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Abstract In this paper, we consider the geometrical optics—or WKB—method for geo-
physical equatorial barotropic incompressible flows. The stability analysis of such flows is
reduced to the stability analysis of an ordinary differential equation system along their tra-
jectories. The analysis of this system in the case of equatorially trapped waves propagating
eastward in stratified water shows that those waves for which the steepness parameter of the
wave profile is higher than a specific value are unstable.
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1 Introduction

In the theoretical analysis of geophysical water waves in the Equator region, it is customary
to use the β-plane approximation to the full water-wave problem (see the discussions in [8]
and [14]). In this way, one obtains a variety of equatorially trapped waves, waves whose
amplitude decays rapidly away from the Equator. In the shallow-water regime of a one-
layer reduced-gravity model, one obtains the eastward propagating Kelvin waves (see [8]
and [9]). An exact solution to the full water-wave problem in the β-plane approximation
was constructed by Constantin [5]. This Gerstner1-type solution describes in the Lagrangian
framework equatorially trapped waves propagating eastward in a stratified inviscid fluid. In
Sect. 2, we present these explicit equatorially trapped waves in stratified water. We also show
that these waves are barotropic, that is, their density is a function only of the pressure.

In Sect. 3, we make a detailed analysis of the short-wavelength instability method for
general geophysical equatorial barotropic incompressible flow. Subsequently, in Sect. 4 we

1 For modern detailed descriptions of Gerstner solution see [2,16].
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apply this method to the specific case of the equatorially trapped waves in stratified water
presented in Sect. 2. The short-wavelength instability method was developed independently
byBayly [1], Friedlander andVishik [11] and Lifschitz andHameiri [24] (see also the surveys
by Friedlander and Yudovich [13]; Friedlander and Lipton-Lifschitz [10]), in order to extend
the stability analysis to more general non-steady three-dimensional fluids. This interesting
approach is based on the geometrical optics method: the small-wavelength perturbations are
considered in the WKB form, their evolution in time being governed up to the remainder
terms by the eikonal equation for the wave phase and the transport equation for the wave
amplitude of the velocity. Along the rays, that are, the basic flow trajectories, the system
becomes an ordinary differential equation system. The remainder terms can be shown to
be incapable of cancelling the growth of the leading-order terms. For a general geophysical
equatorial barotropic incompressible flow, we give some estimates of the remainder terms by
following the procedure presented by Ionescu-Kruse [21] in the non-geophysical case. Thus,
we conclude that, in the geophysical case too, the stability analysis is reduced to the stability
analysis of the ordinary differential equation system along the trajectories of the basic flow;
if for some trajectories the corresponding transport equation has at least one solution growing
in time without bound, then such flow is unstable.

This local stability analysis is convenient when the basic flow is described in the
Lagrangian framework: it was made by Leblanc [23] for Gerstner’s waves, by Constantin and
Germain [6] for the equatorially trapped waves [5] in the constant density case, by Ionescu-
Kruse [20,21] for the edge waves in the constant density case and in the stratified water,
respectively, by Genoud and Henry [15] for geophysical equatorial waves with an underlying
current [18], by Henry andHsu [19] for internal equatorial waves (with andwithout currents).
For the equatorially trapped waves in stratified water, we find that, at the leading order, the
wave phase and the wave amplitude of the velocity satisfy the same system of equations as
in the constant density case (Constantin and Germain [6]), but the component of the pressure
has a different expression. Such waves are unstable to short-wavelength perturbations if the

vorticity in the meridional direction is smaller than − 1
4

(kc+4Ω)2

kc(kc+2Ω)
or if the steepness parame-

ter of the wave profile is higher than kc+4Ω
3kc+4Ω . The exponential growth rate of instabilities is

1
2

√
(3kc+4Ω)2e2χ−(kc+4Ω)2

1−e2χ
.

