SFT-stability and Krull dimension in power series rings over an almost pseudo-valuation domain

Mohamed Khalifa · Ali Benhissi

Received: 1 August 2011 / Accepted: 6 June 2013 / Published online: 18 June 2013 © Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag Berlin Heidelberg 2013

Abstract Let *R* be an APVD with maximal ideal *M*. We show that the power series ring $R[[x_1, \ldots, x_n]]$ is an SFT-ring if and only if the integral closure of *R* is an SFT-ring if and only if (*R* is an SFT-ring and *M* is a Noether strongly primary ideal of (M : M)). We deduce that if *R* is an *m*-dimensional APVD that is a residually *-domain, then dim $R[[x_1, \ldots, x_n]] = nm + 1$ or nm + n.

Keywords Power series ring · Krull dimension · APVD · SFT-ring

Mathematics Subject Classification 13C15 · 13F25 · 13F30

1 Introduction

In this paper, all rings are commutative with identity and the dimension of a ring means its Krull dimension. Throughout this paper, if *D* denotes an integral domain with quotient field *K*, then *D'* denotes its integral closure, Min(*D*) denotes the set of height-one prime ideals of *D* and if $X_n = \{x_1, \ldots, x_n\}$ is a set of indeterminates over *K*, then we write $D[[X_n]]$ rather than $D[[x_1, \ldots, x_n]]$. An ideal *I* is called an SFT-ideal if there exist a natural number *k* and a finitely generated ideal $J \subseteq I$ such that $a^k \in J$ for each $a \in I$. An SFT-ring is a ring in which every ideal is an SFT-ideal. SFT-rings are similar to Noetherian rings, and they have many nice properties. For properties about SFT-rings, the readers are referred to [1,2,4].

In [2], Arnold studied the Krull dimension of power series ring and showed that if a ring R fails to have the SFT-property, then R[[X]] has infinite dimension. Arnold's result forces us to consider only SFT-rings when we study finite-dimensional power series extensions. Also, it forces us to raise the question: does R[[X]] is an SFT-ring when R is an SFT-ring?. In fact, this is an old question which was raised by R. Gilmer. In Coykendall [8], answered

M. Khalifa (🖂) · A. Benhissi

Department of Mathematics,

Faculty of Sciences of Monastir, 5000 Monastir, Tunisia

e-mail: kmhoalg@yahoo.fr

this question in the negative by constructing a one-dimensional SFT-domain R such that $R[[X_n]]$ is not an SFT-ring. At the same time (2002), in Badawi and Houston [5], introduced the concept of an almost pseudo-valuation domain. An integral domain R is said to be an almost pseudo-valuation domain (or, for short, APVD) if R is a quasi-local domain with maximal ideal M, and there is a valuation overring in which M is a primary ideal. One very remarkable thing in [8] is that Coykendall's example is a one-dimensional APVD (see [13, Example 2.4]). So it is natural to study the SFT-instability via power series extension over an APVD regardless of its dimension and ask which things cause the SFT-instability in such extensions, which is the first purpose of this paper.

In this paper, we give a necessary and sufficient condition to win the SFT-stability via power series extension over an APVD. Recall from [7] that a *P*-primary ideal Q of an integral domain R is called a Noether strongly primary ideal of R if $P^k \subseteq Q$ for some positive integer k. We prove that if R is an APVD with maximal ideal M, then $R[[x_1]]$ is an SFT-ring if and only if $R[[x_1, x_2]]$ is an SFT-ring if and only if the integral closure of Ris an SFT-ring if and only if R is an SFT-ring and M is a Noether strongly primary ideal of (M : M) (Theorem 2.3).

We show first that if R is a one-dimensional APVD with maximal ideal M, then R[[X]] is an SFT-ring if and only if R is an accp-ring (i.e., satisfies the ascending chain condition on principal ideals) and M is a Noether strongly primary ideal of (M : M).

We use rings of the form D + M to construct several examples which prove the SFTinstability via power series extension over an APVD regardless of its dimension (Proposition 2.7 and Example 2.8).

Recall from [13], an integral domain *R* is called a *-domain if the set Min(*R*) is nonempty and if for each $P \in Min(R)$, *R* satisfies the ascending chain condition on *P*-principal ideals (ideals of the form aP, $a \in R$). Also from [13], *R* is said to be a residually *-domain if for each nonmaximal prime ideal *P* of *R*, the quotient ring R/P is a *-domain. In [13], we proved that if *R* is an APVD with nonzero finite dimension, then dim $R[[X]] < \infty$ if and only if dim $R[[X_n]] < \infty$ if and only if *R* is a residually *-domain if and only if the ring R[[X]] is catenary ([13, Theorem 3.5]). And, in this case, we have dim R[[X]] = $1+\dim R$, $1+n\dim R \leq \dim R[[X_n]] \leq n+(n+1)\dim R$ and $htP[[X_n]] = n htP$ for each nonmaximal prime ideal *P* of *R* ([13, Theorem 2.9 and Corollary 2.17]). As an application of Theorem 2.3 (instability theorem on an APVD), we show that dim $R[[X_n]] = n \dim R + 1$ or $n\dim R + n$ and $htM[[X_n]] = n(htM - 1) + 1$ or n htM and for each value we give sufficient and necessary conditions on *R* (Theorem 3.1, Corollary 3.4 and Corollary 3.5). Also we give examples for each value (Example 3.8 and Example 3.9). Finally, we show that the ring $R[[X_n]]$ is not catenary if n > 1 and dim R > 1.

