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Abstract Let R be an APVD with maximal ideal M. We show that the power series ring
R[[x1,...,x,]] is an SFT-ring if and only if the integral closure of R is an SFT-ring if
and only if (R is an SFT-ring and M is a Noether strongly primary ideal of (M : M)).
We deduce that if R is an m-dimensional APVD that is a residually *-domain, then dim
R([[x1,...,x3]] = nm +1ornm + n.
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1 Introduction

In this paper, all rings are commutative with identity and the dimension of a ring means its
Krull dimension. Throughout this paper, if D denotes an integral domain with quotient field
K, then D’ denotes its integral closure, Min(D) denotes the set of height-one prime ideals of
D and if X,, = {x1, ..., x,} is a set of indeterminates over K, then we write D[[X,,]] rather
than D[[x1, ..., x,]]. Anideal I is called an SFT-ideal if there exist a natural number k and
a finitely generated ideal J C I such that ¥ € J for each @ € I. An SFT-ring is a ring in
which every ideal is an SFT-ideal. SFT-rings are similar to Noetherian rings, and they have
many nice properties. For properties about SFT-rings, the readers are referred to [1,2,4].

In [2], Arnold studied the Krull dimension of power series ring and showed that if a ring
R fails to have the SFT-property, then R[[X]] has infinite dimension. Arnold’s result forces
us to consider only SFT-rings when we study finite-dimensional power series extensions.
Also, it forces us to raise the question: does R[[X]] is an SFT-ring when R is an SFT-ring?.
In fact, this is an old question which was raised by R. Gilmer. In Coykendall [8], answered
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this question in the negative by constructing a one-dimensional SFT-domain R such that
R[[X,]] is not an SFT-ring. At the same time (2002), in Badawi and Houston [5], introduced
the concept of an almost pseudo-valuation domain. An integral domain R is said to be an
almost pseudo-valuation domain (or, for short, APVD) if R is a quasi-local domain with
maximal ideal M, and there is a valuation overring in which M is a primary ideal. One very
remarkable thing in [8] is that Coykendall’s example is a one-dimensional APVD (see [13,
Example 2.4]). So it is natural to study the SFT-instability via power series extension over
an APVD regardless of its dimension and ask which things cause the SFT-instability in such
extensions, which is the first purpose of this paper.

In this paper, we give a necessary and sufficient condition to win the SFT-stability via
power series extension over an APVD. Recall from [7] that a P-primary ideal Q of an
integral domain R is called a Noether strongly primary ideal of R if P¥ € Q for some
positive integer k. We prove that if R is an APVD with maximal ideal M, then R[[x{]] is
an SFT-ring if and only if R[[x1, x2]] is an SFT-ring if and only if the integral closure of R
is an SFT-ring if and only if R is an SFT-ring and M is a Noether strongly primary ideal of
(M : M) (Theorem 2.3).

We show first that if R is a one-dimensional APVD with maximal ideal M, then R[[X]]
is an SFT-ring if and only if R is an accp-ring (i.e., satisfies the ascending chain condition
on principal ideals) and M is a Noether strongly primary ideal of (M : M).

We use rings of the form D + M to construct several examples which prove the SFT-
instability via power series extension over an APVD regardless of its dimension (Proposi-
tion 2.7 and Example 2.8).

Recall from [13], an integral domain R is called a x-domain if the set Min(R) is nonempty
and if for each P € Min(R), R satisfies the ascending chain condition on P-principal ideals
(ideals of the form aP, a € R). Also from [13], R is said to be a residually *-domain if
for each nonmaximal prime ideal P of R, the quotient ring R/P is a x-domain. In [13],
we proved that if R is an APVD with nonzero finite dimension, then dim R[[X]] < oo
if and only if dim R[[X,]] < oo if and only if R is a residually *-domain if and only if
the ring R[[X]] is catenary ([13, Theorem 3.5]). And, in this case, we have dim R[[X]] =
14+dim R, 1+ndim R < dim R[[X,]] < n+(n+1)dim R and htP[[X,,]] = n htP for each
nonmaximal prime ideal P of R ([13, Theorem 2.9 and Corollary 2.17]). As an application
of Theorem 2.3 (instability theorem on an APVD), we show thatdim R[[X,]] = ndim R+ 1
or ndim R + n and htM[[X,]] = n(htM — 1) + 1 or n htM and for each value we give
sufficient and necessary conditions on R (Theorem 3.1, Corollary 3.4 and Corollary 3.5).
Also we give examples for each value (Example 3.8 and Example 3.9). Finally, we show that
the ring R[[X,]] is not catenary if » > 1 and dim R > 1.