2 Equatorially trapped waves in stratified water

We take the Earth to be a perfect sphere of radius R = 6371km and with a constant rota-
tional speed Ω = 73 · 10−6 rad s−1 round the polar axis towards east. We consider a rotating
framework with the origin located at a point on Earth’s surface and with the x-axis horizon-
tally due east, the y-axis horizontally due north and the z-axis upward. The variable x will
correspond to longitude, the variable y to latitude and the variable z to the local vertical. In
the β-plane approximation, the governing equations for equatorially trapped waves are the
Euler equations [14]

Ut +UUx + VUy + WUz + 2ΩW − βyV = − 1

ρ
Px

Vt +UVx + VVy + WVz + βyU = − 1

ρ
Py

Wt +UWx + VWy + WWz − 2ΩU = − 1

ρ
Pz − g, (1)
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Instability of equatorially trapped waves in stratified water 587

the condition of incompressibility

Ux + Vy + Wz = 0, (2)

and the equation of mass conservation

ρt +Uρx + Vρy + Wρz = 0. (3)

U(t, x) = (U (t, x, y, z), V (t, x, y, z),W (t, x, y, z)) is the velocity field, P(t, x, y, z) the
pressure, β = 2Ω

R = 2.28 × 10−11 m−1s−1, g = 9.8ms−2 is the constant gravitational
acceleration at the Earth’s surface and ρ(t, x) the water density. Subscripts denote partial
derivatives.

The kinematic and the dynamic boundary conditions on the water’s free surface z =
η(t, x, y) are given by (see the discussion in [4])

W = ηt +Uηx + Vηy on z = η(t, x, y), (4)

P = Patm = const on z = η(t, x, y). (5)

We also require the velocity field to decay rapidly with depth.
Constantin [5] found an exact Gerstner-like solution of the nonlinear system (1)–(5) which

describes equatorially trapped waves propagating eastward in a stratified water. Adequate for
the nonlinear exact solution is the Lagrangian framework. In this framework, the variables
(x, y, z) that denote the position of the fluid particles at time, t , are given as functions of t
and some labels (q, s, r) which mark individual fluid particles by the following expressions
[5]

⎧
⎨
⎩
x = q − 1

k e
k[r−f(s)] sin[k(q − ct)]

y = s
z = r + 1

k e
k[r−f(s)] cos[k(q − ct)].

(6)

Here, k is the wave number,

c =
√

Ω2 + kg − Ω

k
(7)

is the wave speed, and

f(s) = cβ

2g
s2 (8)

is a function describing the latitudinal variation of the particle oscillation. The labels q and
s ∈ R, while r ∈ (−∞, r0], for some fixed r0 < 0. In order for the transformation (6) to be
well defined and to ensure that the flow has the appropriate decay properties, in the vertical
direction as well as in the latitudinal direction, one requires that

r − cβ

2g
s2 ≤ r0, for some fixed r0 < 0. (9)

With the notations

χ := k

[
r − cβ

2g
s2
]

, θ := k(q − ct), (10)

the Jacobian matrix of the transformation (6) has the form

F :=
⎛
⎜⎝

∂x
∂q

∂y
∂q

∂z
∂q

∂x
∂s

∂y
∂s

∂z
∂s

∂x
∂r

∂y
∂r

∂z
∂r

⎞
⎟⎠ =

⎛
⎝
1 − eχ cos θ 0 −eχ sin θ

s cβg e
χ sin θ 1 −s cβg e

χ cos θ

−eχ sin θ 0 1 + eχ cos θ

⎞
⎠ , (11)
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the determinant of the Jacobian matrix is

J = det F = 1 − e2χ , (12)

and its inverse has the expression

G :=

⎛
⎜⎜⎝

∂q
∂x

∂s
∂x

∂r
∂x

∂q
∂y

∂s
∂y

∂r
∂y

∂q
∂z

∂s
∂z

∂r
∂z

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1+eχ cos θ
1−e2χ

0 eχ sin θ
1−e2χ

−s cβg
eχ sin θ
1−e2χ

1 s cβg
eχ (cos θ−eχ )

1−e2χ

eχ sin θ
1−e2χ

0 1−eχ cos θ
1−e2χ

⎞
⎟⎟⎠ . (13)

The determinant of the Jacobian matrix is time independent; thus, the flow is volume pre-
serving and (2) is satisfied. For a stratified water with the density defined by

ρ = F

⎛
⎝e

2k
[
r− cβ

2g s
2
]

2k
− r

⎞
⎠ , (14)

where F : (0,∞) → (0,∞) is a continuously differentiable non-decreasing function (in
order to have a gravitationally stable water stratification), and for a suitably defined value of
the pressure function, that is,

P = P0 + gF

⎛
⎝e

2k
[
r− cβ

2g s
2
]

