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Abstract We prove regularity estimates for the weak solutions to the Dirichlet problem for a
divergence form elliptic operator. We give L p estimates for the second derivative for p < 2.
Our work generalizes results due to Miranda (Ann Mat Pura Appl 63(4):353–386, 1963).
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1 Introduction

In this paper, we consider the regularity of solutions to the divergence form elliptic equation{
Lu = − div A∇u = f in �

u = 0 on ∂�
(1.1)
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726 D. Cruz-Uribe et al.

where � ⊂ R
n , n ≥ 2, is a bounded open set whose boundary ∂� is C2, and A = A(x) =

(ai j (x)) is an n × n matrix of real-valued, measurable functions that satisfies the ellipticity
condition

λ|ξ |2 ≤ 〈Aξ, ξ 〉 ≤ �|ξ |2, 0 < λ < �, ξ ∈ R
n . (1.2)

We derive L p estimates, p < 2, for solutions of this equation when A has discontinuous
coefficients and f ∈ L p(�).

This and related problems have a long history. If A is continuous and ∂� is C2,α , then
these results are classical: see Gilbarg and Trudinger [19]. Miranda [28] showed that if n ≥ 3,
∂� is C3, and A ∈ W 1,n(�), then any weak solution of Lu = f , f ∈ Lq(�), q ≥ 2, is
a strong solution and ‖D2u‖L2(�) ≤ C(‖ f ‖Lq (�) + ‖u‖L1(�)). This result is false when
n = 2: for a counter-example, see Example 1.5 below.

A similar problem for non-divergence form elliptic operatorswas considered byChiarenza
and Franciosi [5]. They proved that if n ≥ 3, � is bounded and ∂� is C2, then the non-
divergence form equation tr(AD2u) = f , with f ∈ L2(�) and A in a certain vanishing
Morrey class (a generalization of V MO), has a unique solution u satisfying ‖u‖W 2,2(�) ≤
C‖ f ‖L2(�). This was generalized by Chiarenza et al. [6], who showed that if f ∈ L p , 1 <

p < ∞, then the same equation has a unique solution satisfying ‖u‖W 2,p(�) ≤ C‖ f ‖L p(�).
These results in turn were further generalized by Vitanza [31–33].

Divergence formequations of the formdiv A∇u = div F were considered byDi Fazio [15]
on bounded domains with ∂� ∈ C1,1 and Iwaniec and Sbordone [24] on R

n ; they showed
that if A ∈ V MO , then there exists a unique weak solution that satisfies ‖∇u‖L p(�) ≤
C‖F‖L p(�), 1 < p < ∞. The results for bounded domains were improved by Auscher and
Qafsaoui [4],who showed that it suffices to assume ∂� isC1 and that A does not need to be real
symmetric. For a generalization to nonlinear equations, see [18]. In [27], Meyers considered
the more general equation div A∇u = div F + f on a bounded domain with a smooth
boundary. He showed that if A satisfies (1.2), then there exists p0 < 2 such that for all p0 <

p < p′
0, there exists a weak solution that satisfies ‖∇u‖L p(�) ≤ C(‖F‖L p(�) + ‖ f ‖L p(�))

(see Theorem 3.3 below).
Our main result is a generalization of the result of Miranda to p < 2 and n ≥ 2.

Theorem 1.1 Let � ⊂ R
n, n ≥ 2, be a bounded open set such that ∂� is C1. Let A be an

n× n real-valued matrix that satisfies (1.2). If A ∈ W 1,n(�), then there exists p0 ∈ (1, 2) so
that for all p ∈ (p0, 2) and f ∈ L p(�) there exists a unique solution u of (1.1) that satisfies
a local regularity estimate: given any open set �′ � �,

‖D2u‖L p(�′) ≤ D−1C‖ f ‖L p(�), (1.3)

where C is independent of both u and f and D = d(�′, ∂�). If we further assume that ∂�

is C2, then
‖D2u‖L p(�) ≤ C‖ f ‖L p(�). (1.4)

where C is independent of both u and f .

Remark 1.2 To compare Theorem 1.1 to the work of Di Fazio et al. described above, note
that if A ∈ W 1,n then A ∈ V MO: see, for instance, [9].

Remark 1.3 Our techniques actually allow us to assume that A is a complex matrix that
satisfies

|〈Aξ, η〉| ≤ �|ξ ||η|, λ|ξ |2 ≤ Re〈Aξ, ξ 〉, ξ, η ∈ C
n .

Details are left to the interested reader.
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Regularity results for elliptic PDEs 727

The lower bound p0 in Theorem 1.1 is intrinsic to our method of proof. It is an open
question whether our results can be extended to the full range 1 < p < 2. The stronger
assumptions on the boundary to get global regularity in Theorem 1.1 are not unexpected:
There exist examples that show that for n ≥ 2 and p > 1, there exists a bounded C1 domain
� and f ∈ C∞(�) such that the solution u to 	u = f in �, u = 0 on ∂�, is not inW 2,1(�)

(see [14,25]).
When n ≥ 3, an examination of the constants shows that we can take p = 2 in our proof.

This lets us give a new proof of the result of Miranda referred to above, as well as a local
regularity result.

