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Abstract Answering a question raised by Y.X. Huang, we prove what follows: if � is a

bounded smooth domain and p > 1, then the mapping q �→ λq |�| p
q is decreasing in ]0, p∗[

and Lipschitz continuous on compact subsets of ]0, p∗[, λq being the p-th power of the best

Sobolev constant for the embedding of W 1,p
0 (�) into Lq(�).
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1 Introduction and main result

The present paper is devoted to the classical Dirichlet problem for the p-Laplacian operator{−�pu = λ|u|q−2u in �

u = 0 on ∂�
, (1)
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768 G. Anello et al.

where� ⊂ R
N (N > 1) is a bounded domain with a boundary ∂� of classC1,α (0 < α ≤ 1),

p > 1, 0 < q < p∗ are real numbers (we recall that the Sobolev critical exponent is
p∗ = Np/(N − p) if 1 < p < N , p∗ = +∞ if p ≥ N ), and λ > 0 is a parameter.
Problem (1) has been widely investigated, with different results according to the relation
between the exponents p and q . For the homogenous case (p = q), we refer the reader to
Lê [13] for a detailed description of the eigenvalues and eigenspaces. Ôtani [16] proved that,
for λ = 1, problem (1) admits at least one nonnegative solution for 1 < q < p∗, and, if
� is strictly star-shaped, it admits no non-negative, nonzero solutions for q = p∗ and no
nontrivial solutions for q > p∗. Uniqueness of the positive solution with minimal energy for
1 < q < p, λ = 1 was proved by Franzina and Lamberti [8], who reduced problem (1) to a
homogeneous one by means of a nonlocal term of the type ‖u‖q−p

p . Most of the mentioned
results are based on variational methods, and they all deal with the case 1 < q < p∗.
For 0 < q < 1, problem (1) is singular at 0 and it cannot be directly studied in a variational
framework. For the semilinear case (p = 2), existence results for related singular equations
were proved by Crandall et al. [3] and by Lazer and McKenna [12], while uniqueness of the
solution was examined by Diaz et al. [4]. A bifurcation result for a semilinear equation with
a singular perturbation was obtained by Cîrstea et al. [2]. In most cases, the study of singular
problems is based on sub- and super-solutions.
Problem (1) is strictly related to the best constant in the Sobolev embeddings. Let us con-
sider the Sobolev space W 1,p

0 (�) and the Lebesgue space Lq(�), endowed with the norms
‖∇u‖p, ‖u‖q , respectively. By the Sobolev theorem, we have

inf
u∈W 1,p

0 (�), u �=0

‖∇u‖p
p

‖u‖p
q

= λq ∈]0,+∞[. (2)

The constant λq was explicitly determined by Talenti [19] for � = R
N , q = p∗, but it is

not known in general. It can be proved that for λ = λq , problem (1) has a positive smooth

solution uq s.t. ‖uq‖q = 1 and ‖∇uq‖p = λ
1
p
q . In his interesting paper [11], Huang proved

that the mapping q �→ λq is continuous in ]1, p[ and upper semicontinuous in ]p, p∗[. Later,
he put forward the following conjecture: We suspect that λq has some monotonicity with
respect to q . In fact, one can prove that, if |�| ≤ 1, then λq ≤ λr if r < q (here and in the
sequel, |�| denotes the Lebesgue N -dimensional measure of �).
The aim of the present note is to give such question an answer, which turns out to be positive
(actually, we will prove much more). Our main result is the following:

Theorem 1 The mapping g :]0, p∗[→]0,+∞[, defined by
g(q) = λq |�| p

q for all q ∈]0, p∗[,
is Lipschitz continuous on compact subsets of ]0, p∗[ and decreasing in ]0, p∗[.
Our result both improves that of Huang and answers the question about monotonicity. Indeed,
clearly from Theorem 1 it follows that q �→ λq is continuous on the whole interval ]0, p∗[.
Moreover, if |�| ≤ 1, then for all 0 < r < q < p∗ we have from g(r) > g(q) that

λq < λr |�| p(q−r)
rq ≤ λr .

