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Abstract Ingrid Carbone introduced the notion of so-called LS-sequences of points, which
are obtained by a generalization of Kakutani’s interval splitting procedure. Under an appropri-
ate choice of the parameters L and S, such sequences have low discrepancy, which means that
they are natural candidates for Quasi-Monte Carlo integration. It is tempting to assume that
LS-sequences can be combined coordinatewise to obtain a multidimensional low-discrepancy
sequence. However, in the present paper, we prove that this is not always the case: if the
parameters L1, S1 and L2, S2 of two one-dimensional low-discrepancy LS-sequences sat-
isfy certain number-theoretic conditions, then their two-dimensional combination is not even
dense in [0, 1]2.
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1 Introduction and statement of results

For two points a, b ∈ [0, 1)d , we write a ≤ b and a < b if the corresponding inequalities
hold in each coordinate; furthermore, we write [a, b) for the set {x ∈ [0, 1)d : a ≤ x < b},
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1330 C. Aistleitner et al.

and call such a set a (d-dimensional) interval. We denote by 1I the indicator function of the
set I ⊆ [0, 1)d and by λd the d-dimensional Lebesgue measure. We will sometimes write 0
for the d-dimensional vector (0, . . . , 0).

A sequence (xn)n∈N of points in [0, 1]d is called uniformly distributed modulo 1 (u.d.
mod 1) if

lim
N→∞

∑N
n=1 1[a,b)(xn)

N
= λd([a, b))

for all d-dimensional intervals [a, b) ⊆ [0, 1)d . A further characterization of u.d. is given by
the following well-known result of Weyl [17]: a sequence (xn)n∈N of points in [0, 1)d is u.d.
mod 1 if and only if for every continuous function f on [0, 1)d the relation

lim
N→∞

∑N
n=1 f (xn)

N
=

∫

[0,1)d
f (x)dx

holds. Although this theorem shows the possibility of using u.d. point sequences for numerical
integration—a method usually called Quasi-Monte Carlo (QMC) integration—it does not
give any information on the integration error.

The Koksma–Hlawka inequality [10] states that this integration error can be bounded by
the product of the variation of f (in the sense of Hardy and Krause), denoted by V ( f ), and
the so-called star-discrepancy D∗

N of the point sequence (xn)n∈N. More precisely,
∣
∣
∣
∣
∣
∣
∣

1

N

N∑

n=1

f (xn)−
∫

[0,1]d

f (x)dx

∣
∣
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∣

≤ V ( f )D∗
N (xn),

where D∗
N is given by

D∗
N = D∗

N (x1, . . . , xN ) = sup
a∈[0,1)d

∣
∣
∣
∣
∣

∑N
n=1 1(0,a)(xn)

N
− λd([0, a))

∣
∣
∣
∣
∣
.

The Koksma–Hlawka inequality suggests that for QMC integration, one should use a
sequence of points whose discrepancy is as small as possible. The best known point sequences
achieve a discrepancy of order O(N−1(log N )d); such sequences are called low-discrepancy
sequences. Note that this convergence rate is for all d ≥ 1 better than that of the probabilistic
error of Monte Carlo integration, where a sequence of random points is used instead of a
deterministic one. QMC integration can be successfully applied in several different areas of
applied mathematics, for example, in actuarial or financial mathematics, where frequently
high-dimensional integration problems arise (see e.g., [2,14]). For more information on dis-
crepancy theory, low-discrepancy sequences and QMC integration see [8,12].

A popular approach to construct d-dimensional low-discrepancy sequences is to combine
d one-dimensional low-discrepancy sequences; this works, for example, for the so-called
Halton sequence, which is obtained by joining one-dimensional van der Corput sequences
coordinatewise. In the present paper, we show that this construction principle is not gener-
ally applicable for a special class of one-dimensional low-discrepancy sequence, so-called
LS-sequences. We prove that the limit distribution of a multidimensional LS-sequences (com-
posed coordinatewise from one-dimensional low-discrepancy LS-sequences) can spectacu-
larly fail to be u.d., if there is a certain number-theoretic connection between the parameters
of the one-dimensional sequences. To explain the construction of LS-sequences, we need
some definitions.
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On the uniform distribution modulo 1 of multidimensional LS-sequences 1331

Definition 1 (Kakutani splitting procedure) If α ∈ (0, 1) and π = {[ti−1, ti ) : 1 ≤ i ≤ k}
is any partition of [0, 1), then απ denotes its so-called α-refinement, which is obtained by
subdividing all intervals of π having maximal length into two parts, proportional to α and
1 −α, respectively. The so-called Kakutani’s sequence of partitions (αnω)n∈N is obtained as
the successive α-refinement of the trivial partition ω = {[0, 1)}.

The notion ofα-refinements can be generalized in a natural way to so-calledρ-refinements.

Definition 2 (ρ-refinement) Let ρ denote a non-trivial finite partition of [0, 1). Then, the
ρ-refinement of a partition π of [0, 1), denoted by ρπ , is given by subdividing all intervals of
maximal length positively homothetically to ρ. Note that the α-refinement is a special case
with ρ = {[0, α), [α, 1)}.

