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Abstract We characterize helix surfaces (constant angle surfaces) in the special linear group
SL(2,R). In particular, we give an explicit local description of these surfaces by means of a
suitable curve and a 1-parameter family of isometries of SL(2,R).
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1 Introduction

In recent years much work has been done to understand the geometry of surfaces whose unit
normal vector field forms a constant angle with a fixed field of directions of the ambient
space. These surfaces are called helix surfaces or constant angle surfaces and they have been
studied in most of the 3-dimensional geometries. In [2] Cermelli and Di Scala analyzed the
case of constant angle surfaces inR3 obtaining a remarkable relation with a Hamilton–Jacobi
equation and showing their application to equilibrium configurations of liquid crystals. Later,
Dillen–Fastenakels–Van der Veken–Vrancken [4], and Dillen–Munteanu [3], classified the
surfaces making a constant angle with the R-direction in the product spaces S

2 × R and
H
2 ×R, respectively. Moreover, helix submanifolds have been studied in higher dimensional

euclidean spaces and product spaces in [5,6,10].
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The spaces S2 × R and H
2 × R can be seen as two particular cases of Bianchi–Cartan–

Vranceanu spaces (BCV-spaces) which include all 3-dimensional homogeneous metrics
whose group of isometries has dimension 4 or 6, except for those of constant negative sec-
tional curvature. A crucial feature of BCV-spaces is that they admit a Riemannian submersion
onto a surface of constant Gaussian curvature, called the Hopf fibration, that, in the cases
of S2 × R and H

2 × R, it is the natural projection onto the first factor. Consequently, one
can consider the angle ϑ that the unit normal vector field of a surface in a BCV-space forms
with the Hopf vector field, which is, by definition, the vector field tangent to the fibers of
the Hopf fibration. This angle ϑ has a crucial role in the study of surfaces in BCV-spaces as
shown by Daniel, in [1], where he proved that the equations of Gauss and Codazzi are given
in terms of the function ν = cosϑ and that this angle is one of the fundamental invariants
for a surface in BCV-spaces. Consequently, in [7], the authors considered the surfaces in a
BCV-space for which the angle ϑ is constant, giving a complete local classification in the
case that the BCV-space is the Heisenberg space H3.

Later, López–Munteanu, in [8], defined and classified two types of constant angle sur-
faces in the homogeneous 3-manifold Sol3, whose isometry group has dimension 3. Also,
Montaldo–Onnis, in [9], characterized helix surfaces in the 1-parameter family of Berger
spheres S

3
ε , with ε > 0, proving that, locally, a helix surface is determined by a suitable

1-parameter family of isometries of the Berger sphere and by a geodesic of a 2-torus in the
3-dimensional sphere.

This paper is a continuation of our work [9] and it is devoted to the study and char-
acterization of helix surfaces in the homogeneous 3-manifold given by the special linear
group SL(2,R) endowed with a suitable 1-parameter family gτ of metrics that we shall
describe in sect. 2. Our study of helix surfaces in (SL(2,R), gτ ) will depend on a constant
B := (τ 2 + 1) cos2 ϑ − 1, where ϑ is the constant angle between the normal to the surface
and the Hopf vector field of SL(2,R). A similar constant appeared also in the study of helix
surfaces in the Berger sphere (see [9]) but in that case the constant was always positive. Thus
we shall divide our study according to the three possibilities: B > 0, B = 0 and B < 0.

2 Preliminaries

Let R4
2 denote the 4-dimensional pseudo-Euclidean space endowed with the semi-definite

inner product of signature (2,2) given by

〈v,w〉 = v1 w1 + v2 w2 − v3 w3 − v4 w4, v, w ∈ R
4.

We identify the special linear group with

SL(2,R) = {(z, w) ∈ C
2 : |z|2 − |w|2 = 1} = {v ∈ R

4
2 : 〈v, v〉 = 1} ⊂ R

4
2

and we shall use the Lorentz model of the hyperbolic plane with constant Gauss curvature
−4, that is

H
2(−4) = {(x, y, z) ∈ R

3
1 : x2 + y2 − z2 = −1/4},

where R3
1 is the Minkowski 3-space. Then the Hopf map ψ : SL(2,R) → H

2(−4) given by

ψ(z, w) = 1

2
(2zw̄, |z|2 + |w|2)

is a submersion, with circular fibers, and if we put

X1(z, w) = (i z, iw), X2(z, w) = (iw̄, i z̄), X3(z, w) = (w̄, z̄),
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Helix surfaces in the special linear group 61

we have that X1 is a vertical vector field while X2, X3 are horizontal. The vector field X1 is
called the Hopf vector field.

We shall endow SL(2,R) with the 1-parameter family of metrics gτ , τ > 0, given by

gτ (Xi , X j ) = δi j , gτ (X1, X1) = τ 2, gτ (X1, X j ) = 0, i, j ∈ {2, 3},
which renders the Hopf map ψ : (SL(2,R), gτ ) → H

2(−4) a Riemannian submersion.
For those familiar with the notations of Daniel [1], we point out that (SL(2,R), gτ )

corresponds to a model for a homogeneous space E(k, τ )with curvature of the basis k = −4
and bundle curvature τ > 0.

With respect to the inner product in R
4
2 the metric gτ is given by

gτ (X, Y ) = −〈X, Y 〉 + (1 + τ 2)〈X, X1〉〈Y, X1〉. (1)

From now on, we denote (SL(2,R), gτ ) with SL(2,R)τ . Obviously

E1 = −τ−1 X1, E2 = X2, E3 = X3, (2)

is an orthonormal basis on SL(2,R)τ and the Levi-Civita connection ∇τ of SL(2,R)τ is
given by (see, for example, [11]):

∇τ
E1
E1 = 0, ∇τ

E2
E2 = 0, ∇τ

E3
E3 = 0,

∇τ
E1
E2 = −τ−1(2 + τ 2)E3, ∇τ

E1
E3 = τ−1(2 + τ 2)E2,

∇τ
E2
E1 = −τ E3, ∇τ

E3
E1 = τ E2, ∇τ

E3
E2 = −τ E1 = −∇τ

E2
E3. (3)

Finally, we recall that the isometry group of SL(2,R)τ is the 4-dimensional indefinite unitary
group U1(2) that can be identified with:

U1(2) = {A ∈ O2(4) : AJ1 = ±J1A},
where J1 is the complex structure of R4 defined by

J1 =
(
J 0
0 J

)
, J =

(
0 −1
1 0

)
,

while

O2(4) = {A ∈ GL(4,R) : At = ε A−1 ε}, ε =
(
I 0
0 −I

)
, I =

(
1 0
0 1

)

is the indefinite orthogonal group.
We observe that O2(4) is the group of 4 × 4 real matrices preserving the semi-definite

inner product of R4
2.

