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844 T. Orponen

1 Introduction

Given a set K ⊂ R
2, what is the relation between the Hausdorff or packing dimension of K

and the Hausdorff or packing dimension of the generic orthogonal projection Ke = {x · e :
x ∈ K }, for e ∈ S1 := {ξ ∈ R

2 : |ξ | = 1}? This is one of the most classical and thoroughly
studied questions in geometric measure theory. As early as 1954, Marstrand [13] proved that
Hausdorff dimension is generally preserved in projections. More precisely, if the Hausdorff
dimension of K , denoted by dim K , is at most one, then dim Ke = dim K for almost every
vector e ∈ S1. In case dim K > 1, the result fails for obvious reasons, but, instead, Marstrand
proved that almost every projection has positive length.

Things change radically when hypotheses on Hausdorff dimension are replaced by those
on packing dimension, denoted by dimp. A special case of a construction due to Järvenpää
[9] yields for any γ ∈ (0, 2) a compact set K in the plane such that dimp K = γ , yet
dimp Ke ≤ 2γ /(2 + γ ) < γ for every e ∈ S1. A few years later, it was discovered by
Falconer and Howroyd in [6] that the behavior seen here is essentially the worst possible:
any analytic set K ⊂ R

2 with dimp K = γ has dimp Ke ≥ 2γ /(2 + γ ) for almost every
e ∈ S1. Moreover, the function e �→ dimp Ke is almost surely constant.

The results of Marstrand and Falconer–Howroyd can be sharpened by examining the
dimension of exceptional sets of projections. Given K ⊂ R

2, such a set is formed by the
directions e ∈ S1 where the ‘expected’ behavior of dim Ke or dimp Ke fails. An early result
on the dimension of exceptional sets is a theorem of Kaufman [11] from 1969 saying that if
K ⊂ R

2 is an analytic set, then

dim{e ∈ S1 : dim Ke ≤ σ } ≤ σ, 0 ≤ σ < dim K . (1.1)

In particular, it follows that dim{e ∈ S1 : dim Ke < dim K } ≤ dim K , which is sharp
according to an example of Kaufman andMattila [12]. In a similar vein but with a completely
different technique, Bourgain [1, Theorem 4] proved in 2010 that if a set K ⊂ R

2 has
Hausdorff dimension dim K > α ∈ (0, 2), then

dim{e ∈ S1 : dim Ke < η} ≤ κ(α, η), (1.2)

where κ(α, η) → 0 as η ↘ α/2. In case dim K > 1, we mention the sharp bound

dim{e ∈ S1 : H1(Ke) = 0} ≤ 2 − dim K ,

due to Falconer [3] (the symbol Hs stands for s-dimensional Hausdorff measure, see [14,
section 4]). The estimates of Kaufman and Falconer were generalized to a much richer class
of ‘projections’ than merely orthogonal ones in an influential paper of Peres and Schlag
[16] in 2000. In [6], Falconer and Howroyd improve on their own ‘almost all’ results by
estimating the Hausdorff dimension of the exceptional sets related to the conservation of
packing dimension under orthogonal projections. The sharp bounds are unknown in this
situation but, for example, their results imply that

dim

{
e ∈ S1 : dimp Ke <

dimp K

1 + (1/σ − 1/2) dimp K

}
≤ σ, 0 ≤ σ ≤ 1. (1.3)

All estimates cited above are formulated in terms of the Hausdorff dimension of the excep-
tional sets under consideration. The starting point of this paper is to investigate whether
similar bounds could be obtained in terms of packing dimension. Since dim B ≤ dimp B for
any set B ⊂ R

d , bounds for dimp can certainly be no lower than those for dim. But, to begin
with, it is not even clear if one can hope for any non-trivial estimates for the packing dimen-
sion of exceptional sets. The only existing result in any direction seems to be due to Rams
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On the packing dimension and category 845

[20] from 2002. It is concerned with the dimensions of self-conformal fractals �t ⊂ R
d ,

which vary smoothly and transversally (see [20, Theorem 1.1] and the references therein for
the definitions) as the parameter t takes values in some open subset V ⊂ R

d . Rams proves
that for every u ∈ V , there exists a number s(u) ≥ 0 (defined in terms of Bowen’s equation,
equal to the similarity dimension of�u in case the conformal mappings are similitudes) such
that

lim sup
r→0

dimp{t ∈ B(u, r) : dim�t ≤ σ } ≤ σ, σ < min{d, s(u)}.

Here, B(u, r) denotes the closed ball in R
d , centered at u ∈ R

d and with radius r > 0. In
order to better connect Rams’ result to orthogonal projections, let us formulate a special case,
which follows immediately from the inequality above. If K ⊂ R

2 is a self-similar set in the
plane satisfying the strong separation condition and containing no rotations, then

dimp{e ∈ S1 : dim Ke ≤ σ } ≤ σ, σ < dim K . (1.4)

This is precisely Kaufman’s bound (1.1) with one dim replaced by dimp! The content of our
first result is that such an improvement for (1.1) is not possible for general sets.

Theorem 1.1 There exists a compact set K ⊂ R
2 withH1(K ) > 0 such that dim Ke = 0 in

a dense Gδ-set of directions e.

Dense Gδ-sets on S1 always have packing dimension one (see the discussion right after
Proposition 2.3); so, this shows that (a) the exceptional set estimate (1.4) cannot be stated for
general sets and (b) the bounds (1.2) of Bourgain and (1.1) of Kaufman cannot be formulated
in terms of packing dimension. Next, we ask what happens if dim Ke is replaced by dimp Ke,
that is, can we obtain bounds for dimp{e ∈ S1 : dimp Ke ≤ σ }? An example as dramatic as
the one in Theorem 1.1 is not possible now because of the following:

Proposition 1.2 Let K ⊂ R
2 be an analytic set with dimp K = s and let e, ξ ∈ S1 be two

linearly independent vectors. Then,

s ≤ dimp Ke + dimp Kξ .

In particular,

card
{
e ∈ S1 : dimp Ke < s

2

} ≤ 2.

This proposition is a special case of a result in [9]; one may view it as a generalization
of the well-known inequality dimp(A × B) ≤ dimp A + dimp B for the packing dimension
of product sets, see [14, Theorem 8.10(3)]. In light of Proposition 1.2, the worst behavior
imaginable is this: a set K ⊂ R

2 with packing dimension dimp K = γ is projected to a set of
packing dimension γ /2 in a set E ⊂ S1 containing (many) more than two directions. On the
other hand, it follows from the bound (1.3) that dim E ≤ 2γ /(2 + γ ); so, E cannot be very
large in terms of Hausdorff dimension. Our next result shows that E can have full packing
dimension:

Theorem 1.3 Given γ ∈ [0, 2], there exists a compact set K ⊂ R
2 with dimp K = γ such

that

dimp

{
e ∈ S1 : dimp Ke = γ

2

}
= 1. (1.5)
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846 T. Orponen

This answers—in the plane—a question on the packing dimension of exceptional sets
raised in [5, section 4]. In contrast with the example in Theorem 1.1, we cannot hope to
construct compact—or even analytic—sets K ⊂ R

2 such that 0 < dimp K < 2, and {e ∈
S1 : dimp Ke = dimp K/2} has second category.
Theorem 1.4 Let A ⊂ R

2 be an analytic set and let

m := sup{dimp Ae : e ∈ S1}.
Then, {e ∈ S1 : dimp Ae 	= m} is a meager set with zero length.

Remark 1.5 The ‘zero-length’ part of the theorem follows from [6]. Namely, if dimp A =
γ ∈ [0, 2], it was shown in [6] that there exists a constant c ≥ 2γ /(2 + γ ) such that
dimp Ae ≤ c for all e ∈ S1 and dimp Ae = c for almost all e ∈ S1. Of course, this implies
that c = m. In case 0 < γ < 2, we then havem = c ≥ 2γ /(2+γ ) > γ/2, and, in particular,
the set {e : dimp Ae = dimp A/2} is meager for 0 < dimp A < 2. Our proof of Theorem
1.4—very different from the one in [6]—gives the same result for upper box dimension as
a by-product, see Theorem 4.2. This was not contained in [6], but (the zero-length part of)
the result was proved by Howroyd [8] in 2001, developing further the potential theoretic
machinery from [6].

In view of Theorems 1.1 and 1.3, it might seem that packing dimension is a hopelessly
inaccurate tool formeasuring the size of exceptional sets.However, there is onemore direction
unexplored. If the set K ⊂ R

2 has large Hausdorff dimension to begin with, what can we say
about the set {e ∈ S1 : dimp Ke ≤ σ }? In this situation, the only existing general result seems
to be the following one by Peres, Simon and Solomyak [18, Proposition 1.3]. If K ⊂ R

2 is
an analytic set with Hγ (K ) > 0 for some γ ∈ (0, 1], then

dim{e ∈ S1 : Pγ (Ke) = 0} ≤ γ. (1.6)

Here, Pγ refers to γ -dimensional packing measure, see [14, section 5]. In Peres, Simon
and Solomyak’s result, the size of the exceptional set is still measured in terms of Haus-
dorff dimension. Our fourth theorem provides an estimate for the packing dimension of the
exceptional set {e ∈ S1 : dimp Ke ≤ σ }:
Theorem 1.6 Let K ⊂ R

2 be an analytic set with Hausdorff dimension dim K = γ ∈ (0, 1].
Then, we have the estimates

dimp{e ∈ S1 : dimp Ke ≤ σ } ≤ σγ

γ + σ(γ − 1)
, 0 ≤ σ ≤ γ,

and

dimp{e ∈ S1 : dimp Ke ≤ σ } ≤ (2σ − γ )(1 − γ )

γ /2
+ σ, γ /2 ≤ σ ≤ γ.

Remark 1.7 The bounds may be difficult to read at first sight, so let us review some of their
features. First, the restriction σ ≥ γ /2 in the second bound has little consequence, since, by
Proposition 1.2, the exceptional set {e ∈ S1 : dimp Ke ≤ σ } has anyway packing dimension
zero for 0 ≤ σ < γ/2. The first estimate is sharper than the second one for σ close to γ :
the upper bound in the first estimate is less than σ/γ < 1 for σ < γ , and tends to one as
σ ↗ γ ; the second estimate unfortunately tends to 2−γ ≥ 1. Naturally, the second estimate
outperforms the first one for σ close to γ /2: the first estimate tends to γ /(1+γ ) as σ ↘ γ /2,
whereas the second estimate recovers the bound dimp{e : dimp Ke ≤ γ /2} ≤ γ /2,which, for
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On the packing dimension and category 847

self-similar sets, is precisely (1.4). Finally, the first estimate can be reformulated as follows:
if τ < 1, then

dimp{e ∈ S1 : dimp Ke ≤ τ dim K } ≤ τ · dim K

τ · dim K + (1 − τ)
.

In particular, the bound tends to zero as dim K → 0.

Our method for general sets combined with a ‘dimension conservation principle’ due
to Furstenberg [7] from 2008 can be used to recover a different proof for—and a slightly
generalized version of—Rams’ estimate (1.4).

Theorem 1.8 Let K be a self-similar or a compact homogeneous set (see the remark below)
in the plane. Then,

dimp{e ∈ S1 : dim Ke ≤ σ } ≤ σ, 0 ≤ σ < dim K .

Remark 1.9 In contrast with the formulation of Rams’ estimate (1.4), we impose no condi-
tions on separation or the absence of rotations in case the set K ⊂ R

2 above is self-similar.
Still, Rams’ estimate is—in the self-similar case—not essentially less general than the one
above: our proof of Theorem 1.8 starts by reducing the situation to the ‘no rotations, strong
separation’ case. However, one needs results more recent than Rams’ paper to accomplish
this reduction; namely, we use [17, Theorem 5] by Peres and P. Shmerkin from 2009, showing
that any orthogonal projection of a planar self-similar set containing an irrational rotation
preserves dimension. The homogeneous setsmentioned in the statement of Theorem 1.8 were
introduced by H. Furstenberg. Self-similar sets satisfying the strong separation condition and
containing no rotations are (not the only) examples of such sets, see [7, section 1].

It appears to be a challenging task to figure out the sharpness of Theorems 1.6 and 1.8.
Here is the best construction we could come up with:

Theorem 1.10 Let σ ∈ (3/4, 1). Then, there exists a compact set K ⊂ R
2 withH1(K ) > 0,

and a number τ(σ ) < 1 such that

dimp{e ∈ S1 : dimp Ke ≤ τ(σ )} ≥ σ.

Thus, one cannot expect very dramatic improvements to Theorem 1.6, but we still strongly
suspect that our bounds are not sharp: for instance, we believe that the packing dimension
of the exceptional set {e ∈ S1 : dimp Ke ≤ σ } should tend to zero as σ ↘ dim K/2, in
analog with Bourgain’s bound (1.2) for Hausdorff dimension. An optimist may find heuristic
support for this belief from the following Marstrand-type theorem for finite planar sets. We
had not encountered the result previously; so, we state it here and give a proof (based on the
Szemerédi–Trotter incidence bound) at the end of the paper:

Proposition 1.11 Let P ⊂ R
2 be a collection of n ≥ 2 points, and let 1/2 ≤ s < 1. Then,

card{e ∈ S1 : card Pe ≤ ns} �s n
2s−1.

We finish the introduction with two questions we were unable to answer.

Question 1.12 How sharp are the bounds in Theorem 1.6? In particular, is it true that

dimp{e ∈ S1 : dimp Ke < dim K } < 1,

if dim K < 1? According to the estimate (1.1) by Kaufman, this holds if the first dimp (or
even both dimp’s) is replaced by dim. What is the behavior of the best bound for dimp{e ∈
S1 : dimp Ke ≤ σ }, as σ ↘ dim K/2? Should the bound tend to zero, as in (1.2)?
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848 T. Orponen

Question 1.13 What is the best estimate one can obtain for the Hausdorff dimension of the
set {e ∈ S1 : dimp Ke ≤ σ } for σ < dim K? Peres, Simon and Solomyak make no comment
on the sharpness of their bound (1.6), and the Hausdorff dimension of the exceptional set in
Theorem 1.10 is likely to equal zero. Could it be that

dim{e ∈ S1 : dimp Ke < dim K } = 0, dim K ≤ 1?