2 When is $R[[X_n]]$ an SFT-ring?

Throughout this section, R will denote an APVD with quotient filed K and maximal ideal M and V will denote the overring $(M : M) = \{x \in K; xM \subseteq M\}$ of R. By [5, Theorem 3.4], V is a valuation domain and M is primary to the maximal ideal N of V.

- **Lemma 2.1** 1. *V* and *R* have the same set of nonmaximal prime ideals. In particular, $\dim V = \dim R$ and every prime ideal of *R* is a proper ideal of *V*.
 - 2. Let P be a nonmaximal prime ideal of R. Then V/P = (M : M) where M = M/P.
- *Proof* (1) By [13, Lemma 2.13], every nonmaximal prime ideal P of R is also a nonmaximal (because $P \subset M \subseteq N$) prime ideal of V. Since $R \subseteq V$, it is easy to show that every

nonmaximal prime ideal P of V (thus $P \subset M$ because $\sqrt{MV} = N$) is also a nonmaximal prime ideal of R.

(2) Since M is an ideal of V/P, (M : M) is an overring of the valuation domain V/P. Thus (M : M) = (V/P)_{Q/P} for some prime ideal Q of V which contains P. Then (M : M) = V_Q/PV_Q = V_Q/P. So Q/P is the maximal ideal of (M : M). Since M is a proper ideal of (M : M), M ⊆ Q/P and thus M ⊆ Q. So N = √MV ⊆ Q, and then Q = N. Hence (M : M) = V/P.

The following lemma gives new characterizations of a one-dimensional APVD R so that R[[X]] is an SFT-ring.

Lemma 2.2 If dim R = 1, then the following assertions are equivalent:

- 1. *R*[[*X*]] *is an SFT-ring.*
- 2. R is a *-domain.
- 3. *R* is an SFT-ring and *M* is a Noether strongly primary ideal of (*M* : *M*).
- 4. *R* is an accp-ring and *M* is a Noether strongly primary ideal of (*M* : *M*).
- 5. (M : M) is an SFT-ring

Proof For (1) \Leftrightarrow (2) \Leftrightarrow (5), see [13, Theorem 2.2 and Theorem 2.9].

 $(5) \Rightarrow (4)$ Note that a rank-one valuation domain is SFT if and only if it is Noetherian if and only if it is discrete. If $(a_n R)_{n\geq 0}$ is an ascending chain of nonzero proper principal ideals of R, then $(a_n V)_{n\geq 0}$ is an ascending chain of principal ideals of V. Thus, there exists a positive integer k such that $a_n V = a_k V$ for every integer $n \geq k$. Let $c \in V$ and $d \in R$ such that $a_n = ca_k$ and $a_k = da_n$. We have dc = 1, and thus, d is invertible in V. So $d \notin M$, and then d is invertible in R because R is quasi-local. Hence R is an accp-ring. Suppose that $N^n \nsubseteq M$ for each integer n > 0. Then $M \subseteq \bigcap_{n=1}^{\infty} N^n$ which is a prime ideal of V by [9, Theorem 17.1]. Thus $N = \sqrt{M} \subseteq N^2$, a contradiction.

 $(4) \Rightarrow (3)$ Note that for a nonzero proper ideal *I* of a valuation domain, *I* is an SFT-ideal if and only if $I^2 \neq I$. Let *s* be a positive integer such that $N^s \subseteq M$ and suppose that $M^2 = M$. Then *V* is not SFT and so not Noetherian. So there exists a strictly increasing chain $(a_n V)_{n\geq 0}$ of principal ideals of *V*. Thus $\frac{a_n}{a_{n+1}} \in N$ and so $a_n^s \in a_{n+1}^s M$. Then $(a_n^s R)_{n\geq 0}$ is a strictly increasing chain of principal ideals of *R*, a contradiction. Necessarily $M^2 \neq M$, and hence *R* is SFT by [1, Proposition 2.2] and [13, Proposition 1.4].

(3) \Rightarrow (5) Let *s* be a positive integer such that $N^s \subseteq M$. By [13, Proposition 1.4], there exists an $a \in M$ such that $M^6 \subseteq aR$. So $N^{6s} \subseteq aV$. Thus, *N* is an SFT-ideal of *V*. Hence, *V* is an SFT-ring.