For a surprising coincidence we became aware, after writing the present paper, that a partial
positive answer to the problem raised by Huang had been given by Ercole in his very recent
paper [6]. The author deals with properties of the map q �→ λq when p < N and proves that
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On a problem of Huang concerning best constants in Sobolev embeddings 769

it is absolutely continuous in [1, p∗]. Our result is more general as in our arguments p is any
real number in ]1,+∞[ and the properties of λq are also studied in ]0, 1] (for more details
see Remark 10).
The proof of Theorem 1 is delivered as follows (see Sect. 3). First, by applying Hölder
inequality, we prove that g is Lipschitz continuous on compact subsets of ]0, p∗[ and non-
increasing in ]0, p∗[. Then, dealing with the more delicate issue of strict monotonicity, we
split our study in two parts: for 0 < q ≤ 1, by means of sub- and super-solutions, we prove
existence and some estimates for a positive solution of class C1(�) of the singular problem
(1), which in turn imply that g is decreasing in ]0, 1]; for 1 < q < p∗, by variational methods,
we prove the existence of a positive solution with higher regularity C1(�), from which, by
topological arguments, we deduce that g is decreasing in ]1, p∗[.
A possible application of Theorem 1 is toward the study of the asymptotic behavior of the
pair (λq , uq), which has been addressed by many authors (see for instance Lee [15] and
Garcia Azorero and Peral Alonso [9]). Namely we will prove (see Sect. 4) that λq → λp∗ as
q → p∗ (if p < N ), and that λq , ‖∇uq‖p → +∞ as q → 0 (if |�| < 1).

2 Preliminaries

In an attempt tomake this paper as self-contained as possible, wewill recall somewell-known
results. In the ordered Banach space W 1,p

0 (�), the positive cone

W+ =
{
u ∈ W 1,p

0 (�) : u ≥ 0 a.e. in �
}

has empty interior. Instead, in C1
0(�) the positive cone

C+ = {
u ∈ C1

0 (�) : u(x) ≥ 0 for all x ∈ �
}

has a nonempty interior, given by

int(C+) =
{
u ∈ C1

0 (�) : u(x) > 0 for all x ∈ � and
∂u

∂n
(x) < 0 for all x ∈ ∂�

}

(see Gasiński and Papageorgiou [10, Remark 6.2.10]). We consider the Dirichlet problem{−�pu = f (u) in �

u = 0 on ∂�
, (3)

where f : R →]0,+∞[ is a continuous function. We recall that u ∈ W 1,p(�) is a sub-
solution of problem (3) if u ≤ 0 on ∂� (in the distributional sense) and∫

�

|∇u|p−2∇u · ∇v dx ≤
∫
�

f (u)v dx for all v ∈ W+,

Similarly, u is a super-solution of (3) if u ≥ 0 on ∂� and∫
�

|∇u|p−2∇u · ∇v dx ≥
∫
�

f (u)v dx for all v ∈ W+.

We have the following result for sub- and super-solutions (a slightly rephrased version of
Theorem 2.2 of Faria et al. [7]):
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770 G. Anello et al.

Theorem 2 If the mapping t �→ t1−p f (t) is decreasing in ]0,+∞[ and u, u ∈ W 1,p(�) ∩
C1,β(�) (0 < β ≤ 1) are a positive sub-solution and a positive super-solution, respectively,
of (3) s.t.

u, u,�pu,�pu, u/u, u/u ∈ L∞(�),

then u(x) ≤ u(x) for all x ∈ �.

We recall a consequence of the strong nonlinear maximum principle (see Vázquez [20, The-
orem 5]):

Theorem 3 If u ∈ C+ \ {0},�pu ∈ L2
loc(�) and �pu ≤ 0 a.e. in �, then u ∈ int(C+).