2 When is R[[X,]] an SFT-ring?

Throughout this section, R will denote an APVD with quotient filed K and maximal ideal
M and V will denote the overring (M : M) = {x € K; xM < M} of R. By [5, Theorem
3.4], V is a valuation domain and M is primary to the maximal ideal N of V.

Lemma 2.1 1. V and R have the same set of nonmaximal prime ideals. In particular,
dim V = dim R and every prime ideal of R is a proper ideal of V. _
2. Let P be a nonmaximal prime ideal of R. Then V/P = (M : M) where M = M/ P.

Proof (1) By[13,Lemma?2.13], every nonmaximal prime ideal P of R is also a nonmaximal
(because P C M C N) prime ideal of V. Since R C V, it is easy to show that every
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nonmaximal primeideal P of V (thus P C M because /M V = N)isalsoanonmaximal
prime ideal of R.

(2) Since M is an ideal of V/P, (M : ]\71) is an overring of the valuation domain V/P.
Thus (1\71 : A7I) = (V/P)g/p for some prime ideal Q of V which contains P. Then
(M : M) = Vg/PVg = Vo/P.So Q/P is the maximal ideal of (M : M). Since M
is a proper ideal of (M : M), M € Q/P andthus M € Q.So N = +/MV C Q, and
then Q = N. Hence (A7I:A~4)=V/P. ]

The following lemma gives new characterizations of a one-dimensional APVD R so that
R[[X]] is an SFT-ring.

Lemma 2.2 [fdim R = 1, then the following assertions are equivalent:

1. R[[X]]is an SFT-ring.

2. R is a x-domain.

3. Risan SFT-ring and M is a Noether strongly primary ideal of (M : M).
4. R is an accp-ring and M is a Noether strongly primary ideal of (M : M).
5. (M : M) is an SFT-ring

Proof For (1) & (2) < (5), see [13, Theorem 2.2 and Theorem 2.9].

(5) = (4) Note that a rank-one valuation domain is SFT if and only if it is Noetherian if and
only if it is discrete. If (a, R),>0 is an ascending chain of nonzero proper principal ideals of
R, then (a,V),>0 is an ascending chain of principal ideals of V. Thus, there exists a positive
integer k such that a,V = a;V for every integer n > k. Let c € V and d € R such that
a, = cay and a; = da,. We have dc = 1, and thus, d is invertible in V. Sod ¢ M, and then
d is invertible in R because R is quasi-local. Hence R is an accp-ring. Suppose that N" ¢ M
for each integer n > 0. Then M C (72 N" which is a prime ideal of V by [9, Theorem
17.1]. Thus N = ~/M < N2, a contradiction.

(4) = (3) Note that for a nonzero proper ideal / of a valuation domain, / is an SFT-ideal if
and only if 72 % I. Let s be a positive integer such that N* € M and suppose that M2 = M.
Then V is not SFT and so not Noetherian. So there exists a strictly increasing chain (a, V),>0

of principal ideals of V. Thus ujil € N and so a; € a;_ M. Then (a,R),>0 is a strictly

increasing chain of principal ideals of R, a contradiction. Necessarily M? # M, and hence
R is SFT by [1, Proposition 2.2] and [13, Proposition 1.4].

(3) = (5) Let s be a positive integer such that N € M. By [13, Proposition 1.4], there
exists an a € M such that M® C aR. So N C aV. Thus, N is an SFT-ideal of V. Hence,
V is an SFT-ring. O

In the following result, we give a necessary and sufficient condition on an APVD R so that
R[[X,]] is an SFT-ring. Also many characterizations of nonzero finite-dimensional APVDs
which are residually x-domains are given.

Theorem 2.3 Let R be an APVD with maximal ideal M. The following statements are equiv-
alent:

. R[[X,]] is an SFT-ring.

. R[[X]] is an SFT-ring.

. The integral closure of R is an SFT-ring.

. R is an SFT-ring and M is a Noether strongly primary ideal of (M : M).

. (M : M) isan SFT-ring.