In the following result, we give a necessary and sufficient condition on an APVD R so that $R[[X_n]]$ is an SFT-ring. Also many characterizations of nonzero finite-dimensional APVDs which are residually *-domains are given.

Theorem 2.3 Let R be an APVD with maximal ideal M. The following statements are equivalent:

- 1. $R[[X_n]]$ is an SFT-ring.
- 2. *R*[[*X*]] *is an SFT-ring.*
- 3. The integral closure of R is an SFT-ring.
- 4. *R* is an SFT-ring and *M* is a Noether strongly primary ideal of (*M* : *M*).
- 5. (M : M) is an SFT-ring.

Moreover, if $0 < \dim R < \infty$, then each of the previous statements is equivalent to the following:

6. R is a residually *-domain.

Proof (1) ⇒ (2) Note that the homomorphic image of an SFT-ring is also an SFT-ring [1, Proposition 2.3]. The result follows from the fact that $R[[X]] \cong R[[X_n]] / \langle X_{n-1} \rangle$. (2) ⇒ (4) Since $R \cong R[[X]] / \langle X \rangle$, R is an SFT-ring. We can assume that $M \neq 0$ (because in this case N = 0). Denote Q to be the union of the nonmaximal prime ideals of R. Since R is a quasi-local domain with linearly ordered prime ideals, Q is a prime ideal of R by [12, Theorem 9]. Also Q is a prime ideal of V by Lemma 2.1. If Q = M, then N = M. So, we can assume that $Q \neq M$. Then Q is the prime ideal just below M in R, and so dim $\tilde{R} = 1$ where $\tilde{R} = R/Q$. Note that the homomorphic image (not be field) of a finite-dimensional APVD with the property residually * is also a finite-dimensional APVD with the property residually * [13, Remark 1.2-(4) and Proposition 1.9]. Since $\tilde{R}[[X]] \cong R[[X]]/Q[[X]]$ is an SFT-domain, \tilde{M} is a Noether strongly primary ideal of $(\tilde{M} : \tilde{M})$ by Lemma 2.2, where $\tilde{M} = M/Q$. By Lemma 2.1, $(\tilde{M} : \tilde{M}) = V/Q$. Thus $(N/Q)^s \subseteq M/Q$ for some integer s > 0. Hence $N^s \subseteq M + Q = M$.

(4) \Rightarrow (1) Suppose that $R[[X_n]]$ is not an SFT-domain. Then there exists an infinite chain $Q_1 \subset Q_2 \subset \cdots$ of prime ideals in $R[[X_n]][[x_{n+1}]]$ by [2, Proof of Theorem 1]. Denote $P = (\bigcup_{i=1}^{\infty} Q_i) \cap R$. Since *P* is an SFT-ideal of *R*, $Q_k \supseteq P$ for some integer k > 0. Then $Q_k \supseteq P[[X_{n+1}]]$ by [4, Proposition 2.1]. We have an infinite chain of prime ideals $\widetilde{Q}_t \subset \widetilde{Q}_{t+1} \subset \cdots$ of $\widetilde{R}[[X_{n+1}]]$ where $\widetilde{R} = R/P$, $\widetilde{Q}_i = Q_i/P[[X_{n+1}]]$. Since $\widetilde{Q}_i \cap \widetilde{R} = (0)$ for all integer $i \ge t$, dim $\widetilde{R}[[X_{n+1}]]_{\widetilde{R}\setminus\{0\}} = \infty$ (in particular $P \ne M$ and so dim $\widetilde{R} \ge 1$), and so Min(\widetilde{R}) is nonempty [13, Remark 2.1]. Let s > 0 be an integer such that $N^s \subseteq M$. Thus $(N/P)^s \subseteq \widetilde{M}$, and then \widetilde{M} is a Noether strongly primary ideal of $(\widetilde{M} : \widetilde{M})$ by Lemma 2.1. Hence \widetilde{R} is a *-domain by Lemma 2.2 and [13, Lemma 1.11], a contradiction by [13, Theorem 2.2].

(4) \Rightarrow (5) Let *P* be a nonzero prime ideal of *V*. If *P* is not maximal in *V*, then *P* is a prime ideal of *R* by Lemma 2.1. Thus $P^2 \neq P$. So *P* is an SFT-ideal of *V*. Now, we suppose that P = N. Let s > 0 be an integer such that $N^s \subseteq M$, and let $a \in M \setminus M^2$. Then $M^6 \subseteq aR$ by [13, Proposition 1.4]. Thus $N^{6s} \subseteq aV \subseteq N$. Then *N* is an SFT-ideal of *V*.

 $(5) \Rightarrow (4)$ Every nonzero prime ideal of *R* is a proper ideal of *V*, and so it is not idempotent. Hence *R* is an SFT-ring. Note that a nonidempotent maximal ideal of a valuation domain is a principal ideal. Let $a \in N$ and s > 0 an integer such that N = aV and $a^s \in M$ for some integer s > 0. Hence $N^s = a^s V \subseteq MV = M$.