We denote by û1 ∈ int(C+) the unique positive solution of the constant right-hand side
problem {−�pu = 1 in �

u = 0 on ∂�
. (4)

3 Proof of the main result

We will split the proof of Theorem 1 in several steps. We begin by achieving some global
properties of the mapping g:

Lemma 4 The mapping g is Lipschitz continuous on compact subsets of ]0, p∗[ and nonin-
creasing in ]0, p∗[.
Proof By ∂B1(0), we denote the unit sphere in W 1,p

0 (�) centered at 0. For all u ∈ ∂B1(0),
the mapping q �→ ‖u‖qq is at least twice differentiable in ]0, p∗[ with

d2

dq2
‖u‖qq =

∫
{u �=0}

|u|q(ln |u|)2 dx ≥ 0 for all q ∈]0, p∗[,

So, q �→ ‖u‖qq is convex for all u ∈ ∂B1(0). Now set

h(q) = sup
u∈∂B1(0)

‖u‖qq for all q ∈]0, p∗[.

The mapping h :]0, p∗[→]0,+∞[ is convex. By (2), it is easily seen that

g(q) = (h(q))
− p

q |�| p
q = e− p

q log(|�|−1h(q)) for all q ∈]0, p∗[. (5)

Now fix a compact set K ⊂]0, p∗[. Being convex, h is Lipschitz continuous in K . Since
minq∈K (|�|−1h(q)) > 0, the mapping q �→ log(|�|−1h(q)) is still Lipschitz continuous in
K and from (5), we easily deduce the first part of our claim.
Now, let 0 < r < q < p∗ be real numbers. For all u ∈ ∂B1(0), Hölder inequality yields

‖u‖rr ≤ ‖u‖rq |�| q−r
q ,

so we have h(r) ≤ h(q)
r
q |�| q−r

q . Using (5), we easily obtain

g(r) ≥ g(q).

Thus, g is nonincreasing in ]0, p∗[. ��
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On a problem of Huang concerning best constants in Sobolev embeddings 771

In order to prove strict monotonicity of g, we need to consider separately the intervals ]0, 1]
and ]1, p∗[. We first focus on the case 0 < q ≤ 1. We say u ∈ W 1,p

0 (�) is a weak solution
of problem (1) if ∫

�

|∇u|p−2∇u · ∇v dx = λ

∫
�

|u|q−2uv dx (6)

for all v ∈ W 1,p
0 (�) with supp(v) ⊂ �. We have the following existence result:

Lemma 5 If 0 < q ≤ 1, then problem (1) with λ = λq admits a positive weak solution

uq ∈ W 1,p
0 (�) ∩ C1(�) s.t.

(i) ‖∇uq‖p = λ
1
p
q , ‖uq‖q = 1;

(ii) c1û1(x) ≤ uq(x) ≤ c2(1 + û1(x)) for all x ∈ � (c1, c2 > 0);
(iii) if 0 < r < q ≤ 1, then ur �= uq on a dense subset of �.

Proof Let (εn) be a decreasing sequence in ]0, 1[ s.t. εn → 0 as n → ∞. For all n ∈ N,
we consider the nonsingular problem⎧⎪⎪⎨

⎪⎪⎩
−�pu = (u + εn)

q−1 in �

u ≥ 0 in �

u = 0 on ∂�

. (7)

We set

ϕn(u) = ‖∇u‖p
p

p
−

∫
�

[
1

q
(u+ + εn)

q − ε
q−1
n u−

]
dx for all u ∈ W 1,p

0 (�)

(as usual, we denote t± = max{±t, 0}). It is easily seen that

d

dt

[
1

q
(t+ + εn)

q − ε
q−1
n t−

]
= (t+ + εn)

q−1 for all t ∈ R.

So, ϕn ∈ C1(W 1,p
0 (�)) and for all u, v ∈ W 1,p

0 (�) we have

〈ϕ′
n(u), v〉 =

∫
�

|∇u|p−2∇u · ∇v dx −
∫
�

(u+ + εn)
q−1v dx .

