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Abstract In this paper, a class of an autonomous epidemic predator–prey model with delay
is considered. Its linear stability and Hopf bifurcation are investigated. Applying the normal
form theory and center manifold theory, the explicit formulas for determining the stability
and the direction of the Hopf bifurcation periodic solutions are derived. Some numerical sim-
ulations for justifying the theoretical analysis are also provided. Finally, main conclusions
are included.
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1 Introduction

After the seminal work of Volterra and Lotka in the mid-1920s, the dynamics properties
(including stable, unstable, persistent, and oscillatory behavior) of the predator–prey models
that have significant biological background have been one of the most active areas of research
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and have attracted great attention of many researchers. Many excellent and interesting results
have been obtained [4–6,10,12–14,18].

In 2009, Tian et al. [17] investigated the periodic and almost periodic solution of the
following non-autonomous epidemic predator–prey system with time delay:

⎧
⎨

⎩

Ẋ(t) = X (t)[r1(t)− a(t)X (t)− b1(t)S(t)− b2(t)I (t)],
Ṡ(t) = c(t)X (t − τ)S(t − τ)+ S(t)[−r2(t)− d1(t)(S(t)+ I (t))− e(t)I (t)],
İ (t) = I (t)[e(t)S(t)− d2(t)(S(t)+ I (t))],

(1.1)

where X (t) denotes the density of the prey, S(t) and I (t) denote the density of the suscep-
tible predator and the infected predator, respectively; ri (t)(i = 1, 2) denotes the intrinsic
rate of natural increase, and the minus before r2(t) means that the susceptible predator is
dependent on the prey, that is, if there is no prey, then the predator will be extinct. a(t)
means coefficient of the density dependence, di (t)(i = 1, 2) means the competitive coef-
ficient between the predator, bi (t)(i = 1, 2) means the preying capacity for the suscepti-
ble and the infected predator, c(t) means the relative preying capacity of the susceptible
predator, e(t) means the touching rate between the susceptible predator and the infected
predator, while τ > 0 is the time required for the gestation of the susceptible predator.
a(t), bi (t), c(t), di (t), e(t), ri (t)(i = 1, 2) are continuous and strictly positive functions.

It is well known that the research on the Hopf bifurcation, especially on the stability of
bifurcating periodic solutions and direction of Hopf bifurcation, is one of the most important
theme on the population dynamics. To obtain a deep and clear understanding of dynamics
of predator–prey system with time delay, In the present paper, we go no to investigate the
model (1.1) under the following assumptions: the coefficients are independent of the time
of t , that is, ri (t) = ri , bi (t) = bi , di (t) = di (i = 1, 2), a(t) = a, c(t) = c, e(t) = e,
and ri , bi , di , a, c, e(i = 1, 2) are all positive constants. Further, considering the biological
meaning of model (1.1), we think that the coefficient e(t) in the second equation and the coef-
ficient e(t) in the third equation of model (1.1) shall be different. So we denote the coefficient
e(t) in the second equation and the coefficient e(t) in the third equation of model (1.1) by e1

and e2, respectively. Then, system (1.1) becomes the following autonomous predator–prey
system:

⎧
⎨

⎩

Ẋ(t) = X (t)[r1 − aX (t)− b1S(t)− b2 I (t)],
Ṡ(t) = cX (t − τ)S(t − τ)+ S(t)[−r2 − d1(S(t)+ I (t))− e1 I (t)],
İ (t) = I (t)[e2S(t)− d2(S(t)+ I (t))],

(1.2)

The more detail biological meaning of the coefficients of the system (1.2) is same as that in
[17].

In this paper, we study the stability, the local Hopf bifurcation for system (1.2). We would
like to mention that there are a lot of papers on the Hopf bifurcation of predator–prey models
[1,3,9,16,19–24]. To the best of our knowledge, it is the first time to deal with the research
of Hopf bifurcation for model (1.2). We believe that our results obtained in this paper are a
good complement to the earlier publications about model (1.1).

The remainder of the paper is organized as follows. In Sect. 2, we investigate the stability
of the positive equilibrium and the occurrence of local Hopf bifurcations. In Sect. 3, the
direction and stability of the local Hopf bifurcation are established. In Sect. 4, numerical
simulations are carried out to support analytical findings. Some main conclusions are drawn
in Sect. 5.

123



Bifurcation analysis of epidemic predator–prey model 25

2 Stability of the positive equilibrium and local Hopf bifurcations

In this section, we shall study the stability of the positive equilibrium and the existence of
local Hopf bifurcations.

It is easy to see that if the following condition:

(H1) 0 < K < r1, e1 > d1, e2 > d2

holds, where

K = r1[d1d2 + (d1 + e1)(e1 − d1)] + r2[b1d2 + b2(e2 − d2)]
a[d1d2 + (d1 + e1)(e1 − d1)] + c[b1d2 + b2(e2 − d2)] ,

then system (1.2) has an unique positive equilibrium E0(X∗, S∗, I ∗), where

X∗ = r1[d1d2 + (d1 + e1)(e1 − d1)] + r2[b1d2 + b2(e2 − d2)]
a[d1d2 + (d1 + e1)(e1 − d1)] + c[b1d2 + b2(e2 − d2)] ,

S∗ = d2(r1 − aX∗)
b1d2 + b2(e2 − d2)

, I ∗ = e2 − d2

d2
S∗. (2.1)