By a classical result of Kakutani [11], for any α, the sequence of partitions (αnω)n∈N is
uniformly distributed, which means that for every interval [a, b] ⊂ [0, 1],

lim
n→∞

∑k(n)
i=1 1[a,b](tn

i )

k(n)
= b − a,

where k(n) denotes the number of intervals in αnω = {[tn
i−1, tn

i ), 1 ≤ i ≤ k(n)}. The
same result holds for any sequence of ρ-refinements of ω, due to a result of Volčič [16]
(see also [1,7]). A multidimensional generalization of ρ-refinements has been introduced by
Carbone and Volčič [6]. A special case of a ρ-refinement is the so-called LS-sequence of
partitions. This sequence of partitions has been introduced by Carbone [5].

Definition 3 (LS-sequence of partitions) An LS-sequence of partitions (ρn
L ,Sω)n∈N is the

successive ρ-refinement of the trivial partition ω, where ρL ,S consists of L + S intervals such
that the first L > 0 intervals of ρL ,S have length β, and the remaining S ≥ 0 intervals have
length β2. Note that necessarily Lβ + Sβ2 = 1 holds, and consequently for each pair (L , S)
of parameters, there exists exactly one corresponding number β.

It can easily be seen that for every n, the partition ρn
L ,Sω consists only of intervals having

either length βn or βn+1. This fact makes the analysis of LS-sequences relatively simple,
in comparison with the analysis of general ρ-refinements. We denote by tn the total number
of intervals of ρn

L ,Sω, and correspondingly, let ln and sn be the number of long and short
intervals after n steps, respectively (more precisely, ln is the number of intervals of length
βn , and sn is the number of intervals of length βn+1). It is easy to see that these sequences
satisfy the following recurrence relations (see [5]):

tn = Ltn−1 + Stn−2,

ln = Lln−1 + Sln−2,

sn = Lsn−1 + Ssn−2,

for n ≥ 2, where t1 = L + S, t0 = 1, l1 = L , l0,= 1, s1 = S and s0 = 0. Solving these
binary recurrences, we obtain explicit formulas for tn, ln and sn :
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1332 C. Aistleitner et al.

tn = τ0β
−n + τ1(−Sβ)n, τ0 = L + 2S + √

L2 + 4S

2
√

L2 + 4S
,

τ1 = −L − 2S + √
L2 + 4S

2
√

L2 + 4S
, (1)

ln = λ0β
−n + λ1(−Sβ)n, λ0 = L + √

L2 + 4S

2
√

L2 + 4S
,

λ1 = −L + √
L2 + 4S

2
√

L2 + 4S
, (2)

sn = σ0β
−n + σ1(−Sβ)n, σ0 = 2S + √

L2 + 4S

2
√

L2 + 4S
,

σ1 = −2S + √
L2 + 4S

2
√

L2 + 4S
. (3)

We can generate a sequence of points from a sequence of partitions by ordering the left
endpoints of the intervals in the partition. The following rule by Carbone [5] defines the
so-called LS-sequence of points.

Definition 4 (LS-sequence of points) Given an LS-sequence of partitions (ρn
L ,Sω)n∈N, we

define the corresponding LS-sequence of points (ξn
L ,S)n∈N as follows: the first t1 points are

the left endpoints of the partition ρL ,Sω ordered by magnitude. We denote this ordered set
of points by �1

L ,S .

For n > 1, we define �n+1
L ,S = {ξ0

L ,S, . . . , ξ
tn+1−1
L ,S } inductively as the ordered set of the

left endpoints of the intervals of ρn
L ,Sω in the following way:

�n+1
L ,S =

{
ξ0

L ,S, . . . , ξ
tn−1
L ,S ,

ψn+1
1,0

(
ξ0

L ,S

)
, . . . , ψn+1

1,0

(
ξ

ln−1
L ,S

)
, . . . , ψn+1

L ,0

(
ξ0

L ,S

)
, . . . , ψn+1

L ,0

(
ξ

ln−1
L ,S

)
,

ψn+1
L ,1

(
ξ0

L ,S

)
, . . . , ψn+1

L ,1

(
ξ

ln−1
L ,S

)
, . . . , ψn+1

L ,S−1

(
ξ0

L ,S

)
, . . . , ψn+1

L ,S−1

(
ξ

ln−1
L ,S

)}
,

where

ψn
i, j (x) = x + iβn + jβn+1.

For more details on the definition of LS-sequences of points, and on the properties of such
sequences, see [4,5].

Next, we recall the definition of the well-known van der Corput sequence in base b ≥ 2,
b ∈ N. For every n ∈ N0, the unique digit expansion of n in base b is given by

n =
∑

i≥0

ni b
i ,

where ni ∈ {0, 1, . . . , b − 1}, i ≥ 0.
For n ∈ N0, we define the radical-inverse function (or Monna map) φb(n) : N0 → [0, 1)

by

φb(n) = φb

⎛

⎝
∑

i≥0

ni b
i

⎞

⎠ :=
∑

i≥0

ni b
−i−1. (4)
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On the uniform distribution modulo 1 of multidimensional LS-sequences 1333

We call x a b-adic rational if x = ab−c, where a and c are positive integers and 0 ≤ a < bc.
Note that φb(n)maps N onto the b-adic rationals in [0,1), and therefore, the image of N under
φb(n) is dense in [0,1).

