
Annali di Matematica (2016) 195:489–512
DOI 10.1007/s10231-015-0474-2

Qualitative and analytical results of the bifurcation
thresholds to halo orbits

Sara Bucciarelli · Marta Ceccaroni ·
Alessandra Celletti · Giuseppe Pucacco

Received: 4 October 2014 / Accepted: 7 January 2015 / Published online: 23 January 2015
© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag Berlin Heidelberg 2015

Abstract We study the dynamics in the neighborhood of the collinear Lagrangian points
in the spatial, circular, restricted three-body problem. We consider the case in which one
of the primaries is a radiating body and the other is oblate (although the latter is a minor
effect). Beside having an intrinsic mathematical interest, this model is particularly suited
for the description of a mission of a spacecraft (e.g., a solar sail) to an asteroid. The aim
of our study was to investigate the occurrence of bifurcations to halo orbits, which take
place as the energy level is varied. The estimate of the bifurcation thresholds is performed
by analytical and numerical methods: We find a remarkable agreement between the two
approaches. As a side result, we also evaluate the influence of the different parameters, most
notably the solar radiation pressure coefficient, on the dynamical behavior of the model.
To perform the analytical and numerical computations, we start by implementing a center
manifold reduction.Next,we estimate the bifurcation values using qualitative techniques (e.g.
Poincaré surfaces, frequency analysis, FLIs). Concerning the analytical approach, following
Celletti et al. (Lissajous and Halo orbits in the restricted three-body problem, 2015) we
implement a resonant normal form, we transform to suitable action-angle variables, and we
introduce a detuning parametermeasuring the displacement from the synchronous resonance.
The bifurcation thresholds are then determined as series expansions in the detuning. Three
concrete examples are considered, and we find in all cases a very good agreement between
the analytical and numerical results.
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1 Introduction

We consider the motion of a small body with negligible mass in the gravitational field of two
primaries which move on circular trajectories around their common barycenter. We refer to
this model as the spatial, circular, restricted three-body problem (hereafter SCR3BP). As it
is well known (see, e.g., [20]), the SCR3BP admits five equilibrium positions in the synodic
reference frame,which rotatewith the angular velocity of the primaries. Two of such positions
make an equilateral triangle with the primaries, while the other three equilibria are collinear
with the primaries.

While the triangular positions are shown to be stable for a wide range of the mass ratio of
the primaries, the collinear points are unstable. Nevertheless, the collinear equilibria turn out
to be very useful in low energy space missions, and particular attention has been given to the
so-called halo orbits, which are periodic trajectories around the collinear points, generated
when increasing the energy level as bifurcations from the so-called planar Lyapunov family
of periodic orbits.

We will consider a model in which one of the primaries (e.g. the Sun) is radiating; we will
see that in some cases, the effect of the solar radiation pressure (hereafter SRP) on a solar
sail, namely an object with a high value of the area-to-mass ratio, is to lower the bifurcation
threshold, enabling bifurcations before unfeasible. For sake of generality, we also consider
the case in which the other primary is oblate, although this effect is definitely negligible in
many concrete applications [19]. We will consider the following three case studies. The first
one describes the interaction between the Earth–Moon barycenter and the Sun; we will refer
to this case as the Sun–barycenter system. The second sample is provided by the Earth–
Moon system. The last case describes the interaction between the Sun and one of the largest
asteroids, Vesta, for which the effect of SRP is very important.

Our model depends on three main parameters, which are the mass ratioμ of the primaries,
the performance β of the sail providing the ratio between the acceleration of the radiation
pressure to the gravitational acceleration of the main primary (equivalently, one can use the
parameter q = 1−β) and the oblateness denoted by A, defined as A = J2r2e , see [14], where
J2 is the so-called dynamical oblateness coefficient, and re is the equatorial radius of the
planet. We remark that the orientation of the sail is set to be perpendicular with respect to the
direction joining it with the main primary, so that the system still preserves the Hamiltonian
character, and no dissipation is allowed. All results could be easily generalized to the case
in which the orientation of the sail is kept constant (i.e., non-necessarily perpendicular) with
respect to the direction joining it with the main primary as the system would still keep its
Hamiltonian nature.

The aim of this paper was to make concrete analytical estimates of the bifurcations to halo
orbits based on an extension of the theory developed in [4] and to compare the mathematical
results with a qualitative investigation of the dynamics. As a side result, we shall evaluate
the role of the parameters of the model, in particular the solar radiation pressure coefficient
and the oblateness.

The collinear points with SRP and oblateness are shown to be of saddle×center×center
type for typical parameter values (compare with Sects. 2 and 3). According to widespread
techniques, the dynamics can be conveniently described after having applied a reduction to
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the center manifold, which allows us to remove the hyperbolic components. The procedure
consists in applying suitable changes of variables to reduce the Hamiltonian function to a
simpler form and then to compute a Lie series transformation to get rid of the hyperbolic
direction (see, e.g., [10,11]). This procedure is performed in Sects. 3 and 4, taking care of
the modifications required by the consideration of the SRP and of the oblateness. Once the
center manifold Hamiltonian has been obtained, we proceed to implement some numerical
methods to investigate the dynamics as the energy level is varied, precisely we compute
some Poincaré surfaces of section, we perform a frequency analysis, and we determine the
Fast Lyapunov Indicators [6,12,13]. The independent and complementary application of the
three methods has several advantages, as it helps to unveil many details of the complicated
structures arising around the bifurcation values.

As for the analytical estimates (see [4]), after the center manifold reduction, we need also
to construct a fourth-order normal form around the synchronous resonance. After introducing
a coordinate change to action-angle variables for the quadratic part of the Hamiltonian, we
recognize the existence of a first integral of motion. Finally, we introduce a quantity called
detuning, which measures the (small) discrepancy of the frequencies around the synchronous
resonance. The bifurcation threshold will then be computed at the first order in the powers
series expansion in the detuning (see Sect. 5). We stress that, although we consider just the
first non-trivial order of the expansion in the detuning, the analytical estimates are already
in remarkable agreement with the numerical expectation (see Table 4). Clearly, more refined
analytical results can be obtained computing higher order normal forms, at the expense of a
bigger computational effort, and provided the results are performed within the optimal order
of normalization.

To conclude, let us mention that our comparison is made on the three case studies men-
tioned before (Sun–barycenter, Earth–Moon, Sun–Vesta); however, we provide full details
only for the Sun–Vesta case, since the other two samples have been already investigated in
the literature with an extensive use of the Poincaré maps (see, e.g., [8,11]). The reason to
focus on the case of Vesta is the following: Due to the fact that Vesta has a relatively small
mass, the interplay of the parameters gives rise to an interesting and non-trivial dynamical
behavior (see Sect. 6.4). Indeed, in the Sun–Vesta case, we shall see that the SRP plays an
important effect, enabling more bifurcations at relatively low energy levels.

In fact, in the purely gravitational model, only the first bifurcation (the standard halo)
occurs in general [8], when the frequency of the planar Lyapunov orbit is the same as the
frequency of its vertical perturbation. A second bifurcation, in which the planar Lyapunov
trajectory regains stability and a second unstable family appears, is a rather extreme phenom-
enon at high energy values. In the presence of SRP, this second bifurcation occurs instead
at a much lower value of the energy. Moreover, also a third bifurcation may occur in which
the vertical Lyapunov loses stability, and the second family disappears. We will show how
it is possible to predict the influence of SRP on the thresholds with a first-order perturbation
approach.