2 Notations, definitions and the proof of Theorem 1.1

Notation 2.1 The unit circle {x ∈ R
2 : |x | = 1} is denoted by S1, and the orthogonal

projection in R
2 onto the line spanned by e ∈ S1 is denoted by ρe. For convenience, we

think of ρe as a mapping onto R instead of span(e) ⊂ R
2, which means that we define

ρe(x) := x · e ∈ R for x ∈ R
2. We will use the abbreviation Ke := ρe(K ) for sets K ⊂ R

2.
If A, B > 0, the notation A � B means that A ≤ CB for some constant C ≥ 1, which may
depend on various parameters, but not on B. Should we wish to emphasize the dependence of
C on some specific parameter p, wewill write A �p B. The two-sided inequality A � B � A
is abbreviated to A � B. Closed and open balls inRd will be denoted by B(x, r) andU (x, r),
respectively. Hausdorff measures Hs and Hs

δ , Hausdorff content Hs∞ and packing measures
Ps are defined as in Mattila’s book [14].

Next, we recall some basic facts on packing and box-counting dimensions.

Definition 2.2 (Packing and box-counting dimensions) If B ⊂ R
d is any bounded set and

δ > 0, we denote by P(B, δ) the maximum cardinality of a δ-packing of B with balls, that
is,

P(B, δ) := max{ j ≥ 1 : x1, . . . , x j ∈ B, and the balls B(x j , δ) are disjoint}.
Under the same setting, we denote by N (B, δ) the minimum cardinality of a δ-cover of B
with balls, that is,

N (B, δ) := min

⎧⎨
⎩ j ≥ 1 : x1, . . . , x j ∈ R

d , and B ⊂
j⋃

i=1

B(xi , δ)

⎫⎬
⎭ .

Since N (B, 2δ) ≤ P(B, δ) ≤ N (B, δ/2), see [14, (5.4)], the numbers

lim sup
δ→0

log N (B, δ)

− log δ
and lim sup

δ→0

log P(B, δ)

− log δ

are equal, and the common value is the (upper) box-counting dimension of B, denoted by
dimBB. The packing dimension of B is now defined by

dimp B := inf

⎧⎨
⎩sup

j
dimBFj : B ⊂

⋃
j∈N

Fj

⎫⎬
⎭ .

Since dimBB = dimBB for any set B, the definition above is unaffected, if we assume that
the sets Fj are closed.

It is immediate from the definition of packing dimension that dimp B ≤ dimBB. The
converse inequality is not true in general, but the following proposition from [4] often solves
the issue:
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Proposition 2.3 (Proposition 3.6 in [4]) Assume that K ⊂ R
d is compact, and

dimB(K ∩U ) = dimBK

for all open sets U that intersect K . Then, dimp K = dimBK.

In association with Theorem 1.1, we claimed that dense Gδ-sets on the circle always have
packing dimension one. In fact, the same is true for any set B ⊂ S1 of the second category.
To see this, cover B with a countable collection of sets Fj . By definition of second category,
B cannot be expressed as the countable union of nowhere dense sets. This implies that the
closure of B ∩ Fj must have non-empty interior for some j . In particular, dimBFj = 1,
which gives dimp B = 1.

Proof of Theorem 1.1 Choose a countable dense set of directions {e1, e2, . . . , } ⊂ S1 and
choose a sequence (s j ) j∈N such that s j ↘ 0 as j → ∞. Here is the plan. To every vector em ,
we will eventually associate countably many open arcs J (em, n), n ≥ 1. The dense Gδ-set
G ⊂ S1 will be defined by G = ⋂

Un , where

Un :=
∞⋃

m=1

J (em, n).

The set K will be constructed so that

Hsn
1/n(Ke) ≤ 1, e ∈ J (em, n), m, n ∈ N. (2.1)

This will evidently force dim Ke = 0 for every direction e ∈ G. We order the pairs (em, n)

according to the following scheme:

(e1, 1)

(e1, 2) (e2, 1)

(e1, 3) (e2, 2) (e3, 1) (2.2)

(e1, 4) (e2, 3) (e3, 2) (e4, 1)

. . . .

We start moving through the pairs (em, n) in the order indicated by (2.2)—that is, top down
and from left to right. Whenever we encounter a pair (em, n), we will associate to it (i) an arc
J (em, n) containing em and (ii) a compact set K (em, n), which is the finite union of closed
balls with a common diameter and disjoint interiors. The sets K (em, n) will all be nested,
and so

K :=
⋂
m,n

K (em, n)

will be a compact subset of R2.
To get the recursive procedure started, we define K (e1, 1) := B(0, 1/2) and J (e1, 1) =

S1. Then, (2.1) is satisfied form = n = 1, nomatterwhat s1 is. Then, assume thatwe have just
finished constructing the set Kprev := K (em(prev), n(prev)) for some m(prev), n(prev) ∈ N.
We assume that Kprev is the union of p ∈ N closed balls with disjoint interiors and a common
diameter d > 0. Let (em, n) be the ‘next’ pair in the ordering (2.2). Thus,

(em, n) = (em(prev)+1, n(prev) − 1) or (em, n) = (e1,m(prev) + 1).

Figure 1 shows the idea how to define the set K (em, n). Inside every one of the p balls B,
which constitute Kprev, we place q smaller balls on the diameter of B, which is perpendicular
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850 T. Orponen

Fig. 1 A simultaneous depiction
of K (e1, 1), K (e1, 2) and
K (e2, 1)

to em . Then, the projection ρem (K (em, n)) onto the line spanned by em can be covered by
p intervals of length d/q . The values of p and d depend only on Kprev, whereas q is a
completely free parameter. We take q so large that

Hsn
1/n(ρem [K (em, n)]) ≤ p ·

(
d

q

)sn
≤ 1

2
.

Then, we may choose J (em, n) to be an open arc centered at em so small that

Hsn
1/n(ρe[K (em, n)]) ≤ 1, e ∈ J (em, n).

Since K ⊂ K (em, n), this gives (2.1) and completes the induction. The fact that the set K
produced by the construction satisfies H1(K ) > 0 is standard: every ball in the ‘previous
generation’ is replaced by a fairly uniformly distributed collection of (almost disjoint) new
balls, and the sum of the diameters of the new balls equals the sum of the diameters of the
previous balls. In fact, the construction of K falls under the general scheme described in [14,
§4.12], and the conclusion there is precisely that 0 < H1(K ) < ∞. ��

3 The example in Theorem 1.3

In order to prove Theorem 1.3, we will inductively and simultaneously construct Cantor type
compact sets K ⊂ R

2 and E ⊂ S1 such that dimp K = γ ∈ [0, 1], dimp E = 1, and
dimp Ke = γ /2 for every direction e ∈ E . We first describe the construction of a ‘generic
exceptional set’ E ⊂ S1 with dimp E = 1. Below, we will agree that

Z+ = {0, 1, 2, . . . , } and N = {1, 2, 3, . . .}.
Construction 3.1 (The set E) Fix a sequence of numbers (t j ) j∈N ⊂ (0, 1) such that t j ↗ 1
as j → ∞. Let (r j ) j∈Z+ be a sequence of positive numbers, let (n j ) j∈Z+ be a sequence of
natural numbers, and let CI

j ⊂ S1 be a collection of �( j) := n0n1 · · · n j points on the unit

circle. Let I j be the collection of �( j) closed arcs I ⊂ S1 with midpoints in CI
j and length

H1(I ) = r j . We require the following properties from these items:

(P0) The values for j = 0 are r0 = 1 = n0 and CI
0 = {(1, 0)}. Hence, I0 contains one

arc of length one centered at the point (1, 0).
(P1) r j ↘ 0 and n j ↗ ∞ as j → ∞. Moreover, n j ↗ ∞ so quickly that

n
1−t j
j r

t j
j−1 ≥ 10, j ≥ 1. (3.1)
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(P2) If j ≥ 1, there are n j points of CI
j inside any arc I ∈ I j−1. The endpoints of I are

not in CI
j , the midpoint of I is in CI

j , and the points in C
I
j ∩ I are so evenly distributed

that d(x, y) > n−1
j H1(I )/10 = n−1

j r j−1/10 for x, y ∈ CI
j ∩ I .

(P3) If j ≥ 1, the number r j is so small that for any I ∈ I j−1 the arcs in I j centered at
the points in CI

j ∩ I are disjoint and contained in I .

Now, suppose that we have chosen the numbers n j and r j and the sets CI
j so that properties

(P0)–(P3) are in force. Then, we define

E :=
∞⋂
j=1

E j :=
∞⋂
j=1

⋃
I∈I j

I.

The sets E j are compact and non-empty and satisfy E j ⊃ E j+1 by (P3), so E is a non-empty
compact subset of S1. In order to evaluate dimp E , first note that CI

j ⊂ E for any j ≥ 0, by

(P2). Next, let U ⊂ S1 be an open set intersecting E . Then, U contains an arc I ∈ I j−1 for
arbitrarily large indices j ∈ N. This yields

P

(
E ∩U,

r j−1

10n j

)
≥ P

(
CI

j ∩ I,
r j−1

10n j

)
(P2)≥ n j

(P1)≥ 10

10t j

(
r j−1

10n j

)−t j
≥
(
r j−1

10n j

)−t j
.

Since t j ↗ 1 as j → ∞, this shows that dimB[E ∩ U ] = 1 for any open set U ⊂ S1 with
E ∩U 	= ∅, and so dimp E = 1 by Proposition 2.3.

The important fact here is that the choice of the numbers r j above is fairly arbitrary for
j ≥ 1: we may choose them as small as we wish, but, in light of (3.1), we will then have to
compensate by choosing the numbers n j very large. The following auxiliary result will be
used in constructing the examples in both Theorem 1.3 and 1.10:

Lemma 3.2 Let Gn ⊂ R
2 be a set homothetic to the n × n grid {1, . . . , n} × {1, . . . , n} ⊂

R
2. Then, if e ∈ S1 is the vector e = c(1, pq−1) ∈ S1, where p, q ∈ Z+, q 	= 0, and

c = (1 + p2q−2)−1/2, we have

card ρe(Gn) ≤ (1 + p)(1 + q)n, n ∈ N.

Proof We may assume that Gn = {1, . . . , n} × {1, . . . , n}, since any homothety h(x̄) =
r x̄ + v̄ commutes with projections. If t ∈ ρe(Gn), find a point (x, y) ∈ Gn such that
x + py/q = c−1t , and note that

(x + kp) + p(y − kq)

q
= t

c
, k ∈ Z.

In particular, ρ−1
e {t} ⊃ {(x, y) + k(p,−q) : 1 ≤ k ≤ n}. On the other hand, since (x, y) ∈

Gn , such points (x, y)+k(p,−q)with 1 ≤ k ≤ n are contained in the product {1, . . . , n(1+
p)} × {−nq + 1, . . . , n} =: G ′

n , which has cardinality n2(1 + p)(1 + q). Now, we have
shown that for every t ∈ ρe(Gn) there exist at least n points in the set ρ−1

e {t} ∩ G ′
n . Since

the pre-images ρ−1
e {t} are disjoint for various t ∈ R, this yields the inequality

n · card ρe(Gn) ≤ cardG ′
n = n2(1 + p)(1 + q),

or card ρe(Gn) ≤ n(1 + p)(1 + q), as claimed. ��
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Proof of Theorem 1.3 The idea is to construct the set K by an inductive procedure, and,
in the process, choose the parameters of the ‘generic’ exceptional set E so that (P0)–(P3)
are satisfied, and dimp Ke = γ /2 for every direction e ∈ E . The notation related to the
construction of E will be the same as in Construction 3.1.

To construct K , we will define finite collections Q j , j ∈ N, of closed squares in Q ⊂ R
2

of equal side-lengths (Q) =:  j and write K j := ⋃
Q∈Q j

Q. The set K is then be defined

by K = ⋂
j∈N K j . The collection of all midpoints of the squares in Q j is denoted by CQ

j .
Assume that 0 < γ < 2, as we may, and fix a sequence (γ j ) j∈N ⊂ (0, 2) such that γ j ↗ γ

as j → ∞. We maintain the following invariants throughout the process of constructing the
squares Q j :

(i) The collection Q0 consists of only one square, namely Q0 = [0, 1]2. For every j ≥ 1,
we have CQ

j−1 ⊂ K j ⊂ K j−1.

(ii) For every j ≥ 0, the collectionCI
j consists of some points of the form c(1, pq−1) ∈ S1,

where p, q ∈ Z, q 	= 0, and c = (1 + p2q−2)−1/2. Moreover, CI
j ⊃ CI

j−1 for every
j ≥ 1.

(iii) Whenever j ≥ 0, e ∈ I ∈ I j and  j ≤ l ≤ 1, we have

N (ρe(K j ), l) ≤ l−γ /2.

Wealso need the following technical hypothesis, which is only required for the induction
to work: replace every square Q ∈ Q j by a smaller concentric closed square Ql of side-
length l ≤  j to obtain a new collection of squares Ql

j , see Fig. 2. Denote the union of

these squares by Kl
j . Then,

N (ρe(K
l
j ), l) ≤ l−γ /2

for all e ∈ I ∈ I j .

(iv) If j ≥ 1 and Q ∈ Q j−1, then P(CQ
j ∩ Q,  j/2) ≥ 

−γ j
j .

