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Abstract The equivalence problem of curves with values in a Riemannian manifold is solved.
The domain of validity of Frenet’s theorem is shown to be the spaces of constant curvature. For
a general Riemannian manifold, new invariants must thus be added. There are two important
generic classes of curves: namely Frenet curves and a new class called curves “in normal
position”. They coincide in dimensions ≤ 4 only. A sharp bound for asymptotic stability of
differential invariants is obtained, the complete systems of invariants are characterized, and
a procedure of generation is presented.
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344 M. Castrillón López et al.

1 Introduction

A fundamental problem in Riemannian Geometry is that of equivalence of objects in a
determined class, namely to provide a criterion to know whether two given objects in this
class are congruent under isometries or not. Below, this problem is solved in full generality
for the simplest case: That of curves with values in a Riemannian manifold.

For the Euclidean space R
m , the equivalence problem is solved by virtue of the Frenet

the theorem: Two curves parameterized by the arc length are congruent if and only if they
have the same curvatures, κ1, . . . , κm−1; but the domain of validity of Frenet’s theorem is
too restrictive. In fact, Frenet’s theorem classifies curves in a Riemannian manifold (M, g) if
and only if it is of constant curvature. In consequence, in spaces of non-constant curvature,
new invariants are required (different from curvatures κi ) to classify curves and, although
by means of curvatures a given curve can be reconstructed (see Theorem 3.6), the role of
such invariants becomes weaker in spaces of non-constant curvature, even of low dimension.
A generic Riemanniannian metric in a compact manifold admits no isometry other than the
identity map (cf. [5,6]). Therefore, the difficulty of the equivalence problem is closely related
to the size of the isometry group.

Below, the equivalence problem is solved in general in the framework of real analytic
manifolds by means of functions that are invariant under the isometry group of the Rie-
mannian manifold. In this way, a general result is stated for their solution in Theorem 4.3:
Essentially, it gives a set of invariants that, together with the classical Frenet curvatures,
solves the congruence problem; But it has the inconvenience of using a redundant—in prin-
ciple, infinite—number of invariants (cf. Remark 4.7). The remarks following its proof (in
Sect. 4.3) show, however, that this is the best general result expectable, as simple examples
(see Example 4.9) make clear that a solution in closed form to the equivalence problem for
C∞ manifolds is not reachable. Furthermore, certain classes of Riemannian manifolds can be
characterized by means of their invariants; e.g. symmetric spaces or Lie groups with invariant
metrics.

The study of invariants is developed in Sect. 5, where the main questions on such func-
tions are solved for an arbitrary Riemannian manifold: The theorem of asymptotic stability
(Theorem 5.4 and Corollary 5.5), the completeness theorem (Theorem 5.10) that allows us
to solve the general problem of equivalence by means of a complete system of invariants
and the theorem of generation of invariants (Theorem 5.12). An interesting consequence of
the generating theorem proves that the ring of invariants can be generated by means of m
invariants (where m = dim M) by taking successive total derivatives with respect to t .

In [10] the number of differential invariants with respect to the induced operation of the
group G on jet bundles Jr (R, G/H) of the homogeneous space G/H is calculated without
assuming G is the group of isometries of a metric. According to [14, IV, Example 1.3], if
the subgroup H is compact, the quotient manifold G/H admits a Riemannian metric left
invariant. The converse statement also holds true, as the isotropy subgroup of a point in a
Riemannian manifold is compact (cf. [14, I, Corollary 4.8]). Moreover, it should be noted
that most part of the results in [10] hold in general, i.e. without assuming the manifold to be
Riemannian homogeneous, as shown in Theorem 5.12 and Remark 5.13 below.

In Sect. 3.3, two basic existence theorems for the generic class F of Frenet curves are
stated. The first result (Theorem 3.6) is a generalization to arbitrary Riemannian manifolds of
the existence of curves in Euclidean 3-space with given curvature and torsion, but the second
one (Theorem 3.7) is completely new.

In addition to Frenet curves, another generic class N of curves in a Riemannian manifold
is introduced in Definition 2.3, which seems to be the natural setting for the statement of the
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The equivalence problem of curves in a Riemannian manifold 345

asymptotic stability theorem (Theorem 5.4). The classes F and N are compared in detail
in Sect. 3.4. As it is proved in Theorem 3.8, if either dim M = m ≤ 4 or g is flat at a
neighbourhood of x0, then Fm−1

t0,x0
(M) = N m−1

t0,x0
(M), (t0, x0) ∈ R × M . In general, however,

both generic sets of curves do not coincide, as shown in the example 3.9.
We want to note the connection of this article with other different frameworks on the

techniques of moving frames as those in the interesting papers [22,23] and the references
therein. The approach in these references is different and, in particular, is strongly oriented
to other general geometric settings dealing with other groups of invariance.

2 General position

2.1 Definitions

Definition 2.1 A smooth curve σ : (a, b) → M taking values into a manifold M endowed
with a linear connection ∇ is said to be in general position up to the order r , for 1 ≤ r ≤
m = dim M , at t0 ∈ (a, b) if the vector fields T σ ,∇T σ T σ , . . . ,∇r−1

T σ T σ along σ are linearly
independent at t0, where T σ is the tangent field to σ . The curve σ is in general position up
to the order r if it is in general position up to this order for every t ∈ (a, b).

Geometrically, a curve in general position is as twisted as possible. For example, if (M, g)

is of constant curvature, then σ is in general position up to order r at σ(t0) if and only if no
neighbourhood {σ(t) : |t − t0| < ε} is contained into an auto-parallel submanifold (cf. [14,
VII, Section 8]) of M of dimension < r . The condition of being in general position up to
first order is none other than an immersion, and hence, it is independent of ∇; but for r ≥ 2,
the condition of being in general position up to order r does depend on ∇.

Lemma 2.2 Let σ : (a, b) → M be a smooth curve taking values into a manifold M endowed
with a linear connection ∇. If (x1, . . . , xm) is a normal coordinate system with respect to ∇
centred at x0 = σ(t0), a < t0 < b, then the tangent vectors

Uσ,k
t0 = dk(xi ◦ σ)

dtk
(t0)

∂

∂xi

∣
∣
∣
∣
σ(t0)

∈ Tσ(t0)M, k ≥ 1, k ∈ N, (1)

do not depend on the particular normal coordinates chosen.

Proof If x ′i = ai
j x j , A = (ai

j ) ∈ Gl(m, R), is another normal coordinate system, then

∂

∂x ′i = bh
i

∂

∂xh
, (bh

i ) = A−1,

and hence

dk(x ′i ◦ σ)

dtk
(t0)

∂

∂x ′i

∣
∣
∣
∣
σ(t0)

= dk(ai
j x j ◦ σ)

dtk
(t0)b

h
i

∂

∂xh

∣
∣
∣
∣
∣
σ(t0)

= bh
i ai

j
dk(x j ◦ σ)

dtk
(t0)

∂

∂xh

∣
∣
∣
∣
σ(t0)

= dk(x j ◦ σ)

dtk
(t0)

∂

∂x j

∣
∣
∣
∣
σ(t0)

.


�
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346 M. Castrillón López et al.

Definition 2.3 A curve σ is said to be in normal general position up to the order r at
t0 ∈ (a, b) if the tangent vectors Uσ,1

t0 , Uσ,2
t0 , . . . , Uσ,r

t0 are linearly independent. The curve
σ is in normal general position up to the order r if it is in normal general position up to this
order for every t ∈ (a, b).

2.2 Genericity results

Lemma 2.4 Let (U ; x1, . . . , xm) be a coordinate open domain in a smooth manifold M
endowed with a linear connection ∇. There exist smooth functions

Fk,i : J k (R, U ) → R, k ∈ N, 1 ≤ i ≤ m,

such that,

(

∇k
T σ T σ

)

t
=
(

dk+1(xi ◦ σ)

dtk+1 (t) + Fk,i
(

j k
t σ
)) ∂

∂xi

∣
∣
∣
∣
σ(t)

, (2)

for every curve σ : R → U and every t ∈ R, which are determined as follows:

F0,i = 0, (3)

F1,i =
m
∑

j,h=1

�i
jh x j

1 xh
1 , (4)

where �i
jh are the local symbols of ∇ in (U ; x1, . . . , xm), and

Fk,i = Dt

(

Fk−1,i
)

+
m
∑

h, j=1

�i
h j x j

1

(

xh
k + Fk−1

h

)

, ∀k ≥ 2, (5)

(xh
l )

1≤h≤m
0≤l≤k being the coordinates induced by (xi )m

i=1 in the k-jet bundle, i.e.

xh
l

(

j k
t σ
)

= dl(xh ◦ σ)

dtl
(t), xh

0 = xh, 0 ≤ l ≤ k, 1 ≤ h ≤ m,

and Dt denotes the “total derivative” with respect to t , namely

Dt = ∂

∂t
+

∞
∑

r=0

xi
r+1

∂

∂xi
r
.

Proposition 2.5 Let M be a smooth manifold of dimension m endowed with a linear con-
nection ∇. The set of curves in general position up to the order r ≤ m − 1 is a dense open
subset in C∞(R, M) with respect to the strong topology.

Proof By using the formulas (2), it follows that the mapping

�r∇ : Jr (R, M) → R × (⊕r T M) ,

�r∇
(

jr
t0σ
) =

(

t0; T σ
t0 , (∇T σ T σ )t0 , . . . ,

(

∇r−1
T σ T σ

)

t0

)

,
(6)

is a diffeomorphism inducing the identity on J 0(R, M) = R × M . We set

E = {(t, X1, . . . , Xr ) ∈ R × (⊕r T M
) : X1 ∧ · · · ∧ Xr = 0

}

,
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The equivalence problem of curves in a Riemannian manifold 347

for every 1 ≤ k ≤ r − 1 and for every strictly increasing system of indices 1 ≤ i1 < · · · <

ik ≤ r we set

Ei1,...,ik =
{ (

t, X1, . . . , Xr
) ∈ R × (⊕r T M) : Xi1 ∧ · · · ∧ Xik �= 0,

X j1 , . . . , X jr−k ∈ 〈Xi1 , . . . , Xik
〉

,

}

with j1 < · · · < jr−k and { j1, . . . , jr−k} = {1, 2, . . . , r} \ {i1, . . . , ik}, and finally we set
E0 = R × Z , Z being the zero section in ⊕r T M . Hence

E = E0 ∪
r−1
⋃

k=1

⋃

i1<···<ik

Ei1,...,ik .