Corollary 1.4 Let � ⊂ R
n, n ≥ 3, be a bounded open set such that ∂� is C1. Let A be an

n × n real-valued matrix that satisfies (1.2). If A ∈ W 1,n(�), then for all f ∈ L2(�), there
exists a unique solution u of (1.1) that satisfies

‖D2u‖L2(�′) ≤ D−1C‖ f ‖L2(�),

where C is independent of both u and f , �′ � � and D = d(�′, ∂�). If we further assume
that ∂� is C2, then

‖D2u‖L2(�) ≤ C‖ f ‖L2(�).

We now consider the case p = n = 2. In this case, Corollary 1.4 is false, as the next
example shows.

Example 1.5 Let B = B1/2(0) ⊂ R
2 be the open ball of radius 1/2 centered at the origin.

Then there exists a matrix A ∈ W 1,2(B) satisfying (1.2) and a solution to

− div(A∇u) = 0

such that u ∈ W 2,p(B) for all p < 2, but u /∈ W 2,2(B).

We can adapt the proofs of Theorem 1.1 to the case p = n = 2 if we assume that ∇A
satisfies stronger integrability conditions. We state these in the scale of Orlicz spaces—for a
precise definition, see Sect. 2 below. For brevity, we only state the global regularity result.

Theorem 1.6 Let � ⊂ R
2 be a bounded open set such that ∂� is C2. Let A be a 2 × 2

real-valued matrix that satisfies (1.2). Suppose further that for some δ > 0,

‖∇A‖L2(log L)1+δ(�) < ∞. (1.5)

If f ∈ L2(�) then there exists a unique solution u of (1.1) that satisfies

‖D2u‖L2(�) ≤ C‖∇A‖L2(log L)1+δ(�)‖ f ‖L2(�).

Our second result gives information in the end point case when δ = 0. In this case, we
need to impose an additional regularity condition. Recall (cf. [35]) that if� ⊂ R

2, a function
u is contained in the Morrey space L2,λ(�) if

‖u‖L2,λ(�) = sup
Q

(
|Q|− λ

2

∫
Q∩�

u2 dx

)1/2

< ∞.

Theorem 1.7 Let � ⊂ R
2 be a bounded open set such that ∂� is C2. Let A be a 2 × 2

real-valued matrix that satisfies (1.2) and

‖A‖L2(log L)(�) < ∞.
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728 D. Cruz-Uribe et al.

Suppose further that for some 1 < r < 2, ∇A ∈ L2, 4r −2(�). If f ∈ L2(�) then there exists
a unique solution u of (1.1) that satisfies

‖D2u‖L2(�) ≤ C(r,�)‖∇A‖
L2, 4r −2(�)

‖ f ‖L2(�).

Unfortunately, both of these results are weaker than they appear. In two dimensions,
(1.5) implies that ∇A is continuous: see Cianchi [7,8]. Similarly, if we assume that ∇A ∈
L2, 4r −2(�), then we also have that A is Hölder continuous: see [19, p. 298]. Thus, both of
these results follow from classical Schauder estimates [19]. Nevertheless, since our proofs
are different from the classical ones they are of some interest.

It remains open whether anything can be said when p = n = 2 and A ∈ W 1,2(�) or
even when ‖∇A‖L2(log L)(�) < ∞. We conjecture that in this endpoint case, D2u ∈ L2)(�),

where L2) denotes the grand Lebesgue space with norm

‖ f ‖L2)(�) = sup
0<ε<1

(
ε−
∫

�

| f (x)|2−ε dx

) 1
2−ε

.

These spaces were introduced in [22] and have proved useful in the study of endpoint
estimates in PDEs [20,21]. As evidence for this conjecture, we note that the solution u given
in Example 1.5 is in L2)(B). A stronger conjecture, also satisfied by our example, is that
D2u lies in the Orlicz space L2(log L)−1(�) (This space is a proper subset of L2): see [20]).
In both cases, our proof techniques are not sharp enough to produce these estimates and a
different approach will be required.

The remainder of this paper is organized as follows. In Sect. 2, we state some preliminary
definitions and weighted Fefferman–Phong type inequalities that are central to our proofs.
These results depend on recent work on two-weight norm inequalities for the Riesz poten-
tial [13]. In Sect. 3, we prove Theorem 1.1. Our proof uses ideas from [5]. In Sect. 4, we
consider the special case when n = 2: We construct Example 1.5 and sketch the proofs
of Theorems 1.6 and 1.7. Throughout our notation will be standard or defined as needed.
Given a vector matrix function, if way say that it belongs to a scalar function space (e.g.,
A ∈ W 1,n(�)), we mean that each component function is an element of the function space;
to compute the norm we first take the �2 norm of the components. Constants C , C(n), etc.,
may change in value at each appearance.

2 Preliminary results

In this section, we give conditions on a weight w for the two-weight Sobolev inequality

‖ f w‖L p(�) ≤ C‖∇ f ‖L p(�)

to hold. Such inequalities are sometimes referred to as Fefferman–Phong inequalities:
see [17]. Given the classical pointwise inequality

| f (x)| ≤ C(n)I1(|∇ f |)(x), f ∈ C∞
0 ,

it suffices to prove two-weight estimates for the Riesz potential of order one:

I1 f (x) = 	− 1
2 f (x) = c

∫
Rn

f (y)

|x − y|n−1 dy.

