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Abstract Let R be an APVD with maximal ideal M . We show that the power series ring
R[[x1, . . . , xn]] is an SFT-ring if and only if the integral closure of R is an SFT-ring if
and only if (R is an SFT-ring and M is a Noether strongly primary ideal of (M : M)).
We deduce that if R is an m-dimensional APVD that is a residually *-domain, then dim
R[[x1, . . . , xn]] = nm + 1 or nm + n.
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1 Introduction

In this paper, all rings are commutative with identity and the dimension of a ring means its
Krull dimension. Throughout this paper, if D denotes an integral domain with quotient field
K, then D′ denotes its integral closure, Min(D) denotes the set of height-one prime ideals of
D and if Xn = {x1, . . . , xn} is a set of indeterminates over K, then we write D[[Xn]] rather
than D[[x1, . . . , xn]]. An ideal I is called an SFT-ideal if there exist a natural number k and
a finitely generated ideal J ⊆ I such that ak ∈ J for each a ∈ I . An SFT-ring is a ring in
which every ideal is an SFT-ideal. SFT-rings are similar to Noetherian rings, and they have
many nice properties. For properties about SFT-rings, the readers are referred to [1,2,4].

In [2], Arnold studied the Krull dimension of power series ring and showed that if a ring
R fails to have the SFT-property, then R[[X ]] has infinite dimension. Arnold’s result forces
us to consider only SFT-rings when we study finite-dimensional power series extensions.
Also, it forces us to raise the question: does R[[X ]] is an SFT-ring when R is an SFT-ring?.
In fact, this is an old question which was raised by R. Gilmer. In Coykendall [8], answered

M. Khalifa (B) · A. Benhissi
Department of Mathematics,
Faculty of Sciences of Monastir, 5000 Monastir, Tunisia
e-mail: kmhoalg@yahoo.fr

123



1556 M. Khalifa, A. Benhissi

this question in the negative by constructing a one-dimensional SFT-domain R such that
R[[Xn]] is not an SFT-ring. At the same time (2002), in Badawi and Houston [5], introduced
the concept of an almost pseudo-valuation domain. An integral domain R is said to be an
almost pseudo-valuation domain (or, for short, APVD) if R is a quasi-local domain with
maximal ideal M , and there is a valuation overring in which M is a primary ideal. One very
remarkable thing in [8] is that Coykendall’s example is a one-dimensional APVD (see [13,
Example 2.4]). So it is natural to study the SFT-instability via power series extension over
an APVD regardless of its dimension and ask which things cause the SFT-instability in such
extensions, which is the first purpose of this paper.

In this paper, we give a necessary and sufficient condition to win the SFT-stability via
power series extension over an APVD. Recall from [7] that a P-primary ideal Q of an
integral domain R is called a Noether strongly primary ideal of R if Pk ⊆ Q for some
positive integer k. We prove that if R is an APVD with maximal ideal M , then R[[x1]] is
an SFT-ring if and only if R[[x1, x2]] is an SFT-ring if and only if the integral closure of R
is an SFT-ring if and only if R is an SFT-ring and M is a Noether strongly primary ideal of
(M : M) (Theorem 2.3).

We show first that if R is a one-dimensional APVD with maximal ideal M , then R[[X ]]
is an SFT-ring if and only if R is an accp-ring (i.e., satisfies the ascending chain condition
on principal ideals) and M is a Noether strongly primary ideal of (M : M).

We use rings of the form D + M to construct several examples which prove the SFT-
instability via power series extension over an APVD regardless of its dimension (Proposi-
tion 2.7 and Example 2.8).