Definition 5 The van der Corput sequence in base b is defined as (φb(n))n∈N.

Note that the definition of the van der Corput sequence in base b ≥ 2 coincides with
the definition of the LS-sequence of points with parameters L = b and S = 0. Thus, LS-
sequences can be seen as a generalization of the van der Corput sequence. A remarkable
property of van der Corput sequences is, that several van der Corput sequences in pairwise
coprime bases can be combined coordinatewise to a multidimensional sequence, the so-called
Halton sequence, which is a low-discrepancy sequence. As mentioned above, this means that
the discrepancy of a Halton sequence is of asymptotic order O(N−1(log N )d), where N is
the number of points and d denotes the dimension, which together with the Koksma–Hlawka
inequality makes it a perfect candidate for Quasi-Monte Carlo integration (for details on the
properties of van der Corput and Halton sequences, see [8,12]).

Several authors consider so-called β-adic van der Corput sequences, which are not equal
to LS-sequences although very similar. Barat and Grabner [3] and Ninomiya [13] showed
that such sequences are one-dimensional low-discrepancy sequences if β is a Pisot number
with irreducible β-polynomial. Furthermore, the connection between β-adic van der Corput
sequences and special numeration systems has been investigated by Grabner et al. [9] and
Steiner [15]. They use the so-called Dumont–Thomas expansion, where G = (Gn)n≥0 is
a linear recurring base sequence, β is the corresponding characteristic root, and the points
of the β-adic van der Corput sequences are obtained by reflecting the G-ary expansion of
every integer at the decimal point, written in a β-adic number system. Unfortunately, this
procedure cannot be applied for LS-sequences except when L = S = 1. In Lemma 3, we
will present a similar, but slightly more complicated algorithm which is tailor-made for the
construction of LS-sequences.

If we assume S ≥ 1, then by a result of Carbone [5] a one-dimensional LS-sequence is
a low-discrepancy sequences if and only if L > S − 1. Thus, it is tempting to assume that
several LS-sequences can be combined coordinatewise in order to obtain multidimensional
low-discrepancy sequences. If this was the case, then this method would produce a new
parametric class of multidimensional low-discrepancy sequences. However, even in the case
of the combination of van der Corput sequences (which are a special case of LS-sequences,
as mentioned before), the bases b1, . . . , bd cannot be chosen arbitrarily, but have to satisfy
a certain number-theoretic condition (they have to be coprime). A similar restriction can be
expected in the case of combining LS-sequences.

In a talk in Graz in June 2012, Maria Rita Iacò presented several numerical examples of the
asymptotic distribution of two-dimensional LS-sequences. In some cases, they showed “ran-
dom” behavior, while in others (for example, when combining the sequence with parameters
(1,1) and the sequence with parameters (4,1)), the distribution seemed to be rather erratic.
Obviously, the reason for this behavior is that there is a multiplicative relation between the
solutions of the equations x + x2 = 1 and 4x + x2 = 1, which define the lengths of the inter-
vals for the LS-sequences with parameters (1,1) and (4,1), respectively. The purpose of the
present paper is to prove that in fact the two-dimensional LS-sequences is not uniformly dis-
tributed (and not even dense) in [0, 1]2 if such a multiplicative relation exists. Furthermore, in
a second theorem, we show that if the parameters of two one-dimensional LS-sequences have
a greatest common divisor (gcd) which is greater than 1, then the resulting two-dimensional
LS-sequence is also not dense in [0, 1]2. This second result generalizes the requirement of
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1334 C. Aistleitner et al.

having coprime bases of the van der Corput sequences, in order to obtain a low-discrepancy
Halton sequence by joining them coordinatewise.

The formal definition of a multidimensional LS-sequence can be given as follows.

Definition 6 Let B = ((L1, S1), . . . , (Ld , Sd)) be an ordered d-tuple of pairs, (Li , Si ) such
that Li > 0, Si ≥ 0 and Li +Si ≥ 2 for all i . Then, we define the d-dimensional LS-sequence
in base B as the sequence

ξn
B =

(
ξn

L1,S1
, . . . , ξn

Ld ,Sd

)

n∈N

.

The following theorem states that a two-dimensional LS-sequences in bases B =
((L1, S1), (L2, S2)), where the one-dimensional components are low-discrepancy sequences,

are not dense in [0, 1]2 if there exist integers m and k such that
βk+1

1

βm+1
2

∈ Q. For example, in

the case (L1, S1) = (1, 1) and (L2, S2) = (4, 1), we have β2 = β3
1 .

Theorem 1 Let B = ((L1, S1), (L2, S2)) with Li > Si − 1 ≥ 0 and assume that there exist

integers m and k such that
βk+1

1

βm+1
2

∈ Q. Then, the two-dimensional LS-sequence ξn
B is not

uniformly distributed, and not even dense in [0, 1]2.