In Theorems 1.1 and 1.6, we will apply a sharp sufficient condition for the Riesz potential
to be bounded that was proved by Pérez [29]; we will use the version from [13, Theorem 3.6]
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Regularity results for elliptic PDEs 729

as this gives precise values for the constants. To state this result, we need to make some
definitions; for additional information on Orlicz spaces and two-weight inequalities, see
[12,13]. A convex, strictly increasing function 
 : [0,∞] → [0,∞] is said to be a Young
function if 
(0) = 0 and 
(∞) = ∞. Given a Young function, there exists another Young
function, 
̄, called the associate function, such that 
−1(t)
̄−1(t) � t . For our purposes,
there are two particularly important examples of Young functions that we will use. First, if

(t) = tr , r > 1, then 
̄(t) = tr

′
. If 
(t) = tr log(e+ t)a , then 
̄(t) � tr

′
log(e+ t)−

a
r−1 .

Given 1 < p < ∞ and a Young function 
, define

αp,
 =
(∫ ∞

1


(t)

t p
dt

t

)1/p

. (2.1)

Our conditions on weights are defined using a normalized Orlicz norm: given Young
function 
 and a cube Q, let

‖ f ‖
,Q = inf

{
λ > 0 : −

∫
Q




( | f (x)|
λ

)
dx ≤ 1

}
.

Given a pair of weights (u, v) (i.e., non-negative, locally integrable functions) and Young
functions 
 and �, let

[u, v]A1
p,�,


= sup
Q

|Q| 1n ‖u1/p‖�,Q‖v−1/p‖
,Q .

where the supremum is taken over all cubes in R
n with sides parallel to the coordinate

axes.

Theorem 2.1 [13, Theorem 3.6] Given 1 < p < ∞, a pair of weights (u, v), and Young
functions 
 and �, we have that

‖I1‖L p(v)→L p(u) ≤ C(n, p)[u, v]A1
p,�,


αp,
̄ αp′,�̄ .

Remark 2.2 In Theorem 2.1, we need to apply the integral condition in (2.1) to the associate
functions 
̄, �̄. If 
 and � are doubling (i.e., 
(2t) ≤ C
(t), t > 0, and similarly for �),
then by a change of variables, this condition can be restated in terms of 
 and �. See [12,
Prop. 5.10] for further information.

We can now give the Sobolev inequalities needed for our results.

Lemma 2.3 Fix n ≥ 2 and 1 < p < n. Let � ⊂ R
n. Then, for any f ∈ W 1,p

0 (�) and
w ∈ Ln(�),

‖ f w‖L p(�) ≤ C(n)(p′ − n′)−1/p′ ‖w‖Ln(�)‖∇ f ‖L p(�). (2.2)

Proof Extendw to a function on all ofRn by setting it equal to 0 outside of�. Let�(t) = tn

and 
(t) = tr , 1 < r < p; the exact value of r is not significant. Then

αp′,�̄ = (p′ − n′)−1/p′
, αp,
̄ = (p − r)−1/p,

and so we have that

[w p, 1]A1
p,�,


αp,
̄ αp′,�̄

= (p′ − n′)−1(p − r)−1 sup
Q

|Q|1/n
(

−
∫
Q

wn dx

)1/n

≤ (p′ − n′)−1(p − r)−1‖w‖Ln(�).
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730 D. Cruz-Uribe et al.

Therefore, by Lemma 2.1 we have that for all f ∈ C∞
0 (�),

‖ f w‖L p(Rn) ≤ ‖I1(|∇ f |)w‖L p(Rn) ≤ C(n, p, r)(p′ − n′)−1/p′ ‖w‖Ln(�)‖∇ f ‖L p(Rn).

The desired inequality follows for all f by a standard approximation argument. ��
When n ≥ 3, we see that w ∈ Ln(�) implies the Sobolev inequality for p = 2. When

n = 2, we only get the Sobolev inequality for 1 < p < 2, and the constant blows up as p
tends to 2 (and also as it tends to 1). In general, w ∈ L2(�) will not be a sufficient condition
for the Sobolev inequality when p = n = 2.

To prove Theorem 1.6, we can use the full power of Theorem 2.1 to prove a substitute for
Lemma 2.3. To state it, we define the non-normalized Orlicz norm: given an open set � and
an Orlicz function �,

‖ f ‖L�(�) = inf

{
λ > 0 :

∫
�

�

( | f (x)|
λ

)
dx ≤ 1

}
.

When �(t) = t2 log(e + t)1+δ , then we write L
(�) = L2(log L)1+δ(�).

Lemma 2.4 Given a bounded open set� ⊂ R
2 andw ∈ L2(log L)1+δ(�), if f ∈ W 1,2

0 (�),
then

‖ f w‖L2(�) ≤ Cδ−1/2[1 + diam(�)]‖w‖L2(log L)1+δ(�)‖∇ f ‖L2(�). (2.3)

Proof We begin as in the proof of Lemma 2.3, but we now take �(t) = t2 log(e + t)1+δ .
Then

α2,�̄ =
(∫ ∞

1

dt

t log(e + t)1+δ

)1/2

= Cδ−1/2 < ∞,

and

[w2, 1]A1
2,
,�

= sup
Q

|Q|1/2‖w‖�,Q .