Recall from [13], an integral domain R is called a ∗-domain if the set Min(R) is nonempty
and if for each P ∈ Min(R), R satisfies the ascending chain condition on P-principal ideals
(ideals of the form a P, a ∈ R). Also from [13], R is said to be a residually ∗-domain if
for each nonmaximal prime ideal P of R, the quotient ring R/P is a ∗-domain. In [13],
we proved that if R is an APVD with nonzero finite dimension, then dim R[[X ]] < ∞
if and only if dim R[[Xn]] < ∞ if and only if R is a residually ∗-domain if and only if
the ring R[[X ]] is catenary ([13, Theorem 3.5]). And, in this case, we have dim R[[X ]] =
1+dim R, 1+n dim R ≤ dim R[[Xn]] ≤ n+(n+1) dim R and htP[[Xn]] = n htP for each
nonmaximal prime ideal P of R ([13, Theorem 2.9 and Corollary 2.17]). As an application
of Theorem 2.3 (instability theorem on an APVD), we show that dim R[[Xn]] = n dim R +1
or n dim R + n and htM[[Xn]] = n(htM − 1) + 1 or n htM and for each value we give
sufficient and necessary conditions on R (Theorem 3.1, Corollary 3.4 and Corollary 3.5).
Also we give examples for each value (Example 3.8 and Example 3.9). Finally, we show that
the ring R[[Xn]] is not catenary if n > 1 and dim R > 1.

2 When is R[[Xn]] an SFT-ring?

Throughout this section, R will denote an APVD with quotient filed K and maximal ideal
M and V will denote the overring (M : M) = {x ∈ K ; x M ⊆ M} of R. By [5, Theorem
3.4], V is a valuation domain and M is primary to the maximal ideal N of V .

Lemma 2.1 1. V and R have the same set of nonmaximal prime ideals. In particular,
dim V = dim R and every prime ideal of R is a proper ideal of V .

2. Let P be a nonmaximal prime ideal of R. Then V/P = ( ˜M : ˜M) where ˜M = M/P.

Proof (1) By [13, Lemma 2.13], every nonmaximal prime ideal P of R is also a nonmaximal
(because P ⊂ M ⊆ N ) prime ideal of V . Since R ⊆ V , it is easy to show that every
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nonmaximal prime ideal P of V (thus P ⊂ M because
√

MV = N ) is also a nonmaximal
prime ideal of R.

(2) Since ˜M is an ideal of V/P, ( ˜M : ˜M) is an overring of the valuation domain V/P .
Thus ( ˜M : ˜M) = (V/P)Q/P for some prime ideal Q of V which contains P . Then
( ˜M : ˜M) = VQ/PVQ = VQ/P . So Q/P is the maximal ideal of ( ˜M : ˜M). Since ˜M
is a proper ideal of ( ˜M : ˜M), ˜M ⊆ Q/P and thus M ⊆ Q. So N = √

MV ⊆ Q, and
then Q = N . Hence ( ˜M : ˜M) = V/P . 
�

The following lemma gives new characterizations of a one-dimensional APVD R so that
R[[X ]] is an SFT-ring.

Lemma 2.2 If dim R = 1, then the following assertions are equivalent:

1. R[[X ]] is an SFT-ring.
2. R is a ∗-domain.
3. R is an SFT-ring and M is a Noether strongly primary ideal of (M : M).
4. R is an accp-ring and M is a Noether strongly primary ideal of (M : M).
5. (M : M) is an SFT-ring

Proof For (1) ⇔ (2) ⇔ (5), see [13, Theorem 2.2 and Theorem 2.9].
(5) ⇒ (4) Note that a rank-one valuation domain is SFT if and only if it is Noetherian if and
only if it is discrete. If (an R)n≥0 is an ascending chain of nonzero proper principal ideals of
R, then (an V )n≥0 is an ascending chain of principal ideals of V . Thus, there exists a positive
integer k such that an V = ak V for every integer n ≥ k. Let c ∈ V and d ∈ R such that
an = cak and ak = dan . We have dc = 1, and thus, d is invertible in V . So d /∈ M , and then
d is invertible in R because R is quasi-local. Hence R is an accp-ring. Suppose that N n � M
for each integer n > 0. Then M ⊆ ⋂∞

n=1 N n which is a prime ideal of V by [9, Theorem
17.1]. Thus N = √

M ⊆ N 2, a contradiction.
(4) ⇒ (3) Note that for a nonzero proper ideal I of a valuation domain, I is an SFT-ideal if
and only if I 2 �= I . Let s be a positive integer such that N s ⊆ M and suppose that M2 = M .
Then V is not SFT and so not Noetherian. So there exists a strictly increasing chain (an V )n≥0