Suppose nowwe are given a 1-parameter family A(v), v ∈ (a, b) ⊂ R, consisting of 4×4
indefinite orthogonal matrices commuting (anticommuting, respectively) with J1. In order
to describe explicitly the family A(v), we shall use two product structures of R4, namely

J2 =

⎛
⎜⎜⎝
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎠ , J3 =

⎛
⎜⎜⎝
0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ .

Since A(v) is an indefinite orthogonal matrix, the first row must be a unit vector r1(v) of
R
4
2 for all v ∈ (a, b). Thus, without loss of generality, we can take

r1(v) = (cosh ξ1(v) cos ξ2(v),− cosh ξ1(v) sin ξ2(v), sinh ξ1(v) cos ξ3(v),

− sinh ξ1(v) sin ξ3(v)),
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62 S. Montaldo et al.

for some real functions ξ1, ξ2 and ξ3 defined in (a, b). Since A(v) commutes (anticommutes,
respectively) with J1 the second row of A(v) must be r2(v) = ±J1r1(v). Now, the four
vectors {r1, J1r1, J2r1, J3r1} form a pseudo-orthonormal basis of R4

2, thus the third row
r3(v) of A(v) must be a linear combination of them. Since r3(v) is unit and it is orthogonal
to both r1(v) and J1r1(v), there exists a function ξ(v) such that

r3(v) = cos ξ(v)J2r1(v) + sin ξ(v)J3r1(v).

Finally the fourth row of A(v) is r4(v) = ±J1r3(v) = ∓ cos ξ(v)J3r1(v)± sin ξ(v)J2r1(v).
This means that any 1-parameter family A(v) of 4 × 4 indefinite orthogonal matrices com-
muting (anticommuting, respectively) with J1 can be described by four functions ξ1, ξ2, ξ3
and ξ as

A(ξ, ξ1, ξ2, ξ3)(v) =

⎛
⎜⎜⎝

r1(v)

±J1r1(v)

cos ξ(v)J2r1(v) + sin ξ(v)J3r1(v)

∓ cos ξ(v)J3r1(v) ± sin ξ(v)J2r1(v)

⎞
⎟⎟⎠ . (4)

3 Constant angle surfaces

We start this section giving the definition of constant angle surface in SL(2,R)τ .

Definition 3.1 We say that a surface in the special linear group SL(2,R)τ is a helix surface
or a constant angle surface if the angle ϑ ∈ [0, π) between the unit normal vector field and
the unit Killing vector field E1 (tangent to the fibers of the Hopf fibration) is constant at every
point of the surface.

Let M2 be an oriented helix surface in SL(2,R)τ and let N be a unit normal vector field.
Then, by definition,

|gτ (E1, N )| = cosϑ,

for fixed ϑ ∈ [0, π/2]. Note that ϑ 	= 0. In fact, if it were zero then the vector fields E2 and
E3 would be tangent to the surface M2, which is absurd since the horizontal distribution of
the Hopf map is not integrable. If ϑ = π/2, we have that E1 is always tangent to M and,
therefore, M is a Hopf cylinder. Therefore, from now on we assume that the constant angle
ϑ 	= π/2, 0.

The Gauss and Weingarten formulas are

∇τ
XY = ∇XY + α(X, Y ),

∇τ
X N = −A(X), (5)

where with A we have indicated the shape operator of M in SL(2,R)τ , with ∇ the induced
Levi-Civita connection on M and by α the second fundamental form of M in SL(2,R)τ .
Projecting E1 onto the tangent plane to M we have

E1 = T + cosϑ N ,

where T is the tangent part which satisfies gτ (T, T ) = sin2 ϑ .
For all X ∈ T M , we have that

∇τ
X E1 = ∇τ

XT − cosϑ A(X)

= ∇XT + gτ (A(X), T ) N − cosϑ A(X). (6)
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Helix surfaces in the special linear group 63

On the other hand, if X = ∑
Xi Ei ,

∇τ
X E1 = τ (X3E2 − X2E3) = τ X ∧ E1

= τ gτ (J X, T ) N − τ cosϑ J X, (7)

where J X = N ∧ X denotes the rotation of angle π/2 on T M . Identifying the tangent and
normal component of (6) and (7) respectively, we obtain

∇XT = cosϑ (A(X) − τ J X) (8)

and
gτ (A(X) − τ J X, T ) = 0. (9)

Lemma 3.2 Let M2 be an oriented helix surface in SL(2,R)τ with constant angle ϑ . Then,
we have the followings properties.

(i) With respect to the basis {T, JT }, the matrix associates to the shape operator A takes
the form

A =
(

0 −τ

−τ λ

)
,

for some function λ on M.
(ii) The Levi-Civita connection ∇ of M is given by

∇T T = −2τ cosϑ JT, ∇JT T = λ cosϑ JT,

∇T JT = 2τ cosϑ T, ∇JT JT = −λ cosϑ T .

(iii) The Gauss curvature of M is constant and satisfies

K = −4(1 + τ 2) cos2 ϑ.

(iv) The function λ satisfies the equation

Tλ + λ2 cosϑ + 4B cosϑ = 0, (10)

where B := (τ 2 + 1) cos2 ϑ − 1.

Proof Point (i) follows directly from (9). From (8) and using

gτ (T, T ) = gτ (JT, JT ) = sin2 ϑ, gτ (T, JT ) = 0,

weobtain (ii). From theGauss equation in SL(2,R)τ (we refer to the equation inCorollary 3.2
of [1] with ν = cos θ and k = −4), and (i), we have that the Gauss curvature of M is given
by

K = det A + τ 2 − 4(1 + τ 2) cos2 ϑ

= −4(1 + τ 2) cos2 ϑ.