In particular, if u ∈ W+ is a critical point ofϕn , then u is a weak solution of (7). The functional
ϕn is coercive and sequentially weakly lower semicontinuous in W 1,p

0 (�), so there exists

un ∈ W 1,p
0 (�) s.t.

ϕn(un) = inf
u∈W 1,p

0 (�)

ϕn(u). (8)

It is easily seen that ϕn(u+) ≤ ϕn(u) for all u ∈ W 1,p
0 (�), hence we may assume un ∈ W+.

So, un is a weak solution of (7). Moreover, nonlinear regularity theory (see Gasiński and
Papageorgiou [10, Theorem 1.5.5], and Lieberman [15, Theorem 1]) implies un ∈ C1,β(�)

for some β > 0. A standard argument shows un �= 0. So, we can apply Theorem 3 and obtain
un ∈ int(C+).
Now we will prove some useful estimates for the function un . First, we observe that, for
ρ > 0 small enough, ρû1 is a sub-solution of (7). Indeed, choose ρ > 0 small s.t.

ρ p−1 < (ρû1(x) + 1)q−1 for all x ∈ �.
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772 G. Anello et al.

Then, we have for all v ∈ W+∫
�

|∇(ρû1)|p−2∇(ρû1) · ∇v dx = ρ p−1
∫
�

v dx ≤
∫
�

(
ρû1 + εn

)q−1
v dx .

Clearly we can regard un as a super-solution of (7). By regularity theory, taking β > 0 even
smaller if necessary, we may assume ρû1, un ∈ C1,β(�). Moreover, since un ∈ int(C+),
there exists r > 0 s.t. un − rρû1 ∈ int(C+), in particular

un(x) − rρû1(x) > 0 for all x ∈ �,

which implies ρû1/un ∈ L∞(�). Similarly we prove that un/ρû1 ∈ L∞(�). Thus, we apply
Theorem 2 and we have

ρû1(x) ≤ un(x) for all x ∈ � (with ρ > 0 independent of n). (9)

We set

�n = {x ∈ � : un(x) > 1} .

Clearly, �n ⊂ � is open with a C1,β boundary (due to the regularity of un). Without any
loss of generality, we may assume that �n is connected and consider the Dirichlet problem:⎧⎪⎪⎨

⎪⎪⎩
−�pu = (u + 1 + εn)

q−1 in �n

u ≥ 0 in �n

u = 0 on ∂�n

. (10)

Therefore, un − 1 is a positive sub-solution of (10). With an argument analogous to that
employed above, we prove that û1 is a super-solution of (10). An application of Theorem 2
then yields

un(x) ≤ û1(x) + 1 for all x ∈ �. (11)

For all n ∈ N, we have

‖∇un‖p
p =

∫
�

(un + εn)
q−1un dx ≤ ‖un‖qq ≤ λ

− q
p

q ‖∇un‖qp (see (2)),

hence the sequence (un) is bounded in W 1,p
0 (�). Passing to a subsequence, we may assume

that there exists ũq ∈ W 1,p
0 (�) s.t. un ⇀ ũq in W 1,p

0 (�) and un → ũq in Lq(�). In
particular, un(x) → ũq(x) for a.e. x ∈ �, so ũq ∈ W+.
We shall now prove that un → ũq in W 1,p

0 (�). First we observe that, since un ⇀ ũq in

W 1,p
0 (�),

lim inf
n

‖∇un‖p
p

p
≥ ‖∇ũq‖p

p

p
. (12)

We set for all u ∈ W 1,p
0 (�)

ϕq(u) = ‖∇u‖p
p

p
− ‖u‖qq

q
,

so ϕq : W 1,p
0 (�) → R is a continuous (though not differentiable) functional. It is easily seen

that
lim
n

ϕn(u) = ϕq(u) for all u ∈ W+. (13)
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On a problem of Huang concerning best constants in Sobolev embeddings 773

Also, from (8), we have for all n ∈ N

‖∇un‖p
p

p
= ϕn(un) + 1

q

∫
�

(un + εn)
q dx

≤ ϕn(ũq) + 1

q

∫
�

(un + εn)
q dx .