of principal ideals of V . Thus an
an+1

∈ N and so as
n ∈ as

n+1 M . Then (as
n R)n≥0 is a strictly

increasing chain of principal ideals of R, a contradiction. Necessarily M2 �= M , and hence
R is SFT by [1, Proposition 2.2] and [13, Proposition 1.4].
(3) ⇒ (5) Let s be a positive integer such that N s ⊆ M . By [13, Proposition 1.4], there
exists an a ∈ M such that M6 ⊆ a R. So N 6s ⊆ aV . Thus, N is an SFT-ideal of V . Hence,
V is an SFT-ring. 
�

In the following result, we give a necessary and sufficient condition on an APVD R so that
R[[Xn]] is an SFT-ring. Also many characterizations of nonzero finite-dimensional APVDs
which are residually ∗-domains are given.

Theorem 2.3 Let R be an APVD with maximal ideal M. The following statements are equiv-
alent:

1. R[[Xn]] is an SFT-ring.
2. R[[X ]] is an SFT-ring.
3. The integral closure of R is an SFT-ring.
4. R is an SFT-ring and M is a Noether strongly primary ideal of (M : M).
5. (M : M) is an SFT-ring.

Moreover, if 0 < dim R < ∞, then each of the previous statements is equivalent to the
following:
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6. R is a residually ∗-domain.

Proof (1) ⇒ (2) Note that the homomorphic image of an SFT-ring is also an SFT-ring [1,
Proposition 2.3]. The result follows from the fact that R[[X ]] ∼= R[[Xn]]/ < Xn−1 >.
(2) ⇒ (4) Since R ∼= R[[X ]]/ < X >, R is an SFT-ring. We can assume that M �= 0
(because in this case N = 0). Denote Q to be the union of the nonmaximal prime ideals of R.
Since R is a quasi-local domain with linearly ordered prime ideals, Q is a prime ideal of R by
[12, Theorem 9]. Also Q is a prime ideal of V by Lemma 2.1. If Q = M , then N = M . So,
we can assume that Q �= M . Then Q is the prime ideal just below M in R, and so dim ˜R = 1
where ˜R = R/Q. Note that the homomorphic image (not be field) of a finite-dimensional
APVD with the property residually ∗ is also a finite-dimensional APVD with the property
residually ∗ [13, Remark 1.2-(4) and Proposition 1.9]. Since ˜R[[X ]] ∼= R[[X ]]/Q[[X ]] is
an SFT-domain, ˜M is a Noether strongly primary ideal of ( ˜M : ˜M) by Lemma 2.2, where
˜M = M/Q. By Lemma 2.1, ( ˜M : ˜M) = V/Q. Thus (N/Q)s ⊆ M/Q for some integer
s > 0. Hence N s ⊆ M + Q = M .
(4) ⇒ (1) Suppose that R[[Xn]] is not an SFT-domain. Then there exists an infinite chain
Q1 ⊂ Q2 ⊂ · · · of prime ideals in R[[Xn]][[xn+1]] by [2, Proof of Theorem 1]. Denote
P = (

⋃∞
i=1 Qi ) ∩ R. Since P is an SFT-ideal of R, Qk ⊇ P for some integer k > 0. Then

Qk ⊇ P[[Xn+1]] by [4, Proposition 2.1]. We have an infinite chain of prime ideals ˜Qt ⊂
Q̃t+1 ⊂ · · · of ˜R[[Xn+1]] where ˜R = R/P, ˜Qi = Qi/P[[Xn+1]]. Since ˜Qi ∩ ˜R = (0) for
all integer i ≥ t, dim ˜R[[Xn+1]]˜R\(0) = ∞ (in particular P �= M and so dim ˜R ≥ 1), and