Finally, (10) follows from the Codazzi equation (see [1]):

∇X A(Y ) − ∇Y A(X) − A[X, Y ] = −4(1 + τ 2) cosϑ (gτ (Y, T )X − gτ (X, T )Y ),

putting X = T, Y = JT and using (ii). In fact, it is easy to check that

−4(1 + τ 2) cosϑ (gτ (JT, T )T − gτ (T, T )JT )) = 4(1 + τ 2) cosϑ sin2 ϑ JT

123



64 S. Montaldo et al.

and

∇T A(JT ) − ∇JT A(T ) − A[T, JT ]
= ∇T (−τ T + λ JT ) − ∇JT (−τ JT ) − A(2τ cosϑ T − λ cosϑ JT )

= (4τ 2 cosϑ + T (λ) + λ2 cosϑ) JT .

��
As gτ (E1, N ) = cosϑ , there exists a smooth function ϕ on M such that

N = cosϑE1 + sin ϑ cosϕ E2 + sin ϑ sin ϕ E3.

Therefore

T = E1 − cosϑ N = sin ϑ [sin ϑ E1 − cosϑ cosϕ E2 − cosϑ sin ϕ E3] (11)

and

JT = sin ϑ (sin ϕ E2 − cosϕ E3).

Also

A(T ) = −∇τ
T N = (Tϕ − τ−1(2 + τ 2) sin2 ϑ + τ cos2 ϑ) JT,

A(JT ) = −∇τ
JT N = (JTϕ) JT − τ T . (12)

Comparing (12) with (i) of Lemma 3.2, it results that{
JTϕ = λ,

Tϕ = −2τ−1 B.
(13)

We observe that, as

[T, JT ] = cosϑ (2τ T − λ JT ),

the compatibility condition of system (13):

(∇T JT − ∇JT T )ϕ = [T, JT ]ϕ = T (JTϕ) − JT (Tϕ)

is equivalent to (10).
We now choose local coordinates (u, v) on M such that

∂u = T . (14)

Also, as ∂v is tangent to M , it can be written in the form

∂v = a T + b JT, (15)

for certain functions a = a(u, v) and b = b(u, v). As

0 = [∂u, ∂v] = (au + 2τb cosϑ) T + (bu − bλ cosϑ) JT,

then {
au = −2τb cosϑ,

bu = bλ cosϑ.
(16)

Moreover, the Eq. (10) of Lemma 3.2 can be written as

λu + cosϑ λ2 + 4B cosϑ = 0. (17)

Depending on the value of B, by integration of (17), we have the following three possibilities.
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(i) If B = 0

λ(u, v) = 1

u cosϑ + η(v)
,

for some smooth function η depending on v. Thus the solution of system (16) is given
by {

a(u, v) = −τ u cosϑ (u cosϑ + 2 η(v)),

b(u, v) = u cosϑ + η(v).

(ii) If B > 0
λ(u, v) = 2

√
B tan(η(v) − 2 cosϑ

√
B u),

for some smooth function η depending on v and system (16) has the solution{
a(u, v) = τ√

B
sin(η(v) − 2 cosϑ

√
B u),

b(u, v) = cos(η(v) − 2 cosϑ
√
B u).

(iii) If B < 0
λ(u, v) = 2

√−B tanh(η(v) + 2 cosϑ
√−B u),

for some smooth function η depending on v. Solving the system (16), we have{
a(u, v) = − τ√−B

sinh(η(v) + 2 cosϑ
√−B u),

b(u, v) = cosh(η(v) + 2 cosϑ
√−B u).

Moreover, in the case (i) the system (13) becomes{
ϕu = 0,
ϕv = 1,

(18)

and so ϕ(u, v) = v + c, c ∈ R. In the cases (ii) and (iii), the system (13) becomes{
ϕu = −2τ−1 B,

ϕv = 0,

of which the general solution is given by

ϕ(u, v) = −2τ−1B u + c, (19)

where c is a real constant.
With respect to the local coordinates (u, v) chosen above, we have the following charac-

terization of the position vector of a helix surface.

Proposition 3.3 Let M2 be a helix surface in SL(2,R)τ ⊂ R
4
2 with constant angle ϑ . Then,

with respect to the local coordinates (u, v) on M defined in (14), the position vector F of
M2 in R

4
2 satisfies the following equation:

(a) if B = 0,
∂2F

∂u2
= 0, (20)

(b) if B 	= 0,
∂4F

∂u4
+ (b̃2 − 2ã)

∂2F

∂u2
+ ã2 F = 0, (21)

where
ã = −τ−2 sin2 ϑ B, b̃ = −2τ−1 B. (22)
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Proof Let M2 be a helix surface and let F be the position vector of M2 in R
4
2. Then,

with respect to the local coordinates (u, v) on M defined in (14), we can write F(u, v) =
(F1(u, v), . . . , F4(u, v)). By definition, taking into account (11), we have that

Fu = (∂u F1, ∂u F2, ∂u F3, ∂u F4) = T

= sin ϑ [sin ϑ E1|F(u,v) − cosϑ cosϕ E2|F(u,v) − cosϑ sin ϕ E3|F(u,v)].
Using the expression of E1, E2 and E3 with respect to the coordinates vector fields of R4

2,
we obtain ⎧⎪⎪⎨

⎪⎪⎩

∂u F1 = sin ϑ (τ−1 sin ϑ F2 − cosϑ cosϕ F4 − cosϑ sin ϕ F3),
∂u F2 = − sin ϑ (τ−1 sin ϑ F1 + cosϑ cosϕ F3 − cosϑ sin ϕ F4),
∂u F3 = sin ϑ (τ−1 sin ϑ F4 − cosϑ cosϕ F2 − cosϑ sin ϕ F1),
∂u F4 = − sin ϑ (τ−1 sin ϑ F3 + cosϑ cosϕ F1 − cosϑ sin ϕ F2).

(23)

Therefore, if B = 0, taking the derivative of (23) with respect to u and using (18), we obtain
that Fuu = 0.