(5) \Leftrightarrow (3) By [5, Proposition 3.7], R' is a PVD with maximal ideal $Q := \sqrt{MR'}$ (Recall that a domain R with quotient field K is called a pseudo-valuation domain (for short, PVD) if each prime ideal P of R is strongly prime, in the sense that $x, y \in K$ and $xy \in P$ implies that $x \in P$ or $y \in P$). Let W = (Q : Q) be the valuation domain associated with R'. Since $R' \subseteq V$ [9, Theorem 19.8], $Q \subseteq N$ and so $V \subseteq W$. Let P be a prime ideal of V such that $W = V_P$. Thus, $Q = PV_P = P$ is a prime ideal of V, and then $W = V_Q$. Since $R \subseteq R'$ is an integral extension and Q is a maximal ideal of R', $Q \cap R = M$. Thus Q = N by Lemma 2.1. Hence V = W. The result follows from the fact that a PVD is SFT if and only its associated valuation overring is SFT [6, Chapitre 11-Proposition 8.10].

In case $0 < \dim R < \infty$, the equivalence (6) \Leftrightarrow (2) follows from [13, Theorem 2.9]. \Box

The proof of the following result is straightforward because the maximal ideal M of a PVD is always a Noether strongly primary ideal of (M : M) (in fact, M is the maximal ideal of (M : M), see [10, Corollary 6]).

Corollary 2.4 Let R be a PVD with maximal ideal M. The following statements are equivalent:

- 1. $R[[X_n]]$ is an SFT-ring.
- 2. *R*[[*X*]] *is an SFT-ring.*
- 3. The integral closure of R is an SFT-ring.
- 4. R is an SFT-ring.
- 5. (M : M) is an SFT-ring. Moreover, if $0 < \dim R < \infty$, then each of the previous statements is equivalent to the following:
- 6. *R* is a residually *-domain.

In the following example, we show that for each $m \in \mathbb{N}^* \cup \{\infty\}$, there exists an *m*-dimensional APVD *R* (not PVD) such that *R* and *R*[[*X_n*]] are SFT-rings.

Example 2.5 Let *F* be a field. It is known that there exists an SFT-valuation domain *V* of the form F + N with maximal ideal *N* and Krull dimension *m*. By [4, Lemma 3.1], there exists $a \in V$ such that N = aV. Denote $R = F + N^2$. The ideal N^2 is maximal in *R* because $R/N^2 \cong F$. Since the conductor $(R : V) = N^2 \neq (0)$, *V* is a valuation overring of *R*. Since $a^2 \in N^2$ and $a \notin N^2$, N^2 is not strongly prime and then *R* is not a PVD. Since N^2 is a primary ideal of *V*, N^2 is a strongly primary ideal of *R* by [5, Theorem 2.11] and then *R* is an APVD by [5, Theorem 3.4]. Since $(N^2 : N^2) = (a^2V : a^2V) = V$, dim R = m (by Lemma 2.1) and $R[[X_n]]$ is an SFT-ring by Theorem 2.3.

Example 2.6 [8, Theorem 4.1](Coykendall's example). We follow [13, Example 2.4]. Take $R = V_1 = \mathbb{F}_2 + XV$ where $V = \mathbb{F}_2[X^{\alpha}]_M$, with $\mathbb{F}_2[X^{\alpha}] = \{\sum_{i=0}^n \epsilon_i X^{\alpha_i} | \epsilon_i \in \mathbb{F}_2, \alpha_i \in \mathbb{Q}^+\}$ and M is the maximal ideal of $\mathbb{F}_2[X^{\alpha}]$ generated by the monomials. The ring R is a onedimensional SFT–APVD which is not a residually *-domain. Hence, by Theorem 2.3, $R[[X_n]]$ is not an SFT-domain and so $(MV)^n \nsubseteq XV$ for each integer n > 0. Thus, XV is not a Noether strongly primary ideal of V. This last fact is the cause of the SFT-instability in Coykendall's example.

Coykendall [8] constructed a one-dimensional APVD *R* which is SFT but *R*[[*X_n*]] is not an SFT-ring. We will show that for each $m \in \mathbb{N}^* \cup \{\infty\}$, there exists an *m*-dimensional APVD *R* which is SFT but *R*[[*X_n*]] is not an SFT-ring. The following result will help us to construct the desired examples.

Proposition 2.7 Let $m \in \mathbb{N}^* \cup \{\infty\}$ and V be an m-dimensional valuation domain of the form F + N, where F is a field and N is the maximal ideal of V. Let D be a domain with quotient field F and set R = D + N. If V is an SFT-ring and D is a one-dimensional SFT-APVD with maximal ideal M, then R is an (m + 1)-dimensional SFT-APVD with maximal ideal M + N.