so Min(˜R) is nonempty [13, Remark 2.1]. Let s > 0 be an integer such that N s ⊆ M . Thus
(N/P)s ⊆ ˜M , and then ˜M is a Noether strongly primary ideal of ( ˜M : ˜M) by Lemma 2.1.
Hence ˜R is a ∗-domain by Lemma 2.2 and [13, Lemma 1.11], a contradiction by [13, Theorem
2.2].
(4) ⇒ (5) Let P be a nonzero prime ideal of V . If P is not maximal in V , then P is a prime
ideal of R by Lemma 2.1. Thus P2 �= P . So P is an SFT-ideal of V . Now, we suppose that
P = N . Let s > 0 be an integer such that N s ⊆ M , and let a ∈ M\M2. Then M6 ⊆ a R by
[13, Proposition 1.4]. Thus N 6s ⊆ aV ⊆ N . Then N is an SFT-ideal of V .
(5) ⇒ (4) Every nonzero prime ideal of R is a proper ideal of V , and so it is not idempotent.
Hence R is an SFT-ring. Note that a nonidempotent maximal ideal of a valuation domain is
a principal ideal. Let a ∈ N and s > 0 an integer such that N = aV and as ∈ M for some
integer s > 0. Hence N s = as V ⊆ MV = M .
(5) ⇔ (3) By [5, Proposition 3.7], R′ is a PVD with maximal ideal Q := √

M R′ (Recall
that a domain R with quotient field K is called a pseudo-valuation domain (for short, PVD)
if each prime ideal P of R is strongly prime, in the sense that x, y ∈ K and xy ∈ P implies
that x ∈ P or y ∈ P). Let W = (Q : Q) be the valuation domain associated with R′. Since
R′ ⊆ V [9, Theorem 19.8], Q ⊆ N and so V ⊆ W . Let P be a prime ideal of V such that
W = VP . Thus, Q = PVP = P is a prime ideal of V , and then W = VQ . Since R ⊆ R′
is an integral extension and Q is a maximal ideal of R′, Q ∩ R = M . Thus Q = N by
Lemma 2.1. Hence V = W . The result follows from the fact that a PVD is SFT if and only
its associated valuation overring is SFT [6, Chapitre 11-Proposition 8.10].
In case 0 < dim R < ∞, the equivalence (6) ⇔ (2) follows from [13, Theorem 2.9]. 
�

The proof of the following result is straightforward because the maximal ideal M of a
PVD is always a Noether strongly primary ideal of (M : M) (in fact, M is the maximal ideal
of (M : M), see [10, Corollary 6]).

Corollary 2.4 Let R be a PVD with maximal ideal M. The following statements are equiv-
alent:
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1. R[[Xn]] is an SFT-ring.
2. R[[X ]] is an SFT-ring.
3. The integral closure of R is an SFT-ring.
4. R is an SFT-ring.
5. (M : M) is an SFT-ring.

Moreover, if 0 < dim R < ∞, then each of the previous statements is equivalent to the
following:

6. R is a residually ∗-domain.

In the following example, we show that for each m ∈ N∗ ∪ {∞}, there exists an
m-dimensional APVD R (not PVD) such that R and R[[Xn]] are SFT-rings.

Example 2.5 Let F be a field. It is known that there exists an SFT-valuation domain V of the
form F + N with maximal ideal N and Krull dimension m. By [4, Lemma 3.1], there exists
a ∈ V such that N = aV . Denote R = F + N 2. The ideal N 2 is maximal in R because
R/N 2 ∼= F . Since the conductor (R : V ) = N 2 �= (0), V is a valuation overring of R.
Since a2 ∈ N 2 and a /∈ N 2, N 2 is not strongly prime and then R is not a PVD. Since N 2 is
a primary ideal of V, N 2 is a strongly primary ideal of R by [5, Theorem 2.11] and then R
is an APVD by [5, Theorem 3.4]. Since (N 2 : N 2) = (a2V : a2V ) = V, dim R = m (by
Lemma 2.1) and R[[Xn]] is an SFT-ring by Theorem 2.3.

Example 2.6 [8, Theorem 4.1](Coykendall’s example). We follow [13, Example 2.4]. Take
R = V1 = F2 + X V where V = F2[Xα]M , with F2[Xα] = {∑n

i=0 εi Xαi |εi ∈ F2, αi ∈ Q+}
and M is the maximal ideal of F2[Xα] generated by the monomials. The ring R is a one-
dimensional SFT–APVD which is not a residually∗-domain. Hence, by Theorem 2.3, R[[Xn]]
is not an SFT-domain and so (MV )n � X V for each integer n > 0. Thus, X V is not a Noether
strongly primary ideal of V . This last fact is the cause of the SFT-instability in Coykendall’s
example.