2k
− r

⎞
⎠− gF

(
e2r0

2k
− r0

)
, (15)

where F′ = F, F(0) = 0, the Euler Eqs. (1) are satisfied too [5].
In Lagrangian variables, the kinematic boundary condition (4) holds if at each fixed s, the
free surface at latitude y = s is given by setting r = r(s) in (6), where r(s) < r0 is the
unique solution of the equation

e
2k
[
r− cβ

2g s
2
]

2k
− r − e2kr0

2k
+ r0 = 0, (16)

the label q being the free parameter of the curve that represents the wave profile at this
latitude. At the equator, where s = 0, the free surface is the curve determined by setting
r = r0 in (6). Then, from the form (15) of the pressure, the dynamic condition (5) is also
satisfied.

The significant properties of the solution (6) are presented in [5]. At a fixed latitude, all par-
ticles beneath the surface wave move on circles. These particle paths are quite different from
those beneath an irrotational periodic travelling wave (see [3,7,17]). By direct calculation,
the vorticity vector γ := curl U has the following expression

γ := (γ1, γ2, γ3) =
(

−s
kc2β

g

eχ sin θ

1 − e2χ
,− 2kce2χ

1 − e2χ
, s

kc2β

g

eχ (cos θ − eχ )

1 − e2χ

)
. (17)

Thus, the flow corresponding to the solution (6) is rotational. The second component of the
vorticity is identical to the vorticity of a Gerstner wave. Away from the equator, for s �= 0,
the first and the third component of the vorticity are both non-zero.

Let us now prove that the equatorially trapped waves (6) in stratified water are barotropic,
that is, the density is a function only of the pressure,

ρ = f (P), f ′(P) �= 0. (18)
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Instability of equatorially trapped waves in stratified water 589

Differentiating the third equation of (1) with respect to y and the second equation of (1) with
respect to z, then subtracting the results, we get

(γ1)t + [(U · ∇)γ ]1 − [(γ · ∇)U]1 − 2ΩUy − βyUz = 1

ρ2 (∇ρ × ∇P)1. (19)

Differentiating the first equation of (1) with respect to z and the third equation of (1) with
respect to x , then subtracting the results, we have

(γ2)t + [(U · ∇)γ ]2 − [(γ · ∇)U]2 − 2ΩVy − βyVz = 1

ρ2 (∇ρ × ∇P)2, (20)

In the same manner, from the second and the first equation of (1), we get

(γ3)t + [(U · ∇)γ ]3 − [(γ · ∇)U]3 − 2ΩWy − βyWz + βV = 1

ρ2 (∇ρ × ∇P)3. (21)

In the Eqs. (19)–(21), [(U · ∇)γ ]i , [(γ · ∇)U]i and (∇ρ × ∇P)i , for i = 1, 3, are the
i-components of the corresponding vectors.
From (6), the velocity field U has the components

U = ceχ cos θ, V = 0, W = ceχ sin θ. (22)

Therefore, with (13) in view,

Ux = −kc
eχ sin θ

1 − e2χ
, Uy = s

kc2β

g

eχ (eχ − cos θ)

1 − e2χ
, Uz = kc

eχ (cos θ − eχ )

1 − e2χ

Vx = 0, Vy = 0, Vz = 0

Wx = kc
eχ (cos θ + eχ )

1 − e2χ
, Wy = −s

kc2β

g

eχ sin θ

1 − e2χ
, Wz = kc

eχ sin θ

1 − e2χ
. (23)

From (17) and (13), we also get

(γ1)t = −c(γ1)x , (γ2)t = −c(γ2)x , (γ3)t = −c(γ3)x

(γ1)x = s
k2c2β

g

eχ

(1 − e2χ )2

[
− cos θ(1 + eχ cos θ) − eχ sin2 θ

1 + e2χ

1 − e2χ

]

(γ1)z = −s
k2c2β

g

eχ sin θ

(1 − e2χ )2

[
eχ cos θ + (1 − eχ cos θ)

1 + e2χ

1 − e2χ

]

(γ2)x = −4k2c
e3χ sin θ

(1 − e2χ )3

(γ2)z = −4k2c
e2χ

(1 − e2χ )3
(1 − eχ cos θ)

(γ3)x = s
k2c2β

g

eχ sin θ

(1 − e2χ )2

[
−(1 + eχ cos θ) + eχ cos θ

1 + e2χ

1 − e2χ
− 2e2χ

1 − e2χ

]