On the other hand, we have not been able to derive any positive results, proving uniform
distribution of a LS-sequence for an appropriate choice of L1, S1 and L2, S2 (except for the
case of the Halton sequence). So up to date not a single example of parameters L1, S1, L2, S2

is known, for which either S1 �= 0 or S2 �= 0, and the corresponding two-dimensional LS-
sequence is uniformly distributed.

Note that Theorem 1 can also be applied to the multidimensional case, since for any
multidimensional sequence of points, which is uniformly distributed, all lower-dimensional
projections also have to be uniformly distributed. More precisely, we immediately get the
following corollary.

Corollary 1 Let B = ((L1, S1), . . . , (Ld , Sd)) with Li > Si − 1 ≥ 0 and assume that

there exist numbers u, w ∈ {1, . . . , d} and integers m and k such that βk+1
u

βm+1
w

∈ Q. Then, the

d-dimensional LS-sequence ξn
B is not uniform distributed, and not even dense in [0, 1]d .

The next theorem characterizes another class of two-dimensional LS-sequences, which
are not dense in [0, 1]2.

Theorem 2 Let B = ((L1, S1), (L2, S2)) and assume that gcd(L1, S1, L2, S2) > 1. Then,
the two-dimensional LS-sequence ξn

B is not dense in [0, 1]2.

Note that Theorem 2 also includes the case of the classical Halton sequence. Furthermore
in Theorem 1, we have to require that every one-dimensional component is a low-discrepancy
sequence, which is not the case in Theorem 2. Moreover, it is easily seen that Theorem 1 and
Theorem 2 do not fully contain one another: for example, the LS-sequences with parameters
(1,1) and (4,1) satisfy the conditions of Theorem 1, but not those of Theorem 2; for the LS-
sequences with parameters (4,2) and (2,2), it is vice versa. As above, we can state a corollary
which describes the d-dimensional situation.

Corollary 2 Let B = ((L1, S1), . . . , (Ld , Sd)) and assume that gcd(Li , Si , L j , S j ) > 1 for
some i, j ∈ {1, . . . , d}, i �= j . Then, the d-dimensional LS-sequence ξn

B is not dense in
[0, 1]d .
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On the uniform distribution modulo 1 of multidimensional LS-sequences 1335

In the next section, we provide several auxiliary results concerning one-dimensional LS-
sequences. These lemmas will be essential in the proofs of Theorem 1 and Theorem 2, which
are presented in Sect. 3.

Remark 1 It seems to be possible to formulate number-theoretic conditions on β1 and β2

to assure that the two-dimensional combination of two LS-sequences is u.d. or even low-
discrepancy in [0, 1)2. Intensive numerical investigation suggests that it is sufficient to assume
Li > Si − 1 ≥ 0 for i = 1, 2, and that the assumptions of the two above theorems do not
hold. Nevertheless, a rigorous proof seems to be difficult since, for example, an application
of the Chinese remainder theorem, like in the classical Halton case, is not possible. This will
be subject of further research.

2 Points in elementary intervals

Before we define elementary intervals and prove some of their properties, we obtain the
following recurrence relations for the sequences tn and ln .

Lemma 1 We have

tn+1 = tn + (L + S − 1)ln and ln+1 = tn + (L − 1)ln

for all n ≥ 0.

Proof Follows immediately by (1) and induction with respect to n. �
We will also need a lemma on the irrationality of β.

Lemma 2 Let L > S − 1 ≥ 0, then βk is irrational for every positive integer k.

Proof First, we prove that β is irrational. In particular, we have to prove that L2 + 4S is not
a square. Therefore, we note that

L2 < L2 + 4S < L2 + 4L + 4 = (L + 2)2,

thus L2 + 4S = (L + 1)2, i.e., S = 2L+1
4 �∈ Z. Hence, β is irrational.

Now, suppose that βk is rational for some k > 1. If βk = r for some rational number r ,

the same relation holds for the conjugate β ′ of β, i.e., |β| = |β ′|. Since β = −L+√
L2+4S

2S

and β > β ′ = −L−√
L2+4S

2S , this yields a contradiction to |β| = |β ′|, unless L = 0 which is
excluded. �

We call an interval elementary, if it is an element of ρn
L ,Sω for some n. Equivalently, we

can define elementary intervals as all intervals of the form I (k)x = [ξ x
L ,S, ξ

x
L ,S +βk) for some

k, where x < lk . If [ξ x
L ,S, ξ

x
L ,S + βk) is an elementary interval, then there necessarily exists

an integer y < tk such that ξ x
L ,S + βk = ξ

y
L ,S . Note that in the case of the van der Corput

sequence, the elementary intervals defined in this way coincide with the usual ones.
In order to count points in elementary intervals, we need a method to decide whether

a point ξ N
L ,S is contained in some given elementary interval or not. In the case of the van

der Corput sequence, this can be achieved by considering digit expansions as in (4), which
motivates the following construction. Let N ≥ 0 be a fixed integer and let n be such that
tn ≤ N < tn+1. We construct two sequences (εk)0≤k≤n and (ηk)0≤k≤n recursively in the
following way: We put

Nn = N , εn = 1, ηn =
⌊

Nn − tn
ln

⌋

and Nn−1 = Nn − tn − ηnln .
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1336 C. Aistleitner et al.