Since we may assume supp(w) ⊂ �, we may restrict the supremum to cubes Q such that
|Q| ≤ diam(�)2. Then by the definition of the norm, we have that

|Q|1/2‖w‖�,Q = inf

{
λ > 0 : −

∫
Q

|Q|w(x)2

λ2
log

(
e + |Q|1/2w(x)

λ

)1+δ

dx ≤ 1

}

≤ inf

{
λ > 0 :

∫
�

w(x)2

λ2
log

(
e + diam(�)w(x)

λ

)1+δ

dx ≤ 1

}

≤ [1 + diam(�)]‖w‖L�(�).

The desired inequality now follows as before. ��
To prove Theorem 1.7, we need an “off-diagonal” inequality for the Riesz potential. There

is a version of Theorem2.1 in this case, butwewill use a stronger result due toD.R.Adams [1]
(see also [34, Theorem 4.7.2]).

Theorem 2.5 Given 1 < p < n, p < q < ∞ and a weight u, if

u(Q) ≤ K |Q| an ,

where a = q(n−p)
p , then

‖I1 f ‖Lq (u) ≤ C(p, q, n)K 1/q‖ f ‖L p .
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Regularity results for elliptic PDEs 731

Lemma 2.6 Given an open set � ⊂ R
2, suppose that for 1 < r < 2, w ∈ L2, 4r −2(�) If

f ∈ W 1,2
0 (�), then

‖ f w‖L2(�) ≤ C(r)‖w‖
L2, 4r −2(�)

‖∇ f ‖Lr (�). (2.4)

Proof Extend w to a function on all of R2 by setting it equal to 0 outside of �. Define a as
in Theorem 2.5 with p = r , q = n = 2. Then for all cubes Q that intersect �,

|Q|− a
2

∫
Q

w(x)2 dx = |Q|1− 2
r

∫
Q∩�

w(x)2 dx ≤ ‖w‖2
L2, 4r −2(�)

.

Inequality (2.4) now follows from Theorem 2.5 and an approximation argument. ��

3 Proof of Theorem 1.1

We begin with two results due to Meyers [27]. The first is a coercivity condition.

Theorem 3.1 Given a bounded open set � ⊂ R
n with C1 boundary, let A be an n × n

real-valued matrix that satisfies (1.2). Define the sesquilinear form

a(u, v) =
∫

�

A∇u · ∇v dx .

Then there exists p0 = p0(n, λ,�,�), 1 < p0 < 2, such that for all p, p0 < p ≤ 2, and
all u ∈ W 1,p

0 (�),
‖u‖

W 1,p
0 (�)

≈ sup
‖v‖

W
1,p′
0 (�)

=1
|a(u, v)|. (3.1)

Moreover, the constants in this equivalence depend on λ, �, p, n, and �. They are
independent of the specific matrix A.

Proof The upper estimate for a(u, v) is just Hölder’s inequality; it is the lower estimate that
is non-trivial. From the proof of Theorem 1 in [27] we have the existence of p0 < 2 and
κ = κ(λ,�, p,�) > 0 such that

inf‖u‖
W
1,p
0

=1
sup

‖v‖
W
1,p′
0

=1
|a(u, v)| ≥ κ.

A key hypothesis in the proof is the existence of q > p′
0 such that for every F ∈ Lq(�),

there exists a unique weak solution 
 to the equation 	
 = div F on � and the estimate

‖∇
‖q ≤ C‖F‖q , (3.2)

holds. Since ∂� is C1, by Auscher and Qafsaoui [4], we have that such a solution exists and
(3.2) holds for all q , 1 < q < ∞. ��
Remark 3.2 The value of p0 is difficult to estimate from Meyer’s proof. There is an elegant
proof of this result in [30] that uses the Hodge decomposition. In [23] a careful estimate is
given for the resulting constants; though again the exact value is not easy to determine. In
passing we note that in [30], Theorem 3.1 is proved for “regular” domains, which are defined
abstractly in [23]. However, regular domains include Lipschitz domains: see [21].

For our existence results, we also need the following result of Meyers [27, Theorem 1].
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732 D. Cruz-Uribe et al.

Theorem 3.3 Let � ⊂ R
n, n ≥ 2, be a bounded open set such that ∂� is C1, and let A be

an n × n real-valued matrix that satisfies (1.2). Then the equation

Lu = div(A∇u) = f

has a unique solution in W 1,p
0 (�) for every f ∈ L p(�), provided p0 < p < p′

0, where p0
is the constant from Theorem 3.1. The solution satisfies the estimate

‖∇u‖L p(�) ≤ C‖ f ‖L p(�),

where C = C(n, λ,�, p,�).