(γ3)z = s
k2c2β

g

eχ

(1 − e2χ )2

[
−eχ sin2 θ + cos θ(1 − eχ cos θ)

1 + e2χ

1 − e2χ

−(1 − eχ cos θ)
2eχ

1 − e2χ

]
. (24)

Substituting (22)–(24) into the left-hand side of the Eqs. (19)–(21), and taking into account
the dispersion relation

c2k + 2Ωc − g = 0, (25)
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590 D. Ionescu-Kruse

we get that all the components of the vector (∇ρ × ∇P) are equal to zero, that is,

∇ρ × ∇P ≡ 0. (26)

Therefore, the equatorially trapped waves (6) in stratified water have to be barotropic with
a density ρ of the form (18). We observe that the structure of the particle trajectories (6) is
indeed such that the lines of constant pressure are identical with the lines of constant density.
At the equator, where s = 0, the pressure is constant on the curve obtained by setting r = r0
in (6). At planes parallel to the plane of the equator, s =const, the pressure is constant on the
curve obtained by setting r = r(s) in (6), where r(s) is the solution of the equation (16).

3 Short-wavelength instability method for barotropic geophysical flows

We suppose now that a geophysical flow (U(t, x), P(t, x))which satisfies the system (1)–(3),
with a density ρ of the form (18) is disturbed by a small perturbation

(u(t, x), p(t, x)). (27)

By the incompressibility condition (2) and by the relation (18), the equation (3) becomes

Pt + U · ∇P = 0. (28)

We substitute U + u and P + p into the equations (1), (2) and (28), we develop

1

f (P + p)
= 1

f (P)
− f ′(P)

f 2(P)
p + O(p2),

and by neglecting the terms that are quadratic in u, quadratic in p and the terms of the form
u · ∇ p, we get the linearized equations governing the dynamics of the small perturbation

ut + (U · ∇)u + (u · ∇)U + Lβ,Ωu = −∇
(

p

f (P)

)
(29)

∇ · u = 0 (30)

pt + u · ∇P + U · ∇ p = 0, (31)

with Lβ,Ω given by

Lβ,Ω :=
⎛
⎝

0 −βy 2Ω
βy 0 0

−2Ω 0 0

⎞
⎠ . (32)

We make now the Wentzel–Kramers–Brillouin (WKB) ansatz for the perturbation, that is, a
rapidly oscillating initial disturbance u0 of the form

u0 := u(0, x) = A(0, x)e
i
ε
φ(0,x) =: A0(x)e

i
ε
φ0(x), (33)

is supposed to have in time the following evolution

u(t, x) = [A(t, x) + εA(t, x)] e
i
ε
φ(t,x) + εurem(t, x, ε) (34)

p(t, x) = [B(t, x) + εB(t, x)] e
i
ε
φ(t,x) + εprem(t, x, ε), (35)

where ε is a small parameter, A, A are vector functions, and φ, B, B are scalar functions.
Substituting (34) into (30) yields

A · ∇φ = 0 (36)
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Instability of equatorially trapped waves in stratified water 591

A · ∇φ = i∇ · A (37)

∇ · urem = −e
i
ε
φ(∇ · A). (38)

By (37), A can be expressed in terms of A and ∇φ,

A = i
∇ · A
|∇φ|2 ∇φ. (39)

Substituting (34) and (35) into (29) we get

(φt + U · ∇φ)A = − B

f (P)
∇φ (40)

At + (U · ∇)A + (A · ∇)U + Lβ,ΩA + iA (φt + U · ∇φ)

= −
[
∇
(

B

f (P)

)
+ iB

f (P)
∇φ

]
(41)

(urem)t + (U · ∇)urem + (urem · ∇)U + ∇
(

prem
f (P)

)

= −e
i
ε
φ(t,x)

[
∇
(

B

f (P)

)
+ Lβ,ΩA

+At + (U · ∇)A + (A · ∇)U] (42)

By virtue of (36), for A �= 0 and ∇φ �= 0, (40) gives the eikonal equation

φt + U · ∇φ = 0 (43)

and

B = 0. (44)

Therefore, (41) becomes

At + (U · ∇)A + (A · ∇)U + Lβ,ΩA = − iB

f (P)
∇φ (45)