This paper is organized as follows. In Sect. 2, we introduce the equations of motion, and
we determine the equilibrium points, whose linear stability as the parameters are varied is
discussed in Sect. 3, where we prepare the Hamiltonian for the center manifold reduction
in Sect. 4. The analytical method to determine the bifurcation thresholds is presented in
Sect. 5, while in Sect. 6, we implement the qualitative techniques, namely Poincaré maps,
frequency analysis, and Fast Lyapunov Indicators. The comparison between the analytical
and numerical approaches, as well as some conclusions, are given in Sect. 7.
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2 The three-body problem with an oblate primary and SRP

In this section, we start by introducing the equations of motion describing the SCR3BP with
a radiating larger primary and an oblate smaller primary (see Sect. 2.1). Then, we proceed to
compute the location of the collinear equilibrium points as a function of the parameters μ,
β, A (see Sect. 2.2).

2.1 The equations of motion

Let us denote by μ and 1 − μ the masses of the primaries with μ ∈ (0, 1/2] and let us
assume the units of measure, so that the gravitational constant is unity, and the period of
the primaries is equal to 2π . We consider a synodic reference system (O, X, Y, Z), rotating
with the angular velocity of the primaries, with the origin located at the barycenter of the
primaries and the abscissa along the primaries’ axis. The position of the smaller primary
is at (−1 + μ, 0, 0), while the larger primary is located at (μ, 0, 0). Let (X, Y, Z) be the
coordinates of the third body in this reference frame. Let (PX , PY , PZ ) be the conjugated
kinetic momenta defined as PX = Ẋ − nY , PY = Ẏ + nX , PZ = Ż , where n denotes the
mean motion, n = 2π/Trev and Trev is the period of revolution.

The equations of motion are given by

Ẍ − 2nẎ = ∂Ω

∂X

Ÿ + 2n Ẋ = ∂Ω

∂Y

Z̈ = ∂Ω

∂Z
, (1)

where

Ω = Ω(X, Y, Z) ≡ n2

2
(X2 + Y 2) + q(1 − μ)

r1
+ μ

r2

[
1 + A

2r22

(
1 − 3Z2

r22

)]

with the mean motion given by n =
√
1 + 3

2 A (compare with “Appendix 1”), while

the distances r1, r2 from the primaries are given by r1 = √
(X − μ)2 + Y 2 + Z2 and

r2 =
√

(X − μ + 1)2 + Y 2 + Z2 (see, e.g., [5,15]). We have used q = 1 − β, where the
performance β of the sail is defined by

β ≡ L�Q

4πc GM�B
,

where L� = 3.839 × 1026 W is the Sun luminosity, Q is one plus the reflectivity, c is the
speed of light, G is the gravitational constant, M� the solar mass, and B the mass/area ratio
of the spacecraft.

Notice that Eqs. (1) are associated with the following Hamiltonian function:

H(X, Y, Z , PX , PY , PZ ) = 1

2

(
P2
X + P2

Y + P2
Z

) + nY PX − nX PY − q(1 − μ)

r1

− μ

r2

[
1 + A

2r22

(
1 − 3Z2

r22

)]
. (2)
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2.2 The equilibrium points

It is well known (see, e.g., [20]) that the circular, restricted three-body problem admits the
Lagrangian equilibrium points, precisely the triangular solutions, denoted as L4 and L5, and
the collinear solutions, denoted as L1, L2, L3, the latter being located on the axis joining the
primaries. Due to the oblateness and to the radiation pressure effects, out-of-plane equilibria
can be found in the spatial case (see [5]), but wewill not consider such solutions in the present
work.

To locate the equilibrium positions, we impose that the derivatives of Ω in these points
are zero, say ∂Ω

∂X = ∂Ω
∂Y = ∂Ω

∂Z = 0. In particular, we obtain:

∂Ω

∂Y
= n2Y − qY (1 − μ)

(Y 2 + Z2 + (X − μ)2)
3
2

+ 15AY Z2μ

2(Y 2 + Z2 + (1 + X − μ)2)
7
2

− 3AYμ

2(Y 2 + Z2 + (1 + X − μ)2)
5
2

− Yμ

(Y 2 + Z2 + (1 + X − μ)2)
3
2

,

so that we have ∂Ω
∂Y = 0 whenever Y = 0. In a similar way we obtain:

∂Ω

∂Z
= − qZ(1 − μ)

(Y 2 + Z2 + (X − μ)2)
3
2

+ 15AZ3μ

2(Y 2 + Z2 + (1 + X − μ)2)
7
2

− 9AZμ

2(Y 2 + Z2 + (1 + X − μ)2)
5
2

− Zμ

(Y 2 + Z2 + (1 + X − μ)2)
3
2

and we have ∂Ω
∂Z = 0 whenever Z = 0. As for the derivative with respect to the first

component, we have:

∂Ω

∂X
= n2X − q(1 − μ)(X − μ)

(Y 2 + Z2 + (X − μ)2)
3
2

+ 15AZ2μ(1 + X − μ)

2(Y 2 + Z2 + (1 + X − μ)2)
7
2

− 3A(1 + X − μ)μ

2(Y 2 + Z2 + (1 + X − μ)2)
5
2

− (1 + X − μ)μ

(Y 2 + Z2 + (1 + X − μ)2)
3
2

. (3)

Inserting Y = Z = 0 in (3) we get the equation

n2X − q(1 − μ)(X − μ)

|X − μ|3 − 3Aμ(1 + X − μ)

2|1 + X − μ|5 − μ(1 + X − μ)

|1 + X − μ|3 = 0. (4)

Let us denote by γ j the distance between L j and the closer primary. Since the collinear points
L1, L2, L3 lie in the intervals (−1+μ,μ), (−∞,−1+μ), (μ,+∞), setting X = γ1+μ−1
for L1, X = −γ2 + μ − 1 for L2, X = γ3 + μ for L3, the quantity γ j is found as the unique
positive solution of the following generalized Euler’s equations:

±2n2γ 7
j + (2n2μ − 6n2)γ 6

j ± (6n2 − 4n2μ)γ 5
j + (2n2μ − 2qμ − 2n2 + 2q ∓ 2μ)γ 4

j

+ 4μγ 3
j ∓ (2μ + 3Aμ)γ 2

j + 6Aμγ j ∓ 3Aμ = 0

for j = 1, 2, where the upper sign holds for L1, while the lower sign holds for L2; as for L3,
we have that γ3 is the solution of the following Euler’s equation

2n2γ 7
3 + (8n2 + 2n2μ)γ 6

3 + (12n2 + 8n2μ)γ 5
3 + (8n2 + 2qμ + 12n2μ − 2q − 2μ)γ 4

3

+ (2n2 − 8q − 4μ + 8n2μ + 8qμ)γ 3
3 + (2n2μ − 3Aμ + 12qμ − 12q − 2μ)γ 2

3

+ (8qμ − 8q)γ3 + 2qμ − 2q = 0.
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Making use of equation (4), we show below the dependence of the location of the collinear
points as the parameters (μ, A, β) are varied, where we assume that the parameters belong
to the following intervals1,2:

0 < μ ≤ 0.5, 0 ≤ A ≤ 10−4, 0 ≤ β ≤ 0.5. (5)

Here and in the following sections, we consider three paradigmatic cases, which corre-
spond to a spacecraft or a solar sail orbiting in the Earth–Moon system, in the Sun–barycenter
system, and in the Sun–Vesta system; these three cases encompass missions to satellites,
planets, or asteroids and are characterized by different values of the parameters as well as by
different distances of the collinear points, as reported in Table 2.