Proof Since $R/(M + N) \cong D/M$, M + N is a maximal ideal of R. The domains R and V have the same quotient field K because the conductor (R : V) = N is nonzero. Let $x \in K$ such that $x^n \notin M + N$ for each integer n > 0. Since V is a valuation overring of R and $x \notin R$, either $x^{-1} \in N$ or x is a unit of V. If $x^{-1} \in N$, then $x^{-1}(M + N) \subseteq N \subseteq (M + N)$. If x = f + z is a unit of V, where f is a nonzero element of F and $z \in N$. Thus $f^n \notin M$ for each integer n > 0 and there exists $z' \in N$ such that $x^{-1} = f^{-1} + z'$. So $f^{-1}M \subseteq M$ by [5, Lemma 2.3]. Thus $x^{-1}(M + N) \subseteq (M + N)$. Then R is an APVD by [5, Lemma 2.3 and Theorem 3.4]. Easily one can show that N is a strongly prime ideal of R and $ht_R N = m$. Since N is a divided prime ideal of R, dim $R = htN + \dim(R/N) = m + \dim D = m + 1$. Let P be a nonzero nonmaximal prime ideal of R. So P is a prime ideal of V. Thus, $P^2 \neq P$ and then P is an SFT-ideal of R. By [13, Proposition 1.4], $M^2 \neq M$ and $M^6 \subseteq aD$ for each

 $a \in M \setminus M^2$. Since N is a divided prime ideal of R, $N \subset aR$. So $(M+N)^6 \subseteq M^6 + N \subseteq aR$. Hence (M+N) is an SFT-ideal of R.

In the following example, we show that for every integer $m \in \mathbb{N}^* \cup \{\infty\}$, there exists an *m*-dimensional APVD *R* (not PVD) such that *R* is SFT but *R*[[*X*_n]] is not SFT.

Example 2.8 Let W be a rank-one nondiscrete valuation domain (so $Q^2 = Q$ and W is not SFT) of the form H + Q, where H is a field and Q is the maximal ideal of W. Let $0 \neq a \in Q$ and set $D = H + a^2 W$. By an argument similar to the one just given in Example 2.5, one can show that D is an APVD (not PVD) with maximal ideal $a^2 W$, that dim D = 1 and that $D[[X_n]]$ is not an SFT-ring. The ideal $a^2 W$ is the unique nonzero prime ideal of D and $(a^2 W)^2 = a^4 W \subseteq a^2 D$. Hence D is an SFT-ring. Let $m \in (\mathbb{N} \cup \{\infty\}) - \{0, 1\}$ and F be the quotient field of D. Let V be an (m - 1)-dimensional SFT-valuation domain of the form F + N, where N is the maximal ideal of V. Set R = D + N. By Proposition 2.7, R is an m-dimensional SFT-APVD. Since $R[[X_n]]/N[[X_n]] \cong D[[X_n]]$, $R[[X_n]]$ is not an SFT-ring.

3 Application: Krull dimension of *R*[[*X_n*]]

Let $F \subset L$ be fields, let K_0 be the maximal separable extension of F in L, and let p denote the characteristic of F if F has nonzero characteristic but set p := 1 if F has characteristic zero. We say that L has finite exponent over K_0 if $L^{p^n} \subseteq K_0$ for some positive integer n.

Park [14] proved that if *R* is a finite-dimensional SFT-PVD with maximal ideal *M*, then dim $R[[X_n]] = \begin{cases} n \dim R + 1 \text{ if } L \text{ has finite exponent over } K_0 \text{ and } [K_0 : F] < \infty \\ n \dim R + n \text{ otherwise} \end{cases}$

where F = R/M, L is the residue field of (M : M) and K_0 is the maximal separable extension of F in L.

We will show that Park's result also remains true if R is a nonzero finite-dimensional APVD such that it is a residually *-domain. In fact, Park proved that if R is a finite-dimensional SFT GPVD with maximal ideal M, then dim $R[[X_n]] = n \dim R + 1$ or $n \dim R + n$, where GPVDs is a generalization of the concept of PVD in the nonquasi-local case (Recall that an integral domain R is called a globalized pseudo-valuation domain (or, for short, GPVD) if there exists a Prüfer overring T satisfying the following two conditions: (1) $R \subseteq T$ is a unibranched extension; (2) there exists a nonzero radical ideal I common to T and Rsuch that each prime ideal of T (respectively, R) that contains I is a maximal ideal of T(respectively, R).). It is easy to see that an APVD is a GPVD if and only if it is a PVD. As our goal was proved by Park in the case of a PVD, so we can suppose that our APVD is not a PVD and consequently necessarily is not a GPVD. However, Park's proof in [14, Theorem 2.4] is also valid for an APVD which is not PVD.

An immediate consequence of Theorem 2.3 and Park's technique is that we can calculate dim $R[[X_n]]$ as the following result shows.