Taking the scalar product of (45) with the vector ∇φ, we get

B = i f (P)
∇φ · [At + (U · ∇)A + (A · ∇)U + Lβ,ΩA

]

‖∇φ‖2 . (46)

The total time derivative of the orthogonality condition (36) gives

∇φ · [At + (U · ∇)A] = −A · [(∇φ)t + (U · ∇)(∇φ)] , (47)

and the gradient of the Eq. (43) yields the equation

(∇φ)t + (U · ∇)(∇φ) + (∇U)T (∇φ) = 0, (48)

where

∇U :=
⎛
⎝
Ux Uy Uz

Vx Vy Vz
Wx Wy Wz

⎞
⎠ . (49)

Hence, the expression (46) of B can be simplified to

B = i f (P)
∇φ · [2(A · ∇)U + Lβ,ΩA]

‖∇φ‖2 . (50)
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592 D. Ionescu-Kruse

Finally, substituting (34) and (35) into (31) and taking into account (43) and (44), we also
have

A · ∇P = 0 (51)

(prem)t + urem · ∇P = −e
i
ε
φ (Bt + A · ∇P + U · ∇B) . (52)

Summing up, for barotropic incompressible geophysical flows, the WKB evolution of short-
wavelength perturbations are governed, at leading order in powers of ε, by the system

φt + U · ∇φ = 0

At + (U · ∇)A + (A · ∇)U + Lβ,ΩA = ∇φ·[2(A·∇)U+Lβ,ΩA]
‖∇φ‖2 ∇φ.

(53)

with the initial conditions

φ(0, x) = φ0(x), A(0, x) = A0(x) (54)

satisfying

A0 · ∇φ0 = 0. (55)

In (34)–(35), the component B is zero, the components A and B can be expressed in terms
of A and ∇φ, see (39) and (50), respectively. The remainder terms urem, prem satisfy the
following system

(urem)t + (U · ∇)urem + (urem · ∇)U + ∇
(

prem
f (P)

)
= T (56)

∇ · urem = g, (57)

where

T(t, x) := −e
i
ε
φ(t,x)

T(t, x)

T(t, x) := ∇
(

B
f (P)

)
+ Lβ,ΩA + At + (U · ∇)A + (A · ∇)U

(58)

and

g(t, x) := −e
i
ε
φ(t,x)G(t, x), G(t, x) := ∇ · A, (59)

are functions which depend only on A and ∇φ.
In the constant density case, Constantin and Germain [6] obtained for the amplitude A and
the wave phase φ the same system (53)–(55). In the barotropic case considered here, the
componentBwhich appears in the pressure has a different expression, namely, it ismultiplied
by f (P), see (50).
The system of partial differential equations (53) can be written as a system of ordinary
differential equations along the trajectories of the basic flow U(t, x).
Consider the trajectory passing through a point x0,

dx
dt

= U(t, x), x(0) = x0. (60)

The eikonal equation for the wave vector ξ := ∇φ can be written as

dξ

dt
= −(∇U)T ξ , ξ(0) = ξ0. (61)
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Instability of equatorially trapped waves in stratified water 593

This equation will give the wave vector ξ(t; x0, ξ0) having the initial orientation ξ0. The
velocity amplitude A(t; x0, ξ0,A0), which at t = 0 satisfies the condition

A(0) = A0, A0 · ξ0 = 0, (62)

is a solution of the transport equation (53)2

dA
dt

= −(A · ∇)U − Lβ,ΩA + ξ · [2(A · ∇)U + Lβ,ΩA]
‖ξ‖2 ξ . (63)

By (39) and (50), the expressions of A and B depend only on ξ and A; they do not depend
on ε, and hence, in (34)–(35), these terms can be made as small as we want by multiplication
with ε.
urem(t, x, ε) and prem(t, x, ε) can not be found explicitly from the system (56)–(57), but
following the approach presented by Ionescu-Kruse [21] for barotropic incompressible fluids
in the non-geophysical case, their L2-norms are bounded at any time t by functions that can
depend on t but are independent on ε.
In order to find an estimate for the squared norm of urem, that is,

‖urem‖2 =< urem,urem >:=
(∫

D
urem · uremdx

)
, (64)

where < ·, · > is the L2-scalar product, the bar meaning complex conjugation andD a time-
dependent domain, we first give an estimate for the time derivative of the squared norm of
urem. The domainD being time dependent and the fluid incompressible, from (64) we have

d

dt
‖urem‖2 =

∫

D
[∂t + U · ∇] (urem · urem) dx. (65)