Moreover, if Uk(M) ⊂ ⊕k T M denotes the open subset of all linearly independent systems
of k vectors, then the mapping

Ai1,...,ik : R
1+k(r−k) × Uk(M) → R × (⊕r T M

)

,

Ai1,...,ik

(

t; λ1
1, . . . , λ

1
k, . . . , λ

r−k
1 , . . . , λr−k

k ; X1, . . . , Xk
)

=(t; X̄1, . . . , X̄r ) ,

X̄ ih = Xh, 1 ≤ h ≤ k,

X̄ jh =
k
∑

i=1

λh
i Xi , 1 ≤ h ≤ r − k,

is an injective immersion such that im(Ai1,...,ik ) = Ei1,...,ik , and we have

codim Ei1,...,ik = dim
(

R × (⊕r T M
))− dim Ei1,...,ik

= (1 + m + rm) − (1 + k(r − k) + m + km)

= (m − k)(r − k)

≥ m + 1 − r,

as the product (m − k)(r − k) takes its minimum value when k takes its maximum value,
i.e. k = r − 1. Accordingly, Yi1,...,ik = (

�r∇
)−1 (

Ei1,...,ik

)

is a submanifold in Jr (R, M) of
codimension (m−k)(r−k). From Thom’s transversality theorem (e.g. see [28, VII, Théorème
4.2]) the set of curves σ : R → M the r -jet extension of which, jrσ , is transversal to Yi1,...,ik

is a residual subset (and hence dense) in C∞(R, M) for the strong topology. For such curves,
( jrσ)−1 (Yi1,...,ik

)

is a submanifold of the real line of codimension (m−k)(r−k) ≥ m+1−r .
If r ≤ m − 1, then it is only possible if such a submanifold is the empty set. Consequently,
for r ≤ m − 1, the following formula holds:

�
r = {

σ ∈ C∞(R, M) : jrσ is transversal to every Yi1,...,ik

}

= {

σ ∈ C∞(R, M) : ( jrσ
)

(R) ∩ Y = ∅} ,

where Y = Y0 ∪ ⋃r−1
k=1
⋃

i1<···<ik
Yi1,...,ik . Therefore, �r∇ ( jrσ(R)) ∩ E = ∅ if σ ∈ �

r ; in
other words, σ is a curve in general position up to order r with respect to ∇.

Finally, we prove that �
r is an open susbet. If d is a complete distance function defining

the topology in Jr (R, M), then for every σ ∈ �
r the function δσ : R → R

+, δσ (t) =
d
(

jr
t σ, Y

)

> 0 makes sense as Y is a closed subset and

N (σ ) = {γ ∈ C∞(R, M) : d
(

jr
t σ, jr

t γ
)

< δσ (t),∀t ∈ R
}

is a neigbourhood of σ in the strong topology of order r and hence, also in the strong topology
of order ∞. As γ ∈ N (σ ) implies γ ∈ �

r , we can conclude. 
�
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348 M. Castrillón López et al.

Remark 2.6 The statement of Proposition 2.5 is the best possible, as the curves in general
position up to the order m = dim M with respect to a linear connection ∇ are not dense in
C∞(R, M) for the strong topology, because inflection points are unavoidable. In fact, with
the similar notations as in the proof of Proposition 2.5, we set

�
m = {

σ ∈ C∞(R, M) : jmσ(R) ∩ Y = ∅} ,

�̄
m = {

σ ∈ C∞(R, M) : jmσ is transversal to every Yi1,...,ik

}

.

The set �̄
m is dense in C∞(R, M) as it is residual and �

m coincides with the set of curves
in general position up to order m. In order to prove that �

m is not dense, it suffices to obtain
an open subset contained in its complementary set. We set

Y ′ =
m−2
⋃

k=0

⋃

i1<···<ik

Yi1,...,ik ; Yi = (�m∇
)−1

(Ei ) , 1 ≤ i ≤ m,

where Ei is the set of points (t, X1, . . . , Xm) ∈ R × (⊕m T M) such that,

(i) X1 ∧ · · · ∧̂Xi ∧ · · · ∧ Xm �= 0,

(ii) Xi ∈
〈

X1, . . . ,̂Xi , . . . , Xm
〉

.

Then, Y = Y ′ ∪ Y1 ∪ · · · ∪ Ym and Y0 = Y1 ∩ · · · ∩ Ym is an open subset in each Yi ; hence,
Y0 is a submanifold of codimension 1 in J m(R, M). According to a classical result (see [20,
Theorem 6.1]), there exists a curve σ : R → M such that, 1) jmσ is transversal to Y0, and 2)
jmσ(R) ∩ Y0 �= ∅. Therefore, jmσ(R) ∩ Y �= ∅. Moreover, according to [18, Lemma 1, p.
45]], given a neighbourhood U of t , there exists a neigbourhood Eσ of σ in the weak (and
hence, in the strong) topology, such that τ ∈ Eσ implies jmτ cuts transversally to Y at some
point t ′ ∈ U . Hence, τ ∈ Eσ implies jmτ(R) ∩ Y �= ∅, i.e. τ /∈ �

m and σ thus possesses a
neighbourhood of curves not belonging to �

m .

Proposition 2.7 Let M be a smooth manifold of dimension m endowed with a linear con-
nection ∇. The set of curves in normal general position up to the order r ≤ m − 1 is a dense
open subset in C∞(R, M) with respect to the strong topology.

Proof It is similar to the proof of Proposition 2.5 by using the fact that the mapping

�r∇ : Jr (R, M) → R × (⊕r T M) ,

�r∇
(

jr
t0σ
) =

(

t0; U 1,σ
t0 , U 2,σ

t0 , . . . , Ur,σ
t0

)

,

is a diffeomorphism over R × M . 
�

3 Frenet curves

3.1 A Frenet curve defined

Definition 3.1 A curve σ : (a, b) → M with values into a Riemannian manifold (M, g) is
said to be a Frenet curve if σ is in general position up to order m − 1 with respect to the
Levi-Civita connection of the metric g.

Proposition 3.2 (Frenet frame, [3,7,8,11,13,25]) If (M, g) is an oriented connected
Riemannian manifold of dimension m and σ : (a, b) → M is a Frenet curve, then
there exist unique vector fields Xσ

1 , . . . , Xσ
m defined along σ and smooth functions

κσ
0 , . . . , κσ

m−1 : (a, b) → R with κσ
j > 0, 0 ≤ j ≤ m − 2, such that,
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The equivalence problem of curves in a Riemannian manifold 349

(i) (Xσ
1 (t), . . . , Xσ

m(t)) is a positively oriented orthonormal linear frame, ∀t ∈ (a, b).
(ii) The systems (Xσ

1 (t), . . . , Xσ
i (t)), (T σ

t , (∇T σ T σ )t , . . . , (∇ i−1
T σ T σ )t ) span the same vec-

tor subspace, and they are equally oriented for every 1 ≤ i ≤ m−1 and every t ∈ (a, b).
(iii) The following formulas hold:

(a) T σ = κσ
0 X1,

(b) ∇Xσ
1

Xσ
1 = κσ

1 Xσ
2 ,

(c) ∇Xσ
1

Xσ
i = −κσ

i−1 Xσ
i−1 + κσ

i Xσ
i+1, 2 ≤ i ≤ m − 1,

(d) ∇Xσ
1

Xσ
m = −κσ

m−1 Xσ
m−1.

Definition 3.3 The frame (Xσ
1 , . . . , Xσ

m) along σ determined by the conditions (i)–(iii) above
is called the Frenet frame of σ , and the functions κσ

0 , . . . , κσ
m−1 are the curvatures of σ .

3.2 Basic formulas

According to the item (ii) of Proposition 3.2, there exist functions f σ
i j ∈ C∞(a, b), 1 ≤ i ≤

j ≤ m, such that,

∇ j−1
T σ T σ =

j
∑

i=1

f σ
i j Xσ

i , 1 ≤ j ≤ m, (7)

and by using the equations (a)–(d) in the item (iii) above the following recurrence formulas
are obtained for these functions:

⎧

⎪⎨

⎪⎩

f σ
11 = κσ

0 ,

f σ
12 = d f σ

11

dt
,

f σ
22 = f σ

11κ
σ
0 κσ

1 ,

(8)

3 ≤ j ≤ m

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f σ
1 j = d f σ

1, j−1

dt
− f σ

2, j−1κ
σ
0 κσ

1 ,

f σ
i j = d f σ

i, j−1

dt
− f σ

i+1, j−1κ
σ
0 κσ

i + f σ
i−1, j−1κ

σ
0 κσ

i−1,

2 ≤ i ≤ j − 2,

f σ
j−1, j = d f σ

j−1, j−1

dt
+ f σ

j−2, j−1κ
σ
0 κσ

j−2,

f σ
j j = f σ

j−1, j−1κ
σ
0 κσ

j−1.

(9)

Proposition 3.4 If σ : (a, b) → M is a Frenet curve in an oriented connected Riemannian
manifold (M, g), then

κσ
0 =

√


σ
1 ,

κσ
1 =

√


σ
2

(
σ
1 )3 ,

κσ
i =

εi

√


σ
i−1


σ
i+1

√


σ
1 
σ

i

, 2 ≤ i ≤ m − 1,

where
⎧

⎨

⎩


σ
k = det

(

g
(

∇ i−1
T σ T σ ,∇ j−1

T σ T σ
))k

i, j=1
,

εi = 1 for 2 ≤ i ≤ m − 2, and εm−1 = ±1.
(10)
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350 M. Castrillón López et al.

Proof The formulas in the statement follow from (7), (8), and (9) taking the identity 
σ
k =

(det( f σ
i j )

k
i, j=1)

2 =∏k
i=1( f σ

i i )
2 into account. 
�

For a smooth curve σ , the property of being a Frenet curve at t depends on jm−1
t σ only;

hence, for every t ∈ R, we can speak about the open subset Fm−1
t (M) ⊂ J m−1

t (R, M) of
Frenet jets. Let

fi j : (πm
m−1)

−1(Fm−1(M)) → R, 1 ≤ i ≤ j ≤ m,

be the mapping defined by fi j ( jm
t σ) = f σ

i j (t), πk
l : J k(R, M) → J l(R, M), k ≥ l, being

the canonical projections. Similarly, let


k : J k(R, M) → R, 1 ≤ k ≤ m, (11)

be the mapping given by 
k( j k
t σ) = 
σ

k (t), which is well defined according to the formula
(10).