Proof of Theorem 1.1 Fix a matrix A satisfying (1.2), and fix p, p0 < p < 2, where p0 is
as in Theorem 3.1. By Theorem 3.3, for any f ∈ L p(�) the equation Lu = f has a unique
solution u ∈ W 1,p

0 (�) such that

‖∇u‖L p(�) ≤ C‖ f ‖L p(�), (3.3)

with C independent of f .
We first prove the desired estimate on D2u in the special case when f ∈ C∞(�) and

A ∈ C∞(�); afterward, we will prove the general case by a double approximation argument.
Let u be the solution of (1.1). Then u ∈ C∞(�): see Evans [16, Th. 3,Sec. 6.3.1]. (Note that
in this result, there is an implicit assumption on the regularity of the boundary because of an
appeal to a Poincaré-Sobolev type inequality for functions without compact support in �;
C1 is more than sufficient for this purpose.) We now have the pointwise identity

f = − div A∇u = −
∑
i, j

(
ai j ux j

)
xi

.

Fix s with 1 ≤ s ≤ n and η ∈ C∞
0 (�) with 0 ≤ η ≤ 1. Then ηuxs ∈ W 1,p

0 (�), so by
Theorem 3.1 there exists v ∈ C2

0 (�), ‖v‖
W 1,p′

0
= 1, and κ = κ(n, λ,�,�) > 0 such that

|a(ηuxs , v)| ≥ κ‖ηuxs‖W 1,p
0

≥ κ‖∇(
ηuxs

)‖L p(�)

≥ κ‖η∇uxs‖L p(�) − κ‖uxs∇η‖L p(�). (3.4)

If we multiply f by ηvxs , integrate over � and then integrate by parts twice we get∫
�

f ηvxs dx = −
∫

�

∑
i, j

(
ai j ux j

)
xi

ηvxs dx

=
∫

�

∑
i, j

ai j ux j
(
ηvxs

)
xi
dx

= −
∫

�

∑
i, j

(
ηai j ux j

)
xs

vxi dx +
∫

�

vxs A∇u · ∇η dx

= −
∫

�

∑
i, j

η
(
ai j

)
xs
ux j vxi dx −

∫
�

ηxs A∇u · ∇v dx

−
∫

�

ηA∇(
uxs

) · ∇v dx +
∫

�

vxs A∇u · ∇η dx .
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Therefore, if we take absolute values, rearrange terms, and combine this with inequal-
ity (3.4), we get

κ‖η∇(uxs )‖L p(�) ≤ |a(ηuxs , v)| + κ‖uxs∇η‖L p(�)

≤
∣∣∣∣
∫

�

ηA∇(uxs ) · ∇v dx

∣∣∣∣ +
∣∣∣∣
∫

�

uxs A∇η · ∇v dx

∣∣∣∣ + κ‖uxs∇η‖L p(�)

≤
∫

�

∣∣∣∣ ∑
i, j

η
(
ai j

)
xs
ux j vxi

∣∣∣∣ dx +
∫

�

|ηxs | |A∇u · ∇v| dx

+
∫

�

|vxs | |A∇u · ∇η| dx +
∫

�

|uxs | |A∇η · ∇v| dx

+
∫

�

| f ηvxs | dx + κ‖uxs∇η‖L p(�)

= I1 + I2 + I3 + I4 + I5 + I6.

We estimate each separately. The bound for I5 is straightforward: by Hölder’s inequality,

I5 ≤ ‖ f ‖L p(�)‖vxs‖L p′ (�)
≤ ‖ f ‖L p(�)‖v‖

W 1,p′
0 (�)

= ‖ f ‖L p(�).

Similarly, using Hölder’s inequality together with (1.2) we see that

I2 + I3 + I4 + I6 ≤ C(κ,�)(sup
�

|∇η|)‖∇u‖L p(�).

The key estimate is for I1. Define

As = ((
ai j

)
xs

)
, U = |∇A| =

( ∑
i, j,s

(
ai j )

2
xs

)1/2

,

and fix ε > 0; the exact value of ε will be given below. Since U ∈ Ln(�), there exists
K = K (ε,U ) such that (∫

{x :U (x)>K }
U (x)n dx

)1/n

< ε. (3.5)

LetU1 = Uχ{x :U (x)>K } andU2 = U −U1. Then, by Hölder’s inequality and Lemma 2.3,

here using that η∇u ∈ W 1,p
0 (�), we can estimate as follows:

I1 =
∫

�

|ηAs∇u · ∇v| dx

≤
∫

�

U |η∇u||∇v| dx

≤
(∫

�

|η∇u U |p dx
)1/p (∫

�

|∇v|p′
dx

)1/p′

≤
(∫

�

|η∇u U1|p dx
)1/p

+
(∫

�

|η∇u U2|p dx
)1/p

≤ C(n)(p′ − n′)−1/p′
ε

(∫
�

|∇(η∇u)|p dx
)1/p

+ K (ε,U )

(∫
�

|∇u|p dx
)1/p

≤ C(n, p)ε

(∫
�

|ηD2u|p dx
)1/p

+ C(n, p)ε

(∫
�

|∇η · ∇u|p dx
)1/p
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+K

(∫
�

|∇u|p dx
)1/p

≤ C(n, p)ε

(∫
�

|ηD2u|p dx
)1/p

+ K̃ (1 + ‖∇η‖∞)

(∫
�

|∇u|p dx
)1/p

,

where K̃ = K̃ (n, p, ε, K ).
Each of the above estimates hold for all values of s. Therefore, byMinkowski’s inequality,

if we sum over all s and combine these estimates, we get that

κ‖ηD2u‖L p(�) ≤
∑
s

κ‖η∇(uxs )‖L p(�)