Coykendall [8] constructed a one-dimensional APVD R which is SFT but R[[Xn]] is not
an SFT-ring. We will show that for each m ∈ N∗∪{∞}, there exists an m-dimensional APVD
R which is SFT but R[[Xn]] is not an SFT-ring. The following result will help us to construct
the desired examples.

Proposition 2.7 Let m ∈ N∗ ∪ {∞} and V be an m-dimensional valuation domain of the
form F + N, where F is a field and N is the maximal ideal of V . Let D be a domain with
quotient field F and set R = D + N. If V is an SFT-ring and D is a one-dimensional SFT–
APVD with maximal ideal M, then R is an (m + 1)-dimensional SFT–APVD with maximal
ideal M + N.

Proof Since R/(M + N ) ∼= D/M, M + N is a maximal ideal of R. The domains R and V
have the same quotient field K because the conductor (R : V ) = N is nonzero. Let x ∈ K
such that xn /∈ M + N for each integer n > 0. Since V is a valuation overring of R and
x /∈ R, either x−1 ∈ N or x is a unit of V . If x−1 ∈ N , then x−1(M + N ) ⊆ N ⊆ (M + N ).
If x = f + z is a unit of V , where f is a nonzero element of F and z ∈ N . Thus f n /∈ M
for each integer n > 0 and there exists z′ ∈ N such that x−1 = f −1 + z′. So f −1 M ⊆ M
by [5, Lemma 2.3]. Thus x−1(M + N ) ⊆ (M + N ). Then R is an APVD by [5, Lemma 2.3
and Theorem 3.4]. Easily one can show that N is a strongly prime ideal of R and htR N = m.
Since N is a divided prime ideal of R, dim R = htN + dim(R/N ) = m + dim D = m + 1.
Let P be a nonzero nonmaximal prime ideal of R. So P is a prime ideal of V . Thus, P2 �= P
and then P is an SFT-ideal of R. By [13, Proposition 1.4], M2 �= M and M6 ⊆ aD for each
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a ∈ M\M2. Since N is a divided prime ideal of R, N ⊂ a R. So (M +N )6 ⊆ M6+N ⊆ a R.
Hence (M + N ) is an SFT-ideal of R. 
�

In the following example, we show that for every integer m ∈ N∗ ∪ {∞}, there exists an
m-dimensional APVD R (not PVD) such that R is SFT but R[[Xn]] is not SFT.

Example 2.8 Let W be a rank-one nondiscrete valuation domain (so Q2 = Q and W is not
SFT) of the form H + Q, where H is a field and Q is the maximal ideal of W . Let 0 �= a ∈ Q
and set D = H + a2W . By an argument similar to the one just given in Example 2.5, one
can show that D is an APVD (not PVD) with maximal ideal a2W , that dim D = 1 and
that D[[Xn]] is not an SFT-ring. The ideal a2W is the unique nonzero prime ideal of D and
(a2W )2 = a4W ⊆ a2 D. Hence D is an SFT-ring. Let m ∈ (N ∪ {∞}) − {0, 1} and F
be the quotient field of D. Let V be an (m − 1)-dimensional SFT-valuation domain of the
form F + N , where N is the maximal ideal of V . Set R = D + N . By Proposition 2.7, R
is an m-dimensional SFT–APVD. Since R[[Xn]]/N [[Xn]] ∼= D[[Xn]], R[[Xn]] is not an
SFT-ring.

3 Application: Krull dimension of R[[Xn]]

Let F ⊂ L be fields, let K0 be the maximal separable extension of F in L , and let p denote
the characteristic of F if F has nonzero characteristic but set p := 1 if F has characteristic
zero. We say that L has finite exponent over K0 if L pn ⊆ K0 for some positive integer n.

Park [14] proved that if R is a finite-dimensional SFT-PVD with maximal ideal M , then

dim R[[Xn]] =
{

n dim R + 1 if L has finite exponent over K0 and [K0 : F] < ∞
n dim R + n otherwise

where F = R/M, L is the residue field of (M : M) and K0 is the maximal separable
extension of F in L .