Hence, by (13) and since un → ũq in Lq(�),

lim sup
n

‖∇un‖p
p

p
≤ ϕq(ũq) + ‖ũq‖qq

q
= ‖∇ũq‖p

p

p
,

which, together with (12), gives ‖∇un‖p → ‖∇ũq‖p . This in turn implies un → ũq in

W 1,p
0 (�).

Obviously, (9) and (11) imply

ρû1 ≤ ũq ≤ û1 + 1 a.e. in �. (14)

We prove now that ũq is a weak solution of problem (1) with λ = 1. Let us fix v ∈ W 1,p
0 (�)

with supp(v) ⊂ �. We have for all n ∈ N∫
�

|∇un |p−2∇un · ∇v dx =
∫
�

(un + εn)
q−1v dx .

By (9), (11) we can pass to the limit in the above equality as n → ∞ and get∫
�

|∇ũq |p−2∇ũq · ∇v dx =
∫
�

ũq−1
q v dx . (15)

Now we discuss regularity of ũq . For any smooth domain �′ s.t. �′ ⊂ �, we have from (15)∫
�′

|∇ũq |p−2∇ũq · ∇v dx =
∫
�′

ũq−1
q v dx

for all v ∈ W 1,p
0 (�) with supp(v) ⊂ �′. By interior regularity theory for degenerate elliptic

equations (see Di Benedetto [5, Theorem 2]), we have ũq ∈ C1(�′), which, as�′ is arbitrary,
implies ũq ∈ C1(�).
It is easily seen that

lim inf
n

ϕn(un) ≥ ϕq(ũq). (16)

From (8), (13), and (16), we have for all u ∈ W 1,p
0 (�)

ϕq(u) = ϕq(u
+) + ϕq(u

−)

= lim
n

(
ϕn(u

+) + ϕn(u
−)

)

= lim
n

⎡
⎢⎣ϕn(|u|) +

∫
{u=0}

ε
q
n

q
dx

⎤
⎥⎦

≥ lim inf
n

ϕn(un)

≥ ϕq(ũq).
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774 G. Anello et al.

So,
ϕq(ũq) = inf

u∈W 1,p
0 (�)

ϕq(u). (17)

Since un solves (7), we have for all n ∈ N

‖∇un‖p
p =

∫
�

(un + εn)
q−1un dx .

Passing again to the limit as n → ∞, we have

‖∇ũq‖p
p = ‖ũq‖qq . (18)

We set

T =
{
w ∈ W 1,p

0 (�) : w �= 0, ‖∇w‖p
p = ‖w‖qq

}
.

From (17) and (18),(
1

p
− 1

q

)
‖ũq‖qq ≤

(
1

p
− 1

q

)
‖w‖qq for all w ∈ T,

So, we have

‖ũq‖qq = sup
w∈T

‖w‖qq = sup
u∈W 1,p

0 (�), u �=0

( ‖u‖q
‖∇u‖p

) pq
p−q = λ

q
q−p
q .

Finally, set uq = ũq/‖ũq‖q . Clearly uq ∈ C1(�) is a weak solution of (1) with λ = λq .

Moreover, ‖uq‖q = 1 and by (18) we also have ‖∇uq‖p = λ
1
p
q , so uq satisfies (i). By (14),

we can find c1, c2 > 0 s.t. (i i) holds. Finally, we prove (i i i): let 0 < r < q ≤ 1 be real
numbers. We will prove that ur �= uq on a dense subset of �, arguing by contradiction.