Let us now initiate the induction. Condition (i) forces us to choose Q0 = {Q0} = {[0, 1]2},
CQ
0 = {(1/2), 1/2)} and 0 = 1. It is clear that properties (i)–(iii) are satisfied for these

parameters, and (iv) says nothing at this point. In particular, the ‘technical hypothesis’ in (iii)
is satisfied, since the set K 

0 is nothing but a single square of side-length  < 1. Also, recall
that n0 = 1 = r0 and CI

0 = {(1, 0)} ∈ S1 according to (P0) of Construction 3.1.
Next, let us assume that j ≥ 1 and Q j−1, C

Q
j−1,  j−1, I j−1, n j−1, r j−1 and CI

j−1 have
already been defined so that (i)–(iii) hold. We will now describe how to define the parameters
corresponding to the index j , so that all the conditions (i)–(iii) are satisfied (we exclude (iv),
because assuming property (iv) for the index j −1 is not necessary to acquire it for the index

j). First, choose n j so large that (P1) in Construction 3.1 is satisfied, that is, n
1−t j
j r

t j
j−1 ≥ 10.

Then, inside every interval I ∈ I j−1, place n j points of the form c(1, pq−1), p, q ∈ N,
c = (1 + p2q−2)−1/2, so that the endpoints of I are excluded and the midpoint of I is
included in the selection (this is possible by (ii)), and so that the mutual distance of any pair
of these points is at least n−1

j H1(I )/10 = n−1
j r j−1/10. Points of the correct form are dense

on S1, so the existence of such a selection is no issue—as far as we are not interested in how
large p and q can get. The collection of all such points, for every interval I ∈ I j−1, is the
new midpoint set CI

j . Now, (P2) is satisfied.
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Fig. 2 A square Q ∈ Q j−1, its
children in Q j , and a square of

the form Ql ∈ Ql
j−1, as in the

‘technical hypothesis’ of (iii)

Next, we will define  j and the collection Q j . Write q j−1 := cardQ j−1 and Mj :=
max{(1 + p)(1 + q) : c(1, pq−1) ∈ CI

j }. Choose  j so small that


1−γ j /2
j <  j−1 and q j−1 · 

(γ−γ j )/2
j ≤ min

{
1

4
,

1

10Mj

}
. (3.2)

These choices can clearly be made so that 
−γ j /2
j is an odd integer (oddity is needed for (i)),

and so 
−γ j
j is the square of an integer. Now, inside each square Q ∈ Q j−1, place 

−γ j
j squares

of side-length  j , so that the union of the new squares also forms a square Q′ of side-length
(Q′) =  j · 

−γ j /2
j = 

1−γ j /2
j <  j−1 = (Q), and the midpoint of Q coincides with the

midpoint of Q′, see Fig. 2. The collectionQ j then consists of all the q j := q j−1 · −γ j small
squares (of side-length  j ) so obtained, for every choice of Q ∈ Q j−1. To prove (iv), simply
note that a packing of the new midpoint set CQ

j intersected with any square Q ∈ Q j−1 is

obtained by placing a ball of radius  j/2 centered at every point in CQ
j ∩ Q. This yields

P(CQ
j ∩ Q,  j/2) ≥ 

−γ j
j ,

which is (iv).
It remains to define r j (and I j , of course, but this is completely determined by r j and CI

j )
and prove (iii). Set

r j := 2

(4q2j )
1/γ

.

We start by proving the ‘technical hypothesis’ of (iii). Note that CQ
j ∩Q is a grid homothetic

to {1, . . . , −γ j /2
j } × {1, . . . , −γ j /2

j }, for any Q ∈ Q j−1 Hence, if e = c(1, pq−1) ∈ CI
j ,

the previous lemma shows that

card ρe(C
Q
j ) ≤ q j−1(1 + p)(1 + q)

−γ j /2
j ≤ Mj · q j−1 · 

−γ j /2
j

4.4≤ 
−γ /2
j

10
. (3.3)
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Now, fix l ≤  j and consider the squares Ql
j := {Ql : Q ∈ Q j } as defined in (iii). Recall

that these are the squares concentric with the squares in Q j but with side-length only l. The
ρe-projection of the set Kl

j = ⋃
Q∈Q j

Ql consists of intervals of length at most
√
2 · l with

midpoints in the set ρe(C
Q
j ). Hence, we may infer from (3.3) that

N (ρe(K
l
j ), l) ≤ 

−γ /2
j

5
≤ l−γ /2

5
, e ∈ CI

j .

Next, note that if ξ ∈ B(e, l) ∩ S1 with e ∈ CI
j , we still have

N (ρξ (K
l
j ), l) ≤ l−γ /2,

since the intervals of length no more than
√
2 · l that make up ρξ (Kl

j ) are certainly covered

by the intervals that constitute ρe(Kl
j ), stretched by a factor of five. In particular, this shows

that N (ρξ (Kl
j ), l) ≤ l−γ /2, whenever l ≥ r j/2 and ξ ∈ I ∈ I j (then ξ is at distance no more

than r j/2 ≤ l from one of the points in CI
j ). On the other hand, if l ≤ r j/2 = 1/(4q2j )

1/γ ,
we have the trivial estimate

N (ρξ (K
l
j ), l) ≤ 2q j ≤ l−γ /2,

which follows from the fact that ρξ (Kl
j ) is the union of q j intervals of length no more than√

2 · l. This proves the ‘technical hypothesis’ of (iii).
Finally, it is time to prove the first part of (iii). Fix l ∈ [ j , 1] and e ∈ I ∈ I j . If l >  j−1,

we simply note that e ∈ J for some J ∈ I j−1 and use the induction hypothesis in (i) and
(iii) to conclude that

N (ρe(K j ), l) ≤ N (ρe(K j−1), l) ≤ l−γ /2.

Next, recall that the squares of Q j inside any fixed square Q ∈ Q j−1 are arranged so that

they form a square Q′ of side-length L j := 
1−γ j /2
j <  j−1, which has the same center as

Q. For any l ∈ [L j ,  j−1], we then note that the union of these squares {Q′ : Q ∈ Q j−1}
is contained in the union Kl

j−1 of the squares Q
l
j−1 = {Ql : Q ∈ Q j−1}, as defined in the

‘technical hypothesis’ of (iii). This means that

N (ρe(K j ), l) ≤ N (ρe(K
l
j−1), l) ≤ l−γ /2, e ∈ I ∈ I j−1,

by the induction hypothesis. In particular, this holds for e ∈ I ∈ I j . We are left with the case
l ∈ [ j ,L j ]. The projection ρe(K j ) in any direction e ∈ S1 is the union of q j−1 = cardQ j−1

intervals of length no more than
√
2 · L j . Since l ≤ L j , such a union can be covered by

4q j−1 · L j/ l intervals of length l. This and (3.2) yield the estimate

N (ρe(K j ), l) · lγ /2 ≤ 4q j−1 · L j

l
· lγ /2

= 4q j−1 · 
1−γ j /2
j · lγ /2−1

≤ 4q j−1 · 
(γ−γ j )/2
j

(4.4)≤ 1.

The proof of (iii) is finished. This completes the inductive step and the construction of the
sets E ⊂ S1 and K ⊂ [0, 1]2. The construction of the set E abides by the scheme in
Construction 3.1; so, we have dimp E = 1. It only remains to verify that dimp K = γ and
dimp Ke ≤ γ /2 for every direction e ∈ E . All the midpoint sets CQ

j are contained in K by
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(i), so (iv) combined with Proposition 2.3 gives dimp K = γ . If e ∈ E , then, for all j ∈ N,
we have e ∈ I for some arc I ∈ I j . Now, we may deduce from (iii) that

dimp Ke ≤ dimBKe ≤ lim sup
l→0

log N (Ke, l)

− log l
≤ γ

2
.

This completes the proof of Theorem 1.3. ��

4 Proof of Theorem 1.4

The proof of Theorem 1.4 divides into three parts. First, we reduce the situation from analytic
sets to compact sets using a lemma from [6]. Second,wemake a further reduction showing that
it suffices to prove Theorem 1.4 for upper box dimension dimB instead of packing dimension
dimp. Third, we prove Theorem 1.4 for upper box dimension using a simple combinatorial
approach.

Let A ⊂ R
2 be a compact set, and let

m := sup{dimp Ae : e ∈ S1}.
We will establish Theorem 1.4 by showing that

dimMB

{
e ∈ S1 : dimp Ae < σ

} ≤ 1 + σ − m, 0 ≤ σ ≤ m, (4.1)

where dimMB denotes the lower modified box dimension

dimMBB := inf

⎧⎨
⎩sup

j
dimBFj : B ⊂

⋃
j∈N

Fj

⎫⎬
⎭ ,

and dimB is the lower box dimension

dimBF := lim inf
δ→0

log N (F, δ)

− log δ
.

We may infer from (4.1) and the definition of m that the set {e ∈ S1 : dimp Ae 	= m}
has zero length. Moreover, if we manage to prove (4.1) for σ < m, we can cover the
set {e ∈ S1 : dimp Ae < σ } with countably many sets Fj with dimBFj < 1. The sets
Fj are nowhere dense; so, {e ∈ S1 : dimp Ae < σ } is meager by definition. The set
{e ∈ S1 : dimp Ae < m} is then meager as well.

4.1 First reduction

We cite the planar version of [6, Lemma 7].

Lemma 4.1 Let 0 ≤ t < 1, let e ∈ S1, and let A ⊂ R
2 be an analytic set such that

0 ≤ t < dimp Ae. Then, there exists a compact set K ⊂ A with t < dimp Ke.

It follows immediately that it suffices to prove the bound (4.1) for compact sets only.
Namely, if A ⊂ R

2 is an analytic set with m = m(A) > 0, we may use Lemma 4.1 to find a
compact set K ⊂ A with m := sup{dimp Ke : e ∈ S1} arbitrarily close to m. Then,

dimMB{e ∈ S1 : dimp Ae < σ } ≤ dimMB{e ∈ S1 : dimp Ke < σ } ≤ 1 + σ − m

for 0 ≤ σ ≤ m, assuming that we have (4.1) for all compact sets. Letting m ↗ m gives (4.1)
for A.
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4.2 Second reduction

Assume that we know how to prove the following.

Theorem 4.2 Let A ⊂ R
2 be a bounded set, and let

mB := sup{dimBAe : e ∈ S1}.
Then,

dimMB{e ∈ S1 : dimBAe < σ } ≤ 1 + σ − mB, 0 ≤ σ ≤ mB. (4.2)

Then, we claim that we can also prove (4.1) for compact sets. This reduction is based on
the following lemma, which will also be useful in the next section.

Lemma 4.3 LetDim be any countably stable notion of dimension, and let σ, β > 0. Suppose
that there exist a Borel regular measure μ and a μ-measurable set B ⊂ R

2 such that
0 < μ(B) < ∞, and

Dim{e ∈ S1 : dimp Be < σ } > β.

Then, there exists a compact set K ⊂ B with μ(K ) > 0 such that

Dim{e ∈ S1 : dimBKe < σ } > β.

Proof Take a compact set K̃ ⊂ B such that μ(K̃ ∩U ) > 0 for all open sets U ⊂ R
2 which

intersect K̃ . Any set of the form K̃ = F ∩ spt(μ�F) will do, where F ⊂ B is a compact
set with positive μ-measure, and μ�F is the restriction of μ to F ; such sets F exist by [14,
Theorem 1.10(1)]. Next, let (Uj ) j∈N be the countable collection of all open balls with rational
centers and rational radii that intersect K̃ . Write E := {e ∈ S1 : dimp Be < σ }, and set

E j := {e ∈ S1 : dimB[K̃ ∩U j ]e < σ }.
Here [K̃ ∩ U j ]e := ρe(K̃ ∩ U j ), as usual. We claim that E ⊂ ⋃

j E j . Let e ∈ E . Then,

dimp K̃e < σ , which, by definition, means that

inf

{
sup
i

dimBFi : K̃e ⊂
⋃
i∈N

Fi

}
< σ,

where the sets Fi can be assumed to be closed. Now, let (Fi )i∈N be a countable collection of
closed sets such that K̃e ⊂ ⋃

i Fi and dimBFi < σ for every i ∈ N. Since K̃e is compact,
Baire’s theorem tells us that some intersection K̃e∩Fi must have interior points in the relative
topology of K̃e: in other words, we may find an open set V ⊂ R such that ∅ 	= K̃e ∩V ⊂ Fi .
Since the open set ρ−1

e (V ) ⊂ R
2 intersects K̃ , we may deduce that the closure of one of the

balls Uj lies in ρ−1
e (V ). Then,

dimB[K̃ ∩U j ]e ≤ dimB[K̃e ∩ V ] ≤ dimBFi < σ

which means that e ∈ E j . Since Dim is countably stable, we may now conclude that

β < Dim E ≤ sup
j
Dim E j .

Thus, one of the sets E j must satisfy Dim E j > β. Now K = K̃ ∩ U j , for the same index
j , is the set we were after. ��
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Let us see how to prove (4.1) for a compact set K ⊂ R
2, assuming Theorem 4.2. Suppose

that (4.1) fails. Then, there exist numbers σ < m < m such that

dimMB{e ∈ S1 : dimp Ke < σ } > 1 + σ − m. (4.3)

Pick a direction ξ ∈ S1 such that dimp Kξ > m. Then, according to a result of Joyce and
Preiss [10], we may extract a compact subset R ⊂ Kξ with 0 < Pm(R) < ∞. Note that
ρξ : K ∩ ρ−1

ξ (R) → R is a continuous surjection between compact spaces; so, we may use

[14, Theorem 1.20] to find a finite Borel regular measure μ supported on K ∩ ρ−1
ξ (R) such

that

ρξ�μ = Pm�R. (4.4)

We then apply Lemma 4.3 with the choices Dim = dimMB, B = K ∩ ρ−1
ξ (R), and the

measure μ we just constructed. Since μ(B) > 0 and (4.3) holds, we may extract a compact
set Kμ ⊂ B = K ∩ ρ−1

ξ (R) with μ(Kμ) > 0 such that

dimMB{e ∈ S1 : dimBK
μ
e < σ } > 1 + σ − m. (4.5)

Recalling (4.4), we have

Pm(Kμ
ξ ) = μ[ρ−1

ξ (Kμ
ξ )] ≥ μ(Kμ) > 0,

which certainly implies that dimBK
μ
ξ ≥ m. In particular, we may infer from Theorem 4.2

that

dimMB{e ∈ S1 : dimBK
μ
e < σ } ≤ 1 + σ − m.