We will show that Park’s result also remains true if R is a nonzero finite-dimensional APVD
such that it is a residually ∗-domain. In fact, Park proved that if R is a finite-dimensional
SFT GPVD with maximal ideal M , then dim R[[Xn]] = n dim R + 1 or n dim R + n, where
GPVDs is a generalization of the concept of PVD in the nonquasi-local case (Recall that
an integral domain R is called a globalized pseudo-valuation domain (or, for short, GPVD)
if there exists a Prüfer overring T satisfying the following two conditions: (1) R ⊆ T is
a unibranched extension; (2) there exists a nonzero radical ideal I common to T and R
such that each prime ideal of T (respectively, R) that contains I is a maximal ideal of T
(respectively, R).). It is easy to see that an APVD is a GPVD if and only if it is a PVD. As
our goal was proved by Park in the case of a PVD, so we can suppose that our APVD is not
a PVD and consequently necessarily is not a GPVD. However, Park’s proof in [14, Theorem
2.4] is also valid for an APVD which is not PVD.

An immediate consequence of Theorem 2.3 and Park’s technique is that we can calculate
dim R[[Xn]] as the following result shows.

Theorem 3.1 Let R be an APVD with maximal ideal M, residue field F and nonzero
finite Krull dimension such that R is a residually ∗-domain. Let L be the residue
field of (M : M) and K0 be the maximal separable extension of F in L. Then

dim R[[Xn]] =
{

n dim R + 1 if L has finite exponent over K0 and [K0 : F] < ∞
n dim R + n otherwise

Proof Assume that L has finite exponent over K0 and [K0 : F] < ∞. By [14, Lemma 2.1]
(also [3, (3.8) p. 107 and Theorem 3.9]), L[[Xn]] is integral over F[[Xn]]. By Theorem 2.3,
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N s ⊆ M for some integer s > 0 and so N [[Xn]]s ⊆ M[[Xn]]. It follows that V [[Xn]] is
integral over R[[Xn]] and hence dim R[[Xn]] = dim V [[Xn]] = n dim R+1 by [4, Theorem
3.6] and Lemma 2.1.

For the case “L has infinite exponent over K0 or [K0 : F] = ∞”, we follow the same
way in [14, Theorem 2.4] given by Park (the proof needs [14, Lemma 2.3] which is also true
if we replace an SFT-PVD by an APVD which is a residually ∗-domain, the proof is similar
to Park’s proof). 
�

Let R be an APVD with maximal ideal M , residue field F and nonzero finite Krull
dimension such that R is a residually ∗-domain. Let L be the residue field of (M : M) and
K0 be the maximal separable extension of F in L . In [13], we proved that htP[[Xn]] = nhtP
for each prime ideal P �= M of R [13, Corollary 2.17]. We will show that htM[[Xn]] = nhtM
or n(htM − 1) + 1, but first we need to recall some background material.

Let D and J be two integral domains such that D ⊆ J . Let Z = {zi }∞i=1 be a countable
set of indeterminates over J . Let F = { fi }∞i=2 be a subset of z1 J [[z1]]. By Arnold ([4, p.
899]), F is said to be a suitable subset of z1 J [[[z1]] if {i; fi /∈ zk

1 J [[z1]]} is finite for each
positive integer k. If F is a suitable subset of z1 J [[z1]], then we can define a unique D[[z1]]-
homomorphism ΦF : D[[Z ]] −→ J [[z1]] by Φ(zi ) = fi , i ≥ 2 (where D[[Z ]] denotes (in
the notation of [9, p. 10]) the full power series ring D[[{zi }∞i=1]]3). By Arnold, J is called
a special algebraic extension of D if for each suitable subset E = {gi }∞i=2 of z1 J [[z1]], the
D[[z1]]-homomorphism ΦE is not an isomorphism.

In other words, J is a special algebraic extension of D if and only if for each integral domain
T such that D[[X ]] ⊆ T ⊆ J [[X ]], T � D[[X ]][[{Yi }∞i=1]] via a D[[X ]]-isomorphism.