≤ C(n, p)ε‖ηD2u‖L p(�) + K (1 + ‖∇η‖∞)‖∇u‖L p(�) + n‖ f ‖L p(�),

where K = K ((n, p,�, ε, K ). Since ε > 0 is arbitrary, we can fix ε = κ/2C(n, p) and
then rearrange terms to get

‖ηD2u‖L p(�)

≤ 2Kκ−1(1 + ‖∇η‖∞)‖∇u‖L p(�) + 2nκ−1‖ f ‖L p(�) ≤ C0(1 + ‖∇η‖∞)‖ f ‖L p(�),

(3.6)

where the last inequality follows from (3.3), and C0 = C0(p, n, λ,�,�, K ).
To complete the proof, fix �′ � � and choose η ∈ C∞

0 (�) such that η(x) = 1 in �′ and
so that ‖∇η‖ ≈ D−1, where D = dist(�′, ∂�). Without loss of generality, we may assume
D > 1. With this choice of η, inequality (3.6) yields the local W 2,p(�) estimate

‖D2u‖L p(�′) ≤ D−1C‖ f ‖L p(�), (3.7)

whereC = C(n, p, λ,�, K ). Finally, if we assume that ∂� isC2, we can apply the argument
given in [19, p. 187] to obtain a constant C > 0 depending on K , p, n, λ, and � so that

‖D2u‖L p(�) ≤ C‖ f ‖L p(�). (3.8)

This completes the proof of inequality (1.4) when f and A are sufficiently smooth.
We will now prove that inequalities (3.7) and (3.8) hold for general f and A satisfying the

hypotheses. We will only consider the latter equation as the proof of the former is essentially
the same.

We will first show that we can take an arbitrary f . Fix f ∈ L p(�), and fix a sequence of
functions { f j } inC∞(�) that converge to f in L p(�). Fix A ∈ C∞(�) and let u j ∈ W 1,p

0 (�)

be the solution to Lu j = f j , and let u ∈ W 1,p
0 be the solution to Lu = f . By inequality

(3.3) and the Sobolev inequality, we have that

‖u − u j‖L p(�) ≤ C‖∇(u − u j )‖L p(�) ≤ C‖ f − f j‖L p(�).

Therefore, u j → u in W 1,p
0 (�).

Since f j and A have the requisite smoothness, we can apply (3.8) to ui − u j to get

‖D2(ui − u j )‖L p(�) ≤ C‖ fi − f j‖L p(�).

Thus, the sequence {u j } is Cauchy inW 2,p(�). For 1 ≤ r, s ≤ n, let vr,s denote the limit
of {(u j )xr ,xs }. Then for any φ ∈ C∞

0 (�),∫
�

uxsφxr dx = lim
j→∞

∫
�

(u j )xsφxr dx = lim
j→∞

∫
�

(u j )xr ,xsφ dx =
∫

�

vr,sφ dx . (3.9)
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Therefore, u ∈ W 2,p(�) and u j → u in W 2,p(�). Inequality (1.4) for u now follows
immediately.

Finally, we prove that we can take arbitrary A ∈ W 1,n(�). Fix such an A, and let {A j } be
a sequence of matrices in C∞(�) that converges to A in W 1,n(�). It follows at once from
the standard construction of the A j (cf. Adams and Fournier [2]) that we may assume that
the A j are elliptic with the same ellipticity constants as A. Finally, let Uj = |∇A j |; then
Uj → U = |∇A| in Ln(�). By the converse to the dominated convergence theorem (see
Lieb and Loss [26, Th. 2.7]), if we pass to a subsequence, then we may assume thatUj → U
pointwise a.e., and there exists g ∈ Ln(�) such that Uj (x) ≤ g(x) a.e. Therefore, by the
dominated convergence theorem (again passing to a subsequence), we may assume that (3.5)
holds (with fixed ε) for each Uj with a constant K independent of j .

Fix f ∈ L p(�) and let u j ∈ W 1,p
0 (�) be the solution of − div A j∇u j = f and let

u ∈ W 1,p
0 (�) be the solution of Lu = − div A∇u = f . Then for any φ ∈ C∞

0 (�),∫
�

A j∇u j · ∇φ dx = −
∫

�

f φ dx =
∫

�

A∇u · ∇φ dx .

Therefore, ∫
�

(
A∇u − A∇u j + A∇u j − A j∇u j

)∇φ dx = 0,

and so by rearranging terms we have that

|a(u − u j , φ)| =
∣∣∣∣
∫

�

A(∇u − ∇u j ) · ∇φ dx

∣∣∣∣ ≤
∫

�

|(A − A j )∇u j · ∇φ| dx .

By Theorem 3.1 there exists φ such that ‖φ‖
W 1,p′

0 (�)
= 1 and κ > 0 such that

κ‖u − u j‖W 1,p
0

≤
∫

�

|(A − A j )∇u j · ∇φ| dx
≤ ‖A − A j‖Ln(�)‖∇u j‖

L
np
n−p (�)

‖∇φ‖L p′ (�)
. (3.10)

The last estimate follows by Hölder’s inequality, since

1

n
+ n − p

np
+ 1

p′ = 1.