Let X̄(t) = X (t)− X∗, S̄(t) = S(t)− S∗, Ī (t) = I (t)− I ∗ and still denote X̄(t), S̄(t), Ī (t)
by X (t), S(t), I (t), respectively, then (1.2) becomes

⎧
⎪⎪⎨

⎪⎪⎩

Ẋ(t) = m1 X (t)+ m2S(t)+ m3 I (t)− aX2(t)− b1 X (t)S(t)− b2 X (t)I (t),
Ṡ(t) = n1S(t)+ n2 I (t)+ n3 X (t − τ)+ n4S(t − τ)

− d1S2(t)− (d1 + e1)S(t)I (t)+ cX (t − τ)S(t − τ),

İ (t) = l1S(t)+ l2 I (t)+ (e2 − d2)S(t)I (t)− d2 I 2(t),

(2.2)

where

m1 = r − 2aX∗ − b1S∗ − b2 I ∗, m2 = −b1 X∗,m3 = −b2 X∗,
n1 = − [

d1S∗ + r2 + d2(S
∗ + I ∗)+ e1 I ∗] , n2 = −(d1 + e1)S

∗,
n3 = cS∗, n4 = cX∗, l1 = e2 − d2, l2 = e2S∗ − 2d2 I ∗ − d2S∗.

The linearization of Eq. (2.2) at (0, 0, 0) is
⎧
⎨

⎩

Ẋ(t) = m1 X (t)+ m2S(t)+ m3 I (t),
Ṡ(t) = n1S(t)+ n2 I (t)+ n3 X (t − τ)+ n4S(t − τ),

İ (t) = l1S(t)+ l2 I (t)
(2.3)

whose characteristic equation is

λ3 + A1λ
2 + A2λ+ A3 − (

B1λ
2 + B2λ+ B3

)
e−λτ = 0, (2.4)

where

A1 = −(m1 + l2 + n1),

A2 = n1(m1 + l2)+ m1l2 − l1n2,

A3 = m1n2l1 − m1n1l2,

B1 = n4,

B2 = m2n3 − n4(m1 + l2),

B3 = m1l2n4 + m3n3l1 − m2n3l2.
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26 C. Xu, M. Liao

Denote

P(λ) = λ3 + A1λ
2 + A2λ+ A3, Q(λ) = −(B1λ

2 + B2λ+ B3).

Then, (2.4) takes the form

P(λ)+ Q(λ)e−λτ = 0. (2.5)

In order to investigate the distribution of roots of the transcendental equation (2.5), the fol-
lowing Lemma is useful.

Lemma 2.1 [15] For the transcendental equation

P
(
λ, e−λτ1 , . . . , e−λτm

) = λn + p(0)1 λn−1 + · · · + p(0)n−1λ+ p(0)n

+
[

p(1)1 λn−1 + · · · + p(1)n−1λ+ p(1)n

]
e−λτ1 + · · ·

+
[

p(m)1 λn−1 + · · · + p(m)n−1λ+ p(m)n

]
e−λτm = 0,

as (τ1, τ2, τ3, . . . , τm) vary, the sum of orders of the zeros of P(λ, e−λτ1 , . . . , e−λτm ) in the
open right half complex plane can change, if and only if a zero appears on or crosses the
imaginary axis.

For τ = 0, (2.5) becomes

λ3 + (A1 − B1)λ
2 + (A2 − B2)λ+ A3 − B3 = 0. (2.6)

A set of necessary and sufficient conditions for all roots of (2.6) to have a negative real part
is given by the well-known Routh–Hurwitz criteria in the following form:

(H2) (A1 − B1)(A2 − B2)− (A3 − B3) > 0, A3 − B3 > 0.

Assume that iω(ω > 0) is a root of (2.5). Following the line of Beretta and Kuang [2], ω
must be the solution of the system of equations:

⎧
⎨

⎩

sinωτ = Im
(

P(iω)
Q(iω)

)
,

cosωτ = −Re
(

P(iω)
Q(iω)

)
,

(2.7)

Namely, ω must be a positive root of the function

F(ω) = |P(iω)|2 − Q(iω)|2. (2.8)

We denote the root of F(ω) = 0 by ωk . Then, the characteristic roots λ = ±iωk occur at the
delay values

τ
( j)
k = θk + 2 jπ

ωk
, j = 0, 1, 2, . . . , (2.9)

where θk ∈ [0, 2π) is the solution of
⎧
⎨

⎩

sin θk = Im
(

P(iωk )
Q(iωk )

)
,

cos θk = −Re
(

P(iωk )
Q(iωk )

)
.

(2.10)

Define

τ0 = τ
(0)
k0 = min

k∈{1,2,3}

{
τ
(0)
k

}
, ω0 = ωk0. (2.11)
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Bifurcation analysis of epidemic predator–prey model 27

In view of (2.8), we have

ω6 + (
A2

1 − 2A2 − B2
1

)
ω4 + (

A2
2 − 2A1 A3 + 2B1 B3 − B2

2

)
ω2 + A2

3 − B2
3 = 0. (2.12)

Let z = ω2, then (2.13) become

z3 + r1z2 + r2z + r3 = 0, (2.13)

where

r1 = A2
1 − 2A2 − B2

1 ,

r2 = −A2
2 − 2A1 A3 + 2B1 B3 − B2

2 ,

r3 = A2
3 − B2

3 .