If B 	= 0, taking the derivative of (23) with respect to u and using (19), we find two
constants ã and b̃ such that ⎧⎪⎪⎨

⎪⎪⎩

(F1)uu = ã F1 + b̃ (F2)u,
(F2)uu = ã F2 − b̃ (F1)u,
(F3)uu = ã F3 + b̃ (F4)u,
(F4)uu = ã F4 − b̃ (F3)u,

(24)

where

ã = τ−1 sin2 ϑ

2
ϕu = −τ−2 sin2 ϑB, b̃ = ϕu .

Finally, taking twice the derivative of (24) with respect to u and using (23) and (24) in the
derivative we obtain the desired Eq. (21). ��
Remark 3.4 As 〈F, F〉 = 1, using (21), (23) and (24), we find that the position vector F(u, v)

and its derivatives must satisfy the relations:

〈F, F〉 = 1, 〈Fu, Fu〉 = ã, 〈F, Fu〉 = 0,
〈Fu, Fuu〉 = 0, 〈Fuu, Fuu〉 = D, 〈F, Fuu〉 = −ã,

〈Fu, Fuuu〉 = −D, 〈Fuu, Fuuu〉 = 0, 〈F, Fuuu〉 = 0,
〈Fuuu, Fuuu〉 = E,

(25)

where

D = ã b̃2 − 3ã2, E = (b̃2 − 2ã) D − ã3.

In addition, as

J1F(u, v) = X1|F(u,v) = −τ E1|F(u,v) = −τ (Fu + cosϑ N ),

using (21)–(25), we obtain the following identities

〈J1F, Fu〉 = −τ−1 sin2 ϑ,

〈J1F, Fuu〉 = 0,

〈Fu, J1Fuu〉 = ã (b̃ − τ−1 sin2 ϑ) := I,

〈J1Fu, Fuuu〉 = 0,

〈J1Fu, Fuu〉 + 〈J1F, Fuuu〉 = 0,

〈J1Fuu, Fuuu〉 + 〈J1Fu, Fuuuu〉 = 0. (26)
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Using Remark 3.4 we can prove the following proposition that gives the conditions under
which an immersion defines a helix surface.

Proposition 3.5 Let F : � → SL(2,R)τ ⊂ R
4
2 be an immersion from an open set � ⊂ R

2,
with local coordinates (u, v), such that the projection of E1 = −τ−1 J1F to the tangent space
of F(�) ⊂ SL(2,R)τ is Fu. Then F(�) ⊂ SL(2,R)τ defines a helix surface of constant
angle ϑ if and only if

gτ (Fu, Fu) = gτ (E1, Fu) = sin2 ϑ, (27)

and
gτ (Fv, E1) − gτ (Fu, Fv) = 0. (28)

Proof Suppose that F is a helix surface of constant angle ϑ . Then

gτ (Fu, Fu) = −〈Fu, Fu〉 + (1 + τ 2)〈Fu, J1F〉2
= τ−2 sin2 ϑB + (1 + τ 2)(τ−2 sin4 ϑ)

= sin2 ϑ.

Similarly

gτ (E1, Fu) = τ−1〈J1F, Fu〉 − τ−1(1 + τ 2)〈J1F, Fu〉〈J1F, J1F〉
= τ−1〈J1F, Fu〉[1 − (1 + τ 2)] = sin2 ϑ.

Finally, using (15), we have

gτ (Fv, E1) − gτ (Fu, Fv) = −a

τ
gτ (Fu, J1F) − b

τ
gτ (J1Fu, J1F)

−agτ (Fu, Fu) − bgτ (J1Fu, Fu)

= a sin2 ϑ − 0 − a sin2 ϑ − 0 = 0.

For the converse, put

T2 = Fv − gτ (Fv, Fu)Fu
gτ (Fu, Fu)

.

Then, if we denote by N the unit normal vector field to the surface F(�), {Fu, T2, N }
is an orthogonal bases of the tangent space of SL(2,R)τ along the surface F(�). Now,
using (28), we get gτ (E1, T2) = 0, thus E1 = a Fu + c N . Moreover, using (27) and that
gτ (E1, Fu) = a gτ (Fu, Fu), we conclude that a = 1. Finally,

1 = gτ (E1, E1) = gτ (Fu + c N , Fu + c N ) = sin2 ϑ + c2,

which implies that c2 = cos2 ϑ . Thus the angle between E1 and N is

gτ (E1, N ) = gτ (Fu + cosϑN , N ) = cosϑ.

��

4 The case B = 0

Theorem 4.1 Let M2 be a helix surface in the SL(2,R)τ ⊂ R
4
2 with constant angle ϑ such

that B = 0. Then cosϑ = 1√
1+τ 2

and, locally, the position vector of M2 in R
4
2, with respect
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to the local coordinates (u, v) on M defined in (14), is given by

F(u, v) = A(v)
(
1,− τ u

1 + τ 2
,

τ u

1 + τ 2
, 0

)
, (29)

where A(v) = A(ξ, ξ1, ξ2, ξ3)(v) is a 1-parameter family of 4 × 4 indefinite orthogonal
matrices commuting with J1, as described in (4), with

[ξ ′(v) + ξ ′
2(v) + ξ ′

3(v)] sin(ξ2(v) − ξ3(v)) sinh(2ξ1(v))

− 2(ξ ′(v) − ξ ′
3(v)) sinh2 ξ1(v) + 2 [ξ ′

1(v) cos(ξ2(v) − ξ3(v)) + ξ ′
2(v) cosh2 ξ1(v)] = 0.

(30)

Conversely, a parametrization

F(u, v) = A(v)
(
1,− τ u

1 + τ 2
,

τ u

1 + τ 2
, 0

)
,

with A(v) as above, defines a helix surface in the special linear group with constant angle
ϑ = arccos 1√

1+τ 2
.

Proof Since B = 0 we have immediately that cos2 ϑ = 1/(1 + τ 2). Integrating (20), we
obtain that

F(u, v) = h1(v) + u h2(v), (31)

where hi (v), i = 1, 2, are vector fields in R
4
2, depending only on v.