Assume that ur = uq in A, where A ⊂ � is a nonempty open set. For any v ∈ W 1,p
0 (�) s.t.

supp(v) ⊂ A, we have by (6)

λq

∫
uq−1
q v dx = λr

∫
A

ur−1
q v dx,

which implies uq(x) = (λr/λq)
1

q−r for every x ∈ A, hence �puq = 0 a.e. in A, a contra-
diction. So the proof is concluded. ��
Now we can prove strict monotonicity of g in ]0, 1]:
Lemma 6 The mapping g is decreasing in ]0, 1].
Proof We know fromLemma 4 that g is nonincreasing.We argue by contradiction, assuming
that there exist 0 < r < q ≤ 1 s.t. g(r) = g(q), hence

λr = λq |�| p
q − p

r .

By Lemma 5 (and rescaling), there exist ǔr , ǔq ∈ ∂B1(0), ǔr �= ǔq , s.t. ‖ǔr‖r = λ
− 1

p
r and

‖ǔq‖q = λ
− 1

p
q . We apply Hölder inequality and the above equality to get

λ
− r

p
q |�|1− r

q = ‖ǔr‖rr ≤ ‖ǔr‖rq |�|1− r
q ≤ λ

− r
p

q |�|1− r
q ,
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On a problem of Huang concerning best constants in Sobolev embeddings 775

so ‖ǔr‖q = λ
− 1

p
q . By concavity of the functional u �→ ‖u‖qq (recall that q ≤ 1), we have∥∥∥∥ ǔr + ǔq

2

∥∥∥∥
q

q
≥ λ

− q
p

q .

Setting

w̌ = (ǔr + ǔq)/2

‖∇(ǔr + ǔq)/2‖p
,

we obviously have w̌ ∈ ∂B1(0) and

‖w̌‖q >

∥∥∥∥ ǔr + ǔq
2

∥∥∥∥
q

≥ λ
− 1

p
q ,

against (2). ��
We now turn to the case 1 < q < p∗: in this case problem (1) can be treated via purely
variational methods.

Lemma 7 If 1 < q < p∗, then problem (1) with λ = λq admits a solution uq ∈ int(C+) s.t.

(i) ‖∇uq‖p = λ
1
p
q and ‖uq‖q = 1;

(ii) if 1 < r < q < p∗, then ur �= uq on a dense subset of �.

Proof Set

∂Bq
1 (0) =

{
u ∈ W 1,p

0 (�) : ‖u‖qq = 1
}

.

The set ∂Bq
1 (0) is sequentially weakly closed in W 1,p

0 (�). We can rephrase (2) as follows:

λq = inf
u∈∂Bq

1 (0)
‖∇u‖p

p. (19)

By standard variational arguments, there exists uq ∈ ∂Bq
1 (0) s.t. ‖∇uq‖p

p = λq . We may
assume uq ∈ W+ (otherwise we pass to |uq |). Lagrange multipliers theory on Finsler mani-
folds (see for instance Perera et al. [17], p. 65) implies that there exists μ ∈ R \ {0} s.t.∫

�

|∇uq |p−2∇uq · ∇v dx = μ

∫
�

uq−1
q v dx for all v ∈ W 1,p

0 (�).

Taking v = uq , we have

λq = ‖∇uq‖p
p = μ‖uq‖qq = μ.

So, uq is a weak solution of (1) with λ = λq and satisfies (i). Nonlinear regularity theory (see
Gasiński and Papageorgiou [10, Theorem 1.5.5], and Lieberman [15, Theorem 1]) implies
uq ∈ C+. Besides, since uq ∈ ∂Bq

1 (0), we have uq �= 0. So, we can apply Theorem 3 and
obtain uq ∈ int(C+).
As in Lemma 5, we can achieve (i i). ��
We complete the proof of Theorem 1 by introducing the following result:

Lemma 8 The mapping g is decreasing in ]1, p∗[.
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776 G. Anello et al.