Proposition 3.5 If σ : (a, b) → M, σ̄ : (a, b) → M̄ are two Frenet curves with values in
Riemannian manifolds (M, g), (M̄, ḡ), then

∣
∣κσ

i

∣
∣ = ∣∣κσ̄

i

∣
∣ , 0 ≤ i ≤ m − 1, if and only if,

g
(

∇ i−1
T σ T σ ,∇ j−1

T σ T σ
)

= ḡ
(

∇̄ i−1
T σ̄ T σ̄ , ∇̄ j−1

T σ̄ T σ̄
)

, i, j = 1, . . . , m, (12)

∇, ∇̄ being the Levi-Civita connections associated with g, ḡ.

Proof If (12) holds for every i, j = 1, . . . , m, then 
σ
k = 
σ̄

k for 1 ≤ k ≤ m. From the
formulas (10) in Proposition 3.4 we deduce κσ

i = κσ̄
i for 0 ≤ i ≤ m−2 and |κσ

m−1| = |κσ̄
m−1|.

Conversely, if
∣
∣κσ

i

∣
∣ = ∣∣κσ̄

i

∣
∣, 0 ≤ i ≤ m −1, then from the formulas (8) and (9) by recurrence

on the subindex of κi we obtain
∣
∣ f σ

mm

∣
∣ = ∣

∣ f σ̄
mm

∣
∣ and f σ

i j = f σ̄
i j otherwise. Hence, for every

i, j = 1, . . . , m, we have

g
(

∇ i−1
T σ T σ ,∇ j−1

T σ T σ T
)

=
i
∑

k=1

j
∑

l=1

f σ
ki f σ

l j δkl =
i
∑

k=1

j
∑

l=1

f σ̄
ki f σ̄

l j δkl

= ḡ
(

∇̄ i−1
T σ̄ T σ̄ , ∇̄ j−1

T σ̄ T σ̄
)

.


�
3.3 Existence theorems

The fundamental theorem for curves in Euclidean 3-space (cf. [26, pp. 29–31]) states that if
two smooth functions κ(s) > 0, τ (s) are given, then there exists a unique curve for which s
is the arc length, κ the curvature, and τ the torsion, the moving trihedron of which at s = s0

coincides with the coordinate axes. The full generalization of this result is as follows:

Theorem 3.6 Let (M, g) be an m-dimensional oriented Riemannian manifold and let
(v1, . . . , vm) be a positively oriented orthonormal basis for Tx0 M. Given functions κ j ∈
C∞(t0 − δ, t0 + δ), 0 ≤ j ≤ m − 1, with κ j > 0 for 0 ≤ j ≤ m − 2, there exists 0 < ε ≤ δ

and a unique Frenet curve σ : (t0 − ε, t0 + ε) → M such that,

(i) σ(t0) = x0,
(ii) Xσ

j (t0) = v j for 1 ≤ j ≤ m,
(iii) κσ

j = κ j for 0 ≤ j ≤ m − 1.
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Proof Let (U ; x1, . . . , xm) be the normal coordinate system centred at x0 associated with
the orthonormal linear frame (v1, . . . , vm) given in the statement, let pm

M : ⊕m T M → M be

the bundle projection, and let denote by (xi , y j
k ), i, j, k = 1, . . . , m, the induced coordinate

system on (pm
M )−1(U ), i.e.

u j = yi
j (u)

∂

∂xi

∣
∣
∣
∣
x
, ∀u = (u1, . . . , um) ∈ ⊕m Tx M, x ∈ U.

First of all, we prove that the Frenet formulas are locally equivalent to a system of first-order
ordinary differential equations on the manifold ⊕m T M . In fact, as a computation shows, the
formulas (a)–(d) in Proposition 3.2 can be written in local coordinates as follows:

d(x j ◦ σ)

dt
= κσ

0 (y j
1 ◦ Xσ ), (13)

d(y j
1 ◦ Xσ )

dt
= κσ

0 κσ
1 (y j

2 ◦ Xσ ) − κσ
0 (�

j
hi ◦ σ)(yh

1 ◦ Xσ )(yi
1 ◦ Xσ ), (14)

d(yc
i ◦ Xσ )

dt
= κσ

0 [κσ
i (yc

i+1 ◦ Xσ ) − κσ
i−1(yc

i−1 ◦ Xσ )]
−κσ

0

(

�c
ab ◦ σ

)

(ya
1 ◦ Xσ )(yb

i ◦ Xσ ), 2 ≤ i ≤ m − 1, (15)

d(yc
m ◦ Xσ )

dt
= −κσ

0 κσ
m−1(yc

m−1 ◦ Xσ ) − κσ
0

(

�c
ab ◦ σ

)

(ya
1 ◦ Xσ )(yb

m ◦ Xσ ), (16)

where �c
ab are the components of the Levi-Civita connection ∇ of g with respect to the

coordinate system (xh)m
h=1 and Xσ : (a, b) → ⊕m T M , a < t0 < b, is the curve given by

Xσ (t) = t (Xσ
1 (t), . . . , Xσ

m(t)), ∀t ∈ (a, b).
Hence, the functions xh ◦ σ, yi

j ◦ Xσ : (a, b) → R, h, i, j = 1, . . . , m, are the only
solutions to the system (13)–(16) satisfying the initial conditions (i), (ii) in the statement; i.e.
(xh ◦ σ)(t0) = xh(x0), (yi

j ◦ Xσ )(t0) = yi
j (v1, . . . , vm) = δi

j .
Conversely, if Xσ and the curvatures κσ

j−1, 1 ≤ j ≤ m, are replaced by an arbitrary
smooth curve X = (X1, . . . , Xm) : (t0 − δ, t0 + δ) → ⊕m T M , and the given functions
κ j−1, 1 ≤ j ≤ m, respectively, with σ = pm

M ◦ X , into the equations (13)–(16) above, then
the following system is obtained:

d(x j ◦ σ)

dt
= κ0(y j

1 ◦ X), (17)

d(y j
1 ◦ X)

dt
= κ0κ1(y j

2 ◦ X) − κ0(�
j
hi ◦ σ)(yh

1 ◦ X)(yi
1 ◦ X), (18)

d(yc
i ◦ X)

dt
= κ0[κi (yc

i+1 ◦ X) − κi−1(yc
i−1 ◦ X)]

−κ0
(

�c
ab ◦ σ

)

(ya
1 ◦ X)(yb

i ◦ X), 2 ≤ i ≤ m − 1, (19)

d(yc
m ◦ X)

dt
= −κ0κm−1(yc

m−1 ◦ X) − κ0
(

�c
ab ◦ σ

)

(ya
1 ◦ X)(yb

m ◦ X), (20)

We claim that the only solution xh ◦ σ, yi
j ◦ X : (t0 − ε, t0 + ε) → R to the system (17)–(20)

satisfying the initial conditions

(xh ◦ σ)(t0) = xh(x0), 1 ≤ h ≤ m; (yi
j ◦ X)(t0) = δi

j , i, j = 1, . . . , m,

provides the desired Frenet curve.
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First, we observe that from the very definition of (17)–(20), the linear frame (X1, . . . , Xm)

—defined along the curveσ with components xh◦σ—determined by X , i.e. X j = (yi
j◦X) ∂

∂xi ,
satisfies the following equations:

⎧

⎪⎪⎨

⎪⎪⎩

T σ = κ0 X1,

∇X1 X1 = κ1 X2,

∇X1 Xi = −κi−1 Xi−1 + κi Xi+1, 2 ≤ i ≤ m − 1,

∇X1 Xm = −κm−1 Xm−1.

(21)

Next, the item (i) in Proposition 3.2 is proved to hold for this linear frame. In fact, the functions
ϕi j (t) = g(Xi (t), X j (t)), |t − t0| < ε, 1 ≤ i ≤ j ≤ m, are the only solution to the system

dϕ11

dt
= 2κ0κ1ϕ12,

dϕ1 j

dt
= κ0

(

κ1ϕ2 j − κ j−1ϕ1, j−1 + κ jϕ1, j+1
)

,

2 ≤ j ≤ m − 1,

dϕ1m

dt
= κ0

(

κ1ϕ2m − κm−1ϕ2,m−1
)

,

dϕi j

dt
= κ0

(

κiϕi+1, j + κ jϕi, j+1 − κi−1ϕi−1, j − κ j−1ϕi, j−1
)

,

2 ≤ i ≤ j ≤ m − 1,

dϕim

dt
= κ0

(

κiϕi+1,m − κi−1ϕi−1,m − κm−1ϕi,m−1
)

,

2 ≤ i ≤ m − 1,

dϕmm

dt
= −2κ0κm−1ϕm−1,m,

such that ϕi j (0) = δi j , but Kronecker deltas are readily seen to be also a solution
to this system; hence g(Xi (t), X j (t)) = δi j . By virtue of the assumption, one has
volg(X1(0), . . . , Xm(0)) = volg(v1, . . . , vm) = 1, and accordingly, volg(X1(t), . . . , Xm(t))
= 1 for every t ∈ (t0 − ε, t0 + ε).

Finally, as the curvatures κσ
j , 0 ≤ j ≤ m − 1, are completely determined by the Frenet

formulas, it suffices to prove that the linear frame (X1, . . . , Xm) satisfies the property (ii)
of Proposition 3.2, which is equivalent to prove the existence of functions hi j ∈ C∞(t0 −
ε, t0 + ε), 1 ≤ i ≤ j ≤ m, such that ∇ j−1

T σ T σ = ∑ j
i=1 hi j Xi for 1 ≤ j ≤ m. If j = 1,

then this formula follows from the first formula in (21) with h11 = κ0. Hence, we can
proceed by recurrence on j ≥ 2. By applying the operator ∇T σ to both sides of the equation
∇ j−2

T σ T σ =∑ j−1
i=1 hi, j−1 Xi , we have ∇ j−1

T σ T σ =∑ j−1
i=1 ((dhi, j−1/dt)Xi +∇T σ Xi ), and the

result follows by replacing the term ∇T σ Xi = κ0∇X1 Xi by its expression deduced from the
formulas in (21) above. 
�

Theorem 3.7 Let (M, g) be an m-dimensional oriented Riemannian manifold. Given a sys-
tem of functions κ = (κ0, . . . , κm−1), with κ j ∈ C∞(t0 − δ, t0 + δ) for 0 ≤ j ≤ m − 1 and
κ j > 0 for 0 ≤ j ≤ m − 2, let f κ

i j : (t0 − δ, t0 + δ) → R, 1 ≤ i ≤ j ≤ m, be the functions
defined by the following recurrence relations:
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⎧

⎪⎨

⎪⎩

f κ
11 = κ0,

f κ
12 = d f κ

11

dt
,

f κ
22 = f κ

11κ0κ1,

(22)

3 ≤ j ≤ m

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f κ
1 j = d f κ

1, j−1

dt
− f κ

2, j−1κ0κ1,

f κ
i j = d f κ

i, j−1

dt
− f κ

i+1, j−1κ0κi + f κ
i−1, j−1κ0κi−1,

2 ≤ i ≤ j − 2,

f κ
j−1, j = d f κ

j−1, j−1

dt
+ f κ

j−2, j−1κ0κ j−2,

f κ
j j = f κ

j−1, j−1κ0κ j−1.