3 Linear stability of the collinear points and reduction of the quadratic part

To study the stability of the collinear equilibrium points and their dependency on the para-
meters, we compute the linearization of the equations of motion, which requires to expand
the Hamiltonian in series up to the second order. Indeed, we will expand it directly up to the
fourth order as this will be used for the reduction to the center manifold in Sect. 4. Although
the computation of the linear stability is rather elementary, it is mandatory before performing
the center manifold reduction as in Sect. 4.

3.1 Expansion of the Hamiltonian to fourth order

We shift and scale the equilibrium points by making the following transformation ([11]):

X = ∓γ j x + μ + α, Y = ∓γ j y, Z = γ j z, (6)

where γ j denotes again the distance of L j from the closer primary; the upper sign corresponds
to L1,2 and the lower sign to L3, while α ≡ −1+γ1 for L1, α ≡ −1−γ2 for L2 and α ≡ γ3
for L3. These conventions will hold hereafter. It must be remarked that, in all cases, the
transformation (6) is symplectic of parameter γ 2

j , so that the resulting Hamiltonian must be
divided by such factor. Inserting (6) in (3), we have:

∂Ω

∂X
= n2X + ∂

∂X

[
q(1 − μ)

r1
+ μ

r2
+ Aμ

2r32
− 3γ 2

1 z
2Aμ

2r52

]
;

therefore, we obtain the equation of motion:

∓ẍ ± 2n ẏ ± n2x = n2(μ + α)

γ j
∓ 1

γ 2
j

∂

∂x

[
q(1 − μ)

r1
+ μ

r2
+ Aμ

2r32
− 3γ 2

j z
2Aμ

2r52

]
,

where j = 1, 2, 3. We remark that the inverse of the distances are transformed as

1

r1
= 1

γ j

√(
x ∓ α

γ j

)2 + y2 + z2
,

1

r2
= 1

γ j

√(
−x ± α+1

γ j

)2 + y2 + z2
.

1 The upper bound on A, say A ≤ 10−4, is definitely large for solar system bodies, but it might apply to
extrasolar planetary systems.
2 A realistic upper bound on the sail performance should be β ≤ 0.1; however, we consider β up to 0.5 as it
is often done in the literature, see e.g., [9].
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In a similar way, for the other two components we obtain:

∓γ j ÿ ∓ 2nγ j ẋ = ∓n2(γ j y) ∓ 1

γ j

∂

∂y

[
q(1 − μ)

r1
+ μ

r2
+ Aμ

2r32
− 3γ 2

1 z
2Aμ

2r52

]

γ j z̈ = 1

γ j

∂

∂z

[
q(1 − μ)

r1
+ μ

r2
+ Aμ

2r32
− 3γ 2

1 z
2Aμ

2r52

]
.

Expanding in Taylor series 1/r1, 1/r2 and their powers, we compute the linearized equations
as

ẍ − 2n ẏ − (n2 − 2a)x = 0

ÿ + 2nẋ + (−n2 + b)y = 0

z̈ + cz = 0,

where the quantities a, b, c take different values according to the considered equilibrium
point. Since in the following sections, we shall analyze only L1 and L2, we provide the
explicit values for such positions. Precisely, one has:

a = q(1 − μ)

α3 ∓ μ

(1 + α)3
∓ 3Aμ

(1 + α)5

b = −q(1 − μ)

α3 ± μ

(1 + α)3
± 3Aμ

2(1 + α)5

c = −q(1 − μ)

α3 ± μ

(1 + α)3
± 9Aμ

2(1 + α)5
,

where the upper sign holds for L1 and the lower sign for L2.
Setting for shortness Δ ≡ 3Aμ

2|1+α|5 , we can write a and c in terms of b as

a = −(b + Δ), c = b + 2Δ. (7)

It results that Δ > 0 and b > 0 for all A > 0, μ > 0, β > 0.
Finally, the complete equations of motion in the new variables can be written as

ẍ − 2n ẏ − (n2 − 2a)x = 1

γ 2
j

∂

∂x

∑
n≥3

Hn

ÿ + 2nẋ + (−n2 + b)y = 1

γ 2
j

∂

∂y

∑
n≥3

Hn

z̈ + cz = 1

γ 2
j

∂

∂z

∑
n≥3

Hn, (8)

where Hn are suitable polynomials of degree n. Defining the momenta as px = ẋ − ny,
py = ẏ + nx , pz = ż and using (8), the Hamiltonian function (2) becomes

H(x, y, z, px , py, pz) = 1

2

(
p2x + p2y + p2z

)
+ nypx − nxpy + ax2 + 1

2
by2

+ 1

2
cz2 − 1

γ 2
j

∑
n≥3

Hn . (9)
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3.2 Reduction of the quadratic terms and linear stability

The quadratic part of the Hamiltonian (9) is given by

H2(x, y, z, px , py, pz) = 1

2

(
p2x + p2y

)
+ nypx − nxpy + 1

2
p2z + ax2 + 1

2
by2 + 1

2
cz2.

By (7), it results that c > 0 for each of the equilibrium points. This implies that the vertical
direction is described by a harmonic oscillator with frequency ω2 = √

c, namely:

ṗz = −∂H

∂z
= −cz, ż = ∂H

∂pz
= pz .

As for the planar directions, following [11] the quadratic part of the Hamiltonian, that we
keep denoting as H2, is given by

H2(x, y, px , py) = 1

2

(
p2x + p2y

)
+ nypx − nxpy + ax2 + 1

2
by2.

Denoting by J the symplectic matrix, the equations of motion are given by⎛
⎜⎜⎝

ẋ
ẏ
ṗx
ṗy

⎞
⎟⎟⎠ = J Hess(H2)

⎛
⎜⎜⎝

x
y
px
py

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 n 1 0
−n 0 0 1
−2a 0 0 n
0 −b −n 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x
y
px
py

⎞
⎟⎟⎠ .

Let us define the matrix M as

M ≡ J Hess(H2); (10)

the associated characteristic polynomial is given by

p(λ) = λ4 + (2n2 + 2a + b)λ2 + (n4 − 2an2 − bn2 + 2ab). (11)

Setting η = λ2, the roots of the polynomial (11) are given by

η1 = −2n2 − 2a − b − √
16an2 + 4a2 + 8bn2 − 4ab + b2

2

η2 = −2n2 − 2a − b + √
16an2 + 4a2 + 8bn2 − 4ab + b2

2
.