Lemma 3.2 Suppose that dim R = 1. If L has infinite exponent over K0 or [K0 : F] = ∞,
then htM[[Xn]] = n.

Proof R ⊆ V is a special algebraic extension because the conductor (R : V ) = M is nonzero.
By [14, Lemma 2.1], F ⊆ L is not a special algebraic extension and hence htM[[Xn]] ≥ n
by [4, Proposition 2.3]. Since htM[[Xn]] + n ≤ ht(M+ < Xn >), htM[[Xn]] ≤ n by
Theorem 3.1. 
�
Remark 3.3 In fact, another proof for the last lemma is similar to the one given by Park in
[14, Theorem 2.4], but we choose to give a new proof.

Corollary 3.4 If L has infinite exponent over K0 or [K0 : F] = ∞, then htM[[Xn]] =
n htM.

Proof Since htM[[Xn]] + n ≤ ht(M + (Xn)), htM[[Xn]] ≤ n htM by Theorem 3.1. Let P
be the prime ideal just below M in R. Denote ˜R = R/P and ˜M = M/P . Note that ˜R is
a one-dimensional APVD with maximal ideal ˜M and is a residually ∗-domain [13, Remark
1.2-(4) and Proposition 1.10]. Also note that the valuation domain associated with ˜R is V/P
by Lemma 2.1. Since residue field (˜R) = F and residue field (V/P) = L , ht ˜M[[Xn]] = n
by Lemma 3.2. Hence htM[[Xn]] ≥ ht ˜M[[Xn]]+ htQ[[Xn]] = n + n htQ = n htM by [13,
Corollary 2.17]. 
�
Corollary 3.5 If L has finite exponent over K0 and [K0 : F] < ∞, then htM[[Xn]] =
n(htM − 1) + 1.

Proof It is easy to see that htM[[Xn]] ≤ ht(M + (Xn)) − n = dim R[[Xn]] − n. Thus
htM[[Xn]] ≤ n(htM − 1) + 1 by Theorem 3.1. Since N [[Xn]] ∩ R[[Xn]] = M[[Xn]] and
R[[Xn]] ⊆ V [[Xn]] is an integral extension (so it satisfies incomparability), htM[[Xn]] ≥
htN [[Xn]] = n(htM − 1) + 1 by [11, Theorem 13]. 
�
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It is well known that if Q is a prime ideal of D[Xn] with Q ∩ D = P , then htQ =
htP[Xn] + ht(Q/P[Xn]) [9, Theorem 30.18]. Kang and Park [11] asked if the power series
analogue of this last result is true. They were especially interested in Prüfer domains and they
answered their question in some cases of Prüfer domains [11, Corollary 15]. The following
result gives an answer for their question in some cases of an APVD.

Corollary 3.6 If L has infinite exponent over K0 or [K0 : F] = ∞, then htQ = htP[[Xn]]+
ht(Q/P[[Xn]]) for all prime ideal Q of R[[Xn]] with Q ∩ R = P.

Proof “≥” is obvious. “≤”: Use induction on m := htP . If m = 0, then it is obvious.
Suppose m > 0 and the statement holds when htP < m. Let Q be a prime ideal of R[[Xn]]
such that htP = m where P = Q ∩ R. Let (0) = Q0 ⊂ Q1 ⊂ . . . ⊂ Qs = Q be a chain of
prime ideals of R[[Xn]] arriving at Q. Let k be the smallest integer i ∈ {1, . . . , s} such that
Qi ∩ R �= (0). Thus Q0 ∩ R = . . . = Qk−1 ∩ R = (0). So k − 1 ≤ dim R[[Xn]]R\(0) = n
by [13, Theorem 2.2]. Denote P0 = Qk ∩ R. Hence P0[[Xn]] ⊆ Qk .