(23)

Let w j ∈ Tx0 M, 1 ≤ j ≤ m, be vectors such that the system (w1, . . . , wm−1) is linearly
independent. The necessary and sufficient conditions for a Frenet curve σ : (t0 −ε, t0 +ε) →
M, 0 < ε ≤ δ, to exist such that,

(i) σ(t0) = x0,

(ii)
(

∇ j−1
T σ T σ

)

(t0) = w j for 1 ≤ j ≤ m,

(iii) κσ
j−1 = κ j−1 for 1 ≤ j ≤ m,

are the following:

g
(

wi , w j
) =

i
∑

h=1

f κ
hi (t0) f κ

hj (t0), 1 ≤ i ≤ j ≤ m. (24)

Proof If the curve σ in the statement exists, then f κ
i j = f σ

i j , where the functions f σ
i j are given

in the formulas (8) and (9), and from the formulas (7) we have

g
(

wi , w j
) = g

(

∇ i−1
T σ T σ ,∇ j−1

T σ T σ
)

(t0) =
i
∑

h=1

f σ
hi (t0) f σ

hj (t0).

Hence, all the conditions (24) are necessary for the curve σ to exist.
Let (v1, . . . , vm−1) be the orthonormal system in Tx0 M obtained by applying the Gram-

Schmidt process to the system (w1, . . . , wm−1), and let vm be the only unitary tangent vector
orthogonal to v1, . . . , vm−1 for which the basis (v1, . . . , vm−1, vm) of Tx0 M is positively
oriented. According to Theorem 3.6, there exists a Frenet curve σ : (t0 − ε, t0 + ε) → M
such that,

a) σ(t0) = x0; b) Xσ
j (t0) = v j , 1 ≤ j ≤ m; c) κσ

j = κ j , 0 ≤ j ≤ m − 1.
Hence f κ

i j = f σ
i j , as follows from the formulas (8), (9), (22), and (23), and from (7)

we obtain (∇ j−1
T σ T σ )(t0) = ∑ j

i=1 f σ
i j (t0)vi , 1 ≤ j ≤ m. Consequently, the Gram-Schmidt

process applied to (T σ (t0), . . . , (∇m−2
T σ T σ )(t0)) also leads one to the orthonormal system

(v1, . . . , vm−1). By virtue of (24), we thus have g(wi , w j ) = g(∇ i−1
T σ T σ ,∇ j−1

T σ T σ )(t0)
for 1 ≤ i ≤ j ≤ m, and we can conclude by simply recalling the following fact: If
(u1, . . . , uk), (u′

1, . . . , u′
k) are two linearly independent systems such that, 1st) the Gram-

Schmidt process applied to (u1, . . . , uk), as well as to (u′
1, . . . , u′

k), leads to the same ortho-
normal system, and 2nd) g(ui , u j ) = g(u′

i , u′
j ) for 1 ≤ i ≤ j ≤ k, then both systems

coincide, i.e. ui = u′
i for i = 1, . . . , k.

Finally, the Frenet frame at t0 of any Frenet curve σ : (t0 − ε, t0 + ε) → M satisfying
(i)–(iii) in the statement coincides with the system (v1, . . . , vm), and we can conclude its
uniqueness from Theorem 3.6. 
�
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3.4 Fm−1(M) and N m−1(M)

Theorem 3.8 Let (M, g) be a Riemannian manifold. Let Fm−1
t0,x0

(M) be the subset of Frenet

jets jm−1
t0 σ ∈ J m−1(R, M) such that, σ(t0) = x0. Let N m−1

t0,x0
(M) be the subset of jets

jm−1
t0 σ ∈ J m−1(R, M) such that, i) σ(t0) = x0, ii) the curve σ is normal general position

up to the order m − 1 at t0, i.e. the tangent vectors Uσ,1
t0 , Uσ,2

t0 , . . . , Uσ,r
t0 defined in (1) are

linearly independent.
If either dim M = m ≤ 4 or g is a flat metric at a neighbourhood of x0, then Fm−1

t0,x0
(M) =

N m−1
t0,x0

(M), ∀t0 ∈ R, ∀x0 ∈ M.

In the general case, Fm−1
t0,x0

(M)\N m−1
t0,x0

(M) (resp. N m−1
t0,x0

(M)\Fm−1
t0,x0

(M)) is not empty but

nowhere dense in Fm−1
t0,x0

(M) (resp. N m−1
t0,x0

(M)).

Proof If (U, x1, . . . , xm) is the normal coordinate system attached to an orthonormal basis
for Tx0 M with respect to the Levi-Civita connection ∇ of g, then for every smooth curve
(t0 − ε, t0 + ε) → M , σ(t0) = x0, the following formulas hold:

T σ
t0 = Uσ,1

t0 ,
(∇T σ T σ

)

t0
= Uσ,2

t0 ,
(∇2

T σ T σ
)

t0
= Uσ,3

t0 , (25)

and for r ≥ 3, from the formulas (2), (3), (4), (5), we conclude the existence of a polynomial
Pr

i in the values (∂ |I |�h
jk/∂xi )(x0), I ∈ N

m , |I | ≤ r − 2, �h
jk being the Christoffel symbols

of ∇ with respect to the coordinates chosen, and the components (dk(xi ◦ σ)/dtk)(t0) (also
in such coordinates) of the tangent vectors Uσ,k

t0 , 1 ≤ k ≤ r − 1, defined in (1) such that,

(∇r
T σ T σ

)

t0
= Uσ,r+1

t0 + Pr
i

∂

∂xi

∣
∣
∣
∣
x0

. (26)

As the values (∂ |I |�h
jk/∂xi )(x0), 1 ≤ |I | ≤ k, can be written as a polynomial (e.g. see

[9,15]) in the components of the curvature tensor field Rg and its covariant derivatives
∇ Rg, . . . ,∇k−1 Rg at x0, we conclude that the same holds for Pr

i . For example,

(∇3
T σ T σ

)

t0
= Uσ,4

t0 + 1
3 Rg

x0

(

T σ
t0 ,
(∇T σ T σ

)

t0

)

T σ
t0 ,

(∇4
T σ T σ

)

t0
= Uσ,5

t0 + 2
(∇ Rg)

x0

(

T σ
t0 ,
(∇T σ T σ

)

t0
, T σ

t0 , T σ
t0

)

+3Rg
x0

(

T σ
t0 ,
(∇T σ T σ

)

t0

)(∇T σ T σ
)

t0
+ 7

3 Rg
x0

(

T σ
t0 ,
(∇2

T σ T σ
)

t0

)

T σ
t0 .

For m ≤ 4 from the formulas (25), we conclude

Fm−1
t0,x0

(M) = N m−1
t0,x0

(M). (27)

Moreover, the equation (∇r
t T )t0 = Uσ,r+1

t0 holds for 0 ≤ r ≤ m − 2 if and only if,
Pr

i = 0 for 0 ≤ r ≤ m − 2, 1 ≤ i ≤ m. In particular, this happens when g is flat at a
neighbourhood of x0; hence, the equality (27) also holds in this case. If the tangent vec-
tors T σ

t0 , (∇T σ T σ )t0 , . . . , (∇m−2
T σ T σ )t0 are linearly independent, but there exists a non-trivial

linear combination, i.e. 0 =∑m−1
h=1 λhUσ,h

t0 , then from (26) we deduce

m−2
∑

r=0

λr+1

{
(∇r

T σ T σ
)

t0
− Pr

i

(

∂/∂xi
)

x0

}

= 0, (28)

which implies that at least one of the vectors Pr
i

(

∂/∂xi
)

x0
, 3 ≤ r ≤ m −2, does not vanish.
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Letting Nt0 = Tt0 × (∇t T )t0 × · · · × (∇m−2
t T )t0 , where × stands for cross-product, we

obtain a basis (T σ
t0 , (∇T σ T σ )t0 , . . . , (∇m−2

T σ T σ )t0 , Nt0) for Tx0 M , and we can write,

Pr
i

(

∂/∂xi
)

x0
=

m−2
∑

q=0

μr
q

(∇q
T σ T σ

)

t0
+ μr Nt0 , 0 ≤ r ≤ m − 2,

for some scalars μr
q , μr , agreeing that Pr

i = 0 for 0 ≤ r ≤ 2; hence μr
q = μr = 0 for

0 ≤ r ≤ 2. Then, (28) is equivalent to saying that the homogeneous linear system

m−2
∑

r=0

μrλr+1 = 0,

m−2
∑

r=0

(

μr
q − δr

q

)

λr+1 = 0, 0 ≤ q ≤ m − 2,

of m equations in the m − 1 unknowns λ1, . . . , λm−1 admits a non-trivial solution, i.e. the
rank of the m × (m − 1) matrix

μ(m) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 μ3 . . . μm−2

−1 0 0 μ3
0 . . . μm−2

0
0 −1 0 μ3

1 . . . μm−2
1

0 0 −1 μ3
2 . . . μm−2

2
0 0 0 μ3

3 − 1 . . . μm−2
3

...
...

...
...

. . .
...

0 0 0 μ3
m−2 . . . μm−2

m−2 − 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

must be ≤ m − 2. This condition characterizes Fm−1
t0,x0

(M)\N m−1
t0,x0

(M). The proof for

N m−1
t0,x0

(M)\Fm−1
t0,x0

(M) is similar. 
�

Example 3.9 For m = 5 jets in F4
t0,x0

(M)\N 4
t0,x0

(M) are given by, rk μ(5) = 3. Hence

μ3 = 0, μ3
3 = 1; P3

i

(

∂/∂xi
)

x0
=∑2

q=0 μ3
q

(∇q
T σ T σ

)

t0
+ (∇3

T σ T σ
)

t0
, i.e.