In order to study the stability of the collinear equilibrium points, we have to establish the
domains in which λ1,3 = ±√

η1 and λ2,4 = ±√
η2 are real, complex or imaginary. In

particular, a given equilibrium point L j will be linearly stable, if η1 and η2 are purely
imaginary, while it is unstable elsewhere. We are interested to the case in which the collinear
points are of the type saddle×center×center, which occurs whenever η1 < 0 and η2 > 0.
This is equivalent to require that the following inequalities are satisfied:⎧⎨

⎩
16an2 + 4a2 + 8bn2 − 4ab + b2 ≥ 0
−2n2 − 2a − b + √

16an2 + 4a2 + 8bn2 − 4ab + b2 > 0
−2n2 − 2a − b − √

16an2 + 4a2 + 8bn2 − 4ab + b2 < 0.
(12)

Using (7), the inequalities (12) become:⎧⎨
⎩
9b2 + 4Δ(−4n2 + Δ) + b(−8n2 + 12Δ) ≥ 0
b − 2n2 + 2Δ + √

9b2 + 4Δ(−4n2 + Δ) + b(−8n2 + 12Δ) > 0
b − 2n2 + 2Δ − √

9b2 + 4Δ(−4n2 + Δ) + b(−8n2 + 12Δ) < 0.
(13)
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The first condition in (13) is satisfied whenever

b >
2

9

(
2n2 − 3Δ + 2

√
n4 + 6n2Δ

)
. (14)

Given that the function at the right hand side of (14) reaches its maximum n2 for Δ = n2
2 ,

the inequality (14) is verified if b > n2 =
√
1 + 3

2 A. The second and third conditions in (13)
can be reduced to verify just that

8b2 + b(8Δ − 4n2) − 8n2Δ − 4n4 > 0,

which is satisfied again if b > n2, which holds for all values of the oblateness, the solar
radiation pressure and the mass parameter in the intervals defined in (5). This concludes
the discussion of the stability character of the collinear points, including the solar radiation
pressure and the oblateness of one of the primaries.

4 Center manifold reduction

Due to the saddle × center × center character of the collinear equilibrium points (see
Sect. 3), we proceed to perform the reduction to the center manifold. The adopted procedure
is a straightforward extension of that used in [11], provided that we include the necessary
modifications to consider the effects of the oblateness and the solar radiation pressure. For
completeness, we report here the main steps to treat the Hamiltonian (2) (see “Appendix 3”
for more details). We stress that after removing the hyperbolic direction, we will be able
to perform a qualitative analysis based on Poincaré sections, frequency analysis and Fast
Lyapunov Indicators as it is done in Sect. 6.

Taking into account that η1 < 0 and η2 > 0, let ω1 = √−η1 and λ1 = √
η2; we look

for a change of variables, so that we reach a simpler form of the Hamiltonian. As described
in detail in “Appendix 2”, this is obtained by computing the eigenvalues and eigenvectors of
M in (10), which provide a transformation allowing to get a Hamiltonian with the following
quadratic part (with a slight abuse we keep the same notation for all variables):

H2(x, y, z, px , py, pz) = λ1xpx + ω1

2

(
p2y + y2

)
+ ω2

2

(
p2z + z2

)
, (15)

where

λ1 =
√

−2n2 − 2a − b + √
16an2 + 4a2 + 8bn2 − 4ab + b2

2

ω1 =
√

−−2n2 − 2a − b − √
16an2 + 4a2 + 8bn2 − 4ab + b2

2

ω2 = √
c.

In analogy to [11], we introduce the following complex transformation

x = q1, y = q2 + i p2√
2

, z = q3 + i p3√
2

px = p1, py = iq2 + p2√
2

, pz = iq3 + p3√
2

,
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which provides a complex expression for the Hamiltonian; we report here the quadratic part
of the Hamiltonian, which takes the form:

H2(q1, q2, q3, p1, p2, p3) = λ1q1 p1 + iω1q2 p2 + iω2q3 p3. (16)

Beside the quadratic part (16), we need to compute the nonlinear terms. Straightforward but
tedious computations, performed by means of the Mathematica© algebraic manipulator,
allow us to find the expressions of H3 and H4 in complex variables. Afterward, we shall
implement a Lie series transformation to obtain the reduction to the center manifold as
described in the following section.

4.1 Reduction to the center manifold

The reduction to the center manifold is obtained by making suitable changes of variables by
using Lie series (see “Appendix 3”). Indeed, we conjugate the SCR3BP to a Hamiltonian of
the form

H(q, p) = λ1q1 p1 + iω2q2 p2 + iω3q3 p3 +
∑
n≥3

Hn(q, p),

for suitable coordinates (q1, q2, q3) and momenta (p1, p2, p3), where the quadratic part
has been obtained in (16) and Hn denotes a homogeneous polynomial of degree n. In the
linear approximation, the center manifold is obtained by imposing q1 = p1 = 0, since the
hyperbolicity pertains to such variables. Then, we will require that q̇1(0) = ṗ1(0) = 0 for
q1(0) = p1(0) = 0, so that we obtain q1(t) = p1(t) = 0 for any time, due to the autonomous
character of the problem. Taking into account Hamilton’s equations

q̇i = Hpi , ṗi = −Hqi ,

this requirement is satisfied whenever in the series expansion of the Hamiltonian all mono-
mials of the type hi j qi p j with i1 
= j1 are such that hi j = 0, being i = (i1, i2, i3)
and j = ( j1, j2, j3). In this way, we obtain a Hamiltonian of the form H(q, p) =
HN (q, p) + RN (q, p), where HN (q, p) is a polynomial of degree N in (q, p) without
terms depending on the product q1 p1, while RN (q, p) is a reminder of order N + 1. We
refer to “Appendix 3” for the description of a procedure based on Lie series to determine
explicitly the required canonical transformation. Let us denote by (y, z, py, pz) the normal-
ized variables; the final expression of the Hamiltonian reduced to the center manifold has the
following form:

H̃(y, z, py, pz)= ω1

2

(
p2y+y2

)
+ ω2

2

(
p2z + z2

) + H̃3(y, z, py, pz) + H̃4(y, z, py, pz),

(17)

where H̃3, H̃4 denote homogeneous polynomials of degree, respectively, 3 and 4. The fre-
quencies ω1, ω2, as well as those of the higher order terms, depend on the choice of the
parameters and will be specified in each concrete case.

5 Analytical estimates of the bifurcation thresholds

Analytical results providing an estimate for the value of the thresholds atwhich the bifurcation
of halo orbits takes place have been presented in [4]. The result is briefly summarized as
follows. After the reduction to the center manifold, a normal form is computed around
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the synchronous resonance. The resulting normal form admits a first integral, related to
the action variables of the harmonic oscillator (i.e., the quadratic part in [17]). A detuning
measuring the displacement around the synchronous resonance is introduced; assuming that
the detuning is small, one can compute the bifurcation threshold at different orders in the
powers series expansion in the detuning. In [4], the computation at first and second order
has been performed. Here, we extend the method of [4] by computing the thresholds for
the model including oblateness and solar radiation pressure. As we will see in Sect. 6, the
case in which the parameter β is different from zero allows one to find several bifurcations
at relatively low energy levels. We anticipate that the analytical estimates computed in this
section will agree with the numerical values of Sect. 6 (see Table 4).