Denote

h(z) = z3 + r1z2 + r2z + r3 = 0, (2.14)

where r = r2 − 1
3r2

1 , q = 2
27r3

1 − 1
3r1r2 + r3. Then,

h
′
(z) = 3z2 + 2r1z + r2. (2.15)

According to Beretta and Kuang [2], we derive

sign

[
d Reλ

dτ

∣
∣
∣
τ=τ ( j)

k

]

= sign

[
d F(ω)

dω

∣
∣
∣
ω=ωk

]

= sign[h ′
(zk)], (2.16)

where τ ( j)
k are the delay values (2.9) at which the characteristic rootsλ = ±iωk

(
ωk = √

zk >

0, k = 1, 2, 3) occur. We assume that

(H3) h
′
(zk) �= 0.

Without loss of generality, we assume that (2.14) has three distinct positive roots, say z1, z2, z3

such that

ω1 = √
z1 < ω2 = √

z2 < ω3 = √
z3.

Since limz→+∞ h(z) = +∞, the only possibility for the signs of h
′
(z) at the roots zk is that

h
′
(z1) > 0, h

′
(z2) < 0, h

′
(z3) > 0. In the following, we assume that the θk values are such

that

τ
(0)
3 = θ3

ω3
< τ

(0)
2 = θ2

ω2
< τ

(0)
1 = θ1

ω1
and τ

(0)
1 < τ

(1)
3 .

Then under the assumption (H3), it is easy to know that all the characteristic roots λ of (2.5)
have Reλ < 0 in the delay interval [0, τ0 = τ

(0)
3 ). Because of h

′
(z3) > 0, in the interval

(τ0 = τ
(0)
3 , τ

(0)
2 ) there will be two characteristic roots with positive real parts that, thanks

to h
′
(z2) < 0, will cross the imaginary axis toward negative real parts at τ (0)2 , whereas at

τ
(0)
1 , because of h

′
(z1) > 0, other two characteristic roots cross the imaginary axis assuming

positive real parts. Similar analysis to τ ( j)
3 , τ

( j)
2 , τ

( j)
1 , we have the following Theorem 2.1 by

the results of Kuang [11] and Hale [7].
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Theorem 2.1 If (H1) and (H2) hold, then the equilibrium E0(X∗, S∗, I ∗) of system (1.2)
is asymptotically stable for τ ∈ [0, τ0). In addition to the conditions (H1) and (H2), we fur-
ther assume that (H3) holds, then the positive equilibrium E0(X∗, S∗, I ∗) is asymptotically
stable when

[
0, τ (0)3

)
∪

(
τ
(0)
2 , τ

(0)
1

)

and unstable when
[
τ
(0)
3 , τ

(0)
2

)
∪

(
τ
(0)
1 ,+∞

)
.

The stability switches occur at τ (0)3 , τ
(0)
2 , τ

(0)
1 and system (1.2) undergoes a Hopf bifurcation

at the positive equilibrium E0(X∗, S∗, I ∗) when τ = τ
( j)
k , k = 1, 2, 3; j = 0, 1, 2, ldots.

3 Direction and stability of the Hopf bifurcation

In the previous section, we have obtained conditions for Hopf bifurcation to occur when
τ = τ

( j)
k , k = 1, 2, 3; j = 0, 1, 2, . . . . In this section, we shall derive the explicit formulae

for determining the direction, stability, and period of these periodic solutions bifurcating
from the positive equilibrium E0(X∗, S∗, I ∗) at these critical value of τ , by using techniques
from normal form and center manifold theory [8]. Throughout this section, we always assume
that system (1.2) undergoes Hopf bifurcation at the positive equilibrium E0(X∗, S∗, I ∗) for
τ = τ

( j)
k , k = 1, 2, 3; j = 0, 1, 2, . . . ., and then ±iω0 are corresponding purely imaginary

roots of the characteristic equation at the positive equilibrium E0(X∗, S∗, I ∗).
For convenience, let x1(t) = X (τ t), x2(t) = S(τ t), x3(t) = I (τ t), and τ = τ

( j)
k + μ,

where τ ( j)
k is defined by (2.10) and μ ∈ R, then system (2.2) can be written as an FDE in

C = C([−1, 0]), R3) as

ẋ(t) = Lμxt + f (μ, xt ), (3.1)

where x(t) = (x1(t), x2(t), x3(t))T ∈ C , and xt (θ) = x(t + θ) = (x1(t + θ), x2(t +
θ), x3(t + θ))T ∈ C , and Lμ : C → R, f : R × C → R are given by

Lμφ =
(
τ
( j)
k + μ

)
⎛

⎝
m1 m2 m3

0 n1 n2

0 l1 l2

⎞

⎠

⎛

⎝
φ1(0)
φ2(0)
φ3(0)

⎞

⎠

+
(
τ
( j)
k + μ

)
⎛

⎝
0 0 0
n3 n4 0
0 0 0

⎞

⎠

⎛

⎝
φ1(−1)
φ2(−1)
φ3(−1)

⎞

⎠ (3.2)

and

f (μ, φ) =
(
τ
( j)
k + μ

)

⎛

⎜
⎜
⎝

−aφ2
1(0)− b1φ1(0)φ2(0)− b2φ1(0)φ3(0)

−d1φ
2
2(0)− (d1 + e1)φ2(0)φ3(0)+ cφ1(−1)φ2(−1)

(e2 − d2)φ2(0)φ3(0)− d2φ
2
3(0)

⎞

⎟
⎟
⎠ , (3.3)

respectively, where φ(θ) = (φ1(θ), φ2(θ), φ3(θ))
T ∈ C.