Rg
x0

(

T σ
t0 , (∇T σ T σ )t0

)

T σ
t0 − (∇3

T σ T σ
)

t0
∈ 〈T σ

t0 , (∇T σ T σ )t0 , (∇2
T σ T σ )t0

〉

. (29)

In addition, assume (xi )5
i=1 is the normal coordinate system defined by the Frenet frame

(

Xσ
i (t0)

)5
i=1. From the formulas (7), (8), and (9), it follows the formula (29) can be reformu-

lated by saying that the tangent vector

(

κσ
0

)4
κσ

1 Rg
x0

(

Xσ
1 (t0), Xσ

2 (t0)
)

Xσ
1 (t0) − f σ

14(t0)Xσ
1 (t0) − f σ

24(t0)Xσ
2 (t0)

− f σ
34(t0)Xσ

3 (t0) − f σ
44(t0)Xσ

4 (t0)

must belong to
〈

Xσ
1 (t0) , Xσ

2 (t0) , Xσ
3 (t0)

〉

, or equivalently,

g
(

Rg
x0

(

Xσ
1 (t0) , Xσ

2 (t0)
)

Xσ
1 (t0) , Xσ

4 (t0)
) = κσ

2 (t0) κσ
3 (t0) ,

g
(

Rg
x0

(

Xσ
1 (t0) , Xσ

2 (t0)
)

Xσ
1 (t0) , Xσ

5 (t0)
) = 0.
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4 The equivalence problem

4.1 Necessary conditions for congruence

Definition 4.1 Two curves σ : (a, b) → (M, g), σ̄ : (a, b) → (M̄, ḡ) with values in two
Riemannian manifolds are said to be congruent if an open neighbourhood U of the image of
σ in M and an isometric embedding φ : U → M̄ exist such that, σ̄ = φ ◦ σ . If M and M̄ are
oriented, then φ is assumed to preserve the orientation.

Proposition 4.2 The curvatures of a Frenet curve with values into an oriented Riemannian
manifold (M, g) are invariant by congruence.

Let (M, g), (M̄, ḡ) be two oriented Riemannian manifolds with associated Levi-Civita
connections ∇, ∇̄, respectively, and let σ : (a, b) → M, σ̄ : (a, b) → M̄, be two Frenet
curves which are congruent under the isometric embedding φ. Then, φ · Xσ

i = X σ̄
i , , ωi

σ =
φ∗ωi

σ̄ , for 1 ≤ i ≤ m,
(

ω1
σ , . . . , ωm

σ

)

, ,
(

ω1
σ̄ , . . . , ωm

σ̄

)

being the dual coframes of the Frenet
frames of σ, σ̄ , respectively. Moreover,

φ∗
(

∇ j R
(

Xσ
i1
, . . . , Xσ

i j+3
, ωi

σ

))

(σ (t)) = ∇̄ j R̄
(

X σ̄
i1
, . . . , X σ̄

i j+3
, ωi

σ̄

)

(σ̄ (t)) ,

for all j ∈ N, t ∈ (a, b), and all systems of indices i, i1, . . . , i j+3 = 1, . . . , m, where R, R̄
are the curvature tensors of (M, g), (M̄, ḡ), respectively.

4.2 General criterion of congruence

Theorem 4.3 Let (M, g), , (M̄, ḡ) be two oriented connected Riemannian manifolds of
class Cω of the same dimension, m = dim M = dim M̄, with Levi-Civita connections ∇, ∇̄,
and let σ : (a, b) → M, σ̄ : (a, b) → M̄ be two Frenet curves of class Cω with tangent fields
T, T̄ , respectively. If x0 = σ(t0), x̄0 = σ̄ (t0), a < t0 < b, then σ and σ̄ are congruent on
some neighbourhoods of x0 and x̄0, respectively, if and only if the following conditions hold:

(i) For every j ∈ N and every 0 ≤ i ≤ m − 1,

d jκσ
i

dt j
(t0) = d jκσ̄

i

dt j
(t0), (30)

(ii) For every j ∈ N and all systems of indices i, i1, . . . , i j+3 = 1, . . . , m, the following
formula holds:

(

∇ j R
) (

Xσ
i1
, . . . , Xσ

i j+3
, ωi

σ

)

(x0) =
(

∇̄ j R̄
) (

X σ̄
i1
, . . . , X σ̄

i j+3
, ωi

σ̄

)

(x̄0) , (31)

where
(

ω1
σ , . . . , ωm

σ

)

,
(

ω1
σ̄ , . . . , ωm

σ̄

)

are the dual coframes of the Frenet frames
(

Xσ
1 , . . . , Xσ

m

)

,
(

X σ̄
1 , . . . , X σ̄

m

)

of σ, σ̄ , and R, R̄ are the curvature tensors of (M, g),

(M̄, ḡ), respectively.

Proof From Proposition 4.2, the equations (30) and (31) follow. To prove the converse, let
A : Tx0 M → Tx̄0 M̄ be the linear isometry given by, A

(

Xσ
i (t0)

) = X σ̄
i (t0), 1 ≤ i ≤ m.

The condition (31) implies that A maps the tensor (∇ j R)x0 into the tensor (∇̄ j R̄)x̄0 , for
all j ∈ N. From [14, VI, Theorem 7.2], we conclude that the polar map φ : U → U , φ =
expX̄0

◦A◦exp−1
x0

, is an affine isomorphism and from [29, Lemma 2.3.1] it follows that φ is an
isometry. In order to finish the proof, it suffices to check that φ(σ(t)) = σ̄ (t) for |t − t0| < ε,
and a small enough ε > 0. The Frenet curve γ = φ ◦ σ : (a, b) → M̄ satisfies γ (t0) = x̄0,

123



The equivalence problem of curves in a Riemannian manifold 357

Xγ

i (t0) = φ∗
(

Xσ
i (t0)

) = X σ̄
i (t0). As the curvatures are of class Cω, from the condition (30),

we deduce κσ̄
j = κσ

j , 0 ≤ j ≤ m − 1, and since the curvatures are invariant by congruence,

we know κσ
j = κ

γ

j ; hence κσ̄
j = κ

γ

j , 0 ≤ j ≤ m − 1. Taking the formulas (7), (9) and the
condition (30) into account for 1 ≤ j ≤ m, we have

A

((

∇ j−1
T σ T σ

)

t0

)

=
m
∑

i=1

f σ
i j (t0)A

(

Xσ
i (t0)

)

=
m
∑

i=1

f σ̄
i j (t0)X σ̄

i (t0)

=
(

∇̄ j−1
T σ̄ T σ̄

)

t0
.

Therefore,
(

∇̄ j−1
T γ T γ

)

t0
= φ∗

((

∇ j−1
T σ T σ

)

t0

)

= A

((

∇ j−1
T σ T σ

)

t0

)

=
(

∇̄ j−1
T σ̄ T σ̄

)

t0
,

for 1 ≤ j ≤ m. By applying Theorem 3.6, we conclude σ̄ = γ = φ ◦ σ on (t0 − ε, t0 + ε).

�

Corollary 4.4 Let (M, g), (M̄, ḡ) be two oriented connected Riemannian manifolds of class
Cω of the same dimension, m = dim M = dim M̄, and let σ : (a, b) → M, σ̄ : (a, b) → M̄
be two Frenet curves, respectively. If x0 = σ(t0), x̄0 = σ̄ (t0), a < t0 < b, then σ and σ̄ are
congruent on some neighbourhoods U and Ū of x0 and x̄0, respectively if, and only if, the
following conditions hold:

(i) For every 0 ≤ i ≤ m − 1, it holds κσ
i (t) = κσ̄

i (t), for |t − t0| < ε.
(ii) For every j ∈ N and every system of indices i, i1, . . . , i j+3 ∈ {1, . . . , m},

(∇ j R)
(

Xσ
i1
, . . . , Xσ

i j+3
, ωi

σ

)

(x0) = (∇̄ j R̄)
(

X σ̄
i1
, . . . , X σ̄

i j+3
, ωi

σ̄

)

(x̄0) .

4.3 Remarks on the criterion of congruence

Remark 4.5 The condition (31) of Theorem 4.3 is not equivalent to the following:

R
(

Xσ
j , Xσ

k , Xσ
l , ωi

σ

)

(σ (t)) = R̄
(

X σ̄
j , X σ̄

k , X σ̄
l , ωi

σ̄

)

(σ̄ (t)) , |t − t0| < ε. (32)

Differentiating the left-hand side of (32), we have

d

dt
R
(

Xσ
j , Xσ

k , Xσ
l , ωi

σ

)

(σ (t)) = (∇T σ R)
(

Xσ
j , Xσ

k , Xσ
l , ωi

σ

)

(σ (t))

+R
(

∇T σ Xσ
j , Xσ

k , Xσ
l , ωi

σ

)

(σ (t)) + · · ·
+R

(

Xσ
j , Xσ

k , Xσ
l ,∇T σ ωi

σ

)

(σ (t))

= κσ
0 (t)∇ R

(

Xσ
1 , Xσ

j , Xσ
k , Xσ

l , ωi
σ

)

(σ (t)) + · · ·
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As the first argument of ∇ R in the formula above is Xσ
1 , the function

∇ R
(

Xσ
h , Xσ

j , Xσ
k , Xσ

l , ωi
σ

)

, h �= 1,

cannot be recovered from R
(

Xσ
j , Xσ

k , Xσ
l , ωi

σ

)

(σ (t)). Therefore, the formulas (32) do not

imply the formulas (31), although (31) do imply (32) as the manifolds involved are analytic.

Example 4.6 Let us consider the bidimensional torus T ⊂ R
3 with implicit equation (x2 +

y2 + z2 + 3)2 = 16(x2 + y2). On the radius-2 circumference C = T∩{z = 1}, the Gaussian
curvature of T vanishes and C is a regular curve of positive constant curvature. The curvature
tensor of R

2 vanishes in particular along any curve C ′ ⊂ R
2 with the same curvature as C ;

but C and C ′ are not congruent since the Gaussian curvature of T does not vanish at every
neighbourhood of a point of C .