Let us write (17) in complex form, implementing the following change of coordinates:

Q2 =
√
2

2i
(p2 + iq2), Q3 =

√
2

2i
(p3 + iq3) ,

P2 =
√
2

2
(p2 − iq2), P3 =

√
2

2
(p3 − iq3).

Next, we introduce action-angle variables (I2, I3, θ2, θ3) for the quadratic part of the Hamil-
tonian by means of the change of coordinates:

Q2 = −i
√
I2 e

iθ2 , Q3 = −i
√
I3 e

iθ3 ,

P2 = √
I2 e

−iθ2 , P3 = √
I3 e

−iθ3 ,

so that we obtain a Hamiltonian of the form

H(θ2, θ3, I2, I3) = ω2 I2 + ω3 I3 + H̃3(θ2, θ3, I2, I3) + H̃4(θ2, θ3, I2, I3).

To investigate the appearance of the resonant periodic orbits, we compute a normal form in
the neighborhood of the synchronous resonance ω2 = ω3. The explicit computation shows
that the first non-trivial order is given by H̃4, since the third degree term H̃3 does not contain
resonant terms. We are thus led to a resonant normal form given by

HNF (θ2, θ3, I2, I3) = ω2 I2 + ω3 I3 + [
a20 I

2
2 + a02 I

2
3 + I2 I3(a11+2b11 cos(2θ2 − 2θ3)

]
,

(18)

where the coefficients a20, a02, a11, b11 are evaluated explicitly in Table 1.
The dynamics is determined by the normal modes Ik = const., k = 2, 3 and by the

periodic orbits in general position, related to the resonance. The normal modes always exist
and at low energies are both stable: I2 = const., I3 = 0 gives rise to the planar Lyapunov
orbit; I2 = 0, I3 = const. gives rise to the vertical Lyapunov orbit. When stable, these orbits
are surrounded by families of Lissajous tori. The resonant families may appear as bifurcation
from the normal mode at some given energy threshold and are determined by the condition
that the frequency of the normal mode is equal to that of its normal perturbation. The normal
modes can be again stable through a second bifurcation; a concrete example of a second
bifurcation for the Earth–Moon case is given in [8] (we refer to [4,16–18] for further details).
To investigate the possible sequences of bifurcations, we proceed as follows.

From Hamilton’s equations associated with (18), it is readily seen that İ2 + İ3 = 0. This
remark leads to introduce the following change of variables ([4]):
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Table 1 Coefficients of the normal form (18) around L1 for the Earth–Moon, Sun–barycenter, Sun–Vesta
systems with and without solar radiation pressure

a20 a02 a11 b11

Earth–Moon 0.162109 0.144891 0.0726274 0.116537

Sun–barycenter β = 0 0.0989667 0.08098 −0.0256235 0.102138

Sun–barycenter β = 10−2 0.136123 0.108011 0.0189407 0.11106

Sun–Vesta β = 0 0.0957347 0.0777063 −0.0304854 0.101319

Sun–Vesta β = 10−2 0.0157472 0.00203253 4.11966 10−7 0.00533371

E = I2 + I3, R = I2,

ν = θ3, ψ = θ2 − θ3. (19)

Moreover, following [4] let us introduce the detuning δ as

δ = ω2 − ω3,

which measures the displacement from the synchronous resonance. Using (19) the Hamil-
tonian (18) becomes

Hnew(E,R, ν, ψ) = E + δ̃R + aR2 + bE2 + cER + d(R2 − ER) cos 2ψ,

where δ̃ = δ/ω3, a = (a20 + a02 − a11)/ω3, b = a02/ω3, c = (a11 − 2a02)/ω3, d =
−2b11/ω3.

It has been shown in [4] that the equilibria associated with Hamilton’s equations of Hnew

can be classified as inclined (or ‘anti-halo’) when ψ = 0 or ψ = π , and loop (or ‘halo’),
when ψ = ±π/2. In view of the reflection symmetries, each case actually corresponds to a
double family. They exist at the following level values of the integral of motion E :

Eiy = δω2
2

−a11 + 2(a20 − b11)
, Ei z = δω2

2

−2a02 + a11 + 2b11
, (20)

for the inclined families and

E�y = δω2
2

−a11 + 2(a20 + b11)
, E�z = δω2

2

−2a02 − a11 + 2b11
, (21)

for the loop families. These values correspond to a first-order computation in the detuning;
refined (but more complicated) values at second order have been found analytically in [4].

The physical interpretation of the thresholds in (20) and (21) is the following. The quantity
E�y determines the bifurcation of the halo families from the planar Lyapunov orbit, when
this becomes unstable. At Eiy , the planar Lyapunov orbit turns back to being stable and one
observes the bifurcation of the (unstable) anti-halo orbits. Finally, the two unstable families
which have been formed collapse on the vertical at Ei z . The disappearance of the halo at E�z

never occurs in all cases we have investigated.
This sequence of bifurcations will be clearly shown in the case of the asteroid Vesta under

the effect of solar radiation pressure (see Sect. 6).

123



Qualitative and analytical results of the bifurcation thresholds to halo orbits 501

6 Qualitative analysis of the bifurcation values

On the basis of the center manifold reduction obtained in Sect. 4, we implement some
numerical techniques which allow us to characterize the dynamics and, in particular, to
distinguish between the different types of orbits, precisely planar Lyapunov and halo orbits,
the latter ones obtained at specific levels of the energy at which the bifurcation takes place.
As concrete models, we consider three paradigmatic cases, characterized by different values
of the mass ratio: a relatively high value as in the Earth–Moon system, an intermediate mass
ratio as for the Sun–barycenter system (between the barycenter of the Earth–Moon system
and the Sun), and a low value as in the Sun–Vesta system.

6.1 Poincaré section

To get a qualitative description of the dynamics in the center manifold, we start by computing
a Poincaré section as follows. We set z = 0 and we fix an energy level H = h0, from which
we compute the initial value of pz choosing the solution with pz > 0. The Poincaré section
is then shown in the plane (y, py); we will see that, as the energy increases and exceeds a
specific energy value, halo orbits arise from bifurcations of planar Lyapunov periodic orbits.

6.2 Frequency analysis

This technique consists in studying the behavior of the frequency map ([12,13]), which is
obtained computing the variation of the absolute value of the ratio of the frequencies, say
ωr = |ωy/ωz |, as a function of the initial values of the action variables, whereas the initial
conditions of the angles can be set to zero (see, e.g., [3], see also [2]).

The frequency analysis has the advantage to be computationally fast, and it allows us to
obtain a complementary investigation of the occurrence of halo orbits. Precisely, we proceed
as follows. Concerning the initial conditions, we fix as starting values z = 0 and py = p0y ,
we scan over initial values for y in a given interval and for an assigned energy level H = h0,
we compute the corresponding value of pz . We find convenient to avoid using Cartesian
variables, and we rather transform to action-angle variables for the quadratic part of (17).
Thus, we introduce harmonic oscillator actions (Jy, Jz) defined through the expressions

py = √
2Jy cos θy, y = √

2Jy sin θy,

pz = √
2Jz cos θz, z = √

2Jz sin θz,

where (θy, θz) denote the conjugated angle variables. Next, we perform a first-order perturba-
tion theory by averaging over the angle variables to obtain a normalized Hamiltonian, whose
derivative provides an expression for the frequencies associated with the given initial condi-
tions. Finally, we back transform to the variables (Jy, Jz) to get a frequency vector (ωy, ωz)

associated with the previous initial data. The frequency map is obtained by computing the
variation of ωr = |ωy/ωz | as the initial condition is varied.