For k ≤ n − 1, if Nk < tk , we put εk = ηk = 0 and Nk−1 = Nk . Otherwise, we proceed
as in the initial construction, i.e., put εk = 1, ηk = � Nk−tk

lk
� and Nk−1 = Nk − tk − ηklk . If

Nk−1 = 0, we terminate and put εi = ηi = 0 for all i < k. Since tk+1 = tk + (L + S − 1)lk
and lk+1 ≥ tk ≥ lk for all k ≥ 0, this algorithm yields a representation of N in the form

N =
n∑

i=0

(εi ti + ηi li ), (5)

where εi ∈ {0, 1}, 0 ≤ ηi ≤ L + S − 2, and εi = 0 implies ηi = 0. Furthermore, since
tk + (L − 1)lk = lk+1, it follows that ηi ≥ L − 1 implies εi+1 = 0.

Note that the representation (5) is not unique. Consider, e.g., the case L = 2, S = 1;
then, we have t2 + l2 = 12 = t2 + t1 + l1. However, for the rest of this paper speaking of
a representation, we will always mean the representation whose coefficients εi and ηi were
constructed as explained in the algorithm above (i.e., in the above example, the representation
we choose is 12 = t2 + l2).

In order to establish unique “digit expansions,” we use the following Lemma.

Lemma 3 There is a bijection between positive integers and finite sequences of the form

D = ((εn, ηn), . . . , (ε0, η0))

such that εi ∈ {0, 1}, εn = 1, 0 ≤ η ≤ L+S−2, εi = 0 impliesηi = 0 and εi = 1, ηi ≥ L−1
implies εi+1 = 0. This bijection is given by

Ψ (D) =
n∑

i=0

(εi ti + ηi li )

and its inverse

Ψ−1(N ) = ((εn, ηn), . . . , (ε0, η0)),

where the εi and ηi are computed by the algorithm described above.

Proof Let N > 0 be an integer. Note that Ψ−1 is injective since by construction, we have
Nk < tk+1, and therefore in every step of the algorithm, the pair (εk, ηk) is uniquely deter-
mined.

It remains to prove that Ψ−1(Ψ (D)) = D. We prove this by induction on the length n + 1
of D. The case n = 0 is trivial, since Ψ (D) = ε0 + η0 < t1, and applying Ψ−1 yields indeed
D. Let us assume that the algorithm yields the correct sequence Ψ (D) for all sequences D
of length ≤ n. In particular, this implies Ψ (D) < tn for all D of length ≤ n. Assume now
that D is of length n + 1.

First, we prove that N = Ψ (D) < tn+1. Since εn = 1, we have ηn−1 ≤ L − 2, and
by induction, we know that for a sequence E of length n starting with (1, L − 2), we have
Ψ (E) < tn−1 + (L − 1)ln−1 = ln . Hence, Ψ (D) < tn + (L + S − 2)ln + ln = tn+1.

Now, let E be the sequence of length n induced by D by deleting the entry (εn, ηn).
Note that εn−1 might be zero, and thus, E is not a valid output of the above algorithm. If
εi = 0 for all i ≤ n − 1, then the proof is trivial. Assume now that at least one εi > 0 for
i ≤ n − 1. Then, we can write E = (E1, E2), where E1 = ((εn−1, ηn−1), . . . , (εn−k, ηn−k))

and (εi , ηi ) = (0, 0) for n − k ≤ i ≤ n − 1 and E2 = ((εn−k−1, ηn−k−1), . . . , (ε0, η0))

with εn−k−1 = 1. We obtain that N = Ψ (D) = tn + ηnln + Ψ (E2) and since Ψ (E2) < ln ,
we know that ηn is the same integer which we obtain by applying our algorithm to N . In
particular, we have
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On the uniform distribution modulo 1 of multidimensional LS-sequences 1337

Ψ−1(Ψ (D)) = ((1, ηn), E1, Ψ
−1(Ψ (E2))) = ((1, ηn), E) = D.

�
Using this digit expansions, we are able to prove arithmetic properties of LS-sequences.

We start with a lemma which provides conditions under which a point ξ N
L ,S lies in a certain

elementary interval.

Lemma 4 Let N be an integer with representation given in (5). Then,

ξ N
L ,S =

n∑

i=0

(
β i+1 min{L , εi + ηi } + β i+2 max{εi + ηi − L , 0}

)
. (6)

Moreover, let I (k)x = [ξ x
L ,S, ξ

x
L ,S + βk), with x < lk , be an elementary interval. Then,

ξ N
L ,S ∈ I (k)x if and only if

x =
k−1∑

i=0

(εi ti + ηi li )

is the truncated representation of N.
In addition, let A(k)x (N ) = �{m : m ≤ N , ξm

L ,S ∈ I (k)x } and assume that

N = x +
n∑

i=k

(εi ti + ηi li ).

Then,

A(k)x (N ) =
n−k∑

i=0

(εi+k ti + ηi+kli )+ 1.

Proof We start with the proof of (6). Due to Definition 4, we have

ξ N
L ,S = βn min{L , εn + ηn} + βn+1 max{εn + ηn − L , 0} + ξ Ñ

L ,S

with

Ñ =
n−1∑

i=0

(εi ti + ηi li ).