N W~

Moreover, if 0 < dim R < 00, then each of the previous statements is equivalent to the
following:
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6. R is a residually *-domain.

Proof (1) = (2) Note that the homomorphic image of an SFT-ring is also an SFT-ring [1,
Proposition 2.3]. The result follows from the fact that R[[X]] = R[[X,]]/ < Xn—1 >.
(2) = (@) Since R = R[[X]]/ < X >, R is an SFT-ring. We can assume that M # 0
(because in this case N = 0). Denote Q to be the union of the nonmaximal prime ideals of R.
Since R is a quasi-local domain with linearly ordered prime ideals, Q is a prime ideal of R by
[12, Theorem 9]. Also Q is a prime ideal of V by Lemma 2.1. If Q = M, then N = M. So,
we can assume that Q # M. Then Q is the prime ideal just below M in R, and so dim R=1
where R = R / Q. Note that the homomorphic image (not be field) of a finite-dimensional
APVD with the property residually * is also a finite-dimensional APVD With the property
residually * [13, Remark 1.2-(4) and Proposition 1.9]. Since ﬁ[[X]] X11/0l11X]] is
an SFT-domain, M is a Noether strongly primary ideal of (M : M) by Lemma 2.2, where
M = M/Q. By Lemma 2.1, (1\71 : 1\71) = V/Q. Thus (N/Q)* € M/Q for some integer
s >0.Hence N C M+ Q =M.
(4) = (1) Suppose that R[[X,]] is not an SFT-domain. Then there exists an infinite chain
Q1 C Q3 C --- of prime ideals in R[[X,]][[x,+1]1] by [2, Proof of Theorem 1]. Denote
(L_Jf’o1 Q;) N R. Since P is an SFT-ideal of R, Qj 2 P for some integer k > 0. Then
Qk o) P[[X,,+1]] by [4, Proposition 2.1]. We have an infinite chain of prime ideals @ C
Q,+1 C---of R[[X,,H]] where R = R/P, 0: = 0, /P[[Xn+1]]. Since 0: N R = (0) for
all integer i > ¢, dim R[[Xn+l]]R\(o) = 00 (in particular P # M and so dim R > 1), and
so Min(R) is s nonempty [13, Remark 2.1]. Let s > 0 be an integer such that N° € M. Thus
(N/P)* € M, and then M is a Noether strongly primary ideal of (M : M) by Lemma 2.1.
Hence R is a x-domain by Lemma?2.2 and [13, Lemma 1.11], a contradiction by [13, Theorem
2.2].
(4) = (5) Let P be a nonzero prime ideal of V. If P is not maximal in V, then P is a prime
ideal of R by Lemma 2.1. Thus P2 # P. So P is an SFT-ideal of V. Now, we suppose that
P = N.Lets > 0 be an integer such that N* € M, and leta € M\Mz. Then M°® C aR by
[13, Proposition 1.4]. Thus N® C aV C N. Then N is an SFT-ideal of V.
(5) = (4) Every nonzero prime ideal of R is a proper ideal of V, and so it is not idempotent.
Hence R is an SFT-ring. Note that a nonidempotent maximal ideal of a valuation domain is
a principal ideal. Let a € N and s > 0 an integer such that N = aV and a* € M for some
integer s > 0. Hence N* = a*V C MV = M.
(5) & (3) By [5, Proposition 3.7], R" is a PVD with maximal ideal Q := v/ MR’ (Recall
that a domain R with quotient field K is called a pseudo-valuation domain (for short, PVD)
if each prime ideal P of R is strongly prime, in the sense that x, y € K and xy € P implies
that x € Pory € P).Let W = (Q : Q) be the valuation domain associated with R’. Since
R C V [9, Theorem 19.8], O € N and so V C W. Let P be a prime ideal of V such that
W = Vp. Thus, Q = PVp = P is a prime ideal of V, and then W = V. Since R C R’
is an integral extension and Q is a maximal ideal of R’, Q N R = M. Thus Q = N by
Lemma 2.1. Hence V = W. The result follows from the fact that a PVD is SFT if and only
its associated valuation overring is SFT [6, Chapitre 11-Proposition 8.10].
In case 0 < dim R < oo, the equivalence (6) < (2) follows from [13, Theorem 2.9]. O

The proof of the following result is straightforward because the maximal ideal M of a
PVD is always a Noether strongly primary ideal of (M : M) (in fact, M is the maximal ideal
of (M : M), see [10, Corollary 6]).