This contradicts (4.5) and completes the second reduction.

4.3 Proof of Theorem 4.2

We first define a discrete notion of ‘well-spread δ-separated sets’ and prove a version of
Marstrand’s projection theorem for such sets. Then, we derive Theorem 4.2 by finding large
well-spread sets inside the given arbitrary set A.

Definition 4.4 Afinite setC ⊂ B(0, 1) is calleda (δ, 1)-set, if the points inC are δ-separated,
and

card[C ∩ B(x, r)] �
r

δ
, x ∈ R

2, r ≥ δ.

Proposition 4.5 Let C ⊂ R
2 be a (δ, 1)-set with n ∈ N points. Let τ > 0, and let E ⊂ S1

be a δ-separated collection of vectors such that

N (Ce, δ) ≤ δτn, e ∈ E .

Then, card E � δτ−1 · log(1/δ).
Proof Given e ∈ E , define the family of sets Te as follows:

Te := {ρ−1
e [ jδ, ( j + 1)δ) : j ∈ Z}.

Thus, Te consists of δ-tubes perpendicular to e. Define the relation ∼e on C × C by

x ∼e y ⇐⇒ x, y ∈ T ∈ Te.
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Thus, the points x and y are required to lie in a common δ-tube in Te. Let

E :=
∑
e∈E

card{(x, y) ∈ C × C : x ∼e y}

and

E ′ :=
∑
e∈E

card{(x, y) ∈ C × C : x 	= y and x ∼e y}.

Since x ∼e x for every x ∈ C , the quantities E and E ′ are related by the equation E =
E ′ + n · card E . If x, y ∈ C , x 	= y, it is a simple geometric fact that there are � |x − y|−1

directions in E such that x ∼e y. This gives the upper bound

E ′ =
∑
x∈C

∑
j :δ≤2 j≤1

∑
y∈C

2 j≤|x−y|<2 j+1

card{e ∈ E : x ∼e y}

�
∑
x∈C

∑
j :δ≤2 j≤1

∑
y∈C

2 j≤|x−y|<2 j+1

|x − y|−1

�
∑
x∈C

∑
j :δ≤2 j≤1

card[C ∩ B(x, 2 j+1)] · 2− j

� δ−1 ·
∑
x∈C

∑
j :δ≤2 j≤1

2 j · 2− j � δ−1 · n · log
(
1

δ

)
.

Since card E � δ−1, the same bound holds for E = E ′ + n · card E as well. Next, let us try to
find a lower bound for E in terms of card E . Let e ∈ E . Wemay andwill assume that δτn ≥ 1.
Since N (Ce, δ) ≤ δτn, we find thatC can be covered by some tubes T1, . . . , TK ∈ Te, where
K � δτn. This gives

card{(x, y) ∈ C × C : x ∼e y} =
K∑
j=1

card{(x, y) ∈ C × C : x, y ∈ Tj }

=
K∑
j=1

card[C ∩ Tj ]2

C-S≥ 1

K
·
⎛
⎝ K∑

j=1

card[C ∩ Tj ]
⎞
⎠

2

� δ−τ · n−1 · (cardC)2 = δ−τ · n.

The letters C–S refer to Cauchy–Schwarz. This immediately yields

δ−τ · n · card E � E � δ−1 · n · log
(
1

δ

)
,

and the asserted bound follows. ��
Proof of Theorem 4.2 Recall that A ⊂ R

2 is an arbitrary set, and

mB = sup{dimBAe : e ∈ S1}.
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Let 0 ≤ σ < mB and write Ẽ := {e ∈ S1 : dimBAe < σ }. We observe that

Ẽ ⊂
⋃
i∈N

⋂
δ∈(0,1/ i)

{e ∈ S1 : N (Ae, δ) ≤ δ−σ } =:
⋃
i∈N

Ei ,

whence, by definition of dimMB, it suffices to prove that

sup
i

dimBEi ≤ 1 + σ − mB. (4.6)

Fix i ∈ N and let E := Ei . Also, fix σ < m < mB, and choose a direction ξ ∈ S1 such
that N (Aξ , δ) ≥ δ−m for arbitrarily small values of δ > 0. Choose some such value δ,
and use the information N (Aξ , δ) ≥ δ−m to find a δ-separated set Cδ ⊂ Aξ of cardinality
cardCδ ≥ δ−m . Write Tξ for the same family of tubes in R

2 as in the previous proof. Since
Cδ ⊂ Aξ , there exist tubes T1, . . . , TK ∈ Tξ such that

(a) the tubes are at least δ-separated from one another,
(b) K � δ−m , and
(c) every tube Tj contains a point x j ∈ A.

The set Cδ := {x j : 1 ≤ j ≤ K } ⊂ A is clearly δ-separated, and n := cardCδ � δ−m .
More importantly, Cδ is a (δ, 1)-set. This is a direct consequence of the fact that any ball
B(x, r) ⊂ R

2 of radius r ≥ δ intersects no more than � r/δ tubes in Tξ . The previous
proposition now implies that for any ε > 0, we have

N ({e : N (Cδ
e , δ) ≤ δ−σ }, δ) ≤ N ({e : N (Cδ

e , δ) ≤ δm−σ−ε/2n}, δ) ≤ δm−σ−1−ε

for δ > 0 sufficiently small. Since Cδ ⊂ A, we have

E =
⋂

δ∈(0,1/ i)

{e : N (Ae, δ) ≤ δ−σ } ⊂ {e : N (Cδ
e , δ) ≤ δ−σ },

so, we have found arbitrarily small values of δ > 0 such that N (E, δ) ≤ δm−σ−1−ε . This
gives (4.6) and completes the proof. ��

Remark 4.6 We did not include the assertions m,mB ≥ 2γ /(2 + γ ), see Remark 1.5, in
the statements of Theorems 1.4 and 4.2, because they are well known, and combinatorial-
geometric proofs already exist in [5]. To see how the bounds would follow from our method,
let us sketch the proof of mB ≥ 2γ /(2 + γ ) for any set A ⊂ R

2 with dimBA = γ ∈ (0, 2].
First of all, there exist arbitrarily small scales δ > 0 such that A contains a δ-separated subset
Cδ of cardinality between δ−γ+ε and δ−γ . Then, it is easy to check that Cδ is, in fact, a
(δ(2+γ )/2, 1)-set, so Proposition 4.5 shows that N (Cδ

e , δ
(2+γ )/2) � δ−γ+2ε for all but a very

few (δ(2+γ )/2-separated) directions. For all the ‘good’ directions, we have

log N (Ke, δ
(2+γ )/2)

− log δ(2+γ )/2
�

γ − 2ε

(2 + γ )/2
≈ 2γ

2 + γ
,

which means precisely that dimBKe ≥ 2γ /(2+γ ) in almost every direction. To get the same
conclusion for dimp instead of dimB, one has to pass through Lemma 4.3 in a similar spirit
as we did in the second reduction.
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5 Proofs of Theorems 1.6 and 1.8

The proof of Theorem 1.6 is based on a modification of the argument we used in Proposition
4.5. In the proof of Theorem 1.8, the same structure is again present, but we also make use
of a ‘dimension conservation principle’ due to H. Furstenberg.

Proof of the first estimate in Theorem 1.6 Frostman’s lemma for analytic sets, see [2], and
Lemma 4.3 combined reduce our task to proving the following assertion: assume that γ ∈
(0, 1), let K ⊂ B(0, 1) be a compact set supporting a Borel probability measure μ with
Iγ (μ) < ∞, and let 0 < σ < γ . Then, the packing dimension of the exceptional set

Ẽ := {e ∈ S1 : dimBKe < σ }
admits the estimate

dimp Ẽ ≤ σγ

γ + σ(γ − 1)
.

As in the previous section, we note that Ẽ satisfies

Ẽ ⊂
⋃
i∈N

⋂
δ∈(0,1/ i)

{e ∈ S1 : N (Ke, δ) ≤ δ−σ } =:
⋃
i∈N

Ei .

So, it suffices to prove that

dimBEi ≤ σγ

γ + σ(γ − 1)
(5.1)

for every i ∈ N. Fix i ∈ N, 0 < δ < 1/ i , and write E := Ei . Let us redefine some of the
notation from the previous section. There will be tubes: given e ∈ S1, we write

Te = {ρ−1
e [ jδρ, ( j + 1)δρ) : j ∈ Z},

where ρ = ρ(σ, γ ) ≥ 1 is a parameter to be chosen later.We define the relation∼e as before:

x ∼e y ⇐⇒ x, y ∈ T ∈ Te.

Let E0 ⊂ E be any δ-separated finite subset. This time, the energy E looks like

E :=
∑
e∈E0

μ × μ({(x, y) : x ∼e y}).

We first aim to bound E from above. To this end, we make the a priori assumption M :=
card E0 � δ−τ for some τ ∈ (0, 1]. Of course, this is always satisfied with τ = 1. Also, we
need the simple geometric fact that the set {e ∈ S1 : x ∼e y} consists of two arcs of length
� δρ/|x − y|. Thus, there are no more than � max{1, δρ−1/|x − y|} values of e in E0 such
that x ∼e y. Whenever δρ−1/|x − y| ≥ 1, this and the inequality min{a, b} ≤ aγ b1−γ allow
us to estimate

card{e ∈ E0 : x ∼e y} � min

{
δρ−1

|x − y| , M
}

≤ δγ (ρ−1)

|x − y|γ · δ−τ(1−γ ) = δγ (ρ−1)−τ(1−γ )

|x − y|γ .

Thus,

E �
∫∫

{|x−y|≥δρ−1}
dμx dμy +

∫∫
{|x−y|≤δρ−1}

card{e ∈ E0 : x ∼e y} dμx dμy

� 1 + δγ (ρ−1)−τ(1−γ )

∫∫
|x − y|−γ dμx dμy � max{1, δγ (ρ−1)−τ(1−γ )}.
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On the packing dimension and category 861

Next, we estimate E from below in terms of M . If e ∈ E0, we have

N (Ke, δ
ρ) ≤ δ−ρσ ,

since δρ ≤ δ < 1/ i . This means that K—and sptμ in particular—can be covered with some
tubes T1, . . . , TK ∈ Te with K � δ−ρσ . An application of the Cauchy–Schwarz inequality,
similar to the one seen in the proof of Theorem 4.5, gives

μ × μ({(x, y) : x ∼e y}) =
K∑
j=1

μ × μ({(x, y) : x, y ∈ Tj })

=
K∑
j=1

μ(Tj )
2 C-S≥ 1

K

⎛
⎝ K∑

j=1

μ(Tj )

⎞
⎠

2

� δρσ .

This shows that E � M · δρσ , and so

M � δ−ρσ · max{1, δγ (ρ−1)−τ(1−γ )}. (5.2)

The proof is finished by iterating this estimate. Here is the idea. If

γ (ρ − 1) − τ(1 − γ ) ≤ 0, (5.3)

the second term dominates inside the maximum in (5.2), and we obtain the bound M �
δ−ρσ+γ (ρ−1)−τ(1−γ ). We may then replace the a priori estimate M � δ−τ by

M � δ−ρσ+γ (ρ−1)−τ(1−γ )

and start the proof over (of course, here we need to know that some a priori estimate is true
to begin with, but, as noted, we always have M � δ−τ with τ = 1, for example). Continuing
in this manner (and assuming that (5.3) always holds), we get a sequence of estimates, where
the ‘new’ exponent of δ is obtained by multiplying the previous one by (1 − γ ) < 1 and
adding −ρσ + γ (ρ − 1). After n ≥ 1 iterations, the result will look like

−τn := [−ρσ + γ (ρ − 1)]
n−1∑
k=0

(1 − γ )k − (1 − γ )nτ.

Since −τn → −ρσ/γ + (ρ − 1), we see that M � δ−ρσ/γ+(ρ−1), and this gives

dimBE ≤ ρσ

γ
− (ρ − 1). (5.4)

It is immediate from (5.4) that large choices of ρ give better estimates for dimBE . So, how
large can we take ρ to be? For the validity of the previous argument, it was crucial that (5.3)
was true in every one of the infinite number of iterations: in other words, it seems like we
should choose ρ so that (5.3) holds with τ replaced by τn , for all n ∈ N. Fortunately, there
is an easier way. Let

ρ := γ

γ + σ(γ − 1)
≥ 1.

Then, there are two alternatives. If (5.3) fails at some iteration (that is, for some τn) we may
read from (5.2) that M � δ−ρσ . This immediately yields the estimate (5.1). But if (5.3) holds
for every τn , n ∈ N, we have (5.4) at our disposal: and with this particular choice of ρ, one
readily checks that we end up with (5.1) again. ��
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Proof of the second estimate in Theorem 1.6 The proof begins in a manner similar to the
previous one. It suffices to show the following assertion: assume that γ ∈ (0, 1), let K ⊂
B(0, 1) be a compact set supporting a Borel probability measure μ satisfying μ(B(x, r)) �
rγ and Iγ (μ) < ∞, let γ /2 ≤ σ < γ , and let i ∈ N. Then, the upper box dimension of the
exceptional set

E :=
⋂

δ∈(0,1/ i)

{e ∈ S1 : N (Ke, δ) ≤ δ−σ }

admits the estimate

dimBE ≤ (2σ − γ )(1 − γ )

γ /2
+ σ. (5.5)

If card E ≤ 2, we are done. Otherwise, choose three distinct vectors ξ1, ξ2, ξ3 ∈ E . We
record the following useful property: there exists a constant α > 0, depending on the vectors
ξ1, ξ2 and ξ3, such that any vector e ∈ S1 is at distance α from at least two of the vectors
ξ1, ξ2, ξ3.

Fix δ < 1/ i . Let us recall and redefine some notation from the previous proofs. Given
e ∈ S1, we write

Te := {ρ−1
e [ jδ, ( j + 1)δ) : j ∈ Z}.