Evaluating in (0, v) the identities:

〈F, F〉 = 1, 〈Fu, Fu〉 = 0,

〈F, Fu〉 = 0, 〈J1F, Fu〉 = −τ−1 sin2 ϑ = − τ

1 + τ 2
,

it results that

〈h1(v), h1(v)〉 = 1, 〈h1(v), h2(v)〉 = 0,

〈h2(v), h2(v)〉 = 0, 〈J1h1(v), h2(v)〉 = − τ

1 + τ 2
. (32)

Moreover, using (23) in (0, v), we have that

h2(v) = − τ

1 + τ 2
(J1h

1(v) − h3(v)),

where h3(v) is a vector field of R4
2 satisfying

〈h3(v), h3(v)〉 = −1, 〈h1(v), h3(v)〉 = 0, 〈J1h1(v), h3(v)〉 = 0. (33)

Consequently, if we fix the orthonormal basis {Êi }4i=1 of R
4
2 given by

Ê1 = (1, 0, 0, 0), Ê2 = (0, 1, 0, 0), Ê3 = (0, 0, 1, 0), Ê4 = (0, 0, 0, 1),

there must exists a 1-parameter family of matrices A(v) ∈ O2(4), with J1 A(v) = A(v) J1,
such that

h1(v) = A(v)Ê1, J1h
1(v) = A(v)Ê2, h3(v) = A(v)Ê3, J1h

3(v) = A(v)Ê4.

Then (31) becomes

F(u, v) = h1(v) − τ u

1 + τ 2
(J1h

1(v) − h3(v)) = A(v)
(
1,− τ u

1 + τ 2
,

τ u

1 + τ 2
, 0

)
.
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Finally, the 1-parameter family A(v) depends, according to (4), on four functions
ξ1(v), ξ2(v), ξ3(v) and ξ(v) and, in this case, condition (28) reduces to 〈Fu, Fv〉 = 0 which
is equivalent to (30).

For the converse, let

F(u, v) = A(v)
(
1,− τ u

1 + τ 2
,

τ u

1 + τ 2
, 0

)
,

be a parametrization where A(v) = A(ξ(v), ξ1(v), ξ2(v), ξ3(v)) is a 1-parameter family of
indefinite orthogonal matrices with functions ξ(v), ξ1(v), ξ2(v), ξ3(v) satisfying (30). Since
A(v) satisfies (30), then F satisfies (28), thus, in virtue of Proposition 3.5, we only have to
show that (27) is satisfied for some constant angle ϑ . For this we put

γ (u) =
(
1,− τ u

1 + τ 2
,

τ u

1 + τ 2
, 0

)
.

Now, using (1) and taking into account that A(v) commutes with J1, we get

gτ (Fu, Fu) = −〈A(v)γ ′(u), A(v)γ ′(u)〉 + (1 + τ 2)〈A(v)γ ′(u), J1A(v)γ (u)〉2

= (1 + τ 2)〈γ ′(u), J1γ (u)〉2 = τ 2

1 + τ 2
,

and we can choose ϑ such that τ 2/(1 + τ 2) = sin2 ϑ . Similarly,

gτ (E1, Fu) = −〈E1, Fu〉 + (1 + τ 2)〈E1, J1F〉〈Fu, J1F〉
= 〈Fu, J1F〉

τ

[
1 − (1 + τ 2)

]

= (−τ)〈γ ′(u), J1γ (u)〉 = τ 2

1 + τ 2
.

��

Example 4.2 If we take ξ2 = ξ3 = constant, (30) becomes ξ ′(1 − sinh2 ξ1) = 0. Thus, if
also ξ = constant, we find, from (4), a 1-parameter family A(v) = A(ξ1(v)) of indefinite
orthogonal matrices such that (29) defines a helix surface for any function ξ1.

5 The case B > 0

Supposing B > 0, integrating (21) we have the following

Proposition 5.1 Let M2 be a helix surface in SL(2,R)τ with constant angleϑ so that B > 0.
Then, with respect to the local coordinates (u, v) on M defined in (14), the position vector
F of M2 in R

4
2 is given by

F(u, v) = cos(α1 u) g1(v) + sin(α1 u) g2(v) + cos(α2 u) g3(v) + sin(α2 u) g4(v),

where

α1,2 = 1

τ
(τ

√
B cosϑ ± B)

123



70 S. Montaldo et al.

are positive real constants, while the gi (v), i ∈ {1, . . . , 4}, are mutually orthogonal vector
fields in R

4
2, depending only on v, such that

g11 = 〈g1(v), g1(v)〉 = g22 = 〈g2(v), g2(v)〉 = − τ

2B
α2,

(34)
g33 = 〈g3(v), g3(v)〉 = g44 = 〈g4(v), g4(v)〉 = τ

2B
α1.

Proof First, a direct integration of (21), gives the solution

F(u, v) = cos(α1u) g1(v) + sin(α1u) g2(v) + cos(α2u) g3(v) + sin(α2u) g4(v),

where

α1,2 =
√
b̃2 − 2ã ±

√
b̃4 − 4ãb̃2

2

are two constants, while the gi (v), i ∈ {1, . . . , 4}, are vector fields in R
4
2 which depend only

on v. Now, taking into account the values of ã and b̃ given in (22), we get

α1,2 = 1

τ
(τ

√
B cosϑ ± B). (35)

Putting gi j (v) = 〈gi (v), g j (v)〉, and evaluating the relations (25) in (0, v), we obtain:

g11 + g33 + 2g13 = 1, (36)

α2
1 g22 + α2

2 g44 + 2α1α2 g24 = ã, (37)

α1 g12 + α2 g14 + α1 g23 + α2 g34 = 0, (38)

α3
1 g12 + α1α

2
2 g23 + α2

1α2 g14 + α3
2g34 = 0, (39)

α4
1 g11 + α4

2 g33 + 2α2
1α

2
2 g13 = D, (40)

α2
1 g11 + α2

2 g33 + (α2
1 + α2

2) g13 = ã, (41)

α4
1 g22 + α3

1α2 g24 + α1α
3
2 g24 + α4

2 g44 = D, (42)

α5
1 g12 + α3

1α
2
2 g23 + α2

1α
3
2 g14 + α5

2 g34 = 0, (43)

α3
1 g12 + α3

1 g23 + α3
2 g14 + α3

2 g34 = 0, (44)

α6
1 g22 + α6

2 g44 + 2α3
1α

3
2 g24 = E . (45)

From (38), (39), (43), (44), it follows that

g12 = g14 = g23 = g34 = 0.