Corollary 2.4 Let R be a PVD with maximal ideal M. The following statements are equiv-
alent:
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. R[[X,]] is an SFT-ring.

. R[[X]] is an SFT-ring.

. The integral closure of R is an SFT-ring.

. Risan SFT-ring.

. (M : M) is an SFT-ring.
Moreover, if 0 < dim R < 00, then each of the previous statements is equivalent to the
following:

6. R is a residually x-domain.

I O R S

In the following example, we show that for each m € N* U {oo}, there exists an
m-dimensional APVD R (not PVD) such that R and R[[X,,]] are SFT-rings.

Example 2.5 Let F be a field. It is known that there exists an SFT-valuation domain V of the
form F' 4+ N with maximal ideal N and Krull dimension m. By [4, Lemma 3.1], there exists
a € V such that N = aV. Denote R = F + NZ2. The ideal N2 is maximal in R because
R/N2 =~ F. Since the conductor (R : V) = N2 # (0), V is a valuation overring of R.
Since a> € N> and a ¢ N?, N? is not strongly prime and then R is not a PVD. Since N2 is
a primary ideal of V, N? is a strongly primary ideal of R by [5, Theorem 2.11] and then R
is an APVD by [5, Theorem 3.4]. Since (N?: N?) = (@®V :d?V) = V,dimR = m (by
Lemma 2.1) and R[[X,]] is an SFT-ring by Theorem 2.3.

Example 2.6 [8, Theorem 4.1](Coykendall’s example). We follow [13, Example 2.4]. Take
R=V,=F,+XV where V = FQ[XO‘]M, with Fz[Xa] = {Zz"l:O GiXa[ |€,‘ elF,a; € QJr}
and M is the maximal ideal of Fo[X*] generated by the monomials. The ring R is a one-
dimensional SFT-APVD which is not aresidually *-domain. Hence, by Theorem 2.3, R[[ X}, ]]
is notan SFT-domain andso (M V)" ¢ XV foreachintegern > 0.Thus, XV is not a Noether
strongly primary ideal of V. This last fact is the cause of the SFT-instability in Coykendall’s
example.

Coykendall [8] constructed a one-dimensional APVD R which is SFT but R[[X},]] is not
an SFT-ring. We will show that for each m € N*U {00}, there exists an m-dimensional APVD
R which is SFT but R[[X,,]] is not an SFT-ring. The following result will help us to construct
the desired examples.

Proposition 2.7 Let m € N* U {oco} and V be an m-dimensional valuation domain of the
form F + N, where F is a field and N is the maximal ideal of V. Let D be a domain with
quotient field F and set R = D + N. If V is an SFT-ring and D is a one-dimensional SFT-
APVD with maximal ideal M, then R is an (m + 1)-dimensional SFT-APVD with maximal
ideal M + N.

Proof Since R/(M + N) = D/M, M + N is a maximal ideal of R. The domains R and V
have the same quotient field K because the conductor (R : V) = N is nonzero. Let x € K
such that x” ¢ M + N for each integer n > 0. Since V is a valuation overring of R and
x ¢ R,eitherx~! € Norxisaunitof V.Ifx~! € N, thenx‘l(M—i—N) CNC(M+N).
If x = f + zis a unit of V, where f is a nonzero element of F' and z € N. Thus f" ¢ M
for each integer n > 0 and there exists z/ € N such that x ! = f~1 +7/. So f~'M c M
by [5, Lemma 2.3]. Thus x~Y(M + N) C (M + N). Then R is an APVD by [5, Lemma 2.3
and Theorem 3.4]. Easily one can show that N is a strongly prime ideal of R and htx N = m.
Since N is a divided prime ideal of R, dim R = htN +dim(R/N) =m+dim D =m + 1.
Let P be a nonzero nonmaximal prime ideal of R. So P is a prime ideal of V. Thus, P2 # P
and then P is an SFT-ideal of R. By [13, Proposition 1.4], M? # M and M® C aD for each
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a € M\M?.Since N is adivided primeideal of R, N C aR.So (M+N)® € M°+N C aR.
Hence (M + N) is an SFT-ideal of R. ]

In the following example, we show that for every integer m € N* U {oo}, there exists an
m-dimensional APVD R (not PVD) such that R is SFT but R[[X}]] is not SFT.