Theorem 3.1 Let *R* be an APVD with maximal ideal *M*, residue field *F* and nonzero finite Krull dimension such that *R* is a residually *-domain. Let *L* be the residue field of (M : M) and K_0 be the maximal separable extension of *F* in *L*. Then dim $R[[X_n]] = \begin{cases} n \dim R + 1 \text{ if } L \text{ has finite exponent over } K_0 \text{ and } [K_0 : F] < \infty \\ n \dim R + n \text{ otherwise} \end{cases}$

Proof Assume that *L* has finite exponent over K_0 and $[K_0 : F] < \infty$. By [14, Lemma 2.1] (also [3, (3.8) p. 107 and Theorem 3.9]), $L[[X_n]]$ is integral over $F[[X_n]]$. By Theorem 2.3,

 $N^s \subseteq M$ for some integer s > 0 and so $N[[X_n]]^s \subseteq M[[X_n]]$. It follows that $V[[X_n]]$ is integral over $R[[X_n]]$ and hence dim $R[[X_n]] = \dim V[[X_n]] = n \dim R + 1$ by [4, Theorem 3.6] and Lemma 2.1.

For the case "*L* has infinite exponent over K_0 or $[K_0 : F] = \infty$ ", we follow the same way in [14, Theorem 2.4] given by Park (the proof needs [14, Lemma 2.3] which is also true if we replace an SFT-PVD by an APVD which is a residually *-domain, the proof is similar to Park's proof).

Let *R* be an APVD with maximal ideal *M*, residue field *F* and nonzero finite Krull dimension such that *R* is a residually *-domain. Let *L* be the residue field of (M : M) and K_0 be the maximal separable extension of *F* in *L*. In [13], we proved that $\operatorname{ht} P[[X_n]] = n\operatorname{ht} P$ for each prime ideal $P \neq M$ of *R* [13, Corollary 2.17]. We will show that $\operatorname{ht} M[[X_n]] = n\operatorname{ht} M$ or $n(\operatorname{ht} M - 1) + 1$, but first we need to recall some background material.

Let *D* and *J* be two integral domains such that $D \subseteq J$. Let $Z = \{z_i\}_{i=1}^{\infty}$ be a countable set of indeterminates over *J*. Let $\mathcal{F} = \{f_i\}_{i=2}^{\infty}$ be a subset of $z_1J[[z_1]]$. By Arnold ([4, p. 899]), \mathcal{F} is said to be a suitable subset of $z_1J[[z_1]]$ if $\{i; f_i \notin z_1^kJ[[z_1]]\}$ is finite for each positive integer *k*. If \mathcal{F} is a suitable subset of $z_1J[[z_1]]$, then we can define a unique $D[[z_1]]$ homomorphism $\Phi_{\mathcal{F}} : D[[Z]] \longrightarrow J[[z_1]]$ by $\Phi(z_i) = f_i$, $i \ge 2$ (where D[[Z]] denotes (in the notation of [9, p. 10]) the full power series ring $D[[\{z_i\}_{i=1}^{\infty}]]_3$). By Arnold, *J* is called a special algebraic extension of *D* if for each suitable subset $\mathcal{E} = \{g_i\}_{i=2}^{\infty}$ of $z_1J[[z_1]]$, the $D[[z_1]]$ -homomorphism $\Phi_{\mathcal{E}}$ is not an isomorphism.

In other words, *J* is a special algebraic extension of *D* if and only if for each integral domain *T* such that $D[[X]] \subseteq T \subseteq J[[X]], T \ncong D[[X]][[\{Y_i\}_{i=1}^{\infty}]]$ via a D[[X]]-isomorphism.

Lemma 3.2 Suppose that dim R = 1. If L has infinite exponent over K_0 or $[K_0 : F] = \infty$, then $htM[[X_n]] = n$.

Proof $R \subseteq V$ is a special algebraic extension because the conductor (R : V) = M is nonzero. By [14, Lemma 2.1], $F \subseteq L$ is not a special algebraic extension and hence $htM[[X_n]] \ge n$ by [4, Proposition 2.3]. Since $htM[[X_n]] + n \le ht(M + \langle X_n \rangle)$, $htM[[X_n]] \le n$ by Theorem 3.1.

Remark 3.3 In fact, another proof for the last lemma is similar to the one given by Park in [14, Theorem 2.4], but we choose to give a new proof.

Corollary 3.4 If L has infinite exponent over K_0 or $[K_0 : F] = \infty$, then $htM[[X_n]] = n htM$.

Proof Since $\operatorname{ht} M[[X_n]] + n \le \operatorname{ht}(M + (X_n))$, $\operatorname{ht} M[[X_n]] \le n \operatorname{ht} M$ by Theorem 3.1. Let *P* be the prime ideal just below *M* in *R*. Denote $\widetilde{R} = R/P$ and $\widetilde{M} = M/P$. Note that \widetilde{R} is a one-dimensional APVD with maximal ideal \widetilde{M} and is a residually *-domain [13, Remark 1.2-(4) and Proposition 1.10]. Also note that the valuation domain associated with \widetilde{R} is V/P by Lemma 2.1. Since residue field $(\widetilde{R}) = F$ and residue field (V/P) = L, $\operatorname{ht} \widetilde{M}[[X_n]] = n$ by Lemma 3.2. Hence $\operatorname{ht} M[[X_n]] \ge \operatorname{ht} \widetilde{M}[[X_n]] + \operatorname{ht} Q[[X_n]] = n + n \operatorname{ht} Q = n \operatorname{ht} M$ by [13, Corollary 2.17].