Remark 4.7 From Proposition 3.2, we deduce that the Frenet frame of a Frenet curve σ and
its dual frame at a point σ(t0) depend on jm−1

t0 σ only. Hence, for every system of indices

j ∈ N, i1, . . . , i j+3, i ∈ {1, . . . , m}, a function I j
i1...i j+3,i

: Fm−1(M) → R can be defined

on the open subset Fm−1(M) ⊂ J m−1(R, M) of the jets of order m − 1 of Frenet curves
with values in M by setting

I j
i1...i j+3,i

( jm−1
t σ) = (∇ j R)

(

Xσ
i1
, . . . , Xσ

i j+3
, ωi

σ

)

(σ (t)) . (33)

Similarly, for every 0 ≤ i ≤ m − 1, a function

�i : (πm
m−1)

−1Fm−1(M) ⊂ J m(R, M) → R (34)

can be defined by setting �i ( jm
t σ) = κσ

i (t).
From Theorem 4.3, it follows that all these functions are invariant by isometry (see the

Sect. 5). Since dim Fm−1(M) = m2 + 1, only a finite number (not greater than m2 + 1)
of such functions can be functionally independent generically. Hence, the infinite number
of conditions given in (31) can be reduced to a finite number. Nevertheless, it is not easy
to determine a bound for the index j , which measures the times one has to differentiate
covariantly the curvature tensor.

Remark 4.8 Theorem 4.3 is the most general result we can expect without imposing any
additional condition on (M, g) and (M̄, ḡ) except for the fact of being analytic. This is
principally due to the fact that [14, VI, Theorem 7.2] cannot be generalized to non-analytic
manifolds, as shown in the next example.

Example 4.9 Let g, ḡ be the two Riemannian metrics on M = M̄ = R
m, m ≥ 2, defined by,

gi j (x) = δi j + exp(−|x |−2), ḡi j (x) = δi j , respectively; hence, (M, g) is not analytic at the
origin. If R is the curvature tensor of (M, g) and ∇ is its associated Levi-Civita connection,
then (∇n R)(0) = 0 for all n ∈ N. The identity map I d : T0 M → T0̄ M̄ is an isometry, since
gi j (0) = ḡi j (0̄) = δi j . Moreover, (∇ j R)(0) = (∇̄ j R̄)(0̄) = 0, where R̄ (resp. ∇̄) is the
curvature tensor (resp. the Levi-Civita connection) of ḡ. If there exists an affine isomorphism
φ : U → Ū = M̄ , defined on normal neighbourhoods of 0, such that φ∗,0 = I d , then taking
[29, Lemma 2.3.1] into account, φ must necessarily be an isometry. Hence φ maps the tensor
∇ j R into the tensor ∇̄ j R̄ = 0, for all j ∈ N. Consequently, ∇ j R must vanish in a normal
neighbourhood of 0, but this is not true. In fact, as gi j = δi j +h(|x |), with h(s) = exp(−s−2),
we have

gi j = δi j − h(|x |)
1 + mh(|x |) .
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Following the notation in [14], the Christoffel symbols are,

�k
i j = h′(|x |)

|x |

(

xi + x j − xk + h(|x |)
1 + mh(|x |)

(
m
∑

a=1

xa − m(xi + x j )

))

.

If xt = (t, . . . , t) ∈ R
m , t �= 0, then �k

i j (xt ) = h′(|xt |)t
|xt |(1+mh(|xt |)) �= 0, and

�a
ii (xt ) �

j
a j (xt ) =

(
h′(|xt |)

|xt | (1 + mh(|xt |))
)2

t2 = �a
ji (xt ) �

j
ai (xt ) .

Consequently, �a
ii (xt ) �

j
a j (xt ) − �a

ji (xt ) �
j
ai (xt ) = 0, and hence

R j
i ji (xt ) = −2h′(|xt |)

|xt | �= 0.

Thus, R j
i ji does not vanish at xt for small enough t �= 0.

5 Differential invariants

5.1 Basic definitions

Let I(M, g) be the group of isometries of a complete Riemannian connected manifold (M, g)

endowed with its structure of Lie transformation group (cf. [14, VI, Theorem 3.4]) and let
i(M, g) be its Lie algebra, which is anti-isomorphic to the algebra of Killing vector fields.

Every diffeomorphism φ : M → M induces a transformation φ(r) on Jr (R, M) given by
φ(r)

(

jr
t σ
) = jr

t (φ ◦ σ), and a natural action (on the left) of the group I(M, g) on Jr (R, M)

can be defined by φ · jr
t σ = φ(r)

(

jr
t σ
)

. Each X ∈ i(M, g) induces a flow φt , and its jet

prolongation φ
(r)
t determines a flow on Jr (R, M), the infinitesimal generator of which is the

vector field denoted by X (r) ∈ X (Jr (R, M)). The tangent spaces to the orbits of the action
of I(M, g) on Jr (R, M) coincide with the fibres of the distribution Dr ⊂ X (Jr (R, M))

spanned by the vector fields X (r); more precisely, we have

Tjr
t σ

(

I(M, g) · jr
t σ
) = Dr

jr
t σ =

{

X (r)

jr
t σ

: X ∈ i(M, g)
}

.

Definition 5.1 A smooth function I : Jr (R, M) → R is said to be an invariant of order r
(cf. [1,7, 4.1], [16]) if, I ◦φ(r) = I, ∀φ ∈ I(M, g). A first integral f : Jr (R, M) → R of the
distribution Dr is called a differential invariant of order r ; i.e. X (r)( f ) = 0, ∀X ∈ i(M, g).

Remark 5.2 A differential invariant is an invariant with respect to the connected component
of the identity I0(M, g) in I(M, g).

Lemma 5.3 (cf. [21]) The distribution Dr is involutive, and its rank is locally constant on
a dense open subset Ur ⊆ Jr (R, M). If Nr denotes the maximal number of functionally
independent differential invariants of order r ≥ 0, then

Nr = dim Jr (R, M) − rk Dr
∣
∣Ur

= m(r + 1) + 1 − rk Dr
∣
∣Ur . (35)
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Proof Dr is involutive as [X (r)
1 , X (r)

2 ] = [X1, X2](r), ∀X1, X2 ∈ i(M, g). Let Ur be the
subset defined as follows: A point ξ = jr

t σ ∈ Jr (R, M) belongs to Ur if and only if
ξ admits an open neigbourhood Nξ such that dim Dr

ξ ′ = dim Dr
ξ for every ξ ′ ∈ Nξ . As

Nξ ⊆ Ur , it follows that Ur is an open subset, which is non-empty as the dimension
of the fibres of Dr is uniformly bounded and hence, Ur contains the points ξ for which
dim Dr

ξ = maxξ ′∈Jr (R,M) dim Dr
ξ ′ = d . In fact, if this equation holds, then there exists an

open neighbourhood Nξ of ξ such that the dimension of the fibres of Dr over the points

ξ ′ ∈ Nξ is at least d , as if (X (r)
i )ξ , 1 ≤ i ≤ d , is a basis for Dr

ξ , then the vector fields

(X (r)
i ) are linearly independent at each point of an open neigbourhood and hence, they are

also a basis, d being the maximal value of the dimension of the fibres of Dr . From the very
definition of Ur we thus conclude that Nξ ⊆ Ur . The same argument proves that the rank
of Dr is locally constant over Ur . Next, we prove that Ur is dense. If O ⊂ Jr (R, M) is a
non-empty open subset, then there exists ξ ∈ O such that dim Dr

ξ = maxξ ′∈O dim Dr
ξ ′ and

we can conclude as above. The last part of the statement follows directly from the Frobenius
theorem. 
�
If f is a differential invariant of order r , then Dt ( f ) is a differential invariant of order r + 1.
This fact follows from the formula X (r+1) ◦ Dt = Dt ◦ X (r) for every X ∈ i(M, g), which,
in its turn, follows from the formula

X (r) =
r
∑

j=0

(Dt )
j ( f i )

∂

∂xi
j

, (36)

for every X ∈ X(M) with local expression

X = f i ∂

∂xi
, f i ∈ C∞(M). (37)

If πk
l : J k(R, M) → J l(R, M) is the canonical projection for k > l, then

(πr
r−1)∗ X (r) = X (r−1), ∀X ∈ X(M),

and the following exact sequence defines the subdistribution Dr,r−1:

0 → D
r,r−1
jr
t σ

→ Dr
jr
t σ

(πr
r−1)∗−→ Dr−1

jr−1
t σ

→ 0, ∀ jr
t σ ∈ Jr (R, M). (38)

5.2 Stability

Theorem 5.4 Let (M, g) be a complete Riemannian connected manifold and let σ : (a, b) →
M be a smooth curve such that jm−1

t0 σ ∈ N m−1(M), a ≤ t0 ≤ b, with the same notations

as in Sect. 3.4. If X ∈ i(M, g) is a Killing vector field such that X (m−1)

jm−1
t0

σ
= 0, m = dim M,

then X = 0.

Proof Let x0 = σ(t0) and let U ⊂ Tx0(M) be an open neighbourhood of the origin on
which the exponential mapping exp : Tx0(M) → M is a diffeomorphism onto its image. Let
(X j )

m
j=1 be a g-orthonormal basis for Tx0 M with dual basis (wi )m

i=1, wi ∈ T ∗
x0

(M) (i.e.

wi (X j ) = δi
j ) and let xi = wi ◦ (exp |U )−1, 1 ≤ i ≤ m, be the corresponding normal

coordinate system.
If φ : M → M is an affine transformation of the Levi-Civita connection of g (in particular,

if φ is an isometry of g) leaving the point x0 invariant, then (cf. [14, VI, Proposition 1.1]),
φ ◦ exp = exp ◦φ∗, φ∗ : Tx0(M) → Tx0(M) being the Jacobian mapping at x0. Hence
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xi ◦ φ = (wi ◦ φ∗) ◦ (exp |U )−1. If φ∗(X j ) = ai
j Xi , then wi ◦ φ∗ = ai

hwh and hence,

xi ◦ φ = ai
h xh . In particular, if φτ is the flow of a Killing vector field X locally given as in

(37), then

xi ◦ φτ = ai
h(τ )xh, (ai

h(τ ))m
h,i=1 ∈ O(m), ∀τ ∈ R,

f i = bi
h xh, bi

h = dai
h

dτ
(0), B = (bi

h)m
h,i=1 ∈ so(m).