From the discussion in Sect. 2, we know that if μ = 0, then system (3.1) undergoes a
Hopf bifurcation at the positive equilibrium E0(X∗, S∗, I ∗) and the associated characteristic
equation of system (3.1) has a pair of simple imaginary roots ±ω0τ

( j)
k .
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Bifurcation analysis of epidemic predator–prey model 29

By the representation theorem, there is a matrix function with bounded variation compo-
nents η(θ, μ), θ ∈ [−1, 0] such that

Lμφ =
0∫

−1

dη(θ, μ)φ(θ), for φ ∈ C. (3.4)

In fact, we can choose

η(θ, μ) =
(
τ
( j)
k + μ

)
⎛

⎝
m1 m2 m3

0 n1 n2

0 l1 l2

⎞

⎠ δ(θ)

+
(
τ
( j)
k + μ

)
⎛

⎝
0 0 0
n3 n4 0
0 0 0

⎞

⎠ δ(θ + 1), (3.5)

where δ is the Dirac delta function.
For φ ∈ C([−1, 0], R3), define

A(μ)φ =

⎧
⎪⎨

⎪⎩

dφ(θ)
dθ , −1 ≤ θ < 0,

0∫

−1
dη(s, μ)φ(s), θ = 0

(3.6)

and

Rφ =
{

0, −1 ≤ θ < 0,
f (μ, φ), θ = 0.

(3.7)

Then (3.1) is equivalent to the abstract differential equation

ẋt = A(μ)xt + R(μ)xt , (3.8)

where xt (θ) = x(t + θ), θ ∈ [−1, 0].
For ψ ∈ C([0, 1], (R3)∗), define

A∗ψ(s) =

⎧
⎪⎨

⎪⎩

− dψ(s)
ds , s ∈ (0, 1],

0∫

−1
dηT (t, 0)ψ(−t), s = 0.

For φ ∈ C([−1, 0], R3) and ψ ∈ C([0, 1], (R3)∗), define the bilinear form

〈ψ, φ〉 = ψ(0)φ(0)−
0∫

−1

θ∫

ξ=0

ψT (ξ − θ)dη(θ)φ(ξ)dξ,

where η(θ) = η(θ, 0), the A = A(0) and A∗ are adjoint operators. By the discussions in the
Sect. 2, we know that ±iω0τ

( j)
k are eigenvalues of A(0), and they are also eigenvalues of A∗

corresponding to iω0τ
( j)
k and −iω0τ

( j)
k respectively. By direct computation, we can obtain

q(θ) = (1, α, β)T eiω0τ
( j)
k θ , q∗(s) = M(1, α∗, β∗)eiω0τ

( j)
k s, M = 1

B
,

123
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where

α = β(iω0 − l2)

l1
,

β = (iω0 − m1)l1
m2(iω0 − l2)+ m3l1

,

α∗ = iω0 + m1

n3e−iω0τ
( j)
k

,

β∗ = n2(iω0 + m1)− m3n3e−iω0τ
( j)
k

n3(iω0 + l2)e−iω0τ
( j)
k

,

B = 1 + ᾱα∗ + β̄β∗ + τ
( j)
k ᾱ(n3α

∗ + n4β
∗)eiω0τ

( j)
k .

Furthermore, < q∗(s), q(θ) >= 1 and < q∗(s), q̄(θ) >= 0.
Next, we use the same notations as those in Hassard et al. [8] and we first compute the

coordinates to describe the center manifold C0 at μ = 0. Let xt be the solution of Eq. (3.8)
when μ = 0.

Define

z(t) = 〈q∗, xt 〉, W (t, θ) = xt (θ)− 2Re{z(t)q(θ)}. (3.9)

on the center manifold C0, and we have

W (t, θ) = W (z(t), z̄(t), θ), (3.10)

where

W (z(t), z̄(t), θ) = W (z, z̄) = W20(θ)
z2

2
+ W11(θ)zz̄ + W02(θ)

z̄2

2
+ · · · , (3.11)

where

W20(θ) =
⎛

⎜
⎝

W (1)
20 (θ)

W (2)
20 (θ)

W (3)
20 (θ)

⎞

⎟
⎠ , W11(θ) =

⎛

⎜
⎝

W (1)
11 (θ)

W (2)
11 (θ)

W (3)
11 (θ)

⎞

⎟
⎠ , W20(θ) =

⎛

⎜
⎝

W (1)
02 (θ)

W (2)
02 (θ)

W (3)
02 (θ)

⎞

⎟
⎠

and z and z̄ are local coordinates for center manifold C0 in the direction of q∗ and q̄∗. Noting
that W is also real if xt is real, we consider only real solutions. For solutions xt ∈ C0 of (3.8),

ż(t) = iω0τ
( j)
k z + q̄∗(θ) f (0,W (z, z̄, θ))+ 2Re{zq(θ)} def= iω0τ

( j)
k z + q̄∗(θ) f0.