Thus, Te consists of disjoint half-open δ-tubes, perpendicular to the vector e. If x, y ∈ R
2,

we define the relation x ∼e y, as before, by

x ∼e y ⇐⇒ x, y ∈ T ∈ Te.

Thus, the points x and y have to be contained in the same tube in Te. Now, we define a version
of the E-energy. Let E0 ⊂ E be any δ-separated set, and define

E :=
∑
e∈E0

∫∫
{(x,y):x∼e y}

|x − y|1−γ dμx dμy.

Let us first bound E from above. Again, we make use of the fact that the set {e ∈ S1 : x ∼e y}
is an arc Jx,y of length (Jx,y) � δ/|x − y|. In particular, given a pair of points x, y ∈ R

2,
at most � |x − y|−1 vectors e ∈ E0 can satisfy x ∼e y. This observation yields

E =
∫∫

card{e ∈ E0 : x ∼e y}|x − y|1−γ dμx dμy �
∫∫

|x − y|−γ dμx dμy � 1.

Next, we will bound E from below in terms of card E0. Fix any vector e ∈ E0. Then,
N (Ke, δ) ≤ δ−σ , which means that sptμ ⊂ K is covered by some tubes T1, . . . , Tk ∈ Te
with k � δ−σ . Fix τ > 0, and, for each tube Tj , choose a δ × δτ -rectangle S j ⊂ Tj , see
Fig. 3, with the following property. The set Tj \ S j has two δτ -separated components, say
T−
j and T+

j . We choose the position of the rectangle S j so that either

μ(Tj \ S j ) ≤ cδσ or μ(T−
j ) � μ(T+

j ), (5.6)

where c > 0 is a constant so small that k · cδσ ≤ 1/4. This means that if we can choose the
rectangle S j so that the first option in (5.6) holds, then we do just that. But if no such choice
of S j is possible, then, for any choice of S j , the opposite must hold: μ(T−

j ) + μ(T+
j ) =

μ(Tj \ S j ) > cδσ . Now, if we move S j by an amount of δ up or down the tube Tj , the
μ-measures of the half-tubes T−

j and T+
j can change by no more than � δγ , which is much

smaller than cδσ for small values of δ. This ensures that the second option in (5.6) can be
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On the packing dimension and category 863

Fig. 3 The tubes Tj and the rectangles S j

attained for a suitable choice of the position of S j (at least if δ is small enough, which we
can always assume).

Next, we claim that

k∑
j=1

μ(Tj \ S j ) ≥ 1

2
, (5.7)

for large enough τ > 0 (equivalently, for small enough δτ ). To prove this, assume that (5.7)
fails. Since the total μ-mass of the tubes Tj is one, this implies that

k∑
j=1

μ(S j ) ≥ 1

2
. (5.8)

We will now use (5.8) to extract a lower bound for δτ . We may and will further assume that
every rectangle S j has μ-measure at least cδσ : if this is not true to begin with, simply discard
all the rectangles with μ(S j ) < cδσ to obtain a subcollection of some remaining rectangles
S j , which satisfy μ(S j ) ≥ cδσ . Then, (5.8) holds with 1/2 replaced by 1/4, since the total
μ-measure of the discarded rectangles S j is bounded by k · cδσ ≤ 1/4. We keep the same
notation for these remaining rectangles.

It is time to recall the vectors ξ1, ξ2, ξ3 ∈ E that were chosen at the beginning of the proof.
As we remarked upon choosing these ξ j , we may find two among the three vectors, say ξ1
and ξ2, such that |e − ξ1| ≥ α and |e − ξ2| ≥ α. We use this information as follows: ��

Claim 5.1 Let P ⊂ R
2 be any set, which is contained in a single δ-tube T ∈ Te. Then

N (Pξ j , δ) � N (P, δ), j ∈ {1, 2},
where the implicit constants depend only on α.

Proof If x, y ∈ P and |x − y| ≥ Cδ for some large enough C ≥ 1, then the line segment
l connecting x and y is almost perpendicular to e. In particular, l can be nowhere close
perpendicular to ξ j , and this gives |ρξ j (x) − ρξ j (y)| � |x − y|.

We apply the claim with Pj := sptμ ∩ S j , for each of the remaining rectangles S j .
Note that since μ(S j ) ≥ cδσ , and μ satisfies the power bound μ(B(x, δ)) � δγ , we have
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N (Pj , δ) � δσ−γ . Similarly, it follows from the condition
∑

μ(S j ) ≥ 1/4 that

N

⎛
⎝ k⋃

j=1

Pj , δ
τ

⎞
⎠ � δ−γ τ . (5.9)

Since the vectors ξ1 and ξ2 areα-separated (whichmeans that they are essentially orthogonal),
we may deduce that either

N

⎛
⎝ k⋃

j=1

ρξ1(Pj ), δ
τ

⎞
⎠ � δ−γ τ/2 or N

⎛
⎝ k⋃

j=1

ρξ2(Pj ), δ
τ

⎞
⎠ � δ−γ τ/2, (5.10)

where the implicit constants depend only on α and the implicit constants in (5.9). Namely,
if both inequalities failed, we could easily cover

⋃
Pj with � δ−γ τ balls of radius δτ ,

contradicting (5.9). Suppose, for example, the the first inequality in (5.10) holds. Then, we
may choose a 5δτ -separated subset

R ⊂
k⋃
j=1

ρξ1(Pj )

of cardinality card R � δ−γ τ/2. For each point t ∈ R, wemay find an index j (t) ∈ {1, . . . , k}
such that t ∈ ρξ1(Pj (t)). But since Pj (t) ⊂ S j (t), we see that ρξ1(Pj (t)) ⊂ [t − 2δτ , t + 2δτ ].
This means that the projections ρξ1(Pj (t)) are δτ -separated for distinct t ∈ R. Now, it remains
to use Claim 5.1 to deduce the lower bound

N (ρξ1(Pj ), δ) � N (Pj , δ) � δσ−γ

for every j ∈ {1, . . . , k}, and, in particular, for every j = j (t). It follows that

N

⎛
⎝ k⋃

j=1

ρξ1(Pj ), δ

⎞
⎠ ≥

∑
t∈R

N (ρξ1(Pj (t)), δ) � δ−γ τ/2 · δσ−γ .

On the other hand, we have ξ1 ∈ E , which means that

N

⎛
⎝ k⋃

j=1

ρξ1(Pj ), δ

⎞
⎠ ≤ N (Kξ1 , δ) ≤ δ−σ .

Comparing the estimates leads to the existence of a constant b > 0, independent of δ, such
that δτ > bδ(2σ−γ )/(γ /2). All this was deduced solely on the basis of (5.7) failing. Thus, if

δτ = bδ(2σ−γ )/(γ /2), (5.11)

we see that (5.7) must hold.
Now, we are prepared to estimate E from below. Choose τ > 0 in such a manner that

(5.7) holds. As we just demonstrated, the choice giving δτ = bδ(2σ−γ )/(γ /2) is ok. Since
(5.7) holds, we may discard the indices j ∈ {1, . . . , k} such that the first possibility in (5.6)
is realized: for the remaining indices j , say j ∈ {1, . . . , K }, K ≤ k � δ−σ , the latter option
in (5.6) holds, and, moreover, we still have

K∑
j=1

μ(Tj \ S j ) ≥ 1

4
(5.12)
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by the choice of c. Here is the reason why we are so interested in removing a (large)
rectangle S j from Tj : if x ∈ T−

j and y ∈ T+
j , we have |x − y| ≥ δτ . This means that we can

make the following estimate:

∫∫
{(x,y):x∼e y}

|x − y|1−γ dμx dμy ≥
K∑
j=1

∫

x∈T−
j

∫

y∈T+
j

|x − y|1−γ dμx dμy

≥ δτ(1−γ ) ·
K∑
j=1

μ(T−
j ) · μ(T+

j )

(6.6)� δτ(1−γ ) ·
K∑
j=1

μ(T+
j )2

C-S≥ δτ(1−γ ) · 1

K

⎛
⎝ K∑

j=1

μ(T+
j )

⎞
⎠

2

(6.6)
� δτ(1−γ )+σ

⎛
⎝ K∑

j=1

μ(Tj \ S j )

⎞
⎠

2
(6.13)
� δτ(1−γ )+σ .

This estimate holds uniformly for every vector e ∈ E0, so we have

δτ(1−γ )+σ · card E0 � E � 1.

This yields

N (E, δ) � δ−σ−τ(1−γ )

for any such τ > 0 such that (5.7) holds. The choice of τ indicated by (5.11) immediately
yields the bound ��

Next, we use a similar method to prove Theorem 1.8. The idea is this: the last few lines
of the previous proof reveal that if we could always choose τ arbitrarily close to zero, we
would immediately obtain dimBE ≤ σ . The problem with general sets is that such a choice
might result in the failure of the crucial estimate (5.7): this would essentially mean that,
simultaneously, the dimension of the projection in some direction e ∈ E drops to σ < γ and
most of the measure μ is concentrated in the δτ -neighborhood of a graph ‘above’ the line
spanned by the vector e. For self-similar sets andmeasures (under some additional conditions,
at least), such behavior is simply not possible for τ > 0. The reason for this is the following
dimension conservation principle introduced by H. Furstenberg.

Definition 5.2 (Dimension conservation principle) Let K ⊂ R
2. A projection ρe : R2 → R

is dimension conserving, if there exists � = �(e) ≥ 0 such that

� + dim{t ∈ R : dim[K ∩ ρ−1
e {t}] ≥ �} ≥ dim K .

In this definition, the convention is adopted that dim ∅ = −∞: this means, among other
things, that � = dim K is an admissible choice for � only in case there exist some lines
ρ−1
e {t} such that dim[K ∩ ρ−1

e {t}] = dim K . Also, if ρ−1
e {t} ∩ K = ∅, we have dim[K ∩

ρ−1
e {t}] = −∞, which means that

{t : dim[K ∩ ρ−1
e {t}] ≥ �} ⊂ Ke. (5.13)
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Remark 5.3 There is no reason why �(e) should be unique; so, in fact, the notation �(e)
refers to a set. Whenever we write �(e) ≥ C , we mean that

sup�(e) ≥ C.

The requirement inf �(e) ≥ C might seem more natural, but our definition makes Propo-
sition 5.5 slightly stronger. In [7, Theorem 6.2] Furstenberg proves that if K ⊂ R

2 is a
compact homogeneous set, then every projection ρe, e ∈ S1, is dimension conserving. For
the precise definition of homogeneous sets, we refer to [7, Definition 1.4], but for Theorem
1.8 in mind, it suffices to know two facts: (i) all self-similar sets in the plane containing no
rotations and satisfying the strong separation condition are homogeneous and (ii) all com-
pact homogeneous sets K have dim K = dimBK . Both facts are stated immediately after [7,
Definition 1.7]. We will use Furstenberg’s result via the following easy proposition:

Proposition 5.4 Let K ⊂ R
2 be a compact homogeneous set. Then

{e ∈ S1 : dim Ke ≤ σ } ⊂ {e ∈ S1 : �(e) ≥ dim K − σ }.
Proof According to Furstenberg’s result, we know that every projection ρe is dimension
conserving, so that �(e) is well defined. Suppose that dim Ke ≤ σ . If, in the set �(e), there
was even one value � with � < dim K − σ , we would immediately obtain

dim K ≤ � + dim{t : dim[K ∩ ρ−1
e {t}] ≥ �} 6.15≤ � + dim Ke < dim K ,

which is absurd. Hence, dim Ke ≤ σ even implies inf �(e) ≥ dim K − σ . ��
Thus, for compact homogeneous sets, we may estimate the packing dimension of the

exceptional set {e ∈ S1 : �(e) ≥ dim K − σ } instead of {e ∈ S1 : dim Ke ≤ σ }. Such an
estimate is the content of the following proposition.

Proposition 5.5 Let K ⊂ R
2 be a compact set with dim K = dimBK = γ , and let 0 ≤ σ <

γ . Then dimp E ≤ σ , where

E = {e ∈ S1 : ρe is dimension conserving, and �(e) ≥ γ − σ }.
Proof If the projection ρe is dimension conserving, and � ∈ �(e), then for any τ > 0 we
may find ε > 0 such that

Hγ−�−τ∞ ({t : H�−τ (K ∩ ρ−1
e {t}) > ε}) > ε,

where Hd∞ stands for d-dimensional Hausdorff content, as defined in [14, §4]. This reduces
us to proving the estimate

dimBEε,τ ≤ σ + 3τ (5.14)

for any ε > 0 and 0 < τ < γ − σ , where

Eε,τ := {e ∈ S1 : Hγ−�−τ∞ ({t : H�−τ∞ (K ∩ ρ−1
e {t}) > ε}) > ε for some � ≥ γ − σ }.

Fix δ > 0. At this point, we should mention that in the � and � notation below, all implicit
constants may depend on ε, γ, K , σ and τ , but not on δ. Since dimBK = γ , we may, for any
γ ′ > γ , choose a collection of points K0 := {x1, . . . , xN } ⊂ K such that N � δ−γ ′

, and

K ⊂
N⋃

n=1

B(xn, δ).
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Given e ∈ S1, define the δ-tubes Te by

Te = {ρ−1
e [ jδ, ( j + 1)δ) : j ∈ Z}.

Let d = (γ − σ − τ)−1. We define the relation x ∼e y for x, y ∈ R
2:

x ∼e y ⇐⇒ |x − y| ≥
( ε

10

)d
and B(x, δ) ∩ T 	= ∅ 	= B(y, δ) ∩ T for some T ∈ Te.

This definition differs from its analogs in the previous proofs in that now we require the
points x and y to be separated by a constant independent of δ, and also the strict inclusion
x, y ∈ T is relaxed to x and y being relatively close to a single tube in Te. Let E0 ⊂ Eε,τ be
any δ-separated finite set. The energy E is defined as follows:

E :=
∑
e∈E0

card{(x, y) ∈ K0 × K0 : x ∼e y}.