Corollary 3.5 If *L* has finite exponent over K_0 and $[K_0 : F] < \infty$, then $htM[[X_n]] = n(htM - 1) + 1$.

Proof It is easy to see that $htM[[X_n]] \le ht(M + (X_n)) - n = \dim R[[X_n]] - n$. Thus $htM[[X_n]] \le n(htM - 1) + 1$ by Theorem 3.1. Since $N[[X_n]] \cap R[[X_n]] = M[[X_n]]$ and $R[[X_n]] \subseteq V[[X_n]]$ is an integral extension (so it satisfies incomparability), $htM[[X_n]] \ge htN[[X_n]] = n(htM - 1) + 1$ by [11, Theorem 13].

It is well known that if Q is a prime ideal of $D[X_n]$ with $Q \cap D = P$, then $htQ = htP[X_n] + ht(Q/P[X_n])$ [9, Theorem 30.18]. Kang and Park [11] asked if the power series analogue of this last result is true. They were especially interested in Prüfer domains and they answered their question in some cases of Prüfer domains [11, Corollary 15]. The following result gives an answer for their question in some cases of an APVD.

Corollary 3.6 If *L* has infinite exponent over K_0 or $[K_0 : F] = \infty$, then $htQ = htP[[X_n]] + ht(Q/P[[X_n]])$ for all prime ideal *Q* of $R[[X_n]]$ with $Q \cap R = P$.

Proof "≥" is obvious. "≤": Use induction on m := htP. If m = 0, then it is obvious. Suppose m > 0 and the statement holds when htP < m. Let Q be a prime ideal of $R[[X_n]]$ such that htP = m where $P = Q \cap R$. Let $(0) = Q_0 \subset Q_1 \subset \ldots \subset Q_s = Q$ be a chain of prime ideals of $R[[X_n]]$ arriving at Q. Let k be the smallest integer $i \in \{1, \ldots, s\}$ such that $Q_i \cap R \neq (0)$. Thus $Q_0 \cap R = \ldots = Q_{k-1} \cap R = (0)$. So $k - 1 \le \dim R[[X_n]]_{R \setminus (0)} = n$ by [13, Theorem 2.2]. Denote $P_0 = Q_k \cap R$. Hence $P_0[[X_n]] \subseteq Q_k$.

Case 1 $P_0 = M$ (and so P = M). If $M[[X_n]] = Q_k$, then $s = k + (s - k) \le ht M[[X_n]] + ht(Q/M[[X_n]])$. If $M[[X_n]] \subset Q_k$, then $s = (k - 1) + (s - k + 1) \le n + ht(Q/M[[X_n]]) \le ht M[[X_n]] + ht(Q/M[[X_n]])$ by Corollary 3.4.

Case 2 $P_0 \neq M$. Denote $\tilde{R} = R/P_0$ and $\tilde{P} = P/P_0$. So, by considering $R[[X_n]]/P_0[[X_n]] \cong \tilde{R}[[X_n]]$, since $ht\tilde{P} < m$ and $(Q/P_0[[X_n]]) \cap \tilde{R} = \tilde{P}$, then $ht(Q/P_0[[X_n]]) = ht\tilde{P}[[X_n]] + ht(Q/P[[X_n]])$ by induction hypothesis.

Case 2.1 $Q_k = P_0[[X_n]]$. Then $s = k + (s - k) \le ht P_0[[X_n]] + ht(Q/P_0[[X_n]]) = ht P_0[[X_n]] + ht \widetilde{P}[[X_n]] + ht(Q/P[[X_n]]) \le ht P[[X_n]] + ht(Q/P[[X_n]]).$

Case 2.2 $P_0[[X_n]] \subset Q_k$. Then $s = (k-1) + (s-k+1) \leq n + \operatorname{ht}(Q/P_0[[X_n]]) = n + \operatorname{ht}\widetilde{P}[[X_n]] + \operatorname{ht}(Q/P[[X_n]]) \leq \operatorname{ht}P_0[[X_n]] + \operatorname{ht}\widetilde{P}[[X_n]] + \operatorname{ht}(Q/P[[X_n]])$ because $n \leq n$ ht $P_0 = \operatorname{ht}P_0[[X_n]]$. Thus $s \leq \operatorname{ht}P[[X_n]] + \operatorname{ht}(Q/P[[X_n]])$.