Now urem and urem satisfy the system (56)–(57) and its complex conjugate, respectively.
Therefore, (65) becomes

d

dt
‖urem‖2 = −

〈[
(∇U) + (∇U)T

]
urem,urem

〉
+
〈
prem
f (P)

, g

〉

+
〈
g,

prem
f (P)

〉
+ < T,urem > + < urem,T > . (66)

The pressure perturbation was considered zero on the boundary ∂D.
The estimate for the first term in the right-hand side of (66) is (see Joseph [22] sect. 4)

−
〈
[(∇U) + (∇U)T ]urem,urem

〉
≤ C0‖urem‖2, (67)

where C0 = −vol(D)minx∈D(λ1, λ2, λ3) > 0, λ1, λ2, λ3 being the eigenvalues of the
symmetric matrix (∇U) + (∇U)T .
By the complex form of the Cauchy–Schwarz inequality

〈
prem
f (P)

, g

〉
+
〈
g,

prem
f (P)

〉
≤ ‖ prem

f (P)
‖2 + ‖g‖2, (68)

and

< T,urem > + < urem,T >≤ ‖T‖2 + ‖urem‖2. (69)

From (59), (58), (39) and (50),

‖g‖2 = ‖∇ · A‖2 =: K1(t,A, ξ) (70)
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594 D. Ionescu-Kruse

and

‖T‖2 = ‖T‖2 =: K2(t,Lβ,Ω,A, ξ). (71)

By Poincaré’s inequality we find an estimate for the first term in the right-hand side of (68):
����

prem
f (P)

����
2

≤ C1

����∇
(

prem
f (P)

)����
2

, (72)

C1 being a constant which can depend on the time-dependent domain D. Since prem is
vanishing on ∂D,

����∇
(

prem
f (P)

)����
2

= −
〈
Δ

(
prem
f (P)

)
,
prem
f (P)

〉
. (73)

The divergence of the Eq. (56) implies the following Poisson equation

Δ

(
prem
f (P)

)
= ∇ · T − ∇ · [(urem)t + (U · ∇)urem] − ∇ · [(urem · ∇)U]

= ∇ · {T − 2[(urem · ∇)U]} + e
i
ε
φ(t,x) [Gt + U · ∇G] , (74)

the last equality being a consequence of the incompressibility condition, the Eq. (57) and the
eikonal Eq. (43). Replacing (74) into (73) and integrating by parts yields

����∇
(

prem
f (P)

)����
2

=
〈
T − 2[(urem · ∇)U],∇

(
prem
f (P)

)〉

−
〈
e

i
ε
φ(t,x) [Gt + U · ∇G] ,

prem
f (P)

〉
. (75)

By the triangle inequality, we are thus led to
����∇

(
prem
f (P)

)����
2

≤
〈
|T|,

∣∣∣∇
(

prem
f (P)

) ∣∣∣
〉
+ C3

〈
|urem|,

∣∣∣∇
(

prem
f (P)

) ∣∣∣
〉

+
〈∣∣∣ [Gt + U · ∇G]

∣∣∣,
∣∣∣ prem
f (P)

∣∣∣
〉
, (76)

C3 being a time-dependent constant. Finally, we apply the inequality

2ab ≤ 1

μ
a2 + μb2, (77)

which is valid for any positive real numbers a, b, μ. Thus, (76) becomes
����∇

(
prem
f (P)

)����
2

≤ 1

2μ

{‖T‖2 + C3‖urem‖2 + ‖Gt + U · ∇G‖2}

+1

2
μ

{
(1 + C3)

����∇
(

prem
f (P)

)����
2

+
����

prem
f (P)

����
2
}

, (78)

which for a μ such that μ(1 + C3) < 2, yields the inequality
����∇

(
prem
f (P)

)����
2

≤ C4K3(t,Lβ,Ω,A, ξ) + C5‖urem‖2 + C6μ

����
prem
f (P)

����
2

, (79)

K3(t,Lβ,Ω,A, ξ) := ‖T‖2 + ‖Gt + U · ∇G‖2. (80)
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Hence, Poincaré’s inequality (72) yields (after applying one more time (77) in the same
manner as above)

����
prem
f (P)