According to (36), the assumption on X in the statement is equivalent to saying

dk( f i ◦ σ)

dtk
(t0) = 0, 1 ≤ i ≤ m, 0 ≤ k ≤ m − 1,

or equivalently, bi
h(dk(xh ◦ σ)/dtk)(t0) = 0, i.e. B(Uσ,k

t0 ) = 0, 1 ≤ k ≤ m − 1, the

tangent vectors Uσ,k
t0 being defined in the formula (1). As B is skew-symmetric, we also have

B(Uσ,1
t0 × · · · × Uσ,m−1

t0 ) = 0. Therefore, B = 0. 
�
Corollary 5.5 On a complete Riemannian connected manifold (M, g), the order of asymp-
totic stability (in this context, the order from which all invariants functionally depend
on invariants of smaller order and their derivatives, cf. [2,16]) is ≤ m. Accordingly,
Nr = (r + 1)m + 1 − dim i(M, g), ∀r ≥ m − 1.

Proof This follows from the previous theorem and the exact sequence (38), taking account
of the fact that X (m−1)

jm−1
t σ

= 0 if and only if X (m)

jm
t σ

∈ D
m,m−1
jm
t σ

. 
�
Corollary 5.6 On a complete Riemannian connected manifold (M, g), the distributionDm−1

takes its maximal rank on N m−1(M).

Proof If jm−1
t σ ∈ N m−1(M), then from Theorem 5.4 it follows that the linear map

i(M, g) → Dm−1
jm−1
t σ

, X �→ X (m−1)

jm−1
t σ

, is an isomorphism. 
�

5.3 Completeness

Let a Lie group G act on a manifold N . If the quotient manifold q : N → N/G exists, then
the image of the mapping q∗ : C∞(N/G) → C∞(N ), f �→ f ◦ q , is the subalgebra of
G-invariant functions, namely C∞(N )G = q∗C∞(N/G). Below, we are concerned with the
case G = I0(M, g) acting on N = Jr (R, M) as defined at the beginning of the Sect. 5.1.

Definition 5.7 Let Or ⊆ Jr (R, M) be an invariant open subset under the natural action of
the group I0(M, g). A system of invariant functions Ii : Or → R, 1 ≤ i ≤ ν, is said to be
complete if the equations Ii ( jr

t0σ) = Ii ( jr
t0σ

′), 1 ≤ i ≤ ν, jr
t0σ, jr

t0σ
′ ∈ Or , imply that σ

and σ ′ are congruent on a neighbourhood of t0.

Remark 5.8 If M is simply connected, then the isometry transforming σ onto σ ′ on a neigh-
bourhood of t0 can uniquely be extended to a global isometry of M (see [14, VI, Corollary
6.4]), which also transforms the whole image of σ onto that of σ ′ if both curves are analytic.

Proposition 5.9 Let ∇ be a linear connection on M. The mapping �r∇ defined in the formula
(6) makes the diagram

Jr (R, M)
�r∇−→ R × ⊕r T M

φ(r) ↓ ↓ (1R,⊕r φ∗)

Jr (R, M)
�r

φ·∇−→ R × ⊕r T M

commutative for every φ ∈ Diff(M).
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Proof The proof is a consequence of the formula (2) and Lemma 3.6, taking the definition
of φ · ∇ into account. 
�
Theorem 5.10 Let (M, g) be a complete oriented connected Riemannian manifold of class
Cω. If

Ii : (πr
m−1)

−1Fm−1(M) → R, r ≥ m, 1 ≤ i ≤ ν, (39)

is a complete system of invariants, then there exists a dense open subset Or in
(πr

m−1)
−1Fm−1(M) such that Ii |Or , 1 ≤ i ≤ ν, generate the ring of differential invariants

under the group I0(M, g) on an open neighbourhood Nr ⊆ Or of every point jr
t σ ∈ Or ,

i.e.

C∞ (Nr )I0(M,g) = ( I1|Nr , . . . , Iν |Nr
)∗

C∞(Rν).

Conversely, if a system of functions as in (39) locally generates the ring of invariants over a
dense subset Õr ⊆ (πr

m−1)
−1Fm−1(M), then it is complete.

Proof According to Theorem 5.4, we can confine ourselves to prove the statement for r = m.
First of all, we prove that the quotient manifold

qm : (πm
m−1)

−1Fm−1(M) → (πm
m−1)

−1Fm−1(M)/I0(M, g) = Qm

exists. To this end, by applying [17, Theorem 9.16], we only need to prove that the following
two conditions hold:

1. The isotropy subgroup I0(M, g) jm
t σ reduces to the identity map of M for every jm

t σ in
(πm

m−1)
−1Fm−1(M).

2. I0(M, g) acts properly on (πm
m−1)

−1Fm−1(M).

The image of (πm
m−1)

−1(Fm−1) by the diffeomorphism �m∇ is equal to the subset U m ⊂
R×⊕m T M of elements (t, X1, . . . , Xm) such that (X1, . . . , Xm−1) are linearly independent
tangent vectors. From Proposition 5.9, we deduce that an isometry φ belongs to the isotropy
subgroup I0(M, g) jm

t σ of a point jm
t σ in (πr

m−1)
−1Fm−1(M), if and only (1R,⊕mφ∗(σ (t)))

belongs to the isotropy subgroup of the point �m∇ ( jm
t σ) = (t, X1, . . . , Xm) ∈ U m . Hence

φ = I dM and consequently, I0(M, g) acts freely on (πm
m−1)

−1(Fm−1), thus proving the first
item above.

Moreover, if g1 is the Sasakian metric induced by g on T M (e.g. see [4, 1.K], [12, section
7], [31, IV, section 1]), then I0(M, g) acts by isometries of the metric on J m(R, M) given
by

gm = (�m∇
)∗
(

dt2 +
m
∑

i=1

(pri )
∗g1

)

,

where pri : R × ⊕m T M → T M is the projection pri (t, X1, . . . , Xm) = Xi , and the image
of the mapping I0(M, g) → I0(J m(R, M), gm), φ �→ φ(m), is closed as it is defined by the
following closed conditions:

ϕ∗(t) = t, ( jmσ)∗(ϕ∗ω) = 0, ϕ ∈ I0(J m(R, M), gm),

for every σ ∈ C∞(R, M) and every contact 1-form ω on J m(R, M), by virtue of [30,
Theorem 3.1]. From [24, 5.2.4. Proposition], we conclude the second item above.
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The invariant functions Ii : (πm
m−1)

−1Fm−1(M) → R, 1 ≤ i ≤ ν, induce smooth func-
tions on the quotient manifold, Īi : Qm → R. As I1, . . . , Iν is a complete system of invariants,
the mapping ϒ : Qm → R

ν whose components are Ī1, . . . , Īν , is injective.
The same argument as in the proof of Lemma 5.3 states the following property: If φ : N →

N ′ is an smooth mapping, then the subset of the points x ∈ N for which there exists an open
neighbourhood U (x) ⊆ N such that φ|U (x) is a mapping of constant rank, is a dense open
subset in N . Hence, an injective smooth map φ : N → N ′ is an immersion on a dense
open subset in N (cf. [17, Theorem 7.15-(b)]). By applying this result to ϒ , we conclude
the existence of a dense open subset Ōm ⊆ Qm such that ϒ |Ōm is an injective immersion.
Hence, for every qm( jm

t σ) ∈ Ōm , there exists a system of coordinates on Qm defined on an
open neighbourhood of qm( jm

t σ) constituted by some functions Īi1 , . . . , Īik , k = dim Qm .
As (qm)∗C∞(Qm) can be identified to the ring of differential invariants, we can take Om =
(qm)−1(Ōm).

Conversely, if jm
t0 σ, jm

t0 σ ′ ∈ Õm are such that qm( jm
t0 σ ′) �= qm( jm

t0 σ), then there exists

ρ ∈ C∞(qm Õm) satisfying ρ(qm( jm
t0 σ)) = 0, ρ(qm( jm

t0 σ ′)) = 1. As ρ ◦ qm is an invariant

function on Õm by virtue of the hypothesis, there exists f ∈ C∞(Rν) such that ρ ◦ (qm) =
f ◦ ( I1|Õm , . . . , Iν |Õm

)

. Hence, an index i must exists for which Ii ( jm
t0 σ) �= Ii ( jm

t0 σ ′), thus
proving that I1, · · · , Iν is a complete system of invariants. 
�
Remark 5.11 If the injective immersion ϒ : Ōm → R

ν is a closed map, then one has

C∞ (Om)I0(M,g) = (I1, . . . , Iν)
∗ C∞(Rν).

5.4 Generating complete systems of invariants

Theorem 5.12 For every r ∈ N, let kr be the maximal number of generically function-
ally independent r-th order invariants not belonging to the closed—in the C∞ topology—
subalgebra generated by the invariants of order < r , and their derivatives with respect to
the operator Dt . Then

kr = Nr − 1 −
r−1
∑

i=0

(r + 1 − i)ki , (40)

m =
m
∑

i=0

ki . (41)

Hence, for every complete Riemannian manifold of dimension m, there exist m generically
independent invariants generating a complete system of invariant functions by adding their
derivatives with respect to Dt for every order r ≤ m. Moreover, kr = 0, ∀r > m.

Proof Let t, I 0
i ∈ C∞(M), 1 ≤ i ≤ k0 ≤ m, N0 = 1 + k0, be a maximal system of

invariant functions of order zero. (If (M, g) is not homogeneous, then there exist zero-order
differential invariants independent of t ; because of this the proof must start on this order.)