Example 2.8 Let W be a rank-one nondiscrete valuation domain (so 0% = Q and W is not
SFT) of the form H + Q, where H is afield and Q is the maximal ideal of W.Let0 #a € Q
and set D = H + a>W. By an argument similar to the one just given in Example 2.5, one
can show that D is an APVD (not PVD) with maximal ideal ¢>W, that dim D = 1 and
that D[[X},]] is not an SFT-ring. The ideal a?W is the unique nonzero prime ideal of D and
(@*W)? = a*W C a®D. Hence D is an SFT-ring. Let m € (N U {o0}) — {0, 1} and F
be the quotient field of D. Let V be an (m — 1)-dimensional SFT-valuation domain of the
form F + N, where N is the maximal ideal of V. Set R = D + N. By Proposition 2.7, R
is an m-dimensional SFT-APVD. Since R[[X,]l/NI[[X,]] = D[[X,]], RI[X.]] is not an
SFT-ring.

3 Application: Krull dimension of R[[X]]

Let F C L be fields, let K be the maximal separable extension of F in L, and let p denote
the characteristic of F' if F has nonzero characteristic but set p := 1 if F' has characteristic
zero. We say that L has finite exponent over K if LP" C K for some positive integer n.

Park [14] proved that if R is a finite-dimensional SFT-PVD with maximal ideal M, then
ndim R 4+ 1 if L has finite exponent over K¢ and [Kp : F] < 0o
ndim R 4 n otherwise
where F = R/M, L is the residue field of (M : M) and Ky is the maximal separable
extension of F in L.

We will show that Park’s result also remains true if R is a nonzero finite-dimensional APVD
such that it is a residually x-domain. In fact, Park proved that if R is a finite-dimensional
SFT GPVD with maximal ideal M, then dim R[[X,]] = ndim R + 1 or ndim R + n, where
GPVDs is a generalization of the concept of PVD in the nonquasi-local case (Recall that
an integral domain R is called a globalized pseudo-valuation domain (or, for short, GPVD)
if there exists a Priifer overring 7 satisfying the following two conditions: (1) R € T is
a unibranched extension; (2) there exists a nonzero radical ideal / common to 7 and R
such that each prime ideal of T (respectively, R) that contains / is a maximal ideal of T
(respectively, R).). It is easy to see that an APVD is a GPVD if and only if it is a PVD. As
our goal was proved by Park in the case of a PVD, so we can suppose that our APVD is not
a PVD and consequently necessarily is not a GPVD. However, Park’s proof in [14, Theorem
2.4] is also valid for an APVD which is not PVD.

An immediate consequence of Theorem 2.3 and Park’s technique is that we can calculate
dim R[[X,]] as the following result shows.

dim R[[X,]] = [

Theorem 3.1 Let R be an APVD with maximal ideal M, residue field F and nonzero
finite Krull dimension such that R is a residually x-domain. Let L be the residue
field of (M : M) and Ky be the maximal separable extension of F in L. Then
ndim R + 1 if L has finite exponent over Ko and [Ky : F] < oo

dim RI[X,]] = [ ndim R + n otherwise

Proof Assume that L has finite exponent over Ko and [K( : F] < oco. By [14, Lemma 2.1]
(also [3, (3.8) p. 107 and Theorem 3.9]), L[[X,,]] is integral over F[[X,]]. By Theorem 2.3,
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N*® C M for some integer s > 0 and so N[[X,]]° € M[[X,]]. It follows that V[[X,]] is
integral over R[[ X, ]] and hence dim R[[X,]] = dim V[[X,]] = ndim R + 1 by [4, Theorem
3.6] and Lemma 2.1.

For the case “L has infinite exponent over Ko or [Kp : F] = 00”, we follow the same
way in [14, Theorem 2.4] given by Park (the proof needs [14, Lemma 2.3] which is also true
if we replace an SFT-PVD by an APVD which is a residually x-domain, the proof is similar
to Park’s proof). O

Let R be an APVD with maximal ideal M, residue field F and nonzero finite Krull
dimension such that R is a residually *-domain. Let L be the residue field of (M : M) and
Ky be the maximal separable extension of F in L. In [13], we proved that htP[[ X, ]] = nhtP
for each prime ideal P # M of R [13, Corollary 2.17]. We will show thathtM[[ X, ]] = nhtM
or n(htM — 1) + 1, but first we need to recall some background material.