����
2

≤ C7K3(t,Lβ,Ω,A, ξ) + C8‖urem‖2. (81)

We therefore conclude with the following estimate for the time derivative of the squared
norm of urem

d

dt
‖urem‖2 ≤ C‖urem‖2 + K(t,Lβ,Ω,A, ξ), (82)

where C is a constant that can depend on time by means of the volume integral over the
domain D. For any fixed time interval 0 ≤ t ≤ T , the volume integral can be bounded;
thus, we can consider C as constant on this interval. The leading-order amplitude A(t, x(t))
and the wave vector ξ(t, x(t)) are the solutions of the ODE’s system (63). The matrix Lβ,Ω

depends on x(t) and the constants Ω and β. Therefore, we think of the above inequality as

d

dt
‖urem‖2 ≤ C‖urem‖2 + K(t). (83)

By Gronwall’s inequality, for any fixed time interval 0 ≤ t ≤ T ,

‖urem‖2 ≤
∫ t

0
eC(t−s)K(s)ds, (84)

urem(0) being 0. This type of estimate was obtained in the non-geophysical case by Lifschitz
and E. Hameiri [24] in the constant density case and by Ionescu-Kruse [21] in the barotropic
case.

Thus, on any finite interval of time [0, T ], the term
ε (|A‖ + ‖urem‖) (85)

can be made as small as we want by multiplication with ε. We conclude with the following
sufficient instability criterion with respect to short-wavelength perturbations: a barotropic
incompressible geophysical flow is unstable in the velocity L2-norm near the trajectory
passing through a point x0, if for some ξ0, A0 satisfying A0 · ξ0 = 0, the corresponding
amplitude A(t; x0, ξ0,A0) increases unboundedly in time.

4 Short-wavelength instabilities of equatorially trapped waves in stratified water

In order to apply the sufficient instability criterion obtained above to the equatorially trapped
waves (6) in stratified water, we analyse the ODE system (60)–(63) for these waves. The
equation (60) has the solution (6). Differentiating with respect to t the Jacobian matrix (11)
of the transformation (6), we get the following equation

dF

dt
= F(∇U)T (86)

with∇U thematrix defined in (49). Therefore, by differentiating with respect to t the relation

FG = Id, (87)

G being the inverse matrix of F , we get the equation

dG

dt
= −(∇U)T G. (88)
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In this way, the solution of the initial value equation (61) is

ξ(t) = G(t)F(0)ξ0. (89)

Taking into account the expressions (11) and (13) of the matrices F and G, respectively, (89)
becomes

ξ(t) =

⎛
⎜⎜⎜⎝

1+eχ [cos θ−cos(kq)]−e2χ cos(kct)
1−e2χ

0 eχ [sin θ−sin(kq)]−e2χ sin(kct)
1−e2χ

−s cβg
eχ [sin θ−sin(kq)]+e2χ sin(kct)

1−e2χ
1 s cβg

eχ [cos θ−cos(kq)]+e2χ cos(kct)−e2χ

1−e2χ

eχ [sin θ−sin(kq)]+e2χ sin(kct)
1−e2χ

0 1−eχ [cos θ−cos(kq)]−e2χ cos(kct)
1−e2χ

⎞
⎟⎟⎟⎠ ξ0.

We thus get, for the initial condition

ξ0 = (
0 1 0

)T
, (90)

the solution

ξ(t) = (
0 1 0

)T
, for all t ≥ 0. (91)

By replacing the solution (91) into the equation (63) and taking into account (23), (32), it
follows that the evolution of the amplitude vector A is governed by

dA
dt

=
⎡
⎣−∇U −

⎛
⎝

0 −βs 2Ω
0 0 0

−2Ω 0 0

⎞
⎠
⎤
⎦A(t), (92)

where

∇U = kc
eχ

1 − e2χ

⎛
⎜⎝

− sin θ s cβg (eχ − cos θ) cos θ − eχ

0 0 0
cos θ + eχ −s cβg sin θ sin θ

⎞
⎟⎠ , (93)

χ and θ having the expressions (10).
We denote by (A1(t), A2(t), A3(t))T the components of the vector A(t) in the canonical

basis. For the initial vector ξ0 given by (90) and the condition (62), we must have A2(0) = 0.
Thus, (92) yields

A2(t) = 0, for all t ≥ 0. (94)