That is

ż(t) = iω0τ
( j)
k z + g(z, z̄),

where

g(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2 z̄

2
+ · · · .
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Bifurcation analysis of epidemic predator–prey model 31

Hence, we have

g(z, z̄) = q̄∗(0) f0(z, z̄) = f (0, xt )

= M̄τ ( j)
k

{

− (a + b1α + b2β)+ ᾱ∗ [
d1 + (d1 + e1)αβ + cαe−2iω0τ

( j)
k

]

+β̄∗ [
(e2 − d2)αβ − d2β

2]
}

z2 + 2M̄τ ( j)
k

{

a + b1 Re{α} + b2 Re{β}

+ᾱ∗ [d2 + (d1 + e1)Re{ᾱβ} + cRe{α}] + β̄∗ [
(e2 − d2)Re{ᾱβ} + d2|β|2]

}

zz̄

+M̄τ ( j)
k

{

a + b1ᾱ + b2β̄ + ᾱ∗ [
d1+(d1 + e1)ᾱβ̄ + cᾱe−2iω0τ

( j)
k

]
+β̄∗ [(e2−d2)

×ᾱβ̄ + d2β̄
2]

}

z̄2 + M̄τ ( j)
k

{

a
[
W (1)

20 (0)+ 2W (1)
11 (0)

]
+ b1

[
1

2
ᾱW (1)

20 (0)

+1

2
W (2)

20 (0)+ αW (3)
11 (0)+ W (2)

11 (0)

]

+ b2

[
1

2
β̄W (3)

20 (0)+ 1

2
W (3)

20 (0)

+βW (1)
11 (0)+ W (3)

11 (0)
]

+ ᾱ∗ [
d1

(
W (1)

20 (0)+ 2W (1)
11 (0)

)
+ (d1 + e1)

(
1

2
β̄W (2)

20 (0)+ 1

2
ᾱW (3)

20 (0)+ βW (2)
11 (0) +αW (3)

11 (0)
)

+c

(
1

2
ᾱeiω0τ

( j)
k W (1)

20 (−1)+ 1

2
eiω0τ

( j)
k W (2)

20 (−1)+ αeiω0τ
( j)
k W (1)

11 (−1)

+e−iω0τ
( j)
k W (2)

11 (−1)
)]

+ β̄∗
[

(e2 − d2)

(
1

2
β̄W (2)

20 (0)+ 1

2
ᾱW (3)

20 (0)βW (2)
11 (0)

+αW (3)
11 (0)

)
+ d2

(
β̄W (3)

20 (0)+ 2βW (3)
11 (0)

)]}

z2 z̄ + h.o.t.

and we obtain

g20 = 2M̄τ ( j)
k

{

− (a + b1α + b2β)+ ᾱ∗ [
d1 + (d1 + e1)αβ + cαe−2iω0τ

( j)
k

]

+β̄∗ [
(e2 − d2)αβ − d2β

2] ,

g11 = 2M̄τ ( j)
k

{

a + b1 Re{α} + b2 Re{β} + ᾱ∗ [d2 + (d1 + e1)Re{ᾱβ} + cRe{α}]

+β̄∗ [
(e2 − d2)Re{ᾱβ} + d2|β|2]

}

,

g02 = 2M̄τ ( j)
k

{

a + b1ᾱ + b2β̄ + ᾱ∗
[
d1 + (d1 + e1)ᾱβ̄ + cᾱe−2iω0τ

( j)
k

]
+ β̄∗ [(e2 − d2)

×ᾱβ̄ + d2β̄
2]

}

,

g21 = 2M̄τ ( j)
k

{

a
[
W (1)

20 (0)+ 2W (1)
11 (0)

]
+ b1

[
1

2
ᾱW (1)

20 (0)+ 1

2
W (2)

20 (0)

+αW (3)
11 (0)+ W (2)

11 (0)
]

+ b2

[
1

2
β̄W (3)

20 (0)+ 1

2
W (3)

20 (0)+ βW (1)
11 (0)+ W (3)

11 (0)

]
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+ᾱ∗
[

d1

(
W (1)

20 (0)+ 2W (1)
11 (0)

)
+ (d1 + e1)

(
1

2
β̄W (2)

20 (0)+ 1

2
ᾱW (3)

20 (0)+ βW (2)
11 (0)

+αW (3)
11 (0)

)
+ c

(
1

2
ᾱeiω0τ

( j)
k W (1)

20 (−1)+ 1

2
eiω0τ

( j)
k W (2)

20 (−1)+ αeiω0τ
( j)
k W (1)

11 (−1)

+e−iω0τ
( j)
k W (2)

11 (−1)
)]

+ β̄∗
[

(e2 − d2)

(
1

2
β̄W (2)

20 (0)+ 1

2
ᾱW (3)

20 (0)βW (2)
11 (0)

+αW (3)
11 (0)

)
+ d2

(
β̄W (3)

20 (0)+ 2βW (3)
11 (0)

)] }

.

For unknown W (i)
20 (0),W (i)

11 (0),W ( j)
20 (−1),W ( j)

11 (−1), (i = 1, 2, 3; j = 1, 2) in g21, we
still need to compute them.

From (3.8) and (3.9), we have

W
′ =

{
AW − 2Re{q̄∗(0) f̄ q(θ)}, −1 ≤ θ < 0,
AW − 2Re{q̄∗(0) f̄ q(θ)} + f, θ = 0

def= AW + H(z, z̄, θ), (3.12)

where

H(z, z̄, θ) = H20(θ)
z2

2
+ H11(θ)zz̄ + H02(θ)

z̄2

2
+ · · · . (3.13)

Comparing the coefficients, we obtain
(

A − 2iτ ( j)
k ω0

)
W20 = −H20(θ), (3.14)

AW11(θ) = −H11(θ). (3.15)

We know that for θ ∈ [−1, 0),

H(z, z̄, θ) = −q̄∗(0) f0q(θ)− q∗(0) f̄0q̄(θ) = −g(z, z̄)q(θ)− ḡ(z, z̄)q̄(θ). (3.16)