Case 1 P0 = M (and so P = M). If M[[Xn]] = Qk , then s = k + (s − k) ≤
htM[[Xn]]+ht(Q/M[[Xn]]). If M[[Xn]] ⊂ Qk , then s = (k − 1) + (s − k + 1) ≤
n+ht(Q/M[[Xn]]) ≤ htM[[Xn]]+ht(Q/M[[Xn]]) by Corollary 3.4.
Case 2 P0 �= M . Denote ˜R = R/P0 and ˜P = P/P0. So, by considering
R[[Xn]]/P0[[Xn]] ∼= ˜R[[Xn]], since ht ˜P < m and (Q/P0[[Xn]]) ∩ ˜R = ˜P , then
ht(Q/P0[[Xn]]) = ht˜P[[Xn]]+ ht(Q/P[[Xn]]) by induction hypothesis.
Case 2.1 Qk = P0[[Xn]]. Then s = k + (s − k) ≤ htP0[[Xn]]+ht(Q/P0[[Xn]] =
htP0[[Xn]]+ht˜P[[Xn]]+ht(Q/P[[Xn]]) ≤ htP[[Xn]]+ht(Q/P[[Xn]]).
Case 2.2 P0[[Xn]] ⊂ Qk . Then s = (k − 1) + (s − k + 1) ≤ n+ht(Q/P0[[Xn]]) =
n+ht˜P[[Xn]]+ht(Q/P[[Xn]]) ≤ htP0[[Xn]]+ht˜P[[Xn]]+ht(Q/P[[Xn]]) because n ≤
n htP0 =htP0[[Xn]]. Thus s ≤ htP[[Xn]]+ht(Q/P[[Xn]]). 
�

Of course, the last result forces us to ask if the ring R[[Xn]] is catenarian (Recall that a
ring D is said to be catenary if for each pair P ⊂ Q of prime ideals of D, all saturated chains
of prime ideals of D between P and Q have a common finite length). In [13], we proved that
if D is an APVD with nonzero finite dimension, then D[[X ]] is catenarian if and only if D
is a residually ∗-domain. The question is still open for R[[Xn]] with n > 1.

Corollary 3.7 If n > 1 and dim R > 1, then R[[Xn]] is not catenarian.

Proof Let n > 1 be an integer and suppose that R[[Xn]] is catenarian. Then ht(xn) +
ht(M + (Xn))/(xn) = ht(M + (Xn)). Thus 1 + ht(M + (Xn−1)) = ht(M + (Xn)). If L has
finite exponent over K0 and [K0 : F] < ∞, then 1 + (n − 1) dim R + 1 = n dim R + 1
by Theorem 3.1. Thus dim R = 1, a contradiction. If L has infinite exponent over K0 or
[K0 : F] = ∞, then 1 + (n − 1)(dim R + 1) = n(dim R + 1) again by Theorem 3.1. Thus
dim R = 0, a contradiction. 
�

In the following example, we show that for every integer m ≥ 1, there exists an
m-dimensional APVD R such that R is a residually ∗-domain and (L has infinite exponent
over K0 or [K0 : F] = ∞).

Example 3.8 Let F ⊂ L be an extension of fields such that L is not algebraic over F . Let
K0 be the maximal separable extension of F in L . It is known that there exists an SFT-
valuation domain V of the form L + N with maximal ideal N and Krull dimension m. By [4,
Lemma 3.1], there exists a ∈ V such that N = aV . Denote R = F + N 2. By an argument
similar to the one just given in Example 2.5, we show that R is an APVD with maximal ideal
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N 2, dim R = m and R is a residually ∗-domain. It is clear that F and L are the residue fields,
respectively, of R and (N 2 : N 2) = V . Since F ⊂ L is not an algebraic extension, F ⊂ L
is not a special algebraic extension by [3, Theorem 2.1]. Then L has infinite exponent over
K0 or [K0 : F] = ∞ by [14, Lemma 2.1].

In the following example, we show that for every integer m ≥ 1, there exists an
m-dimensional APVD R such that R is a residually ∗-domain and (L has finite exponent
over K0 and [K0 : F] < ∞).

Example 3.9 Let F, m, V, N and R be as in Example 2.5. The result follows from the fact
that R/N 2 ∼= F ∼= V/N .

SFT-stability and Krull dimension questions in power series rings over an APVD are
solved, but catenarity question is not yet. It is still open if R[[Xn]] is catenarian where n > 1
and R is a one-dimensional APVD.
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