This shows that the velocity perturbation lies in the plane perpendicular to the vector
(
0 1 0

)T
for all time. According to (92), the amplitude vector A(t) = (A1(t), 0, A3(t)) satisfies

dA
dt

=
{
−kc

eχ

1 − e2χ
M(t) +

[
−kc

e2χ

1 − e2χ
+ 2Ω

]
N

}
A(t), (95)

where

M(t) =
⎛
⎝

− sin[k(q − ct)] 0 cos[k(q − ct)]
0 0 0

cos[k(q − ct)] 0 sin[k(q − ct)]

⎞
⎠ , N =

⎛
⎝
0 0 −1
0 0 0
1 0 0

⎞
⎠ . (96)

The Eq. (95) written in the canonical basis is non-autonomous.

123



Instability of equatorially trapped waves in stratified water 597

By rotating the canonical basis with the angle
(− kct

2

)
around the axis

(
0 1 0

)T
, the rotation

matrix being

R(t) =
⎛
⎝

cos
( kct

2

)
0 sin

( kct
2

)
0 1 0

− sin
( kct

2

)
0 cos

( kct
2

)

⎞
⎠ , (97)

the Eq. (95) takes the form

dA
dt

=
{
d

dt

[
R−1(t)

]
R(t) − kc

eχ

1 − e2χ
R−1(t)M(t)R(t)

+
[
−kc

e2χ

1 − e2χ
+ 2Ω

]
R−1(t)NR(t)

}
A(t)

=
⎧
⎨
⎩
kc

2
N − kc

eχ

1 − e2χ

⎛
⎝

− sin(kq) 0 cos(kq)

0 0 0
cos(kq) 0 sin(kq)

⎞
⎠

+
[
−kc

e2χ

1 − e2χ
+ 2Ω

]
N

⎫
⎬
⎭A(t). (98)

We thus get in the rotating basis an autonomous system:

dA
dt

= QA(t), (99)

with Q the time-independent matrix

Q= kc

1 − e2χ

⎛
⎜⎝

eχ sin(kq) 0 −eχ cos(kq) + kc(3e2χ −1)−4Ω(1−e2χ )
2kc

0 0 0

−eχ cos(kq) − kc(3e2χ −1)−4Ω(1−e2χ )
2kc 0 −eχ sin(kq)

⎞
⎟⎠ .

The solution to the non-autonomous equation (95) is obtained by multiplying the rotation
matrixR(t)with the solution to the autonomousEq. (99). ThematrixR(t)being timeperiodic,
the behaviour in time of the amplitude vectorA is determined by the eigenvalues of thematrix
Q. The eigenvalues of the matrix Q satisfy the following equation

λ2 =
(

kc

1 − e2χ

)2
{
e2χ −

[
(3kc + 4Ω)e2χ − (kc + 4Ω)

2kc

]2}

= 1

4

(3kc + 4Ω)2e2χ − (kc + 4Ω)2

1 − e2χ
. (100)

From (9)

0 ≤ e2χ < 1, (101)

thus, if

eχ >
kc + 4Ω

3kc + 4Ω
(7)=
√

Ω2 + kg + 3Ω

3
√

Ω2 + kg + Ω
, (102)

then the amplitude A increases unboundedly in time, the exponential growth rate being

λ = 1

2

√
(3kc + 4Ω)2e2χ − (kc + 4Ω)2

1 − e2χ
. (103)
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Constantin and Germain [6] found the condition (102) in their instability analysis of equato-
rially trapped waves in the constant density case.

The condition (102) is satisfied for the equatorially trapped waves with the second com-
ponent of the vorticity (17) smaller than

−1

4

(kc + 4Ω)2

kc(kc + 2Ω)
.

The steepness parameter τ of the wave profile is defined as the amplitude of the wave
multiplied by the wave vector k, that is,

τ(s) = eχ . (104)

Thus, we conclude that also in stratified water the eastward propagating equatorially
trapped waves (6), with wave number k > 0, are unstable to short-wavelength perturba-

tions if the vorticity (17) in the y-direction is smaller than − 1
4

(kc+4Ω)2

kc(kc+2Ω)
or if the steep-

ness parameter τ is higher than kc+4Ω
3kc+4Ω . The exponential growth rate of instabilities is

1
2

√
(3kc+4Ω)2e2χ−(kc+4Ω)2

1−e2χ
.
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