Comparing the coefficients of (3.16) with (3.13) gives that

H20(θ) = −g20q(θ)− ḡ02q̄(θ). (3.17)

H11(θ) = −g11q(θ)− ḡ11q̄(θ). (3.18)

From (3.14, 3.17) and the definition of A , we get

Ẇ20(θ) = 2iω0τ
( j)
k W20(θ)+ g20q(θ)+ ¯g02q̄(θ). (3.19)

Noting that q(θ) = q(0)eiω0τ
( j)
k θ , we have

W20(θ) = ig20

ω0τ
( j)
k

q(0)eiω0τ
( j)
k θ + i ḡ02

3ω0τ
( j)
k

q̄(0)e−iω0τ
( j)
k θ + E1e2iω0τ

( j)
k θ , (3.20)

where E1 =
(

E (1)1 , E (2)1 , E (3)1

)T ∈ R3 is a constant vector.

Similarly, from (3.15, 3.18) and the definition of A, we have

Ẇ11(θ) = g11q(θ)+ ¯g11q̄(θ), (3.21)

W11(θ) = − ig11

ω0τ
( j)
k

q(0)eiω0τ
( j)
k θ + i ḡ11

ω0τ
( j)
k

q̄(0)e−iω0τ
( j)
k θ + E2. (3.22)

where E2 =
(

E (1)2 , E (2)2 , E (3)2

)T ∈ R3 is a constant vector.
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In what follows, we shall seek appropriate E1,E2 in (3.20, 3.22), respectively. It follows
from the definition of A, (3.17) and (3.18) that

0∫

−1

dη(θ)W20(θ) = 2iω0τ
( j)
k W20(0)− H20(0) (3.23)

and
0∫

−1

dη(θ)W11(θ) = −H11(0), (3.24)

where η(θ) = η(0, θ).
From (3.12), we have

H20(0) = −g20q(0)− ¯g02q̄(0)+ 2τ ( j)
k (H1, H2, H3)

T , (3.25)

H11(0) = −g11q(0)− ¯g11(0)q̄(0)+ 2τ ( j)
k (P1, P2, P3)

T , (3.26)

where

H1 = −(a + b1α + b2β),

H2 = −
[
d1 + (d1 + e1)αβ + cαe−2iω0τ

( j)
k

]
,

H3 = (e2 − d2)αβ − d2β
2,

P1 = a + b1 Re{α} + b2 Re{β},
P2 = d1 + (d1 + e1)Re{ᾱβ} + cRe{α},
P3 = (e2 − d2)Re{ᾱβ} + d2|β|2.

Noting that
⎛

⎝iω0τ
( j)
k I −

0∫

−1

eiω0τ
( j)
k θdη(θ)

⎞

⎠ q(0) = 0,

⎛

⎝−iω0τ
( j)
k I −

0∫

−1

e−iω0τ
( j)
k θdη(θ)

⎞

⎠ q̄(0) = 0

and substituting (3.20) and (3.25) into (3.23), we have
⎛

⎝2iω0τ
( j)
k I −

0∫

−1

e2iω0τ
( j)
k θdη(θ)

⎞

⎠ E1 = 2τ ( j)
k (H1, H2, H3)

T .

That is
⎛

⎝

2iω0 − m1 −m2 −m3

−n3e−2iω0τ
( j)
k 2iω0 − n1 − n4e−2iω0τ

( j)
k −n2

0 −l1 2iω0 − l2

⎞

⎠ E1 = 2(H1, H2, H3)
T .

It follows that

E (1)1 = �11

�1
, E (2)1 = �12

�1
, E (3)1 = �13

�1
, (3.27)
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where

�1 = det

⎛

⎝

2iω0 − m1 −m2 −m3

−n3e−2iω0τ
( j)
k 2iω0 − n1 − n4e−2iω0τ

( j)
k −n2

0 −l1 2iω0 − l2

⎞

⎠ ,

�11 = 2 det

⎛

⎝

H1 −m2 −m3

H2 2iω0 − n1 − n4e−2iω0τ
( j)
k −n2

H3 −l1 2iω0 − l2

⎞

⎠ ,

�12 = 2 det

⎛

⎝

2iω0 − m1 H1 −m3

−n3e−2iω0τ
( j)
k H2 −n2

0 H3 2iω0 − l2

⎞

⎠ ,

�13 = 2 det

⎛

⎝

2iω0 − m1 −m2 H1

−n3e−2iω0τ
( j)
k 2iω0 − n1 − n4e−2iω0τ

( j)
k H2

0 −l1 H3

⎞

⎠ .

Similarly, substituting (3.21) and (3.26) into (3.24), we have

⎛

⎝

0∫

−1

dη(θ)

⎞

⎠ E2 = 2τ ( j)
k (P1, P2, P3)

T , .

That is

⎛

⎝
m1 m2 m3

n3 n1 + n4 n2

0 l1 l2

⎞

⎠ E2 = 2(−P1,−P2,−P3)
T .

It follows that

E (1)2 = �21

�2
, E (2)2 = �22

�2
, E (3)2 = �23

�2
, (3.28)

where

�2 = det

⎛

⎝
m1 m2 m3

n3 n1 + n4 n2

0 l1 l2

⎞

⎠ ,

�21 = 2 det

⎛

⎝
−P1 m2 m3

−P2 n1 + n4 n2

−P3 l1 l2

⎞

⎠ ,

�22 = 2 det

⎛

⎝
m1 −P1 m3

n3 −P2 n2

0 −P3 l2

⎞

⎠ ,

�23 = 2 det

⎛

⎝
m1 m2 −P1

n3 n1 + n4 −P2

0 l1 −P3

⎞

⎠ .