Repeating this argument inductively, we will end up in (6).
Now, let N be of the form (5) and let

N1 =
k−1∑

i=0

(εi ti + ηi li ) and N2 =
n−k∑

i=0

(εi+k ti + ηi+kli ).

Then by (6), we have ξ N
L ,S = ξ

N1
L ,S + βkξ

N2
L ,S . Since the LS-sequences only take values in

the interval [0, 1) and since two distinct points of an LS-sequence with index < lk differ
at least by βk , this implies the second statement of the lemma. Moreover, by assumption,
N1 = x < lk and therefore N2 can take all integer values, since we have no restriction on
the digits εk and ηk (see Lemma 3). Thus, N2 counts all points ξ i

L ,S in the interval I (k)x with

x < i ≤ N . Since ξ x
L ,S ∈ I (k)x is the first point that hits the interval I (k)x , the last statement of

the lemma is established. �
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Note that Lemma 4 would not hold in case of lk ≤ x < tk , since this would imply εk = 0
(see Lemma 3), and we would have serious restrictions for the digits of N2. Thus, N2 could
not take all integer values.

Since a crucial point of the proof of Theorem 1 is to have a precise knowledge of A(k)x (N ),
the next lemma gives a further method to describe this quantity.

Lemma 5 Assume that x < lk . If ξ N
L ,S ∈ I (k)x , then there exist integers A, B such that

N = x + Atk + Blk and A(k)x (N ) = 1 + A + B.

Proof By Lemma 4, we know that N is of the form

N = x +
n∑

i=k

(εi ti + ηi li ).

Now by the recurrence relations for tk and lk and Lemma 1, we deduce that there are integers
A, B such that N = x + Atk + Blk .

Since ξ x
L ,S ∈ I (k)x , the proof of the lemma is complete, if we can prove that there exist

integers A, B such that

n∑

i=k

(εi ti + ηi li ) = Atk + Blk and
n−k∑

i=0

(εi+k ti + ηi+kli ) = A + B,

where εi , ηi and n ≥ k are arbitrary non-negative integers. We prove this assertion by
induction on n − k. The case n = k is trivial. We postpone checking the case n = k + 1 to
the end of the proof. Now, let us assume that n − k ≥ 2. Using the recurrence relations (1)
and (2) for tk and lk , respectively, we have

n∑

i=k

(εi ti + ηi li ) =
n−1∑

i=k

(ε̃i ti + η̃i li )

and

n−k∑

i=0

(εi+k ti + ηi+kli ) =
n−k−1∑

i=0

(ε̃i+k ti + η̃i+kli ),

with

ε̃i = εi , η̃i = ηi for i = k, k + 1, . . . , n − 3 and

ε̃n−2 = εn−2 + Sεn, ε̃n−1 = εn−1 + Lεn,

η̃n−2 = ηn−2 + Sηn, η̃n−1 = ηn−1 + Lηn .

The new representations have fewer summands, and by induction hypotheses, we find appro-
priate integers A and B.

It remains to check the case n − k = 1. Using Lemma 1, we get

εk tk + ηklk + εk+1tk+1 + ηk+1lk+1

= εk tk + ηklk + εk+1(tk + lk(L + S − 1))+ ηk+1(tk + lk(L − 1))

= tk

:=A
︷ ︸︸ ︷
(εk + εk+1 + ηk+1) +lk

:=B
︷ ︸︸ ︷
(ηk + εk+1(t1 − 1)+ ηk+1(l1 − 1)) .
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But, now

A + B = εk + εk+1 + ηk+1 + ηk + εk+1(t1 − 1)+ ηk+1(l1 − 1))

= εk t0 + ηkl0 + εk+1t1 + ηk+1l1

and we have found appropriate integers A and B. �
The next lemma is related to the discrepancy of one-dimensional LS-sequences. In par-

ticular, we are interested in an accurate formula for A(k)x (N )
N , where ξ N

L ,S ∈ I (k)x .

Lemma 6 Assume that N has a representation of the form (5), and assume that ξ N
L ,S ∈ I (k)x .

Then, we have

A(k)x (N )

N
= βk + R(1 − (−Sβ)k)+ 1 − xβk

N
,

where

R =
n∑

i=k

(εiτ1 + ηiλ1)(−Sβ)i−k ,

which can be estimated by

|R| < max{|τ1|, |τ1 + (L + S − 2)λ1|}1 − (Sβ)n−k+1

1 − Sβ
.

if Sβ �= 1 and

|R| < max{|τ1|, |τ1 + (L + S − 2)λ1|} max{n − k + 1, 0}
if Sβ = 1.

Proof Using our assumptions and Lemma 4, we can calculate the exact values of A(k)x (N )
and N . In fact, we have

N = x +
n∑

i=0

(εi ti + ηi li ) and A(k)x (N ) =
n∑

i=k

(εi ti−k + ηi li−k)+ 1.