Let D and J be two integral domains such that D C J. Let Z = {z;}72, be a countable
set of indeterminates over J. Let F = {]‘,-}?i2 be a subset of z1J[[z1]]. By Arnold ([4, p.
899]), F is said to be a suitable subset of z; J[[[z1]] if {i; f; ¢ zlfJ[[Zl]]} is finite for each
positive integer k. If F is a suitable subset of z; J[[z1]], then we can define a unique D[[z]]-
homomorphism @ = : D[[Z]] — J[[z1]] by @(z;) = fi, i > 2 (where D[[Z]] denotes (in
the notation of [9, p. 10]) the full power series ring D[[{z;}7°,113). By Arnold, J is called
a special algebraic extension of D if for each suitable subset 5 = {gi}72, of z1J[[z1]], the
DI[[z1]]-homomorphism @¢ is not an isomorphism.

In other words, J is a special algebraic extension of D if and only if for each integral domain
Tsuchthat D[[X]]C T C J[[X]], T & D[[X]][[{Y, 2,11 via a D[[X]]-isomorphism.

Lemma 3.2 Suppose that dim R = 1. If L has infinite exponent over Ko or [Kq : F] = 00,
then tM[[ X, ]l =n

Proof R C V isaspecial algebraic extension because the conductor (R : V) = M isnonzero.
By [14, Lemma 2.1], F C L is not a special algebraic extension and hence htM[[X,]] > n
by [4, Proposition 2.3]. Since htM[[X,]] + n < ht(M+ < X, >), htM[[X,]] < n by
Theorem 3.1. m]

Remark 3.3 In fact, another proof for the last lemma is similar to the one given by Park in
[14, Theorem 2.4], but we choose to give a new proof.

Corollary 3.4 If L has infinite exponent over Ko or [Kg : F] = oo, then tM[[X,]] =
nhtM.

Proof Since htM[[X,]] +n < ht(M + (X)), htM[[X 1] < nhtM by Theorem 3.1. Let P
be the prime ideal just below M in R. Denote R = R/P and M=M /P. Note that R is
a one-dimensional APVD with maximal ideal M and is a residually *-domain [13, Remark
1.2-(4) and Proposition 1.10]. Also note that the valuation domain associated with RisV /P
by Lemma 2.1. Since residue field (ﬁ) = F and residue field (V/P) = L, htﬂ[[X,,]] =n
by Lemma 3.2. Hence htM[[X,,]] > htM[[X,]]+htQ[[X,]] = n+nhtQ = nhtM by [13,
Corollary 2.17]. O

Corollary 3.5 If L has finite exponent over Ky and [Ky : F] < oo, then htM[[X,]] =
n(htM — 1) + 1.

Proof 1t is easy to see that htM[[X,]] < ht(M + (X,)) —n = dim R[[X,]] — n. Thus
htM[[X,]] < n(htM — 1) + 1 by Theorem 3.1. Since N[[X,,]]1 N R[[X,]] = M[[X,]] and
R[[X,]] € VI[[X,]] is an integral extension (so it satisfies incomparability), htM[[X,]] >
htN[[X,]] = n(htM — 1) + 1 by [11, Theorem 13]. O
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It is well known that if Q is a prime ideal of D[X,] with Q N D = P, then htQ =
htP[X,]+ht(Q/P[X,]) [9, Theorem 30.18]. Kang and Park [11] asked if the power series
analogue of this last result is true. They were especially interested in Priifer domains and they
answered their question in some cases of Priifer domains [11, Corollary 15]. The following
result gives an answer for their question in some cases of an APVD.

Corollary 3.6 If L has infinite exponent over Ko or[Kq : F] = 0o, thenhtQ = htP[[ X, ]]1+
ht(Q/ P[[X,11) for all prime ideal Q of R[[X,]] with Q N R = P.

Proof “>" is obvious. “<”: Use induction on m := htP. If m = 0, then it is obvious.
Suppose m > 0 and the statement holds when htP < m. Let Q be a prime ideal of R[[X}]]
such that htP = m where P = QN R. Let (0) = Qo C Q1 C ... C Q5 = Q be achain of
prime ideals of R[[X,]] arriving at Q. Let k be the smallest integer i € {1, ..., s} such that
OiNR #(0).Thus QoNR=...= Q0,1 NR=(0).Sok—-1< dimR[[Xn]]R\(o) =n
by [13, Theorem 2.2]. Denote Py = Qy N R. Hence Py[[X,]] € O.