Also, from (36), (40) and (41), we obtain

g11 = τ 2 (D + α4
2) + 2B sin2 ϑ α2

2

τ 2(α2
1 − α2

2)
2

, g13 = 0, g33 = τ 2 (D + α4
1) + 2B sin2 ϑ α2

1

τ 2(α2
1 − α2

2)
2

.

Finally, using (37), (42) and (45), we obtain

g22 = τ 2 (E − 2D α2
2) − B sin2 ϑ α4

2

τ 2α2
1 (α2

1 − α2
2)

2
, g24 = 0, g44 = τ 2 (E − 2D α2

1) − B sin2 ϑ α4
1

τ 2α2
2 (α2

1 − α2
2)

2
.
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We observe that

g11 = g22 =
√
B − τ cosϑ

2
√
B

< 0, g33 = g44 =
√
B + τ cosϑ

2
√
B

> 0.

Therefore, taking into account (35), we obtain the expressions (34). ��
We are now in the right position to state the main result of this section.

Theorem 5.2 Let M2 be a helix surface in the SL(2,R)τ ⊂ R
4
2 with constant angleϑ 	= π/2

so that B > 0. Then, locally, the position vector of M2 in R
4
2, with respect to the local

coordinates (u, v) on M defined in (14), is

F(u, v) = A(v) γ (u), (46)

where

γ (u) = (
√
g33 cos(α2 u),−√

g33 sin(α2 u),
√−g11 cos(α1 u),

√−g11 sin(α1 u)) (47)

is a curve in SL(2,R)τ , g11, g33, α1, α2 are the four constants given in Proposition 5.1, and
A(v) = A(ξ, ξ1, ξ2, ξ3)(v) is a 1-parameter family of 4 × 4 indefinite orthogonal matrices
commuting with J1, as described in (4), with ξ = constant and

cosh2(ξ1(v)) ξ ′
2(v) + sinh2(ξ1(v)) ξ ′

3(v) = 0. (48)

Conversely, a parametrization F(u, v) = A(v) γ (u), with γ (u) and A(v) as above, defines
a constant angle surface in SL(2,R)τ with constant angle ϑ 	= π/2.

Proof With respect to the local coordinates (u, v) on M defined in (14), Proposition 5.1
implies that the position vector of the helix surface in R

4
2 is given by

F(u, v) = cos(α1u) g1(v) + sin(α1u) g2(v) + cos(α2u) g3(v) + sin(α2u) g4(v),

where the vector fields {gi (v)}4i=1 are mutually orthogonal and

||g1(v)|| = ||g2(v)|| = √−g11 = constant,

||g3(v)|| = ||g4(v)|| = √
g33 = constant.

Thus, if we put ei (v) = gi (v)/||gi (v)||, i ∈ {1, . . . , 4}, we can write:
F(u, v) = √−g11 (cos(α1 u) e1(v) + sin(α1 u) e2(v))

+√
g33 (cos(α2 u) e3(v) + sin(α2 u) e4(v)). (49)

Now, the identities (26), evaluated in (0, v), become respectively:

α2 g33〈J1e3, e4〉 − α1g11〈J1e1, e2〉
+√−g11g33 (α1〈J1e3, e2〉 + α2〈J1e1, e4〉) = −τ−1 sin2 ϑ, (50)

〈J1e1, e3〉 = 0, (51)

α3
2 g33〈J1e3, e4〉 − α3

1 g11〈J1e1, e2〉
+√−g11g33 (α1α

2
2〈J1e3, e2〉 + α2

1α2〈J1e1, e4〉) = −I, (52)

〈J1e2, e4〉 = 0, (53)

α1〈J1e2, e3〉 + α2〈J1e1, e4〉 = 0, (54)

α2〈J1e2, e3〉 + α1〈J1e1, e4〉 = 0. (55)
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We point out that to obtain the previous identities we have divided by α2
1 − α2

2 =
4τ−1

√
B3 cosϑ which is, by the assumption on ϑ , always different from zero. From (54)

and (55), taking into account the α2
1 − α2

2 	= 0, it results that

〈J1e3, e2〉 = 0, 〈J1e1, e4〉 = 0. (56)

Therefore

|〈J1e1, e2〉| = 1 = |〈J1e3, e4〉|.
Substituting (56) in (50) and (52), we obtain the system

{
α1 g11〈J1e1, e2〉 − α2 g33〈J1e3, e4〉 = τ−1 sin2 ϑ

α3
1 g11〈J1e1, e2〉 − α3

2 g33〈J1e3, e4〉 = I,

a solution of which is

〈J1e1, e2〉 = τ I − α2
2 sin

2 ϑ

τg11 α1(α
2
1 − α2

2)
, 〈J1e3, e4〉 = τ I − α2

1 sin
2 ϑ

τg33 α2(α
2
1 − α2

2)
.

Now, as

g11 g33 = − sin2 ϑ

4B
, α1 α2 = B

τ 2
sin2 ϑ, α2

1 − α2
2 = 4

√
B3

τ
cosϑ,

it results that

〈J1e1, e2〉〈J1e3, e4〉 = 1.

Moreover, as

τ I − α2
2 sin

2 ϑ = 2τ−1
√
B3 cosϑ sin2 ϑ,

it results that 〈J1e1, e2〉 < 0. Consequently, 〈J1e1, e2〉 = 〈J1e3, e4〉 = −1 and J1e1 =
e2, J1e3 = −e4.