Therefore, the rank of the Jacobian matrix J 0(I 0
1 , . . . , I 0

k0
) = (

∂ I 0
i /∂x j

)1≤i≤k0

1≤ j≤m must be

maximal; namely rk J 0(I 0
1 , . . . , I 0

k0
) = k0. Moreover, one has

∂(Dt f )

∂xi
r+1

= ∂ f

∂xi
r
, ∀ f ∈ C∞(Jr (R, M)),

as
[

∂/∂xi
r+1, Dt

] = ∂/∂xi
r , ∀r ∈ N. Hence, the Jacobian matrix of the functions

I 0
1 , . . . , I 0

k0
, Dt I 0

1 , . . . , Dt I 0
k0

on J 1(R, M) is of the form
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J 1(I 0
1 , . . . , I 0

k0
, Dt I 0

1 , . . . , Dt I 0
k0

) =

⎛

⎜
⎜
⎝

(

∂ I 0
i

∂x j

)

0

�

(

∂ I 0
i

∂x j

)

⎞

⎟
⎟
⎠

,

and rk J 1(I 0
1 , . . . , I 0

k0
, Dt I 0

1 , . . . , Dt I 0
k0

) = 2k0 ≤ N1 − 1. We can thus complete the previ-

ous system with k1 = N 1 − 1 − 2k0 new functionally independent invariants I 1
1 , . . . , I 1

k1
, in

such a way that the Jacobian matrix of the full system is as follows:

J 1(I 0
1 , . . . , I 0

k0
, Dt I 0

1 , . . . , Dt I 0
k0

, I 1
1 , . . . , I 1

k1
) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

(

∂ I 0
i

∂x j

)

0

�

(

∂ I 0
i

∂x j

)

�

(

∂ I 1
i

∂x j
1

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

with rk J 1(I 0
1 , . . . , I 0

k0
, Dt I 0

1 , . . . , Dt I 0
k0

, I 1
1 , . . . , I 1

k1
) = 2k0+k1 = N1−1. Let us consider

the second-order invariants

I 0
1 , . . . , I 0

k0
,

Dt I 0
1 , . . . , Dt I 0

k0
, I 1

1 , . . . , I 1
k1

,

D2
t I 0

1 , . . . , D2
t I 0

k0
, Dt I 1

1 , . . . , Dt I 1
k1

,

the Jacobian matrix of which is
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(

∂ I 0
i

∂x j

)

0 0

�

(

∂ I 0
i

∂x j

)

0

�

(

∂ I 1
i

∂x j
1

)

0

� �

(

∂ I 0
i

∂x j

)

� �

(

∂ I 1
i

∂x j
1

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and its rank is equal to 3k0 + 2k1. Hence, we need to choose k2 new second-order invariants
I 2
1 , . . . , I 2

k2
, with k2 = N2 − 1 − (3k0 + 2k1), such that the matrix

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(

∂ I 0
i

∂x j

)

0 0

�

(

∂ I 0
i

∂x j

)

0

�

(

∂ I 1
i

∂x j
1

)

0

� �

(

∂ I 0
i

∂x j

)

� �

(

∂ I 1
i

∂x j
1

)

� �

(

∂ I 2
i

∂x j
2

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

123



The equivalence problem of curves in a Riemannian manifold 365

is of maximal rank, i.e. 3k0 + 2k1 + k2 = N2 − 1. Proceeding step by step in the same
way, we conclude that the formula (40) in the statement holds true. Moreover, from this
formula, we obtain Nr − Nr−1 = ∑r

i=0 ki . According to Corollary 5.5, we have Nr =
(r + 1)m + 1 − dim i(M, g), ∀r ≥ m − 1, and then

∑m
i=0 ki = Nm − Nm−1 = m, thus

proving the formula (41) in the statement and finishing the proof. 
�
Remark 5.13 Following the same notations as in [10], let Hr+1 = I0(M, g) jr

t σ be the
isotropy subgroup of a point jr

t σ belonging to the open subset Ur where the distribution
Dr is of constant rank (see Lemma 5.3). In [10], the following formula is mentioned: kr =
dim Hr−1 + dim Hr+1 − 2 dim Hr in the homogeneous case, i.e. M = G/H . Nevertheless,
this formula holds on an arbitrary Riemannian manifold, and it is an easy consequence of the
formulas (35) and (40). In fact, one has, dim Hr+1 = dim I0(M, g) − rk Dr |Ur . Hence

dim Hr−1 + dim Hr+1 − 2 dim Hr = Nr−2 + Nr − 2Nr−1 = kr .

6 Congruence on symmetric manifolds

Theorem 6.1 Let (M, g), (M̄, ḡ) be two locally symmetric Riemannian manifolds of the
same dimension, m = dim M = dim M̄, and let σ : (a, b) → M, σ̄ : (a, b) → M̄ be two
Frenet curves. If x0 = σ(t0), x̄0 = σ̄ (t0), a < t0 < b, then σ and σ̄ are congruent on some
neigbourhoods U and Ū of x0 and x̄0, respectively if, and only if, the following conditions
hold:

1. For every j ∈ N and every 0 ≤ i ≤ m − 1,

κσ
i (t) = κσ̄

i (t), |t − t0| < ε. (42)

2. For every i, j, k, l = 1, . . . , m,

R(Xσ
i , Xσ

j , Xσ
k , ωl

σ )(x0) = R̄(X σ̄
i , X σ̄

j , X σ̄
k , ωl

σ̄ )(x̄0)), (43)
(

Xσ
1 , . . . , Xσ

m

)

,
(

X σ̄
1 , . . . , X σ̄

m

)

being the Frenet frames of σ , σ̄ , with dual coframes
(

ω1
σ , . . . , ωm

σ

)

,
(

ω1
σ̄ , . . . , ωm

σ̄

)

, and R, R̄ the curvature tensors of (M, g), (M̄, ḡ), respec-
tively.

Theorem 6.2 Let (M, g) be an arbitrary Riemannian manifold verifying the following prop-
erty: Two Frenet curves σ, σ̄ : (a, b) → M, σ (t0) = σ̄ (t0) = x0, are congruent on some
neighbourhood of x0 (preserving the orientation if dim M is even and reversing the orienta-
tion if dim M is odd) if and only if the conditions (42) and (43) of Theorem 6.1 hold. Then,
(M, g) is locally symmetric.

Proof Let us fix an orientation on a neighbourhood of x0 ∈ M , and let (vi )
m
i=1 be a positive

orthonormal basis of Tx0 M . Let κ j ∈ C∞(t0 − δ, t0 + δ), 0 ≤ j ≤ m − 1, δ > 0, be
functions such that κ j > 0 for 0 ≤ j ≤ m − 2. From Theorem 3.6, we know there exist
two Frenet curves σ, σ̄ : (t0 − ε, t0 + ε) → M , 0 < ε < δ, such that σ(t0) = σ̄ (t0) = x0

and Xσ
i (t0) = −X σ̄

i (t0) = vi (hence ωi
σ (t0) = −ωi

σ̄ (t0)) for 1 ≤ i ≤ m, with the same
curvatures κ j , 0 ≤ j ≤ m − 1. If dim M is odd, we considered the opposite orientation to
construct σ̄ . According to this choice of orientations constructing the Frenet curves σ and σ̄ ,
for every i, j, k, l = 1, . . . , m, we have

R
(

Xσ
i , Xσ

j , Xσ
k , ωl

σ

)

(x0) = R
(

−Xσ
i ,−Xσ

j ,−Xσ
k ,−ωl

σ

)

(x0)

= R
(

X σ̄
i , X σ̄

j , X σ̄
k , ωl

σ̄

)

(x0).
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From the hypothesis, an open neighbourhood U of the image of σ and an isometric embedding
φ : U → M (leaving x0 fixed) exist such that σ̄ = φ ◦σ . Moreover φ∗(Xσ

i (t0)) = X σ̄
i (t0) =

−Xσ
i (t0), 1 ≤ i ≤ m. Thus, φ∗ = −I dTx0 M . Since x0 ∈ M is arbitrary, we can conclude.

Example 6.3 For M = CPn , from the formula for the curvature tensor in [14, XI, p. 277],
the Riemann curvature reads

R4
(

Xi , X j , Xk, Xl
)= c

4

{

δ jlδik − δ jkδil + g
(

X j , J Xl
)

g (J Xk, Xi )

−g
(

X j , J Xk
)

g (J Xl , Xi ) + 2g (Xk, J Xl) g
(

J X j , Xi
)}

,

J being the canonical complex structure. In particular,

R4
(

Xi , X j , Xi , X j
) = c

4

(

1 − δi j + 3ω
(

Xi , X j
)2
)

,

where ω is the canonical Kähler 2-form in CPn . Therefore, if we define the functions
�i j : (πm

m−1)
−1Fm−1(M) ⊂ J m(R, M) → R, 1 ≤ i < j ≤ m, as

�i j ( jm
t0 σ) = ω(Xσ

i (t0), Xσ
j (t0)),

the family {�i j }i< j together with {�i }m−1
i=0 constitute a complete system of differential invari-

ants.

In particular, the corresponding result for congruence on constant curvature manifolds can
be stated as follows:

Theorem 6.4 Two Frenet curves σ, σ̄ : (a, b) → (M, g) taking values in an oriented Rie-
mannian manifold of constant curvature are congruent on some neigbourhoods U and Ū
of x0 = σ(t0) and x̄0 = σ̄ (t0), a < t0 < b, respectively, if and only, κσ

i (t) = κσ̄
i (t)

for 0 ≤ i ≤ m − 1 and small enough |t − t0|. Conversely, if on an oriented Riemannian
manifold (M, g) two arbitrary Frenet curves σ, σ̄ : (a, b) → (M, g) are congruent on some
neighbourhoods of x0 = σ(t0), x̄0 = σ̄ (t0), a < t0 < b, if and only if κσ

i (t) = κσ̄
i (t) for

0 ≤ i ≤ m − 1 and small enough |t − t0|, then (M, g) is a manifold of constant curvature.

Proof On a manifold of constant curvature k one has ([14, V. Corollary 2.3]): R(X, Y )Z =
k(g(Y, Z)X − g(X, Z)Y ); hence

R
(

Xσ
i , Xσ

j , Xσ
k , ωl

σ

)

= k
(

δ jkδ
l
i − δikδ

l
j

)

.

It follows that on a manifold of constant curvature the equation (43) holds identically. The
first part of the statement thus follows from Theorem 6.1.

Let (v1, . . . , vm), (w1, . . . , wm) be two positively oriented orthonormal bases in Tx0 M .
From Theorem 3.6, there exist two Frenet curves σ, σ̄ : (t0 − ε, t0 + ε) → M , ε > 0, such

that,

(i) σ(t0) = σ̄ (t0) = x0,
(ii) Xσ

i (t0) = vi , X σ̄
i (t0) = wi , 1 ≤ i ≤ m,

(iii) κσ
i (t) = κσ̄

i (t), 0 ≤ i ≤ m − 1, , |t − t0| < ε.

By virtue of the hypothesis, there exists an isometry φ defined on a neighbourhood of x0,
fixing x0, such that φ ◦ σ = σ̄ . Hence φ∗(vi ) = wi , 1 ≤ i ≤ m, and accordingly M is an
isotropic manifold (e.g. see [27]) and therefore of constant curvature. 
�
Acknowledgments Supported by Ministerio de Educación y Ciencia of Spain under grants #MTM2011-
22528 and #MTM2010-19111.
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