Once more, we intend to estimate E from above and below. The estimate from above is easy.
If x, y ∈ K0, the number of vectors e ∈ E0 such that x ∼e y is bounded by a constant
depending only on ε, γ, σ and τ—but not on δ. Hence, E � N 2 � δ−2γ ′

. To bound E from
below, fix e ∈ E0. By definition of Eε,τ , there exist � ≥ γ − σ and tubes T1, . . . , Tk ∈ Te
such that k � δ�+τ−γ , and every tube Tj contains a line L j := ρ−1

e {t j } with
H�−τ∞ (K ∩ L j ) > ε.

Consider a fixed tube Tj . If δ < (ε/9)d , then, by the choice of d , the (� − τ)-dimensional
Hausdorff content of a rectangle S with dimensions δ × (ε/9)d is no more than ε/2. This
implies that

H�−τ∞ ([K ∩ L j ] \ S) > ε/2 (5.15)

for any such rectangle S. A δ-cover of the set [K ∩L j ]\S is obtained by all the balls B(xn, δ),
xn ∈ K0, which have non-empty intersection with [K ∩ L j ] \ S. According to (5.15), there
must be � δτ−� such balls, for any choice of S. Now, as in the previous proof, we simply
choose S ⊂ Tj in such a manner that Tj \ S is divided into two disjoint (ε/9)d -separated
half-tubes T+

j and T−
j so that

card{xn : B(xn, δ) ∩ [K ∩ L j ∩ T±
j ] 	= ∅} � δτ−�.

Finally, if xm, xn ∈ K0 are points such that B(xm, δ) ∩ [K ∩ L j ∩ T−
j ] 	= ∅ and B(xn, δ) ∩

[K ∩ L j ∩ T+
j ] 	= ∅, we have |xn − xm | ≥ (ε/9)d − 2δ ≥ (ε/10)d for small enough δ, and

this shows that xm ∼e xn . By the choice of S, there are � δ2(τ−�) pairs (xm, xn) with this
property. Now, we would like to make the estimate

card{(x, y) ∈ K0 × K0 : x ∼e y} � k · δ2(τ−�)

� δ�+τ−γ+2(τ−�)

= δ3τ−�−γ ≥ δ3τ+σ−2γ ,

the last inequality being equivalent with � ≥ γ − σ . This is correct, but one must be a bit
careful, since, in the first inequality, any pair of points (xm, xn)may be counted several times,
if B(xm, δ) ∩ [K ∩ L j ∩ T−

j ] 	= ∅ and B(xn, δ) ∩ [K ∩ L j ∩ T+
j ] 	= ∅ for multiple indices

j . We are saved by the fact that any ball of radius δ may intersect no more than three tubes
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Tj , so each pair (xm, xn) gets counted no more than nine times. This implies that E can be
bounded from below as

E � card E0 · δ3τ+σ−2γ ,

and so we have proved that

card E0 � δ−σ−3τ+2(γ−γ ′).

Since γ ′ > γ was arbitrary, this gives (5.14) and concludes the proof of the proposition. ��
We will now finish the proof of Theorem 1.8.

Proof of Theorem 1.8 If K is compact and homogeneous, it follows from [7] that dim K =
dimBK . Thus, the part of Theorem 1.8 for compact homogeneous sets follows immediately
by combining Propositions 5.4 and 5.5.

Next, let K ⊂ R
2 be a self-similar set with dim K = γ , and let 0 ≤ σ < γ . If K contains

an irrational rotation, it follows from [17, Theorem 5] that dim Ke = min{1, γ } for every
direction e ∈ S1. So, we may assume that K contains no irrational rotations. Then [15,
Lemma 4.2] shows that there exists a self-similar set K̃ ⊂ K satisfying the strong separation
condition, containing no rotations or reflections, and with γ̃ = dim K̃ > σ . According
to [7], the set K̃ is homogeneous, and certainly also dimB K̃ = γ̃ . Hence, it follows from
Propositions 5.4 and 5.5 that the set

Ẽ := {e ∈ S1 : dim K̃e ≤ σ }.
satisfies dimp Ẽ ≤ σ . The proof is finished by observing that

{e ∈ S1 : dim Ke ≤ σ } ⊂ Ẽ .

��

6 The example in Theorem 1.10

We use a few words to explain our motivation to see through the construction presented
below. If K ⊂ R

2 is a self-similar fractal containing no rotations, then dim Ke = dimp Ke =
dimBKe for every vector e ∈ S1. It is a long-standing problem, attributed to H. Furstenberg,
see [19, Question 2.5], to determine the largest possible size of the exceptional set {e ∈ S1 :
dim Ke < dim K }, given that K ⊂ R

2 is self-similar without rotations and dim K ≤ 1. It is
conjectured that this set should be nomore than countable.At some point, it occurred to us that
perhaps this conjecture could be verified by showing that the set {e ∈ S1 : dimp Ke < dim K }
is always at most countable, for any Borel set K ⊂ R

2 with dim K ≤ 1. These dreams were
put to rest by the emergence of the construction below. The seemingly stronger conclusion in
Theorem 1.10 that the exceptional set may even have large packing dimension is practically
free of charge: the construction would be no less tedious, were we only interested in the
uncountability of the set {e ∈ S1 : dimp Ke < dim K }. Finally, it is still possible that the
approach via general sets and the packing dimension of projections could be used to prove a
weaker form of Furstenberg’s conjecture, namely that dim{e ∈ S1 : dim Ke < dim K } = 0
for self-similar sets K ⊂ R

2 as above.
Another point worth mentioning relates our example to a ‘number theoretic’ construction

from the 70’s. In [12], Kaufman and Mattila prove that Kaufman’s bound (1.1) is sharp
by presenting a Borel set B ⊂ R

2 of Hausdorff dimension dim B = s ∈ (0, 1] such that
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On the packing dimension and category 869

dim{e ∈ S1 : dim Be < dim B} = s. It is fair to ask, whether, by lucky coincidence, the
projections of the set B might also have small packing dimension: this would be a major
improvement to Theorem 1.10! There is a simple reason why this idea fails: the example of
Kaufman and Mattila is a set B of the second category in the plane. Every continuous open
surjection, including projections, take sets of second category to sets of second category. It
follows immediately that dimp Be = 1 for every e ∈ S1.

6.1 Proof of Theorem 1.10

We begin by setting up some notation. Let K1, K2 ⊂ B(0, 1/2) be compact sets, which are
expressible as the unions of certain finite collections G1 and G2 of closed balls with disjoint
interiors. We define a new set K1 � K2 ⊂ B(0, 1/2) by ‘taking all the balls in G2 and scaling
and translating them inside each and every ball in G1’. Formally, if B ⊂ R

2 is a closed ball,
let TB be the linear transformation taking B(0, 1/2) to B without rotations or reflections.
Then

K1 � K2 :=
⋃
B∈G1

TB(K2). (6.1)

The set K1 � K2 ⊂ B(0, 1/2) is again compact and expressible as the union of [card G1] ·
[card G2] closed balls with disjoint interiors. The product � is associative: if B(x1, r1),
B(x2, r2) and B(x3, r3) are generic balls in G1, G2 and G3, respectively, then the generic
ball in K1 � K2 � K3 = (K1 � K2) � K3 = K1 � (K2 � K3) has the form

B(x1 + 2r1x2 + 4r1r2x3, 4r1r2r3).

The abbreviation

K (m) := K � K � · · · � K

will be used to denote the m-fold �-product of a set K ⊂ B(0, 1/2) with itself. Finally, if
K ⊂ B(0, 1/2) is a set expressible as the union of finitely many balls with disjoint interiors,
the centers of these balls form a finite set SK ⊂ K , the skeleton of K . We record some useful
relations between �-products and orthogonal projections.

Lemma 6.1 Let K1, K2 ⊂ B(0, 1/2) be sets expressible as the finite unions of balls with
disjoint interiors, and let e ∈ S1. Then

card ρe(SK1�K2) ≤ [card ρe(SK1)] · [card ρe(SK2)].
Assume, furthermore, that all the K1-balls have common diameter δ1 ∈ (0, 1]. Then

N (ρe(K1 � K2), δ) ≤ N (ρe(K1), δ), δ > 0,

and

N (ρe(K1 � K2), δ) ≤ [card ρe(SK1)] · N
(

ρe(K2),
δ

δ1

)
, δ > 0.

Proof The first inequality is clear and the second follows from K1 � K2 ⊂ K1. To prove the
remaining inequality, fix δ > 0. Write G1 for the collection of balls, the union of which is
K1. Observe that

N (ρe[TB(K2)], δ) = N

(
ρe(K2),

δ

δ1

)
, B ∈ G1.
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Fig. 4 The sets U3 and B3

If B1 = B(x1, δ1) ∈ G1 and B2 = B(x2, δ1) ∈ G1 are balls such that ρe(x1) = ρe(x2), then
also ρe[TB1(K2)] = ρe[TB2(K2)]. Now the desired estimate follows from (6.1). ��

Next, we will introduce, for each n ∈ N, a compact set Bn ⊂ B(0, 1/2), which is
expressible as the union of a large but finite collection of closed balls with disjoint interiors
and a common diameter. These sets will play the role of ‘basic building blocks’ in our
construction. Indeed, the desired set K will be defined by

K = lim
j→∞((· · · ((B(m1)

n1,e1 � Bn2,e2)
(m2) � Bn3,e3)

(m3) � · · · )(m j−1) � Bn j ,e j )
(m j ). (6.2)

where Bn,e refers to a rotated copy of Bn .
The set K3 is depicted in Fig. 4. To define Bn for general n, it is handy to use a variant

of the �-product for square collections. If Q ⊂ R
2 is a closed square, let TQ be the linear

transformation taking the unit square [−1/2, 1/2]2 onto Q without rotations or reflections. If
K1, K2 ⊂ [−1/2, 1/2]2 are compact sets expressible as the finite unions of certain collections
G1 and G2 of closed squares with disjoint interiors, define K1 � K2 by the familiar formula
(6.1), just replacing the two occurrences of B by Q. Then, in order to define Bn ,

(a) let Q1 = [−1/2, 1/2]2, and let Q2 ⊂ B(0, 1/2) ⊂ [−1/2, 1/2]2 be the set consisting
of the four closed squares of side-length 1/4 and disjoint interiors, which all have a
common corner at (0, 0),

(b) let Qn ⊂ [−1/2, 1/2]2, n ≥ 3, be the set consisting of n2 closed squares of side-
length n−2 placed inside the unit square in such a manner that the midpoints form
a grid homothetic to {1, . . . , n}2, and the distance between vertically or horizontally
neighboring midpoints is n−1. To specify Qn uniquely, we agree that the top left square
has a common corner with [−1/2, 1/2]2.

(c) Fix d ≥ 3, and let Ln ⊂ [−1/2, 1/2]2, n ≥ 1, be the set consisting of (n!)d closed
squares of side-length (n!)−d and disjoint interiors, whose midpoints lie on the y-axis.

We write

Un := Q1 � Q2 � · · · � Qn, n ≥ 1.

The set U3 is visible in Fig. 4. The set Bn is defined by replacing every one of the (n!)2+d

squares of Un � Ln by a concentric ball of diameter (n!)−2−d . The set B3 is also visible in
Fig. 4. The only reason why we had to define Q2 differently from the other sets Qn was to
ensure that Bn ⊂ B(0, 1/2) for all n ∈ N. For convenience, we also define B0 := B(0, 1/2).
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Recalling Lemma 3.2, we say that a direction e ∈ S1 is rational, if e = c(1, pq−1) for
some integers p, q ∈ Z+, q 	= 0, and c = (1 + p2q−2)−1/2. The definition of the sets Un

and Bn may seem complicated, but the precise structure is only needed in the proof of the
following lemma; for the rest of the proof of Theorem 1.10, we can simply refer to the three
properties stated below.

Lemma 6.2 Let e = c(1, pq−1) ∈ S1 be a rational direction, let 1/2 < s < 1, and let
(1 + d)/(2 + d) < t < 1. Then

(i) There exists δe,s > 0 such that

N (ρe(Bn), δ) ≤ δ−s, (n!)−2 ≤ δ ≤ δe,s, n ∈ N.

Note that if (n!)−2 > δe,s , the claim says nothing. Moreover,

N (ρe(Bn), δ) �e,t δ−t , (n!)−2−d ≤ δ ≤ 1.

(ii) Let Sn be the skeleton of the set Bn, that is, Sn = SBn . Then, there exists ne ∈ N such
that

card ρe(Sn) ≤ (n!)t (2+d), n ≥ ne.

(iii) We denote by Dn ⊂ S1 the collection of (n!)d−3 rational directions e ∈ S1 such that
the lines L = ρ−1

e {t} have negative slope k(n!)−d for some k ∈ {1, . . . , (n!)d−3}. This
simply means that L can be written in the form

L = {(x, y) : y = −k(n!)−d x + y0}, 1 ≤ k ≤ (n!)d−3.

Then, |e − ξ | � (n!)−d and |e − (0, 1)| ≤ 2(n!)−3 for distinct directions e, ξ ∈ Dn.
Moreover,

card ρξ (Sn) ≤ 3(n!)1+d , ξ ∈ Dn, n ≥ 3.