Proof Arguingby contradiction,we assume that there exist 1 < r < q < p∗ s.t. g(r) = g(q).
Applying Lemma 7 (and rescaling), we deduce that there exists ǔr ∈ ∂B1(0) ∩ int(C+) s.t.

‖ǔr‖rr = λ
− r

p
r = sup

u∈∂B1(0)
‖u‖rr .

By Lagrange multipliers theory, there exists μ ∈ R \ {0} s.t.∫
�

|∇ǔr |p−2∇ǔr · ∇v dx = μ

∫
�

ǔr−1
r v dx for all v ∈ W 1,p

0 (�).

Since g(r) = g(q), arguing as in Lemma 6, we get

‖ǔr‖qq = λ
− q

p
q = sup

u∈∂B1(0)
‖u‖qq .

Hence, there exists ν ∈ R \ {0} s.t.∫
�

|∇ǔr |p−2∇ǔr · ∇v dx = ν

∫
�

ǔq−1
r v dx for all v ∈ W 1,p

0 (�).

This implies

ǔr (x) =
(μ

ν

) 1
q−r

for all x ∈ �,

hence �pǔr = 0 a.e. in �, a contradiction. ��
Now, Theorem 1 is proved simply patching together Lemmas 4 (which implies, in particular,
that g is continuous in ]0, p∗[), 6 and 8.

4 Further results

In this final section, we will examine the asymptotic behavior of the mapping g as q
approaches either 0 or p∗. First, we prove that (if p < N ) g admits a continuous exten-
sion to ]0, p∗]. According to the definition of g, we set

g(p∗) = λp∗ |�| p
p∗ .

Theorem 9 If p < N, then g :]0, p∗] → R is absolutely continuous on compact subsets of
]0, p∗] and decreasing in ]0, p∗]
Proof First, we prove that

lim
q→p∗ g(q) = λp∗ |�| p

p∗ . (20)

Let us fix p < q < p∗. By Lemma 7, there exists uq ∈ int(C+) s.t. ‖∇uq‖p
p = λq and

‖uq‖qq = 1. We define ϕq : W 1,p
0 (�) → R as in Lemma 5. This time we have ϕq ∈

C1(W 1,p
0 (�)), and all critical points of ϕq are weak solutions of (1) with λ = 1. It is easily

seen that ϕq(0) = 0 and 0 is a strict local minimizer of ϕq . Besides, for all δ > 0 we have

ϕq(δuq) = λqδ
p

p
− δq

q
,
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so ϕq(δuq) → −∞ as δ → +∞. So, we take δ > 1 s.t. ϕq(δuq) < 0 and set

� =
{
γ ∈ C([0, δ],W 1,p

0 (�)) : γ (0) = 0, γ (δ) = δuq
}

,

c = inf
γ∈�

max
t∈[0,δ] ϕq(γ (t)) > 0.

By the mountain pass theorem of Ambrosetti and Rabinowitz [1], there exists a critical point
uq ∈ W 1,p

0 (�) of ϕq s.t. ϕq(uq) = c. In particular, we have

‖∇uq‖p
p = ‖uq‖qq > 0. (21)

We determine the value in (21). By (2), we have

λ
1
p
q ≤ ‖∇uq‖p

‖uq‖q = ‖∇uq‖
q−p
q

p .

Moreover, straightforward computation and (21) lead to(
1

p
− 1

q

)
‖∇uq‖p

p = ϕq(uq)

≤ max
t∈[0,δ] ϕq(tuq)

=
(
1

p
− 1

q

)
λ

q
q−p
q .

So, we perfect (21) getting

‖∇uq‖p
p = ‖uq‖qq = λ

q
q−p
q . (22)

By Garcia Azorero and Peral Alonso [9, Lemma 5], we have

lim
q→p∗ ϕq(uq) = λ

N
p
p∗

N
,

which, together with (22), yields

lim
q→p∗ λq = lim

q→p∗

[
pq

q − p
ϕq(uq)

] q−p
q = λp∗ .