6.3 Fast Lyapunov Indicator

In order to investigate the stability of the dynamics in the center manifold, we compute a
quantity called the Fast Lyapunov Indicator (hereafter FLI), which is determined as the value
of the largest Lyapunov characteristic exponent at a fixed time (see [6]). By comparing the
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Table 2 Main parameters and
location (in normalized units) of
the collinear points for the
Earth–Moon, Sun–barycenter,
Sun–Vesta systems

Earth–Moon Sun–barycenter Sun–Vesta

μ 1.2154 · 10−2 3.040423 · 10−6 1.3574 · 10−10

J2 2.034 · 10−4 1081 · 10−6 0.0812232

A 4.15559 · 10−9 1.96782 · 10−12 4.54776 · 10−14

β 0 10−2 10−2

L1 −0.836898 −0.988731 −0.996651

L2 −1.1557 −1.00908 −1.000115

L3 1.00506 0.996657 0.996655

values of the FLIs as the initial conditions or suitable parameters are varied, one obtains an
indication of the dynamical character of the orbits (precisely Lyapunov or halo) as well as of
their stability. The explicit computation of theFLI proceeds as follows. Let ξ = (y, z, py, pz),
let the vector field associated with (17) be denoted as

ξ̇ = f (ξ), ξ ∈ R4,

and let the corresponding variational equations be

η̇ =
(∂ f (ξ)

∂ξ

)
η , η ∈ R4.

Having fixed an initial condition ξ(0) ∈ R4, η(0) ∈ R4, the FLI at a given time T ≥ 0 is
obtained by the expression

FLI(ξ(0), η(0), T ) ≡ sup
0<t≤T

log ||η(t)||,

where ‖ · ‖ denotes the Euclidean norm.

6.4 Applications

We proceed to implement the techniques described in Sects. 6.1, 6.2, 6.3 to the concrete sam-
ples provided by the Earth–Moon, Sun–barycenter, Sun–Vesta systems. The computations
have been performed using Mathematica© as well as developing dedicated programs in a
general purpose programming language. The parameters associated with these three samples
are listed in Table 2.

The values of the quantities introduced in Sect. 4, needed for the centermanifold reduction,
are listed in Table 3.

We analyze in detail the Sun–Vesta case, which presents several interesting features as the
different parameters are varied. We start by computing the Poincaré surfaces of section of
the center manifold associated with L1. We report in Fig. 1 the Poincaré sections in the plane
(y, py) with only the gravitational effect, namely with β = 0 (no solar radiation pressure)
and A = 0 (no oblateness). The maps show that the appearance of halo orbits occurs for an
energy value approximately equal to h = 0.35 (more accurate computations will provide the
bifurcation value h = 0.3341, compare with Table 4). For higher levels of the energy, the
amplitude of the halo orbits increases as shown by the map at h = 0.5.

A different situation occurs when the radiation pressure and the oblateness are switched
on, as shown in Fig. 2 which reports the Poincaré sections for the case with β = 10−2 and
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Table 3 Quantities for the center
manifold reduction associated
with the Earth–Moon,
Sun–barycenter, Sun–Vesta
systems

Earth–Moon Sun–barycenter Sun–Vesta

γ1 0.150948 0.01127 0.00334854

α(γ1) −0.836898 −0.98873 −0.996651

a −5.14772 −3.15056 −1.00363

b 5.14772 3.15056 1.00363

c 5.14772 3.15056 1.00363

λ1 2.9321 2.13994 0.10407

ω1 2.33441 1.85169 1.0036

ω2 2.26886 1.77498 1.00181

s1 14.9084 9.6584 0.79682

s2 23.4324 12.6138 2.02523
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Fig. 1 Poincaré sections of the center manifold associated with L1 of the Sun–Vesta system on the plane
(y, py) without solar radiation pressure (i.e., β = 0) and no oblateness (i.e., A = 0); different values of the
energy are taken into account: h = 0.2 (left panel), 0.35 (middle), 0.5 (right)

A = 4.54776 · 10−14. Indeed, we have noticed that the oblateness has a small effect, while
the parameter β plays a major rôle in shaping the dynamics. In fact, a comparison between
Figs. 1 and 2 shows that the sequence of bifurcations is completely different.

In Fig. 2 we observe a regular behavior for h = 0.04, while already at h = 0.05 the
dynamics experiences a first bifurcation with the appearance of halo orbits and simultaneous
loss of stability of the planar Lyapunov orbit. A second bifurcation of unstable inclined
orbits takes place at about h = 0.1; at this stage, the planar Lyapunov orbit regains stability
(compare also with [8]), as shown in Fig. 2 where the planar Lyapunov orbit is given by
the outermost curve. For increasing values of the energy, the unstable families (which are
located on the vertical axis of the plot for h = 0.4) collapse on the vertical Lyapunov orbit
at the center of the axes (see the bottom right panel of Fig. 2). This corresponds to the third
bifurcation, which is shown at about h = 0.4.

The above results are confirmed by the study of the model through frequency analysis, as
shown in Figs. 3 and 4.

In particular, in Fig. 3, we provide the results of the frequency analysis for the Sun–Vesta
case without solar radiation pressure and no oblateness in the (J 0y , ωr ) plane with J 0y the
initial condition and ωr = |ωy/ωz |. The first plot corresponds to h = 0.2, and it shows a
regular behavior as it was found in the first plot of Fig. 1. The occurrence of small halo orbits
in the frequency analysis investigation corresponds to the two tiny bumps at the outermost
sides of the plot for h = 0.35 in Fig. 3; these bumps increase in size for h = 0.5, in full
agreement with the corresponding plot of Fig. 1.

The results of the investigation through frequency analysis in the case with solar radiation
pressure and oblateness are provided in Fig. 4, which corresponds to the Sun–Vesta case with
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Fig. 2 Poincaré sections of the center manifold associated with L1 of the Sun–Vesta system on the plane
(y, py) with β = 10−2 and A = 4.54776 · 10−14; different values of the energy are taken into account:
h = 0.04 (upper left panel), 0.05 (upper right), 0.1 (bottom left), 0.4 (bottom right)

Fig. 3 Frequency analysis in the plane (J0y , ωr ) for the Sun–Vesta case with β = 0, A = 0; different values
of the energy are taken into account: h = 0.2 (left panel), 0.35 (middle), 0.5 (right)

Fig. 4 Frequency analysis in the plane (J0y , ωy) for the Sun–Vesta case with β = 10−2 and A = 4.54776 ·
10−14; different values of the energy are taken into account: h = 0.04 (upper left panel), 0.05 (upper right),
0.1 (bottom left), 0.4 (bottom right)

β = 10−2 and A = 4.54776 · 10−14. Again we find full agreement with the Poincaré maps
provided in Fig. 2. Precisely, the upper left panel of Fig. 4 shows a regular behavior, while
tiny bumps, corresponding to the bifurcation of the halo orbits for h = 0.05, are present in
the upper right panel of Fig. 4. The three island regimes occurring for h = 0.1 correspond
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Fig. 5 Fast Lyapunov Indicators for the Sun–Vesta case with β = 0, A = 0; different values of the energy
are taken into account: h = 0.2 (left panel), 0.35 (middle), 0.5 (right)

Fig. 6 Fast Lyapunov Indicators for the Sun–Vesta case with β = 10−2 and A = 4.54776 · 10−14; different
values of the energy are taken into account: h = 0.04 (upper left panel), 0.05 (upper right), 0.1 (bottom left),
0.4 (bottom right)

to the central bump and the two left and right wings of the bottom left panel. Finally, for
h = 0.4, we observe a singular behavior on the vertical axis of the bottom right panel of
Fig. 4, which corresponds to the vertical Lyapunov orbit at the origin of the coordinates in
Fig. 2.