Proof We will prove both the claims in (i) for N (ρe(Un), δ) instead of N (ρe(Bn), δ): this
is fine, since N (ρe(Bn), δ) ≤ N (ρe(Un), δ) for any e ∈ S1 and δ > 0. Fix n ∈ N and let
(n!)−2 ≤ δ ≤ 1. We pursue an estimate for log N (ρe(Un), δ)/ − log δ. Let m = mδ ∈ N be
the greatest number such that [(m − 1)!]−2 > δ. Then, m ≤ n. Denote by SUm the skeleton
of Um : thus, SUm is the collection of the (m!)2 midpoints of the squares, which form Um .
The first estimate in Lemma 6.1 clearly also holds for the �-products of square unions; so,
we have

card ρe(SUm ) ≤
m∏
j=1

card ρe(SQ j ),

where SQ j is the skeleton of Q j . Now, recalling Lemma 3.2 and observing that SQ j is a
dilated copy of {1, . . . , j} × {1, . . . , j} ⊂ R

2, we have

card ρe(SUm ) ≤
m∏
j=1

[(1 + p)(1 + q) j] = [(1 + p)(1 + q)]m · m! (6.3)

for the rational direction e = c(1, pq−1) ∈ S1. Write cp,q := (1 + p)(1 + q). The side-
lengths of the squares formingUm equal (m!)−2, so the projectionρe(Um) consists of intervals
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of length no more than
√
2(m!)−2 ≤ √

2δ, whose midpoints lie in the set ρe(SUm ). These
intervals can be covered by ≤ 3cmp,q · m! intervals of length δ, which yields

log N (ρe(Un), δ)

− log δ
≤ log N (ρe(Um), δ)

log([(m − 1)!]2) ≤ log(3cmp,qm!)
log([(m − 1)!]2) =: E(m).

Using the Stirling approximation formula ln k! = k ln k−k+O(ln k), one finds that E(m) →
1/2 as m → ∞. But m = mδ → ∞ as δ → 0, whence the first inequality in (i) follows.

The second inequality in (i) is an immediate consequence of the first one. Given t >

(d + 1)/(d + 2), apply the first inequality with

s = s(t) := (t − 1)(2 + d) + 2

2
= (2 + d)t

2
− d

2
>

1 + d

2
− d

2
= 1

2
,

to conclude that

N (ρe(Un), δ) �e,t δ−s(t), (n!)−2 ≤ δ ≤ 1.

If (n!)−2−d ≤ δ ≤ (n!)−2, we first apply the previous inequality with interval length (n!)−2

to find �e,t (n!)2s(t) intervals of length (n!)−2, which cover ρe(Un). Then, we split these
intervals into≤ 2(n!)−2/δ intervals of length δ to obtain a covering of ρe(Un)with δ-intervals
of cardinality �e,t (n!)2s(t)−2/δ. All this yields

N (ρe(Un), δ)δ
t �e,t (n!)2s(t)−2δt−1 ≤ (n!)2s(t)−2(n!)(1−t)(2+d) = 1

by the choice of s(t) > 1/2.
The inequality in (ii) follows from the estimate (6.3), which shows that

lim
n→∞

log card ρe(SUn )

log n! ≤ 1

for anyfixed rational direction e = c(1, pq−1) ∈ S1. In particular, since (t−1)(2+d)+2 > 1,
we have

card ρe(SUn ) ≤ (n!)(t−1)(2+d)+2

for sufficiently large n ∈ N. Then, according to the first estimate in Lemma 6.1, it follows
that

card ρe(Sn) := card ρe(SBn ) ≤ [card ρe(SUn )] · [card SLn ]
≤ (n!)(t−1)(2+d)+2 · (n!)d = (n!)t (2+d)

for sufficiently large n ∈ N.
Everything about (iii) is an immediate consequence of the definition of the directions

ξ ∈ Dn except for the estimate card ρξ (Sn) ≤ 3(n!)1+d . To prove this, we need ��
Lemma 6.3 Let (x, y) ∈ Sn. Then, x = (r + 1/2)(n!)−2 for some r ∈ Z.

The proof of this lemma is an easy induction argument. The estimate in (iii) will follow
from

Claim 6.4 Let n ≥ 3, and let L be a line with negative slope k(n!)−d for some k ∈
{1, . . . , (n!)d−2}. Then, either L has empty intersection with Sn, or L meets

S+
n := Sn ∪ [Sn + (0, (n!)−2)] ∪ [Sn − (0, (n!)−2)]

in a set of n! points.
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Fig. 5 An illustration of the set S+
3 and a line L with negative slope k(n!)−d meeting S3. The gray squares

are inU3, but the white squares are shown only for artistic reasons: the set S
+
3 consists not of the squares, but

the small dots inside them

See Fig. 5 for a picture of the set S+
3 . Let us finish the proof of (iii), assuming this claim.

Note that the set S+
n , n ≥ 3, consists of 3(n!)2+d points, since the three sets in the definition

of Sn are disjoint for n ≥ 3 and contain (n!)2+d points each. Now suppose that ξ ∈ Dn and
t ∈ ρξ (Sn). This means that L := ρ−1

ξ {t}, a line with negative slope k(n!)−d , intersects Sn .
Then, according to the claim, card[L ∩ S+

n ] = n! For distinct t, t ′ ∈ ρξ (Sn), the sets L ∩ S+
n

are disjoint and contained in S+
n . Thus,

3(n!)2+d = card S+
n ≥ card ρξ (Sn) · n!,

which gives the required estimate.
Now, we just need to verify Claim 6.4. Let L be a line with negative slope k(n!)−d ,

k ∈ {1, . . . , (n!)d−2}, such that L ∩ Sn 	= ∅. Observe that all the points in Sn lie on n! vertical
lines L1, . . . , Ln!, and, according to Lemma 6.3, the difference between the x-coordinates
of any pair of these lines has the form r(n!)−2 for some number r ∈ Z: this difference has
absolute value at most one; so, we have |r | ≤ (n!)2. Since L itself is not vertical, L intersects
every one of the lines L j : what we need to prove is that the point in L ∩ L j is contained in
S+
n for 1 ≤ j ≤ n!. Here comes the key feature of the set S+

n : if (xo, yo) ∈ Sn , then

{y : (x, y) ∈ S+
n ∩ L j } ⊃ {yo + s(n!)−2−d : s ∈ Z and |s| ≤ (n!)d} (6.4)

for any 1 ≤ j ≤ n!. In other words, for any j ∈ {1, . . . , n!}, the y-coordinates of the set
S+
n ∩ L j contain all the rationals of the form yo + s(n!)−2−d , |s| ≤ (n!)d . This property

follows immediately from the definitions of Sn and S+
n , and, in particular, the fact that the

y-coordinates of the (n!)d points of Sn inside any given square in Un are placed at intervals
of length (n!)−2−d (see the ‘magnification’ on the right half of Fig. 5).

To prove Claim 6.4, fix (xo, yo) ∈ L ∩ Sn : such a point exists by assumption. Let (x, y)
be the intersection of L with any line L j , 1 ≤ j ≤ n! Then, we have x = xo + r(n!)−2 for
some r ∈ Z with |r | ≤ (n!)2. Hence, by definition of L ,

y = yo − k(n!)−dr(n!)−2 = yo − kr(n!)−2−d .

Now, it suffices to note that kr ∈ Z and |kr | ≤ (n!)2(n!)d−3 = (n!)d−1 ≤ (n!)d . According
to (6.4), this shows that (x, y) ∈ S+

n ∩ L j , and Claim 6.4 is proven. ��
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Remark 6.5 Strictly speaking, our definition of a ‘rational direction’ excludes some obvious
examples, such as the vector (0, 1). However, everything stated in the lemma continues to
hold, if we extend the notion to include vectors of the form c(pq−1, 1), with p, q ∈ Z+,
q 	= 0, and c = (1+ p2q−2)−1/2. So, in the sequel, such vectors will also be called ‘rational
directions’ without further remark.

Now, as we start to construct the sets K and E of Theorem 1.10, we may forget (almost)
all about the sets Bn , and only keep in mind the properties listed in the previous lemma. Fix
σ ∈ (3/4, 1) as in the statement of Theorem1.10, then choose d ∈ Nwith d ≥ 3/(1−σ) > 3.
Also, pick a number τ = τ(σ ) ∈ ((d + 1)/(d + 2), 1). We are now prepared to construct
a compact set K ⊂ B(0, 1/2) and an exceptional set E ⊂ S1 such that dimp E ≥ σ , and
dimp Ke ≤ τ(σ ) for every direction e ∈ E . In fact, we will even prove that dimBKe ≤ τ(σ )

for e ∈ E , but this ‘strengthening’ is nothing but cosmetic according to Lemma 4.3. The
constructions of K and E proceed by induction. In our situation, however, it seems awkward
to use linear induction along the natural numbers: a more flexible index set is a tree. This is
a graph T with a root vertex r ∈ T such that every vertex v ∈ T has (nv !)d−3 children for
some nv ∈ N.1 Every vertex v ∈ T \ {r} also has a unique parent p(v) ∈ T in the tree. The
height of a vertex v ∈ T , denoted by h(v) ∈ N, is the distance of v to the root vertex in the
tree metric: thus h(r) = 0, and h(v) = h(p(v)) + 1 for v ∈ T \ {r}. To each vertex v ∈ T
we will, by a recursive procedure, associate the following items:

(i) a rational direction ev ∈ S1 and a number cv ∈ [1, 2),
(ii) a compact set Kv ⊂ B(0, 1/2), which is the union of a collection of kv ≥ h(v) closed

balls with disjoint interiors and common diameter δv = k−1
v ,

(iii) a closed arc Iv ⊂ S1 of length H1(Iv) = δv , the midpoint of which is ev .

Here are the desired properties of these parameters:

(iv) The arcs Iv are either nested or disjoint. If v,w ∈ T , then Iv ⊂ Iw , if and only if v is
a descendant of w in the tree order.

(v) All the sets Kv , v ∈ T , are nested (but we might well have Kv = Kw for two distinct
vertices v,w ∈ T ). In particular, if V ⊂ T is a finite collection of vertices, there exists
b ∈ V such that Kb ⊂ Kw for all w ∈ V .

(vi) If v ∈ T , then the (nv!)d−3 points ew corresponding to the children of v lie in Iv and
are at distance � (nv !)−d from each other.

(vii) If e ∈ Iv , then

((Kv)e, cvδ) ≤ 5δ−τ , δv ≤ δ ≤ 1.

Once we manage to get so far, we will set

K :=
⋂
v∈T

Kv ⊂ B(0, 1) and E :=
∞⋂
n=0

⋃
h(v)=n

Iv ⊂ S1.

Let us quickly see how it follows from (vi) and (vii) that dimp Ke ≤ τ for e ∈ E and
dimp E ≥ σ . If e ∈ E , then e ∈ Iv for infinitely many vertices v ∈ T . Since δv → 0 as
h(v) → ∞, we see immediately from (vii) that N (Ke, δ)δ

τ ≤ 5 for all δ ∈ (0, 1]. To see
that dimp E ≥ σ , one uses (vi), the information d ≥ 3/(1− σ), and the same argument that
proved in Construction 3.1 that the exceptional set there had packing dimension one. To be

1 The number nv of children will be chosen recursively, so it is not exactly well defined to speak of the tree
T at this point: the infinite tree T will be the end result of our induction.
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just a bit more precise, observe that, for any v ∈ T , the arc Iv contains the midpoints ew

associated with the children w of v. These midpoints lie in E by (iii), so (vi) gives

P([E ∩ Iv], κ(nv !)−d) ≥ (nv !)d−3 � [κ(nv !)−d ](3−d)/d ≥ [κ(nv !)−d ]−σ

for a suitable absolute constant κ > 0. This gives instantly that dimBE ≥ σ , and the passage
to dimp follows the argument in Construction 3.1.

Let us initiate the construction. At first, our tree contains only one vertex, the root r . We
start by defining er , cr and Kr : note that, by (iii), the arc Ir ⊂ S1 is then uniquely determined
by these parameters. We set er = (0, 1) and cr = 1. The set Kr is defined as the union of
the kr ∈ N closed balls B ⊂ B(0, 1/2) with disjoint interiors and diameter δr = k−1

r , whose
centers lie on the line segment [−1/2, 1/2] × {0}. How large should we take kr? Lemma
6.2(i) applied with e = er = (0, 1) implies that there exists a constant cτ > 0 such that

N (ρer (Bn), δ) ≤ cτ δ
−τ , (n!)−2−d ≤ δ ≤ 1.

Note that SKr ⊂ R, so ρer (SKr ) = {0}. Using Lemma 6.1, this implies that

N (ρer (Kr � Bn), δ) = 1 ≤ δ−τ , δr ≤ δ ≤ 1,

and

N (ρer (Kr � Bn), δ) ≤ N

(
ρer (Bn),

δ

δr

)
≤ [cτ δ

τ
r ] · δ−τ , δr (n!)−2−d ≤ δ < δr .

Now, we choose kr ∈ N so large that cτ δ
τ
r = cτ /kτ

r ≤ 1. Then, the previous inequalities
combined show that

N (ρer (Kr � Bn), δ) ≤ δ−τ , δr (n!)−2−d ≤ δ ≤ 1, (6.5)

for any n ∈ N.
Now, er , Ir and Kr have been defined. Before we proceed, let us introduce one last piece

of notation. If e ∈ S1, let Re : R2 → R
2 be the rotation, which takes (0, 1) to e. If n ∈ N, we

write Bn,e := Re(Bn). Now, we will formulate an induction hypothesis:

(IND) Suppose that we have already constructed a finite tree T0 and associated to each
vertex v ∈ T0 the parameters ev , Kv and Iv so that properties (i)–(v) hold. Moreover, if
v ∈ T0 is not a leaf vertex,2 then suppose that the number of children is (nv !)d−3 for some
nv ∈ N, and (vi) holds for v. According to (v), there exists b ∈ T0 such that Kb ⊂ Kv

for all v ∈ T0. We assume that

N (ρξ (Kb � Bn,e), cbδ) ≤ δ−τ , δb(n!)−2−d ≤ δ ≤ 1

for every pair of directions e, ξ ∈ {ev : v ∈ T0} and for every n ∈ Z+.
The content of (6.5) is precisely that the parameters associated with the root vertex r ∈ T

satisfy (IND) (and (IND) is the reason why we could not initiate the induction in any simpler
manner). Pick any leaf vertex v ∈ T0. Next, we will define nv , the number of children of v

in T , and determine the values of Kw , ew, cw and Iw for all the children w. All of this has to
be done so that (IND) remains valid for the augmented tree T0 ∪ {w : p(w) = v}. Already
now, we mention that for every child w of v, the set Kw and the number cw will be the same,
but the directions ew will be distinct.