123



Bifurcation analysis of epidemic predator–prey model 35

From (3.20,3.22,3.27) and (3.28), we can calculate g21 and derive the following values:

c1(0) = i

2ω0τ
( j)
k

(

g20g11 − 2|g11|2 − |g02|2
3

)

+ g21

2
,

μ2 = − Re{c1(0)}
Re

{
λ

′
(τ
( j)
k )

} ,

β2 = 2Re(c1(0)),

T2 = −
Im{c1(0)} + μ2Im

{
λ

′
(τ
( j)
k )

}

ω0τ
( j)
k

.

These formulaes give a description of the Hopf bifurcation periodic solutions of (3.1) at
τ = τ

( j)
k , (k = 1, 2, 3; j = 0, 2, 3, . . .) on the center manifold. From the discussion above,

we have the following result:

Theorem 3.1 The periodic solution is supercritical (subcritical) if μ2 > 0(μ2 < 0); the
bifurcating periodic solutions are orbitally asymptotically stable with asymptotical phase
(unstable) if β2 < 0(β2 > 0); the periods of the bifurcating periodic solutions increase
(decrease) if T2 > 0(T2 < 0).

Remark 3.2 A τT -periodic solution of (3.1) is a T -periodic solution of (2.2).

4 Numerical examples

In this section, we present some numerical results of system (1.2) to verify the analytical
predictions obtained in the previous section. From Sect. 3, we may determine the direction
of a Hopf bifurcation and the stability of the bifurcation periodic solutions. Let us consider
the following system:

⎧
⎪⎨

⎪⎩

Ẋ(t) = X (t)[2 − 0.5X (t)− 0.6S(t)− 0.82I (t)],
Ṡ(t) = 2X (t − τ)S(t − τ)+ S(t)[−3 − 0.4(S(t)+ I (t))+ 0.9I (t)],
İ (t) = I (t)[4S(t)− 2(S(t)+ I (t))],

(4.1)

which has a positive equilibrium E0(X∗, S∗, I ∗) ≈ (1.4559, 0.8818, 0.8818) and sat-
isfies the conditions indicated in Theorem 2.1. When τ = 0, the positive equilibrium
E0 ≈ (1.4559, 0.8818, 0.8818) is asymptotically stable. Take j = 0, for example, by
some complicated computation by means of Matlab 7.0, we get ω0 ≈ 0.8940, τ0 ≈
0.2551, λ

′
(τ0) ≈ 1.0038 − 6.7531i. Thus, we can calculate the following values:

c1(0) ≈ −2.1230 − 6.1422i, μ2 ≈ 2.1150, β2 ≈ −4.2460, T2 ≈ 89.5441.

Furthermore, it follows that μ2 > 0 and β2 < 0. Thus, the positive equilibrium E0 ≈
(1.4559, 0.8818, 0.8818) is stable when τ < τ0 as is illustrated by the computer simulations
(see Fig. 1). When τ passes through the critical value τ0, the positive equilibrium E0 ≈
(1.4559, 0.8818, 0.8818) loses its stability and a Hopf bifurcation occurs, that is, a family of
periodic solutions bifurcate from the positive equilibrium E0 ≈ (1.4559, 0.8818, 0.8818).
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Fig. 1 Behavior and phase portrait of system (4.1) with τ = 0.08 < τ0 ≈ 0.2551. The positive equilibrium
E0 ≈ (1.4559, 0.8818, 0.8818) is asymptotically stable. The initial value is (0.5,0.5,0.5)

Since μ2 > 0 and β2 < 0, the direction of the Hopf bifurcation is τ > τ0, and these bifur-
cating periodic solutions from E0 ≈ (1.4559, 0.8818, 0.8818) at τ0 are stable, which are
depicted in Fig. 2.

5 Conclusions

In this paper, we have investigated local stability of the positive equilibrium E0(X∗, S∗, I ∗)
and local Hopf bifurcation in an autonomous epidemic predator–prey model with delay.
We have showed that if the conditions (H1) and (H2) hold, the positive equilibrium
E0(X∗, S∗, I ∗) of system (1.2) is asymptotically stable for all τ ∈ [0, τ0). This means
that the density of the prey, the density of the susceptible predator and the infected pred-
ator will tend to be stable, that is, the density of the prey, the density of the susceptible
predator and the infected predator will tend to X∗, S∗, I ∗, respectively, for all τ ∈ [0, τ0).
Under the conditions (H1) and (H2), if the condition (H3) holds, as the delay τ increases,
the positive equilibrium loses its stability and a sequence of Hopf bifurcations occur at the
positive equilibrium E0(X∗, S∗, I ∗), that is, a family of periodic orbits bifurcates from the
the positive equilibrium E0(X∗, S∗, I ∗). This shows that the density of the prey, the den-
sity of the susceptible predator and the infected predator may keep in an oscillatory mode
near the positive equilibrium E0(X∗, S∗, I ∗). Applying the normal form theory and the cen-
ter manifold theorem, the direction of Hopf bifurcation and the stability of the bifurcating
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Fig. 2 Behavior and phase portrait of system (4.1) with τ = 0.3 > τ0 ≈ 0.2551. Hopf bifurcation occurs
from the positive equilibrium E0 ≈ (1.4559, 0.8818, 0.8818). The initial value is (0.5,0.5,0.5)

periodic orbits are discussed. A numerical example verifying our theoretical results is also
included.