This yields

A(k)x (N )

N
=

∑n
i=k(εi ti−k + ηi li−k)+ 1
∑n

i=k(εi ti + ηi li )+ x

=
∑n

i=k(εiτ0 + ηiλ0)β
−i+k +

R
︷ ︸︸ ︷∑n

i=k
(εiτ1 + ηiλ1)(−Sβ)i−k + 1

β−k
∑n

i=k(εiτ0 + ηiλ0)β−i+k + (−Sβ)k
∑n

i=k
(εiτ1 + ηiλ1)(−Sβ)i−k

︸ ︷︷ ︸
R

+ x

= βk + R + 1

N
+

∑n
i=k(εiτ0 + ηiλ0)β

−i+k − Nβk

N
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= βk + R + 1

N
+

∑n
i=k(εiτ0 + ηiλ0)β

−i+k

N

−
(
β−k ∑n

i=k(εiτ0 + ηiλ0)β
−i+k + (−Sβ)k R + x

)
βk

N

= βk + R(1 − (−Sβ2)k)+ 1 − xβk

N
.

Thus, it remains to estimate R. Note that τ1 < 0 and

|εiτi + ηiλi | < max{|τ1|, |τ1 + (L + S − 2)λ1|}
for i = k, . . . , n. Hence to complete the proof of Lemma 6, we only have to compute the
geometric sum

n−k∑

i=0

| − Sβ|i .

We have to take absolute values in order to estimate R. �
Note that Lemma 6 gives a constant bound for |R| for n → ∞ if and only if Sβ < 1,

which is equivalent to L > S − 1. This is exactly the case when we have a one-dimensional
low-discrepancy LS-sequence.

3 Proofs of main results

We start with the proof of Theorem 1. According to Definition 6, we define the recurrences

t (i)n = Li t
(i)
n−1 + Si t

(i)
n−2, t (i)0 = 1, t (i)1 = Li + Si ,

l(i)n = Li l
(i)
n−1 + Si l

(i)
n−2, l(i)0 = 1, l(i)1 = Li ,

s(i)n = Li s
(i)
n−1 + Si s

(i)
n−2, s(i)0 = 0, s(i)1 = Si ,

which correspond to the number of intervals, long intervals and short intervals after n refine-
ment steps in the i-th component of the two-dimensional LS-sequence, for i = 1, 2.

Now, let k and m be integers satisfying the assumptions of Theorem 1 and assume that the
integers k̃ and m̃ are “large” (a precise condition will be given later). Furthermore, choose
two integers x1 < l(1)k and x2 < l(2)m such that x1 �= x2. In the sequel, we will consider

the intervals I = I (k)x1 × I (m)x2 and Ĩ = I (k+k̃)
x1 × I (m+m̃)

x2 . We want to prove that no point
of the two-dimensional LS-sequence is contained in the interval Ĩ . Note that Ĩ ⊂ I , and
consequently, a point can only be contained in Ĩ if it is also contained in I . Now let N be
given, and assume that ξ N

B ∈ I . We will also assume that ξ N
B ∈ Ĩ and show that this leads

to a contradiction (provided k̃ and m̃ are sufficiently large). Consequently, no point of the
sequence (ξn

B)n∈N can be contained in Ĩ .

Due to Lemma 5, ξ N
L1,S1

∈ I (k)x1 implies that there exist integers A1, B1 such that N =
x1 + A1t (1)k + B1l(1)k . Similarly, ξ N

L2,S2
∈ I (m)x2 implies the existence of integers A2, B2 such

that N = x2 + A2t (2)m + B2l(2)m . Thus,

x1 + A1t (1)k + B1l(1)k = x2 + A2t (2)m + B2l(2)m . (7)
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Moreover, choosing A1 and B1 according to Lemma 5, we know that there are exactly
1 + A1 + B1 points with index ≤ N lying in the interval I (k)x1 . Therefore, Lemma 6 yields

A1 + B1 + 1

x1 + A1t (1)k + B1l(1)k

= βk
1 + R1(1 − (−S1β

2
1 )

k)+ 1 − x1β
k
1

N
.

Multiplying both sides with N = x1 + A1t (1)k + B1l(1)k and solving for B1, we obtain

B1 = A1
t (1)k βk

1 − 1

1 − l(1)k βk
1

+ R1(1 − (−S1β
2
1 )

k)

1 − l(1)k βk
1

. (8)

A similar argument for the second component yields

B2 = A2
t (2)m βm

2 − 1

1 − l(2)m βm
2

+ R2(1 − (−S2β
2
2 )

m)

1 − l(2)k βm
2

. (9)

Now, we resubstitute Eqs. (8) and (9) into (7) and obtain

x1 + A1
t (1)k − l(1)k

1 − l(1)k βk
1

+ R1l(1)k (1 − (−S1β
2
1 )

k)

1 − l(1)k βk
1

= x2 + A2
t (2)m − l(2)m

1 − l(2)m βm
2

+ R2l(2)m (1 − (−S2β
2
2 )

m)

1 − l(2)m βm
2

. (10)

Now, let us investigate the quantities tk−lk
1−lkβk and lk (1−(−Sβ2)k )

1−lkβk .

Lemma 7 We have

tk − lk
1 − lkβk

= β−k−1

and

lk(1 − (−Sβ2)k)

1 − lkβk
= λ0

λ1
β−k + (−Sβ)k .