Then, if we fix the orthonormal basis of R4
2 given by

Ẽ1 = (0, 0, 1, 0), Ẽ2 = (0, 0, 0, 1), Ẽ3 = (1, 0, 0, 0), Ẽ4 = (0,−1, 0, 0),

there must exists a 1-parameter family of 4×4 indefinite orthogonal matrices A(v) ∈ O2(4),
with J1A(v) = A(v)J1, such that ei (v) = A(v)Ẽi . Replacing ei (v) = A(v)Ẽi in (49) we
obtain

F(u, v) = A(v)γ (u),

where

γ (u) = (
√
g33 cos(α2 u),−√

g33 sin(α2 u),
√−g11 cos(α1 u),

√−g11 sin(α1 u))

is a curve in SL(2,R)τ .
Let now examine the 1-parameter family A(v) that, according to (4), depends on four

functions ξ1(v), ξ2(v), ξ3(v) and ξ(v). From (15), it results that 〈Fv, Fv〉 = − sin2 ϑ =
constant. The latter implies that

∂

∂u
〈Fv, Fv〉|u=0 = 0. (57)
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Now, if we denote by c1, c2, c3, c4 the four colons of A(v), (57) implies that{
〈c2′, c3′〉 = 0

〈c2′, c4′〉 = 0,
(58)

where with ′ we means the derivative with respect to v. Replacing in (58) the expressions of
the ci ’s as functions of ξ1(v), ξ2(v), ξ3(v) and ξ(v), we obtain{

ξ ′ h(v) = 0

ξ ′ k(v) = 0,
(59)

where h(v) and k(v) are two functions such that

h2 + k2 = 4(ξ ′
1)

2 + sinh2(2ξ1) (−ξ ′ + ξ ′
2 + ξ ′

3)
2.

From (59) we have two possibilities:

(i) ξ = constant;
or

(ii) 4(ξ ′
1)

2 + sinh2(2ξ1) (−ξ ′ + ξ ′
2 + ξ ′

3)
2 = 0.

We will show that case (ii) cannot occur, more precisely we will show that if (ii) happens
then the parametrization F(u, v) = A(v)γ (u) defines a Hopf tube, that is the Hopf vector
field E1 is tangent to the surface. To this end, we write the unit normal vector field N as

N = N1E1 + N2E2 + N3E3√
N 2
1 + N 2

2 + N 2
3

.

A long but straightforward computation (that can be also made using a software of symbolic
computations) gives

N1 = 1/2(α1 + α2)
√−g11

√
g33 [2ξ ′

1 cos(α1u + α2u − ξ2 + ξ3)

+ sinh(2ξ1) sin(α1u + α2u − ξ2 + ξ3)(−ξ ′ + ξ ′
2 + ξ ′

3)].
Now case (ii) occurs if and only if ξ1 = constant = 0, or if ξ1 = constant 	= 0 and

−ξ ′+ξ ′
2+ξ ′

3 = 0. In both cases N1 = 0 and this implies that gτ (N , J1F) = −τgτ (N , E1) =
0, i.e. the Hopf vector field is tangent to the surface. Thus we have proved that ξ = constant.

Finally, in this case, (28) is equivalent to

τ cosϑ
√
B[cosh2(ξ1(v)) ξ ′

2(v) + sinh2(ξ1(v)) ξ ′
3(v)] = 0.

Since ϑ 	= π/2 we conclude that condition (48) is satisfied.
The converse follows immediately from Proposition 3.5 since a direct calculation shows

that gτ (Fu, Fu) = gτ (E1, Fu) = sin2 ϑ which is (27), while (48) is equivalent to (28). ��

6 The case B < 0

In this section we study the case B < 0. Integrating (21) we have the following result:

Proposition 6.1 Let M2 be a helix surface in SL(2,R)τ with constant angle ϑ and B < 0.
Then, with respect to the local coordinates (u, v) on M defined in (14), the position vector
F of M2 in R

4
2 is given by
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F(u, v) = cos
( b̃
2
u
) [cosh(β u)w1(v) + sinh(β u)w3(v)]

+ sin
( b̃
2
u
) [cosh(β u)w2(v) + sinh(β u)w4(v)], (60)

where

β = √−B cosϑ

is a real constant, b̃ = −2τ−1 B, while the wi (v), i ∈ {1, . . . , 4}, are vector fields in R
4
2,

depending only on v, such that

〈w1(v), w1(v)〉 = 〈w2(v), w2(v)〉 = −〈w3(v), w3(v)〉 = −〈w4(v), w4(v)〉 = 1,

〈w1(v), w2(v)〉 = 〈w1(v), w3(v)〉 = 〈w2(v), w4(v)〉 = 〈w3(v), w4(v)〉 = 0, (61)

〈w1(v), w4(v)〉 = −〈w2(v), w3(v)〉 = −2β

b̃
.

Proof A direct integration of (21), gives the solution

F(u, v) = cos
( b̃
2
u
) [cosh(β u)w1(v) + sinh(β u)w3(v)]

+ sin
( b̃
2
u
) [cosh(β u)w2(v) + sinh(β u)w4(v)],

where

β =
√
4ã − b̃2

2
= √−B cosϑ

is a constant, while the wi (v), i ∈ {1, . . . , 4}, are vector fields in R
4 which depend only on

v. If wi j (v) := 〈wi (v), w j (v)〉, evaluating the relations (25) in (0, v), we obtain

w11 = 1, (62)

b̃2

4
w22 + β2 w33 + β b̃w23 = ã, (63)

b̃

2
w12 + β w13 = 0, (64)

b̃

2

(
β2 − b̃2

4

)
w12 + β2 b̃w34 + β

b̃2

2
w24 + β

(
β2 − b̃2

4

)
w13 = 0, (65)

(
β2 − b̃2

4

)2
w11 + β2 b̃2 w44 + 2β b̃

(
β2 − b̃2

4

)
w14 = D, (66)

(
β2 − b̃2

4

)
w11 + β b̃w14 = −ã, (67)

b̃2

4

(
3β2 − b̃2

4

)
w22 + β2

(
β2 − 3

b̃2

4

)
w33 + β

b̃

2
(4β2 − b̃2)w23 = −D, (68)

b̃

2

(
3β2 − b̃2

4

) (
β2 − b̃2

4

)
w12 + b̃ β2

(
β2 − 3

b̃2

4

)
w34

+β
(
β2 − 3

b̃2

4

) (
β2 − b̃2

4

)
w13 + β

b̃2

2

(
3β2 − b̃2

4

)
w24 = 0, (69)

b̃

2

(
3β2 − b̃2

4

)
w12 + β

(
β2 − 3

b̃2

4

)
w13 = 0, (70)
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b̃2

4

(
3β2 − b̃2

4

)2
w22 + β2

(
β2 − 3

b̃2

4

)2
w33

+β b̃
(
3β2 − b̃2

4

) (
β2 − 3

b̃2

4

)
w23 = E . (71)

From (62), (66) and (67), it follows that

w11 = −w44 = 1, w14 = −2 β

b̃
.