References

1. Bairagi, N., Jana, D.: On the stability and Hopf bifurcation of a delay-induced predator-prey system with
habitat complexity. Appl. Math. Model. 35(7), 3255–3267 (2011)

2. Beretta, E., Kuang, Y.: Geometric stability switch criteria in delay differential system with delay dependent
parameters. SIAM J. Math. Anal. 33(5), 1144–1165 (2002)

3. Chakraborty, K., Chakraborty, M., Kar, T.K.: Bifurcation and control of a bioeconomic model of a prey-
predator system with a time delay. Nonlinear Anal. Hybrid Syst. 5(4), 613–625 (2011)

4. Das, K.P., Kundu, K., Chattopadhyay, J.: A predator-prey mathematical model with both the populations
affected by diseases. Ecol. Complex. 8(1), 68–80 (2011)

5. Duque, C., Lizana, M.: On the dynamics of a predator-prey model with nonconstant death rate and
diffusion. Nonlinear Anal. Real World Appl. 12(4), 2198–2210 (2011)

6. Duque, C., Lizana, M.: Stable periodic traveling waves for a predator-prey model with non-constant death
rate and delay. Appl. Math. Comput. 217(23), 9717–9722 (2011)

7. Hale, J.: Theory of Functional Differential Equation. Springer, Berlin (1977)
8. Hassard, B., Kazarino, D., Wan, Y.: Theory and Applications of Hopf Bifurcation. Cambridge University

Press, Cambridge (1981)
9. Kar, T.K., Ghorai, A.: Dynamic behaviour of a delayed predator-prey model with harvesting. Appl. Math.

Comput. 217(22), 9085–9104 (2011)
10. Ko, W., Ryu, K.: Analysis of diffusive two-competing-prey and one-predator systems with Beddington-

Deangelis functional response. Nonlinear Anal. Theory Methods Appl. 71(9), 4185–4202 (2009)

123



38 C. Xu, M. Liao

11. Kuang, Y.: Delay Differential Equations with Applications in Populations Dynamics. Academic Press,
INC, Massachusetts (1993)

12. Kuang, Y., Takeuchi, Y.: Predator-prey dynamics in models of prey dispersal in two-patch environ-
ments. Math. Biosci. 120(1), 77–98 (1994)

13. Li, B., Wang, M.X.: Stationary patterns of the stage-structured predator- prey model with diffusion and
cross-diffusion. Math. Comput. Model. 54(5–6), 1380–1393 (2011)

14. Oeda, K.: Effect of cross-diffusion on the stationary problem of a prey-predator model with a protection
zone. J Differ. Equ. 250(10), 3988–4009 (2011)

15. Ruan, S.G., Wei, J.J.: On the zero of some transcendential functions with applications to stability of delay
differential equations with two delays. Dyn. Contin. Discret. Impuls. Syst. Ser. A 10(2), 863–874 (2003)

16. Song, Y.L., Wei, J.J.: Local Hopf bifurcation and global existence of periodic solutions in a delayed
predator-prey system. J. Math. Anal. Appl. 301(1), 1–21 (2005)

17. Tian, B.D., Qiu, Y.H., Chen, N.: Periodic and almost periodic solution for a non-autonomous epidemic
predator-prey system with time-delay. Appl. Math. Comput. 215(2), 779–790 (2009)

18. Vayenas, D.V., Aggelis, G., Tsagou, V., Pavlou, S.: Dynamics of a two-prey-one-predator system with
predator switching regulated by a catabolic repression control-like mode. Ecol. Model. 186(3), 345–
357 (2005)

19. Xu, C.J., Liao, M.X., He, X.F.: Stability and Hopf bifurcation analysis for a Lokta-Volterra predator-prey
model with two delays. Int. J. Appl. Math. Comput. Sci. 21(1), 97–107 (2011)

20. Xu, C.J., Tang, X.H., Liao, M.X.: Stability and bifurcation analysis of a delayed predator-prey model of
prey dispersal in two-patch environments. Appl. Math. Comput. 216(10), 2920–2936 (2010)

21. Xu, C.J., Tang, X.H., Liao, M.X., He, X.F.: Bifurcation analysis in a delayed Lokta-Volterra predator-prey
model with two delays. Nonlinear Dyn. 66(1–2), 169–183 (2011)

22. Xu, R., Ma, Z.E.: Stability and Hopf bifurcation in a ratio-dependent predator-prey system with stage
structure. Chaos Solitons Fract. 38(3), 669–684 (2008)

23. Yan, X.P., Zhang, C.H.: Hopf bifurcation in a delayed Lokta-Volterra predator-prey system. Nonlinear
Anal. Real World Appl. 9(1), 114–127 (2008)

24. Zhou, X.Y., Shi, X.Y., Song, X.Y.: Analysis of non-autonomous predator-prey model with nonlinear
diffusion and time delay. Appl. Math. Comput. 196(1), 129–136 (2008)

123


	Bifurcation analysis of an autonomous epidemic predator--prey model with delay
	Abstract
	1 Introduction
	2 Stability of the positive equilibrium and local Hopf bifurcations 
	3 Direction and stability of the Hopf bifurcation
	4 Numerical examples
	5 Conclusions
	References