Thus, we get (20).
So, g extends to a continuous, decreasing mapping on ]0, p∗], which we still denote g. We
already know from Lemma 4 that, for all 0 < a < b < p∗, g is Lipschitz (in particular,
absolutely continuous) in [a, b]. Moreover, there exists g′ almost everywhere in ]0, p∗[ and
for all 0 < a < b < p∗ we have

b∫
a

g′(q)dq = g(b) − g(a). (23)

In fact, we can pass to the limit in (23) as b → p∗. Indeed, the left-hand side tends to∫ p∗
a g′(q)dq bybasic results inmeasure theory,while the right-hand side tends to g(p∗)−g(a)
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by (20). So we get

p∗∫
a

g′(q)dq = g(p∗) − g(a).

By classical results in real analysis (see, for instance, Royden and Fitzpatrick [18, Section
6.5,Corollary 12]), g turns out to be absolutely continuous in [a, p∗]. This concludes the
proof. ��
Remark 10 In [6], Ercole, assuming p < N , proves that the map q �→ λq is of bounded
variation in [1, p∗] (this follows from the monotonicity of g), Lipschitz continuous in any
closed interval of the type [1, p∗ − ε] for ε > 0 and left-side continuous at q = p∗.
Combining these properties, the author obtains that λq is absolutely continuous on [1, p∗].
The techniques adopted in [6] rely on some formula which describes the dependence of the
Rayleigh quotient with respect to the parameter q . Our result extends those of [6] in a twofold
sense: p is allowed to be also greater or equal than N , and when p < N , λq is absolutely
continuous in a bigger interval than [1, p∗].
As said in the Introduction, we can apply our results to the study of asymptotic behavior of
λq and uq , in the spirit of Lee [14]:

Corollary 11 If |�| < 1, then

lim
q→0

λq = lim
q→0

‖∇uq‖p = +∞.

Proof We clearly have |�| p
q → 0 as q → 0. By Theorem 1

lim
q→0

g(q) = sup
0<q<p∗

g(q) > 0,

from which the thesis immediately follows. ��
We end our study by presenting an open problem: if p ≥ N , what happens when q → +∞?
Perhaps the properties of the mapping g can be used, as in Corollary 11, to answer such
question.
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10. Gasiński, L., Papageorgiou, N.S.: Nonsmooth Critical Point Theory and Nonlinear Boundary Value Prob-
lems. Chapman & Hall, London (2005)

11. Huang, Y.X.: A note on the asymptotic behavior of positive solutions for some elliptic equation. Nonlinear
Anal. 29, 533–537 (1997)

12. Lazer, A.C., McKenna, P.J.: On a singular nonlinear elliptic boundary-value problem. Proc. Am. Math.
Soc. 111, 721–730 (1991)

13. Lê, A.: Eigenvalue problems for the p-Laplacian. Nonlinear Anal. 64, 1057–1099 (2006)
14. Lee, J.R.: Asymptotic behavior of positive solutions of the equation −�u = λu p as p → 1. Commun.

Partial Differ. Equ. 20, 633–646 (1995)
15. Lieberman, G.: Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. 12,

1203–1219 (1988)
16. Ôtani, M.: Existence and nonexistence of nontrivial solutions of some nonlinear degenerate elliptic equa-

tions. J. Funct. Anal. 76, 140–159 (1988)
17. Perera, K., Agarwal, R.P., O’Regan, D.: Morse Theoretic Aspects of p-Laplacian Type Operators. Amer-

ican Mathematical Society, Providence (2010)
18. Royden, H.L., Fitzpatrick, P.M.: Real Analysis. Pearson, Boston (2010)
19. Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 110, 353–372 (1976)
20. Vázquez, J.L.: A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim.

12, 191–202 (1984)

123


	On a problem of Huang concerning best constants in Sobolev embeddings
	Abstract
	1 Introduction and main result
	2 Preliminaries
	3 Proof of the main result
	4 Further results
	References