Also, from (64) and (70), we obtain

w12 = w13 = 0

and, therefore, from (65) and (69),

w24 = w34 = 0.

Moreover, using (63), (68) and (71), we get

w22 = −w33 = 1, w23 = 2 β

b̃
.

��
Theorem 6.2 Let M2 be a helix surface in SL(2,R)τ with constant angle ϑ 	= π/2 so that
B < 0. Then, locally, the position vector of M2 in R

4
2, with respect to the local coordinates

(u, v) on M defined in (14), is given by

F(u, v) = A(v) γ (u),

where the curve γ (u) = (γ1(u), γ2(u), γ3(u), γ4(u)) is given by⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

γ1(u) = cos
(
b̃
2u

)
cosh(β u) − 2β

b̃
sin

(
b̃
2u

)
sinh(β u),

γ2(u) = sin
(
b̃
2u

)
cosh(β u) + 2β

b̃
cos

(
b̃
2u

)
sinh(β u),

γ3(u) = sin ϑ√−B
cos

(
b̃
2u

)
sinh(β u),

γ4(u) = sin ϑ√−B
sin

(
b̃
2u

)
sinh(β u),

(72)

β = √−B cosϑ, b̃ = −2τ−1 B and A(v) = A(ξ, ξ1, ξ2, ξ3)(v) is a 1- parameter family
of 4 × 4 indefinite orthogonal matrices anticommuting with J1, as described in (4), with
ξ = constant and

sin ϑ [2 cos(ξ2(v) − ξ3(v)) ξ ′
1(v) + (ξ ′

2(v) + ξ ′
3(v)) sin(ξ2(v) − ξ3(v)) sinh(2ξ1(v))]

−2τ cosϑ [cosh2(ξ1(v)) ξ ′
2(v) + sinh2(ξ1(v)) ξ ′

3(v)] = 0. (73)

Conversely, a parametrization F(u, v) = A(v) γ (u), with γ (u) and A(v) as above, defines
a helix surface in SL(2,R)τ with constant angle ϑ 	= π/2.

Proof From (61), we can define the following orthonormal basis in R
4
2:⎧⎪⎪⎨

⎪⎪⎩

e1(v) = w1(v),

e2(v) = w2(v),

e3(v) = 1
sin ϑ

[√−B w3(v) − τ cosϑ w2(v)],
e4(v) = 1

sin ϑ
[√−B w4(v) + τ cosϑ w1(v)],

(74)

with 〈e1, e1〉 = 1 = 〈e2, e2〉 and 〈e3, e3〉 = −1 = 〈e4, e4〉.
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Evaluating the identities (26) in (0, v), and taking into account that:

F(0, v) = w1(v),

Fu(0, v) = b̃

2
w2(v) + β w3(v),

Fuu(0, v) =
(
β2 − b̃2

4

)
w1(v) + β b̃w4(v),

Fuuu(0, v) = b̃

2

(
3β2 − b̃2

4
)w2(v) + β

(
β2 − 3

4
b̃2

)
w3(v),

Fuuuu(0, v) =
(
β4 − 3

2
β2 b̃2 + b̃4

16

)
w1(v) + 2β b̃

(
β2 − b̃2

4

)
w4(v),

we conclude that

〈J1w3, w4〉 = −〈J1w1, w2〉 = 1,

〈J1w3, w2〉 = 〈J1w1, w4〉 = 0,

〈J1w2, w4〉 = 〈J1w1, w3〉 = −τ cosϑ√−B
.

Then,

−〈J1e1, e2〉 = 〈J1e3, e4〉 = 1,

〈J1e1, e4〉 = 〈J1e1, e3〉 = 〈J1e2, e3〉 = 〈J1e2, e4〉 = 0.

Therefore, we obtain that

J1e1 = −e2, J1e3 = −e4.

Consequently, if we consider the orthonormal basis {Êi }4i=1 of R
4
2 given by

Ê1 = (1, 0, 0, 0), Ê2 = (0, 1, 0, 0), Ê3 = (0, 0, 1, 0), Ê4 = (0, 0, 0, 1),

there must exists a 1-parameter family of matrices A(v) ∈ O2(4), with J1A(v) = −A(v)J1,
such that ei (v) = A(v)Êi , i ∈ {1, . . . , 4}. As

F = 〈F, e1〉 e1 + 〈F, e2〉 e2 − 〈F, e3〉 e3 − 〈F, e4〉 e4,
computing 〈F, ei 〉 and substituting ei (v) = A(v)Êi , we obtain that F(u, v) = A(v) γ (u),
where the curve γ (u) of SL(2,R)τ is given in (72).

Let now examine the 1-parameter family A(v) that, according to (4), depends on four
functions ξ1(v), ξ2(v), ξ3(v) and ξ(v). Similarly to what we have done in the proof of The-
orem 5.2 we have that the condition

∂

∂u
〈Fv, Fv〉|u=0 = 0

implies that the functions ξ1(v), ξ2(v), ξ3(v) and ξ(v) satisfy the equation

ξ ′ [2 sin(ξ2 − ξ3) ξ ′
1 − (ξ ′

2 + ξ ′
3 − ξ ′) cos(ξ2 − ξ3) sinh(2 ξ1)] = 0.

Then we have two possibilities:

(i) ξ = constant;
or

(ii) 2 sin(ξ2 − ξ3) ξ ′
1 − (ξ ′

2 + ξ ′
3 − ξ ′) cos(ξ2 − ξ3) sinh(2 ξ1) = 0.
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Also in this case, using the same argument as in Theorem 5.2, condition (ii) would implies
that the surface is a Hopf tube, thus we can assume that ξ = constant.

Finally, a long but straightforward computation shows that, in the case ξ = constant, (28)
is equivalent to (73).

The converse of the theorem follows immediately from Proposition 3.5 since a direct
calculation shows that gτ (Fu, Fu) = gτ (E1, Fu) = sin2 ϑ which is (27) while (73) is
equivalent to (28). ��
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