Case 1 P = M (and so P = M). If M[[X,]] = Q, thens = k + (s — k)
htM[[ X, ]]+ht(Q/MI[[ X, ]1]). If M[[X,]] C Ok, thens = (k — 1)+ (s —k+ 1)
n+ht(Q/M[[X,]]) <htM[[X,]]+ht(Q/MI[[X,]]) by Corollary 3.4.

Case 2 Py # M. Denote R = R/Py and P = P/Py. So, by cons1der1ng
RI[X, 11/ Pol[ X1l = R[[Xn]] since htP < m and (Q/Pol[Xn]) N R = P, then
ht(Q/Pol[X,]]) = htP[[X,,]]+ ht(Q/P[[X,]]) by induction hypothesis.

Case 2.1 Qx = Pol[Xn]]. Then s = k + (s — k) < htPo[[X,]]1+ht(Q/ Pol[Xx]]
ht Po[[ X, 1]+ht P[[ X, ]]4+ht(Q/ P[[Xn]D) < htP[[X,]]4+ht(Q/PI[Xn]D.

Case 2.2 Py[[Xn]] C Qk. Thens = (k — 1) + (s —k + 1) < n+ht(Q/Pol[X,1])
n—l—htP[[X,,] +ht(Q/P[[X,1]) <htPo[[ X, ]]+htP[[X]] +ht(Q/P[[X,]]) because n
n htPy =htPy[[X,]]. Thus s < htP[[X,]]4+ht(Q/P[[X,]1]).

=
=

oAl

Of course, the last result forces us to ask if the ring R[[X,]] is catenarian (Recall that a
ring D is said to be catenary if for each pair P C Q of prime ideals of D, all saturated chains
of prime ideals of D between P and Q have a common finite length). In [13], we proved that
if D is an APVD with nonzero finite dimension, then D[[X]] is catenarian if and only if D
is a residually *-domain. The question is still open for R[[X,]] withn > 1.

Corollary 3.7 Ifn > 1 and dim R > 1, then R[[X,]] is not catenarian.

Proof Let n > 1 be an integer and suppose that R[[X,]] is catenarian. Then ht(x,) +
ht(M + (X)) /(xp) = ht(M + (X,,)). Thus 1 +ht(M + (X,,—1)) = ht(M + (X,))). If L has
finite exponent over Ko and [Kg : F] < oo,then1 + (n — 1)dimR 4+ 1 = ndim R + 1
by Theorem 3.1. Thus dim R = 1, a contradiction. If L has infinite exponent over Ko or
[Ko: F]=o00,then 1+ (n — 1)(dim R + 1) = n(dim R 4 1) again by Theorem 3.1. Thus
dim R = 0, a contradiction. O

In the following example, we show that for every integer m > 1, there exists an
m-dimensional APVD R such that R is a residually *-domain and (L has infinite exponent
over Ko or [Kq : F] = o).

Example 3.8 Let F C L be an extension of fields such that L is not algebraic over F. Let
Ko be the maximal separable extension of F in L. It is known that there exists an SFT-
valuation domain V of the form L 4+ N with maximal ideal N and Krull dimension m. By [4,
Lemma 3.1], there exists a € V such that N = aV. Denote R = F + N2. By an argument
similar to the one just given in Example 2.5, we show that R is an APVD with maximal ideal
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N2, dimR =mand Risa residually x-domain. It is clear that F' and L are the residue fields,
respectively, of R and (N2 : N2) = V. Since F C L is not an algebraic extension, F C L
is not a special algebraic extension by [3, Theorem 2.1]. Then L has infinite exponent over
Ko or [Ko : F] = oo by [14, Lemma 2.1].

In the following example, we show that for every integer m > 1, there exists an
m-dimensional APVD R such that R is a residually x-domain and (L has finite exponent
over Ko and [Kq : F] < o0).

Example 3.9 Let F,m, V, N and R be as in Example 2.5. The result follows from the fact
that R/N>2 = F = V/N.

SFT-stability and Krull dimension questions in power series rings over an APVD are
solved, but catenarity question is not yet. It is still open if R[[X,]] is catenarian where n > 1
and R is a one-dimensional APVD.
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