The last term on the right-hand side of (3.10) is at most 1. By our choice of the A j , the
first term tends to 0 as j → ∞. And by the Sobolev inequality,

‖∇u j‖
L

np
n−p (�)

≤ C‖D2u j‖L p(�) ≤ C‖ f ‖L p(�);
the final inequality holds since by our choice of the A j , inequality (1.4) holds for each u j

with a constant independent of j . Therefore, the middle term on the righthand side of (3.10)
is uniformly bounded. Hence, u j → u in W 1,p

0 (�).
It remains to show D2u exists and estimate its norm. By inequality (1.4), the sequence

{D2u j } is uniformly bounded in L p(�), and so has aweakly convergent subsequence. Passing
to this subsequence, we can repeat the argument at (3.9) to conclude that u ∈ W 2,p(�) and
D2u j converges weakly to D2u. But then we have that

‖D2u‖L p(�) ≤ lim inf
j→∞ ‖D2u j‖L p(�) ≤ C‖ f ‖L p(�),

and this completes the proof. ��
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4 The case n = 2

In this section, we consider the two-dimensional case. We first construct Example 1.5 and
then prove Theorems 1.6 and 1.7.

Construction of Example 1.5 Our example is adapted from one given by Clop et al. [10,
p. 205] and is based on the theory of quasiregular mappings. Let B = B1/2(0) and let
z = x + iy. Define f (z) = z(1 − 2 log |z|). Then

∂ f (z) = −2 log |z| and ∂̄ f (z) = z

z̄
,

and so f satisfies the Beltrami equation ∂̄ f = μ∂ f with Beltrami coefficient

μ(z) = z

z̄ log(|z|−2)
= z2

|z|2 log(|z|−2)
.

If we let let u = Re f , that is,

u(x, y) = x(1 − log(x2 + y2)),

then u satisfies the equation

− div(A∇u) = 0

where A is the symmetric, real-valued matrix

A =

⎡
⎢⎢⎣

|1 − μ|2
1 − |μ|2

−2 Imμ

1 − |μ|2
−2 Imμ

1 − |μ|2
|1 + μ|2
1 − |μ|2

⎤
⎥⎥⎦ = 1 + σ 2

1 − σ 2 Id − 2

1 − σ 2

[
α β

β −α

]
,

and

σ = |μ| = −1

log(x2 + y2)
, α = Reμ = x2 − y2

x2 + y2
σ, β = Imμ = 2xy

x2 + y2
σ.

This follows from a straightforward calculation: for the details, see [3, p. 412].
We claim that A is elliptic and inW 1,2(B), and that u ∈ W 2,p(B) for p < 2 but not when

p = 2. By our choice of domain, 0 ≤ σ ≤ k = (log 4)−1. Let ξ = (ξ1, ξ2) ∈ R
2; then

〈Aξ, ξ 〉 = 1 + σ 2

1 − σ 2 |ξ |2 − 2α(ξ21 − ξ22 ) + 4βξ1ξ2

1 − σ 2 . (4.1)

Since

α(ξ21 − ξ22 ) + 4βξ1ξ2 = 2(α, β) · (ξ21 − ξ22 , 2ξ1ξ2),

by the Cauchy-Schwarz inequality we have that

|2α(ξ21 − ξ22 ) + 4βξ1ξ2| ≤ 2
√

α2 + β2
√

(ξ21 − ξ22 )2 + 4ξ21 ξ22 = 2σ |ξ |2.
Hence,

−2σ |ξ |2 ≤ 2α(ξ21 − ξ22 ) + 4βξ1ξ2 ≤ 2σ |ξ |2,
and if we combine this with inequality (4.1), we get

1 − k

1 + k
|ξ |2 ≤ 1 − σ

1 + σ
|ξ |2 ≤ 〈Aξ, ξ 〉 ≤ 1 + σ

1 − σ
|ξ |2 ≤ 1 + k

1 − k
|ξ |2.
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Thus, A is elliptic with λ = 1−k
1+k and � = 1+k

1−k .
To see that A = (ai j ) ∈ W 1,2(B), a lengthy (andMathematica assisted) calculation shows

that

∂a11
∂x

=

−4x
[
x2−y2−2y2 log3(x2+y2) + (x2−y2) log2(x2+y2)+2(x2+2y2) log(x2+y2)

]
(x2 + y2)2(log2(x2 + y2) − 1)2

and the derivatives ∂
∂x ai j and

∂
∂y ai j are similar. It follows that∣∣∣∣ ∂

∂x
ai j

∣∣∣∣ ,
∣∣∣∣ ∂

∂y
ai j

∣∣∣∣ ≤ C
| log3(x2 + y2)|

(x2 + y2)
1
2 (log2(x2 + y2) − 1)2

∈ L2(B).

Finally to see that u ∈ W 2,p(B) for p < 2 but not inW 2,2(B), another calculation shows
that

uxx (x, y) = −2x(x2 + 3y2)

(x2 + y2)2
, uxy(x, y) = −2y(y2 − x2)

(x2 + y2)2
, uyy(x, y) = −2x(x2 − y2)

(x2 + y2)2
.