The computation of the FLIs provides additional information: Beside the overall structure
of the phase space, it yields the regular or chaotic character of the different trajectories.
In particular, we can locate the separatrices, which were not easily determined within the
Poincaré maps (compare, e.g., Fig. 2 bottom left, Fig. 6 bottom left).

In Fig. 5, we provide the results obtained computing the FLIs for the Sun–Vesta case
without solar radiation pressure and no oblateness; the results must be compared with Fig. 1
in order to distinguish the different orbits on the Poincarémaps and to determine their stability
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Fig. 7 A zoom on the cases with β = 0, h = 0.35 (left panel) and β = 10−2, h = 0.05 (right)

on the FLI plots. The color bar on the side of each plot gives the quantitative value of the
FLI.

In Fig. 6, we provide the results obtained computing the FLIs for the Sun–Vesta case with
β = 10−2 and A = 4.54776 · 10−14. Again, Fig. 6 must be compared with Fig. 2 in order
to identify the various trajectories on the Poincaré sections and to characterize their stability
on the FLI plots. It is remarkable how the FLI plots highlight also the separatrices as shown
in particular in the bottom panels of Fig. 6.

When the halo orbits are very tiny, a zoom becomes necessary, as shown in Fig. 7, where
we provide a magnification of the plots obtained in the cases with β = 0, h = 0.35 (left
panel) and β = 10−2, h = 0.05 (right panel).

In the panels of Fig. 6, we notice some lighter regions which are mainly along the hor-
izontal direction (compare with the bottom right panel); these zones do not have a real
dynamical meaning, but they are rather an artifact of the choice of the initial tangent vector,
as the FLI strongly depends on this choice. In Fig. 6, the tangent vector has been fixed as
(vpx , vpy , vx , vy) = (1, 0, 0, 0), and we observe that lighter regions occur in the direction
perpendicular to the chosen tangent vector. A reliable description of the dynamical character
of a specific region by means of the FLIs can only be obtained by comparing the plots pro-
duced using different tangent vectors in orthogonal directions or, alternatively, by increasing
very much the accuracy of the computations. However, we remark that the analysis of Fig. 6
suffices to distinguish the bifurcations as well as the main structures, like halo orbits or
separatrices; further refinements go beyond the aims of the present work.

7 Analytical versus numerical results

In this section, we compare the results which are obtained implementing the analytical for-
mulae (20)–(21) for the computation of the bifurcation thresholds with the numerical values
obtained through the Poincaré maps or the FLIs.

The analytical and numerical bifurcation values for all three case studies (Earth–Moon,
Sun–barycenter, Sun–Vesta) are listed in Table 4. The analytical results require the compu-
tation of the normal form as well as the computation of the thresholds at first order in the
detuning as given by (20)–(21). The qualitative results are obtained looking at the bifurca-
tions observed on the Poincaré sections as well as through the FLI maps (the results are also
validated through the application of the frequency analysis).

From Table 4, we can draw the following conclusions.
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Table 4 Numerical (num) and analytical (anal) value of the energy at which the bifurcation to halo orbits has
taken place; the results are given for the Earth–Moon, Sun–barycenter, Sun–Vesta systems

L1 num L1 anal L2 num L2 anal

Earth–Moon β = 0, A = 0 0.3026 0.3069 0.3776 0.3636

Earth–Moon β = 0, A = 4.15559 · 10−9 0.3026 0.3069 0.3776 0.3636

Sun–barycenter β = 0, A = 0 0.3333 0.3356 0.3377 0.3391

Sun–barycenter β = 10−2, A = 1.96782 · 10−12 0.2793 0.2864 0.3759 0.3755

Sun–Vesta β = 0, A = 0 0.3341 0.3373 0.3346 0.3374

Sun–Vesta β = 10−2, A = 4.54776 · 10−14 0.0422 0.0424 0.4451 0.4434

(i) The agreement between the analytical and numerical results is very satisfactory. The
relative error between the theoretical and experimental values ranges between 10−2 and
10−3.

(i i) A first-order estimate is already enough to get a good approximation of the bifurcation
thresholds; this estimate requires a very little computational effort with respect to the
qualitative analysis based on the Poincaré maps or the FLIs. Obviously, better results
can be obtained computing higher order normal forms, but at the expense of dealing
with more complex formulae.

(i i i) Switching on the solar radiation pressure provokes drastic changes for small mass
parameters. In particular, in the Sun–Vesta case, the first, second, and third bifurcations
take place at much lower values of the energy level, such that the other bifurcations
become feasible. From the physical point of view, the reason for such a peculiar behavior
is due to the balance between a smaller mass like that of an asteroid and the effect of
the solar radiation pressure.

(iv) The rôle of the oblateness is essentially negligible in all considered cases. This fact
could have been inferred easily, but we believe worthwhile to derive a complete model,
valid not only for the cases studied in the present paper, but also for general situations
in which the small body could have a very irregular shape. Simple experiments show
that in a Sun–asteroid sample, the oblateness becomes important only when the factor
A is as large as 10−6 −10−7. This parameter value does not apply to Vesta, but it might
be of interest for other astronomical situations.
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Appendix 1: Derivation of the mean motion around an oblate primary

For completeness, we derive here the formula for the mean motion of a massless body P
under the gravitational effect of an oblate primary. Let us denote by MP and A the mass and
the oblateness coefficient of the primary, r represents the distance of P from the primary
andH is the angular momentum constant. Then, the effective potential (see, e.g., [1]) can be
written as

Veff (r) = H2

2r2
− MP

r
− MP A

2r3
,
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whose derivative is

V ′
eff (r) = −H2

r3
+ MP

r2
+ 3MP A

2r4
.

The solutions of V ′
eff (r) = 0 are given by

r =
H2 ±

√
H4 − 6M2

P A

2MP
. (22)

Taking into account that A is small, we can approximate the non-trivial solution of (22) by

r = H2

MP

(
1 − 3

2

M2
P A

H2

)
. (23)

Assume that the orbit of P is circular, say r = a, we have that H2 = n2a4 which, together
with (23) and the normalization of the units of measure such that a = 1, MP = 1, provides:

n2 = 1 + 3

2
A.

Appendix 2: Reduction of the quadratic part

In this section, we provide the details of the reduction of the quadratic part as performed in
Sect. 3.2 in order to obtain the Hamiltonian (15) (equivalently 16). The procedure is very
similar to that explained in [11], to which we refer for a complete discussion; however,
for self-consistency, we provide here some details containing the necessary amendments to
encompass the oblate case with solar radiation pressure.