Proof Using the explicit formulas (1) and (2) for the recurrences tk and lk , respectively,
we obtain

tk − lk
1 − lkβk

= (τ0 − λ0)β
−k + (τ1 − λ1)(−Sβ)k

1 − βk(λ0β−k + λ1(−Sβ)k)
=

S√
L2+4S

(β−k − (−Sβ)k)

λ1(1 − (−Sβ2)k)

=
S√

L2+4S

λ1
· β−k · 1 − (−Sβ2)k

1 − (−Sβ2)k
= β−k−1,

which proves the first part of Lemma 7.
Note that

λ1
S√

L2+4S

=
−L+√

L2+4S
2
√

L2+4S
S√

L2+4S

= −L + √
L2 + 4S

2S
= β.
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Let us now prove the second statement of the lemma. Again we use the explicit formulas
(1) and (2) and obtain

lk(1 − (−Sβ2)k)

1 − lkβk
= lk(1 − (−Sβ2)k)

1 − βk(λ0β−k + λ1(−Sβ)k)

= lk(1 − (−Sβ2)k)

λ1(1 − (−Sβ2)k)

= λ0

λ1
β−k + (−Sβ)k

�
Continuing the proof of Theorem 1, let us insert the explicit formulas of Lemma 7 into

(10). We get

A1 = A2
βk+1

1

βm+1
2

+ (x2 − x1)β
k+1
1 + R̃, (11)

where

R̃ = R2

c2:=
︷ ︸︸ ︷

β2

(
λ
(2)
0

λ
(2)
1

+ (−S2β
2
2 )

m

)
βk+1

1

βm+1
2

−R1

c1:=
︷ ︸︸ ︷

β1

(
λ
(1)
0

λ
(1)
1

+ (−S1β
2
1 )

k)

)

. (12)

Now by assumption, we have
βk+1

1

βm+1
2

= p
q for some coprime positive integers p, q and (11)

can be written as

2(q A1 − p A2) = 2(x2 − x1)qβ
k+1 + 2q R̃, (13)

Obviously, the left side of (13) is an even integer. In order to prove Theorem 1, we want to
show that the right side is not an even integer if ξ N

B ∈ Ĩ and k̃ and m̃ are sufficiently large.
By our assumptions on x1, x2 and the parameters L1, S1, L2 and S2, we have

‖2q(x2 − x1)β
k+1
1 ‖odd = ε < 1, (14)

where ‖ · ‖odd denotes the distance to the nearest odd integer. Note that βk+1
1 is irrational due

to Lemma 2 and therefore indeed ε < 1.
Now Lemma 6 tells us that the assumption ξ N

B ∈ Ĩ yields

N = x +
n∑

i=k+k̃

(ε
(1)
i t (1)i + η

(1)
i l(1)i )(−S1β1)

i ,

and we have

|R1| ≤ max{|τ (1)1 |, |τ (1)1 + (L1 + S1 − 2)λ(1)1 |} |−S1β1|k̃
1 − S1β1

.

A similar inequality also holds for |R2|. Now, we choose k̃ sufficiently large such that

|−S1β1|k̃ < 1 − ε

|c1|4q max{|τ (1)1 |, |τ (1)1 + (L1 + S1 − 2)λ(1)1 |}
(1 − S1β1)
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in case of |c1| �= 0 and k̃ = 0 otherwise. Similarly, we choose m̃ sufficiently large such that

|−S2β2|m̃ < 1 − ε

|c2|4q max{|τ (2)1 |, |τ (2)1 + (L2 + S2 − 2)λ(2)1 |}
(1 − S2β2)

in case of |c2| �= 0 and m̃ = 0 otherwise. With this choice of k̃ and m̃, we obtain

|R̃| < 1 − ε

2q
,

which together with (14) implies that the right side of (13) is an odd integer plus something
< 1 in absolute values. Consequently, (11) does not have any solution A1, A2. However, since
(11) followed from our assumptions, this means that we have a contradiction. Consequently,
it is not possible that ξ N

B ∈ Ĩ for any N , which means that Ĩ does not contain any point of
(ξn

B)n∈N. This completes the proof of Theorem 1.
We continue with the proof of Theorem 2. Let b = gcd(L1, S1, L2, S2) > 1 and

let t (1)n , l(1)n , t (2)n , l(2)n be defined as in the proof of Theorem 1. Note that b divides
t (1)n , l(1)n , t (2)n , l(2)n for all n ≥ 1. Now, consider the interval I = [0, β1)×[β2, 2β2). Note that
2β2 < 1 since by gcd(L1, S1, L2, S2) > 1, it follows that L2 ≥ 2. It follows from Lemma 5
that we can write every N1 for which ξ N1

L1,S1
∈ [0, β1) as N1 = 0 + A1t (1)1 + B1l(1)1 and

every N2 for which ξ N2
L2,S2

∈ [β2, 2β2) as N2 = 1 + A2t (2)1 + B2l(2)1 for appropriate integers
A1, B1, A2, B2. Hence, we obtain for every N1, N2 that N1 ≡ 0 mod b and N2 ≡ 1 mod b,
respectively. Consequently, no point of the two-dimensional LS-sequence can be contained
in I . This proves Theorem 2.
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