Let n ∈ N, and consider the directions Dn defined in Lemma 6.2(iii). If ξ ∈ Dn , recall that
|ξ − (0, 1)| ≤ 2(n!)−3. Thus, the rotated directions Rev (ξ), ξ ∈ Dn , satisfy |Rev (ξ) − ev| ≤
2 That is, if v has children in T0.
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2(n!)−3. This shows that we may pick n = nv so large that Rev (Dn) ⊂ int Iv . The rational
directions ew corresponding to the children of v in T are now defined to be the directions in
Rev (Dnv ):

{ew : p(w) = v} = Rev (Dnv ).

Note that the distance between distinct ew is � (n!)−d according to Lemma 6.2(iii): thus (vi)
holds for v.

As we hinted much earlier, in (6.2) to be precise, the set Kw (for any child w of v) will
have the form Kw = (Kb � Bnv,ev )

(mv) for some large mv, nv ∈ N. One criterion for the size
of nv was already given, but there are more. Denote by Sn , n ∈ N, the skeleton of Kb � Bn,ev ,
and write Sn,e, e ∈ S1, n ∈ N, for the skeleton of Bn,e: thus Sn,e = Re(Sn), where Sn is—as
before—the skeleton of Bn . Then, choose some t ∈ ((d + 1)/(d + 2), τ ). According to
Lemmas 6.1 and 6.2(ii), (iii), we may choose nv ∈ N so large that

card ρξ (S
nv ) ≤ [card ρξ (SKb )] · [card ρξ (Snv,ev )]

≤ [card SKb ] · [card ρR−1
ev (ξ)

(Snv )] ≤ (nv !)t (2+d) (6.6)

for all directions ξ ∈ {ew : w ∈ T0} ∪ Rev (Dnv ): the reason is simply that Lemma 6.2(ii)
can be applied to the finite collection R−1

ev ({ew : w ∈ T0}) of rational directions, and the
vectors ξ ∈ Rev (Dnv ) are handled using the bound in Lemma 6.2(iii). The size of the constant
card SKb has no bearing on the result: we can first apply Lemma 6.2(ii) and (iii) with some t ′
slightly smaller than t to obtain card ρR−1

ev (ξ)
(Snv ) ≤ (nv !)t ′(2+d) for all vectors ξ as above,

and then note that [card SKb ] · [card ρR−1
ev (ξ)

(Snv )] ≤ (nv !)t (2+d) for nv large enough, of
course depending on card SKb .

There will be three more conditions on the size of nv . Let

s(τ ) := (τ − 1)(2 + d) + 2

2
= (2 + d)τ

2
− d

2
>

1 + d

2
− d

2
= 1

2
,

and choose 1/2 < s < s(τ ). According to Lemma 6.2(i), there exists a constant δs > 0 such
that

N (ρev (Bn,ev ), δ) = N (ρ(0,1)(Bn), δ) ≤ δ−s, (n!)−2 ≤ δ ≤ δs .

This combined with Lemma 6.1 shows that

N (ρev (Kb � Bn,ev ), δ) ≤ [card ρev (SKb )] · N
(

ρev (Bn,ev ),
δ

δb

)

≤ [card SKb · δsb] · δ−s, δb(n!)−2 ≤ δ ≤ δbδs .

Now, we have to, first, choose n = nv so large that (nv !)−2 ≤ δs and, second, so large that
[card SKb ] · (nv !)2s ≤ (nv !)2s(τ )/2. Then, the previous inequality applied with δ = δb(nv !)−2

gives

N (ρev (Kb � Bnv,ev ), δb(nv !)−2) ≤ [card SKb · δsb] · (δb(nv !)−2)−s ≤ (nv !)2s(τ )/2. (6.7)

The final condition on nv is this: nv must be chosen so large that

cw := cb

(
1 + 2(nv !)−3

cbδb(nv !)−2

)
< 2.
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As we remarked earlier, this definition of cw is common for all the children w of v. Now, we
are ready to prove that

N (ρξ (Kb � Bnv,ev ), cwδ) ≤ δ−τ , δb(nv !)−2−d ≤ δ ≤ 1 (6.8)

for all ξ ∈ {ew : w ∈ T0}∪ Rev (Dnv ). If ξ = ew for somew ∈ T0, then (6.8) holds by (IND),
since cw ≥ cb. So, let ξ = Rev (e) for some e ∈ Dnv . As noted before, ξ satisfies the estimate
|ξ − ev| ≤ 2(nv !)−3. It follows from this and the definition of cw that if δb(nv !)−2 ≤ δ ≤ 1,
and ρev (Kb � Bnv,ev ) can be covered with, say, k intervals of length cbδ, then ρξ (Kb � Bnv,ev )

can be covered by the k intervals with the same midpoints but the slightly larger length
cwδ. Namely, if x ∈ Kb � Bnv,ev , and ρev (x) lies in one of these k intervals, say I , then
|ρev (x) − t | ≤ cbδ/2 for the midpoint t of I . Hence,

|ρξ (x)−t |≤|x ||ξ−ev| + |ρev (x) − t | ≤ (nv !)−3 + cbδ

2
≤
(
2(nv !)−3

δb(nv !)−2 + cb

)
δ

2
=: cwδ

2
,

which means that ρξ (x) lies in an interval I ′ corresponding to I but with length cwδ. To sum
this up, we have

N (ρξ (Kb � Bnv,ev ), cwδ) ≤ N (ρev (Kb � Bnv,ev ), cbδ) ≤ δ−τ , δb(nv !)−2 ≤ δ ≤ 1.

But this is not quite (6.8) yet. Next, let δb(nv !)−2−d ≤ δ < δb(nv !)−2. According to (6.7),
the set ρev (Kb � Bnv,ev ) can be covered with (nv !)2s(τ )/2 intervals of length δb(nv !)−2: note
that this estimate is slightly better than the previous bound applied with δ = δb(nv !)−2. Once
more exploiting the fact |ξ − ev| ≤ 2(nv !)−3 and the definition of cw , the same intervals
amplified by a factor of cw suffice to cover ρξ (Kb � Bnv,ev ). A covering of ρξ (Kb � Bnv,ev )

with cwδ-intervals is then simply obtained by splitting all the intervals of length cwδb(nv !)−2

into 2δb(nv !)−2/δ intervals of length cwδ. The total number of cwδ-intervals required to cover
ρξ (Kb � Bnv,ev ) is hence bounded above by (nv !)2s(τ )δb(nv !)−2/δ, which gives

N (ρξ (Kb � Bnv,ev ), cwδ)δτ ≤ (nv !)2s(τ )δb(nv !)−2δτ−1

≤ (nv !)2s(τ )δb(nv !)−2[δb(nv !)−2−d ]τ−1

= δτ
b (nv !)2s(τ )−(τ−1)(2+d)−2 = δτ

b ≤ 1.

This proves (6.8) and finishes the definition of nv . Now that the number of children of v has
been permanently determined, it is certainlywell defined towrite T+ := T0∪{w : p(w) = v}.

It remains to fix mv ∈ N. Recall that Snv was the skeleton of Kb � Bnv,ev . If

(δb(nv !)−2−d)2 ≤ δ ≤ δb(nv !)−2−d ,

Lemma 6.1 combined with the estimates (6.6) and (6.8) yields

N (ρξ [(Kb � Bnv,ev )
(2)], cwδ) ≤ [card ρξ (S

nv )] · N
(

ρξ (Kb � Bnv,ev ), cw

[
δ

δb(nv !)−2−d

])

≤ (nv !)t (2+d) ·
(

δ

δb(nv !)−2−d

)−τ

≤ δ−τ

for all directions ξ ∈ {ew : w ∈ T+}, and the same inequality for δb(nv !)−2−d ≤ δ ≤ 1
follows immediately from (6.8). This reasoning can be iterated to show that

N (ρξ [(Kb � Bnv,ev )
(m)], cwδ) ≤ δ−τ , (δb(nv !)−d−2)m ≤ δ ≤ 1, (6.9)

for any m ∈ N and for all ξ ∈ {ew : w ∈ T+}. We are finally close to proving (IND) for the
set Kw := (Kb � Bnv,ev )

(m) for some sufficiently large m ∈ N. We remind the reader that
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the set Kw is the same for all the children w of v; also, after Kw ⊂ Kb is constructed, it will
clearly be the smallest set (in terms of inclusion) in the augmented tree T+. Thus, according
to (IND), we should be able to prove that

N (ρξ (Kw � Bp,e), cwδ) ≤ δ−τ , δw(p!)−2−d ≤ δ ≤ 1, (6.10)

for any p ∈ N and for any pair of directions e, ξ ∈ {ew : w ∈ T+}. Here δw = (δb(nv !)−d−2)m

is the diameter of the balls in Kw . Fix p ∈ N and e, ξ ∈ {ew : w ∈ T+}. There are only finitely
many such pairs, and all the directions are rational, so it follows from the latter estimate in
Lemma 6.2(i) that

N (ρξ (Bp,e), δ) ≤ CT+ · δ−τ , (p!)−2−d ≤ δ ≤ 1 (6.11)

for some constant CT+ > 0 depending only on these finitely many rational configurations
and τ . Now, if we denote by Snv,m the skeleton of the set Kw, inequality (6.6) and the first
estimate in Lemma 6.1 combine to produce the bound

card ρξ (S
nv,m) ≤ (nv !)mt (2+d), m ∈ N. (6.12)

Fix δw(p!)−2−d ≤ δ ≤ 1. If δ ≥ δw , then (6.10) follows immediately from (6.9). In case
δ < δw we resort to Lemma 6.1 once more. This combined with (6.11) and (6.12) yields

N (ρξ (Kw � Bp,e), cwδ) ≤ [card ρξ (S
nv,m)] · N

(
ρξ (Bp,e),

cwδ

δw

)

≤ (nv !)mt (2+d) · CT+ ·
(

δ

δw

)−τ

≤ CT+ · (nv!)m(2+d)(t−τ) · δ−τ

Now, the only condition we place on m = mv is that CT+ · (nv !)m(2+d)(t−τ) ≤ 1. This
can be achieved, since t < τ . With this choice of mv , the set Kw satisfies (6.10) and,
consequently, (IND). To finish the entire construction, there remains the minor point that the
intervals Iw , w ∈ T+, have to be disjoint. Recall that, for the children w of v, the directions
ew were at least � (nv !)−d apart. This number does not depend on mv ; on the other hand
H1(Iw) = δw = (δb(nv !)−2−d)m , which can be made arbitrarily small by increasing mv

only.
Right after formulating the properties (i)–(vii), we demonstrated that the proof of Theorem

1.10 would be finished (except for the part about H1(K ) > 0) given these properties for K
and E . Now (IND) states directly that properties (i)–(vi) are in force: what about (vii)? Let
v ∈ T , and let e ∈ Iv . During the construction of the tree T , there comes a point where
Kv is the smallest set in the finite subtree constructed so far: in the terms of (IND), we
have v = b with respect to some subtree T0 ⊂ T . Then, (IND) applied with n = 0 (then
Bn,e = B(0, 1/2)) shows that

N (Kev , cvδ) ≤ N (ρev (Kv), cvδ) ≤ δ−τ , δv ≤ δ ≤ 1. (6.13)

Since e ∈ Iv , we have |e − ev| ≤ δv: this implies that the number of δ-intervals required to
cover Kev is comparable to the number of δ-intervals required to cover Kev for any δ ≥ δv .
This observation combined with (6.13) proves (vii).

We omit the proof ofH1(K ) > 0, since it is entirely standard. For example, in [14, §4.12]
there are given conditions, which guarantee that Hs(E) > 0 for any s > 0 and any ‘Cantor
type’ set E . It is easy to verify that K satisfies all of these conditions with s = 1. The proof
of Theorem 1.10 is complete.
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6.2 Proof of Proposition 1.11

Proposition 1.11 is an easy consequence of a theorem of Szemerédi and Trotter [21] on the
number of incidences between points and lines in the plane. Let us state this estimate:

Theorem 6.6 (Szemerédi–Trotter incidence bound) Let P ⊂ R
2 be a set of n points, and let

L be a collection of m lines in R2. Write I (P,L) for the set of incidences between the points
in P and the lines in L. Formally, we define

I (P,L) := {(p, L) : p ∈ P, L ∈ L and p ∈ L}.
Then

card I (P,L) ≤ A(m2/3n2/3 + m + n),

where A > 0 is an absolute constant.

Now, we are armed to prove Proposition 1.11:

Proof of Proposition 1.11 Let P ⊂ R
2 be a set with n ≥ 2 points. Suppose that S ⊂ S1 is

a set of directions such that card S = k and card Pe ≤ ns < n for e ∈ S. Let A > 0 be
the constant from Theorem 6.6. If n is so small that ns−1 > 1/(2A), the desired inequality
follows from the trivial bound k ≤ n2 �s n2s−1. Thus, we may assume that ns−1 ≤ 1/(2A).
We apply the Szemerédi–Trotter estimate with the point set P and the collection of lines

L := {ρ−1
e {t} : e ∈ S and t ∈ Pe}.

Then, every point p ∈ P is incident with exactly k lines, which yields

card I (P,L) = kn.

On the other hand, there are no more than kns lines in L, so that

kn = card I (P,L) ≤ A[(kns)2/3n2/3 + kns + n] ≤ A(2k2/3n(2s+2)/3 + kns).

Here, we needed the assumption s ≥ 1/2 in the form n ≤ k2/3n(2s+2)/3. Dividing by k2/3n
and using the assumption ns−1 ≤ 1/(2A) gives

k1/3 ≤ A(2n(2s−1)/3 + k1/3ns−1) ≤ 2An(2s−1)/3 + k1/3

2
.

Move k1/3/2 to the left-hand side and raise everything to the third power to conclude the
proof. ��

Acknowledgments I am thankful to Pertti Mattila, Esa Järvenpää and an anonymous referee for many useful
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