Thus, each second derivative is bounded by a constant multiple of (x2 + y2)− 1
2 ∈ L p(B),

so u ∈ W 2,p . On the other hand, ∫
B

|uxx |2 dxdy = ∞,

so u /∈ W 2,2(B). ��
Proof of Theorem 1.6 Most of the proof is identical to the proof of Theorem 1.1, setting
n = p = 2. However, in two places, we need to make specific changes to the proof. The
proof for f and A smooth is the same up to inequality (3.5). We again split U , but now we
fix ε (to be determined below) and find K such that

‖Uχ{U>K }‖L�(�) < ε, (4.2)

where�(t) = t2 log(e+t)1+δ . (This is again possible by the dominated convergence theorem
in the context of Orlicz spaces.) Let U = U1 + U2 = Uχ{U>K } + Uχ{U≤K }; then by
Lemma 2.4,(∫

�

(|η∇u|U )2 dx

)1/2

≤
(∫

�

(|η∇u|U1)
2 dx

)1/2

+ K

(∫
�

|∇u|2 dx
)1/2

≤ ε C(δ,�)

(∫
�

|D2u|2 dx
)1/2

+ K (1+‖∇η‖∞)‖ f ‖L2(�). (4.3)

The argument now proceeds as before, yielding

‖ηD2u‖L2(�) ≤ C0(1 + ‖∇η‖∞)‖ f ‖L2(�),

where again the constant C0 = C0(n, p, λ,�,�, K ).
The proof for arbitrary f ∈ L2(�) goes through exactly as before. For the proof for

arbitrary ∇A ∈ L�(�), note first that by the Sobolev embedding theorem, we have A ∈
L�(�). We now fix smooth A j → A in W 1,�(�) (the Sobolev space defined with respect
to the L� norm), and we may again assume that the A j have the same ellipticity constants
and that we may choose K such that (4.2) holds for all Uj = |∇A j | with a constant K
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independent of j . This is possible since all the arguments for W 1,p(�) extend to W 1,�(�)

with almost no change. Smooth functions are dense (see [2]), and the proof of density again
shows that ellipticity constants are preserved. The converse of dominated convergence also
holds in this setting; the proof is implicit in the literature. For a proof in a different context
that readily adapts to Orlicz spaces, see [11, Prop. 2.67].

The proof now continues as before until inequality (3.10). Here, we need to apply the
generalized Hölder’s inequality in the scale of Orlicz spaces (see [12, Lemma 5.2]). If we let


(t) = exp(t
2

1+δ ) − 1, then

�−1(t)
−1(t) ≈ t1/2

log(e + t)
1+δ
2

log(e + t)
1+δ
2 � t1/2.

Therefore, we can estimate as follows:∣∣∣∣
∫

�

A(∇u − ∇u j ) · ∇φ dx

∣∣∣∣ ≤
∫

�

|(A − A j )∇u j · ∇φ| dx
≤ ‖(A − A j )∇u j‖L2(�)‖∇φ‖L2(�) ≤ C‖A − A j‖L�(�)‖∇u j‖L
(�)‖∇φ‖L2(�).

As in the previous argument, we have chosen φ so that ‖∇φ‖L2(�) ≤ 1. We also have that
‖A − A j‖L�(�) → 0 as j → ∞. Therefore, we could complete the proof as before if we
can show that

‖∇u j‖L
(�) ≤ C‖ f ‖L2(�)

with a constant independent of j .
Let 
0(t) = exp(t2) − 1. Then for t ≥ 1, 
(t) ≤ 
0(t), and so by the properties of

Orlicz norms (see [12, Sec.5.2]) there exists a constant depending on δ and � such that
‖∇u j‖L
(�) ≤ C‖∇u j‖L
0 (�). But by Trudinger’s inequality [34, Thm. 2.9.1] we have the
endpoint Sobolev inequality:

‖∇u j‖L
0 (�) ≤ C‖D2u j‖L2(�).

By the first part of the proof, we have that ‖D2u j‖L2(�) ≤ C‖ f ‖L2(�) with a constant
independent of j ; combining these inequalities, we get the desired estimate and this completes
the proof. ��
Proof of Theorem 1.7 The proof is nearly identical to the proof of Theorem 1.6. Let �(t) =
t2 log(e+ t). The first half of the proof for smooth f and A is the same until (4.3). Here, we
use the off-diagonal estimate in Lemma 2.6 and Hölder’s inequality to get(∫

�

(|η∇u|U )2 dx

)1/2

≤
(∫

�

(|η∇u|U1)
2 dx

)1/2

+ K

(∫
�

|∇u|2 dx
)1/2

≤ ε C(δ,�)

(∫
�

|ηD2u|r dx
)1/r

+ K (1 + ‖∇η‖∞)‖ f ‖L2(�)

≤ ε C(δ,�)|�| 1
(2/r)′

(∫
�

|ηD2u|2 dx
)1/2

+ K (1 + ‖∇η‖∞)‖ f ‖L2(�).

We can now complete the proof of the smooth case as before.
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The remainder of the proof goes through as before, only now we apply the generalized
Hölder’s inequality with �(t) and 
(t) = exp(t2) − 1 and then directly apply Trudinger’s
inequality. ��
Remark 4.1 Note that in the proof of Theorem 1.7 we use the regularity assumption on ∇A
in the proof of the smooth case, and use the higher integrability assumption on A in the
density argument to prove the general case.
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