We start by computing the eigenvalues of M in (10); we denote by In the n-dimensional

identity matrix. We notice that by defining Mλ ≡ M − λI4, we can write Mλ =
(
Aλ I2
B Aλ

)

with Aλ =
(−λ n

−n −λ

)
and B =

(−2a 0
0 −b

)
. Then, the kernel of Mλ is given by the

solution of Mλw = 0 with w =
(

w1

w2

)
and w1,w2 ∈ R2. Simple computations show that

the eigenvector of M is given by

(2nλ, λ2 + 2a − n2, nλ2 − 2an + n3, λ3 + (2a + n2)λ),

where λ is an eigenvalue of M (the superscript  denotes the transposed).
Let us consider the eigenvectors associatedwithω1 = √−η1; from (11)wehave p(λ) = 0,

so that ω1 satisfies the equation

ω4
1 − (2n2 + 2a + b)ω2

1 + (n4 − 2an2 − bn2 + 2ab) = 0.

Using iω1 = λ1, the eigenvector uω1 + ivω1 associated with ω1 is given by

uω1 + ivω1 ≡ (2niω1,−ω2
1 + 2a − n2,

− nω2
1 − 2an + n3,−iω3

1 + (2a + n2)iω1)
,
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while for ±λ1 = √
η2 we obtain:

u+λ1 = (
2nλ1, λ

2
1 + 2a − n2 ,

nλ21 − 2an + n3, λ31 + (2a + n2)λ1
)

v−λ1 = (−2nλ1, λ
2
1 + 2a − n2 ,

nλ21 − 2an + n3,−λ31 − (2a + n2)λ1
)

.

Let C = (u+λ1 , uω1 , v−λ1 , vω1); we have

C JC =
(

0 D
−D 0

)
, where D =

(
dλ1 0
0 dω1

)

with dλ1 and dω1 given by

dλ1 = −2λ1((−4n2 + 2a − b)λ21 − 4n4 + bn2 + 6an2 − 2ab + 4a2),

dω1 = −ω1((−4n2 + 2a − b)ω2
1 + 4n4 − bn2 − 6an2 + 2ab − 4a2).

In order to obtain a symplectic change of variables, we re-scale by s1 = √
dλ1 , s2 = √

dω1

and we require that dλ1 > 0, dω1 > 0. Finally, we re-scale (z, pz) by ( 1√
ω2

,
√

ω2). The final
symplectic change of variables is given by the matrix whose columns are u+λ1/s1, uω1/s2,
v−λ1/s1, vω1/s2.

Appendix 3: Center manifold reduction

Let H be a Hamiltonian function with 3 degrees of freedom, admitting an equilibrium point
of type saddle×center×center. Let ±λ, ±iω1, ±iω2 be the eigenvalues of the linearized
system. Expanding the Hamiltonian around the equilibrium point in complex variables, we
obtain a simpler Hamiltonian function of the form

H(q, p) = H2(q, p) +
∑
n≥3

Hn(q, p),

where

H2(q, p) = λq1 p1 + iω1q2 p2 + iω2q3 p3,

while Hn(q, p) are homogeneous polynomials of degreen in the variables (q, p). To decouple
the hyperbolic direction from the elliptic one, we need to kill the monomials whose exponent
in p1 is different from that in q1. This procedure, which makes use of Lie series, allows one
to get a first integral with level surface given by the center manifold. We sketch below the
procedure to find the canonical transformation, referring to [11] for full details.

Given a Hamiltonian H and a generating function G, we denote by Ĥ the function3

Ĥ ≡ H + {H,G} + 1

2! {{H,G} ,G} + 1

3! {{{H,G} ,G} ,G} + . . . (24)

3 Curly brackets denote, as usual, the Poisson brackets ([7]).
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If G has degree 3, say G = G3, comparing same orders in (24) provides

Ĥ2 = H2 ,

Ĥ3 = H3 + {H2,G3} ,

Ĥ4 = H4 + {H2,G4} + {H3,G3} + 1

2! {{H2,G3} ,G3} , . . .

Next we look for G3 such that Ĥ3 is in normal form. Expanding H2, H3, G3 as

H2(q, p) =
3∑
j=1

η j q j p j ,

H3(q, p) =
∑

|kq |+|kp |=3

hkq ,kpq
kq pkp ,

G3(q, p) =
∑

|kq |+|kp |=3

gkq ,kpq
kq pkp

for some coefficients hkq ,kp , gkq ,kp , η j and denoting by η = (λ, iω1, iω2), we have

G3(q, p) =
∑

(kq ,kp)∈S3

−hkq ,kp

< kp − kq , η >
qkq pkp ,

where S3 is the set of indexes (kp, kq), such that |kp|+ |kq | = 3 and with the first component
of kp different from the first component of kq . We proceed iteratively to higher orders up to
a given order, say N , so that we obtain:

Ĥ(q, p) = H (N )(q1 p1, q2, q3, p2, p3) + R(N+1)(q1, q2, q3, p1, p2, p3),

where H (N ) is a polynomial of degree N and R(N+1) is a reminder of order N+1. Neglecting
the reminder and setting q1 p1 = 0, we eliminate the hyperbolic component of H (N ) and we
obtain a 2 degrees of freedom Hamiltonian of the desired form. As remarked in [11], there
are no small divisors in the above procedure, since | < kq − kp, ν > | ≥ |λ1| for any
(kp, kq) ∈ S j , j ≥ 3.

Going back to real variables (y, z, py, pz), we obtain a Hamiltonian of the form

H̃(y, z, py, pz) =
∑

k1,k2,k3,k4∈Z
hk1,k2,k3,k4 yk1 zk2 pk3y pk4z .

The first few nonzero terms hk1,k2,k3,k4 of the Hamiltonian restricted to the center manifold
are provided in Table 5.
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Table 5 Coefficients up to degree 4 of the Hamiltonian restricted to the center manifold for the Sun–Vesta
system with β = 10−2. The exponents (k1, k2, k3, k4) refer to the variables (y, z, py , pz)

k1 k2 k3 k4 hk

2 0 0 0 0.501797549378742

0 2 0 0 0.500906031584819

0 0 2 0 0.501797549378742

0 0 0 2 0.500906031584819

2 0 1 0 0.0014920550494420622

0 0 3 0 −0.000248666270046148

0 2 1 0 0.0003790464810461912

4 0 0 0 −0.02099512477285749

2 2 0 0 −0.010667382077111268

0 4 0 0 −0.001354993618855492

2 0 2 0 0.04199066782897781

0 2 2 0 0.010667253491139606

0 0 4 0 −0.003498979471471415

1 1 1 1 2.81508155360122 · 10−7

2 0 0 2 1.8824017340799554 · 10−7

0 2 0 2 4.7821141283422436 · 10−8

0 0 2 2 −9.411646402154861 · 10−8
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