Of course, the last result forces us to ask if the ring $R[[X_n]]$ is catenarian (Recall that a ring *D* is said to be catenary if for each pair $P \subset Q$ of prime ideals of *D*, all saturated chains of prime ideals of *D* between *P* and *Q* have a common finite length). In [13], we proved that if *D* is an APVD with nonzero finite dimension, then D[[X]] is catenarian if and only if *D* is a residually *-domain. The question is still open for $R[[X_n]]$ with n > 1.

Corollary 3.7 If n > 1 and dim R > 1, then $R[[X_n]]$ is not catenarian.

Proof Let n > 1 be an integer and suppose that $R[[X_n]]$ is catenarian. Then $ht(x_n) + ht(M + (X_n))/(x_n) = ht(M + (X_n))$. Thus $1 + ht(M + (X_{n-1})) = ht(M + (X_n))$. If *L* has finite exponent over K_0 and $[K_0 : F] < \infty$, then $1 + (n - 1) \dim R + 1 = n \dim R + 1$ by Theorem 3.1. Thus dim R = 1, a contradiction. If *L* has infinite exponent over K_0 or $[K_0 : F] = \infty$, then $1 + (n - 1)(\dim R + 1) = n(\dim R + 1)$ again by Theorem 3.1. Thus dim R = 0, a contradiction.

In the following example, we show that for every integer $m \ge 1$, there exists an *m*-dimensional APVD *R* such that *R* is a residually *-domain and (*L* has infinite exponent over K_0 or $[K_0 : F] = \infty$).

Example 3.8 Let $F \subset L$ be an extension of fields such that L is not algebraic over F. Let K_0 be the maximal separable extension of F in L. It is known that there exists an SFT-valuation domain V of the form L + N with maximal ideal N and Krull dimension m. By [4, Lemma 3.1], there exists $a \in V$ such that N = aV. Denote $R = F + N^2$. By an argument similar to the one just given in Example 2.5, we show that R is an APVD with maximal ideal

 N^2 , dim R = m and R is a residually *-domain. It is clear that F and L are the residue fields, respectively, of R and $(N^2 : N^2) = V$. Since $F \subset L$ is not an algebraic extension, $F \subset L$ is not a special algebraic extension by [3, Theorem 2.1]. Then L has infinite exponent over K_0 or $[K_0 : F] = \infty$ by [14, Lemma 2.1].

In the following example, we show that for every integer $m \ge 1$, there exists an *m*-dimensional APVD *R* such that *R* is a residually *-domain and (*L* has finite exponent over K_0 and $[K_0: F] < \infty$).

Example 3.9 Let *F*, *m*, *V*, *N* and *R* be as in Example 2.5. The result follows from the fact that $R/N^2 \cong F \cong V/N$.

SFT-stability and Krull dimension questions in power series rings over an APVD are solved, but catenarity question is not yet. It is still open if $R[[X_n]]$ is catenarian where n > 1 and R is a one-dimensional APVD.

Acknowledgments The authors thank the referee for his/her helpful comments and suggestions.

References

- 1. Arnold, J.T.: Power series rings over Prüfer domains. Pac. J. Math. 44, 1-11 (1973)
- 2. Arnold, J.T.: Krull dimension in power series rings. Trans. Am. Math. Soc. 177, 299–304 (1973)
- 3. Arnold, J.T.: Algebraic extensions of power series rings. Trans. Am. Math. Soc. 267, 95–110 (1981)
- 4. Arnold, J.T.: Power series rings with finite Krull dimension. Indiana J. Math. 31(6), 897-911 (1982)
- Badawi, A., Houston, E.: Powerful ideals, strongly primary ideals, almost pseudo-valuation domains and conducive domains. Commun. Algebra. 30(4), 1591–1606 (2002)
- Benhissi, A.: Les anneaux des séries formelles. Queen's Papers in Pure and Applied Mathematics, Volume 124, Kingston, Ontario, Canada (2003)
- 7. Cox, J.A., Hetzel, A.J.: Uniformly primary ideals. J. Pure. Appl. Algebra 212, 1-8 (2008)
- Coykendall, J.: The SFT property does not imply finite dimension for power series rings. J. Algebra. 256, 85–96 (2002)
- 9. Gilmer, R.: Multiplicative Ideal Theory. Dekker, New York (1972)
- Kanemitsu, M., Matsuda, R., Onoda, N., Sugatani, T.: Idealizers, complete integral closures and almost pseudo-valuation domains. Kyungpook Math. J. 44, 557–563 (2004)
- Kang, B.G., Park, M.H.: SFT stability via power series extension over Prüfer domains. Manuscr. Math. 122, 353–363 (2007)
- 12. Kaplansky, I.: Commutative Rings, rev edn. University of Chicago Press, Chicago (1974)
- Khalifa, M., Benhissi, A.: Krull dimension in power series ring over an almost pseudo-valuation domain. Commun. Algebra. 38(8), 3014–3028 (2010)
- Park, M.H.: Krull dimension of power series rings over a globalized pseudo-valuation domain. J. Pure. Appl. Algebra. 214(6), 862–866 (2010)