
λ(uλ, j ) = 0.

Step 3. In a similar way to the above, for any fixed j ≥ 2, {uλ, j }λ∈(0,1) is bounded in E .
Without loss of generality, we assume that uλ, j → u j weakly in E as λ → 0+. Observe that
c j (λ) is decreasing in λ. Let c j = limλ→0+ c j (λ). Clearly c j (λ) ≤ c j < ∞ for λ ∈ (0, 1).
Then, we may assume that uλ, j → u j strongly in E as λ → 0+ for some u j ∈ E\W such
that I ′(u j ) = 0, I (u j ) = c j . Since c j ≥ c j (λ) and lim j→∞ c j (λ) = ∞, lim j→∞ c j = ∞.
Therefore, equation (2.1) and thus system (1.1) has infinitely many sign-changing solutions.
The proof is completed. ��
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