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Abstract In this paper, we establish new characterizations of totally geodesic spacelike
hypersurfaces immersed in a generalized Robertson–Walker spacetime, which is supposed to
obey the null convergence condition. As applications, we get nonparametric results concern-
ing to entire maximal vertical graphs in a such ambient spacetime. Proceeding, we obtain a
lower estimate of the index of relative nullity of complete r -maximal spacelike hypersurfaces
immersed in Robertson–Walker spacetimes of constant sectional curvature. In particular, we
prove a sort of weak extension of the classical Calabi–Bernstein theorem.
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1 Introduction

Spacelike hypersurfaces immersed with constant mean curvature in a Lorentzian manifold
are objects worthy of a big amount of interest, from both physical and mathematical points
of view. In particular, the study of maximal spacelike hypersurfaces (that is, with zero
mean curvature) immersed in Lorentzian manifolds is an important topic in the theory of
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semi-Riemannian geometry. This is justified, for instance, by the fact that they are solutions
of questions concerning existence and uniqueness of hypersurfaces, as the Calabi–Bernstein-
type results.

In [19], Ishihara showed that the only complete maximal spacelike hypersurfaces
immersed in a Lorentz manifold with nonnegative constant curvature are the totally geodesic
ones. For the case of ambient spacetimes with negative constant curvature, he obtained a sharp
estimate for the norm of the second fundamental form of a maximal spacelike hypersurface.

More recently, the first author jointly with Camargo has obtained in [12] rigidity results
for complete maximal spacelike hypersurfaces in the anti-de Sitter space, imposing suitable
conditions on both the norm of the second fundamental form and a certain height function
naturally attached to the hypersurface.

In this paper, we are interested in the study of complete maximal spacelike hypersurfaces
immersed in generalized Robertson–Walker (GRW) spacetimes. By GRW spacetimes, we
mean Lorentzian warped products−I× f Mn with Riemannian fiber Mn and warping function
f . In particular, when the Riemannian fiber Mn has constant sectional curvature, then −I × f

Mn is classically called a Robertson–Walker (RW) spacetime (for the details, see Sect. 2).
Many authors have approached problems in this subject. We may cite, for instance, the

works [9,10] and [25], where Romero et al. have obtained rigidity and uniqueness results for
the spacelike slices and complete maximal surfaces immersed in three-dimensional GRW
spacetimes obeying either the null convergence condition or the timelike convergence con-
dition. Let us recall that a spacetime obeys the null (time) convergence condition if its Ricci
curvature is nonnegative on null or lightlike (timelike) directions.

Related to the compact case, Alías et al. [6] proved that in a GRW spacetime satisfying
the timelike convergence condition, every compact spacelike hypersurface of constant mean
curvature must be totally umbilical. In this setting, they also showed how their result solves
a certain Bernstein-type problem. Later on, Alías and Colares [4] studied the problem of
uniqueness for compact spacelike hypersurfaces immersed with constant higher-order mean
curvature in GRW spacetimes. In order to establish one of their main results (cf. Theorem 9.2
of [4]), they supposed that the ambient spacetime obeys a new notion of convergence condi-
tion, the so-called strong null convergence condition that corresponds to a suitable restriction
on the sectional curvature of the Riemannian fiber of the GRW spacetime.

Here, we deal with complete noncompact maximal spacelike hypersurfaces immersed in a
GRW spacetime. In this setting, by assuming that the ambient spacetime obeys the null con-
vergence condition, we obtain the following characterization of the totally geodesic spacelike
hypersurfaces of such spacetime (cf. Theorem 4.6; see also Theorem 4.3, where we assume
that the ambient spacetime obeys the strong null convergence condition):

Let �n be a complete maximal spacelike hypersurface contained in a timelike bounded
region of a GRW spacetime which obeys the null convergence condition. Suppose that the
second fundamental form of �n is bounded. If the gradient of the height function of �n has
Lebesgue integrable norm, then �n is totally geodesic.

Our approach is based on a maximum principle at the infinity due to Yau in [27] (cf.
Lemma 4.5). Moreover, in order to prove the result just stated above, a key assumption on
the maximal spacelike hypersurface is that it is contained in a timelike bounded region of the
ambient spacetime. Compared with compactness, such hypothesis is a weaker condition.

In Sect. 5, we also establish nonparametric results concerning to entire maximal vertical
graphs in such ambient spacetime (cf. Corollaries 5.1 and 5.2).

Concerning the case of the higher-order mean curvatures, we obtain a lower estimate of
the index of relative nullity of complete r -maximal spacelike hypersurfaces (that is, with zero
(r +1)-th mean curvature) in a RW spacetime (cf. Theorem 6.2). Furthermore, using the ideas

123



On the geometry of maximal spacelike hypersurfaces 651

developed by Caminha in [13], we obtain the following weak extension of the Cheng–Yau
theorem in [15] (cf. Theorem 6.5):

Let �n be a complete spacelike hypersurface immersed in a static RW spacetime of con-
stant sectional curvature, with bounded second fundamental form. Suppose that the (r +1)-th
and (r + 2)-th mean curvatures of �n do not change sign. If the gradient of the height func-
tion of �n has Lebesgue integrable norm, then its index of relative nullity is at least n − r .
Moreover, if the ambient spacetime is the Minkowski space L

n+1, then through every point
of �n, there passes an (n − r)-hyperplane of L

n+1 totally contained in �n.

2 Generalized Robertson–Walker spacetimes

In this section, we introduce some basic notations and facts that will appear along the paper.

In what follows, if M
n+1

is a connected semi-Riemannian manifold with metric g = 〈 , 〉,
let D(M) denote the ring of smooth functions φ : M

n+1 → R, and X(M), the algebra of

smooth vector fields on M
n+1

. We also write ∇ for the Levi–Civita connection of M
n+1

.
Let Mn be a connected, n-dimensional (n ≥ 2) oriented Riemannian manifold; I ⊆ R, a

1-dimensional manifold (either a circle or an open interval of R); and f : I → R, a positive

smooth function. In the product differentiable manifold M
n+1 = I × Mn , let πI and πM

denote the projections onto the factors I and Mn , respectively.
A particular class of Lorentzian manifolds (spacetimes) is the one obtained by furnishing

M
n+1

with the metric

〈v,w〉p = −〈(πI )∗v, (πI )∗w〉 + ( f ◦ πI ) (p)
2〈(πM )∗v, (πM )∗w〉,

for all p ∈ M
n+1

and all v,w ∈ Tp M . Following the terminology introduced in [6], such a
space is called a generalized Robertson–Walker (GRW) spacetime, f is known as the warp-

ing function, and we shall write M
n+1 = −I × f Mn to denote it. In particular, when the

Riemannian fiber Mn has constant sectional curvature, then −I × f Mn is classically called
a Robertson–Walker (RW) spacetime, and it is a spatially homogeneous spacetime (cf. [22]).

Remark 2.1 As it was observed in [5], we note that spatial homogeneity, which is reason-
able as a first approximation of the large-scale structure of the universe, may not be realistic
when one considers a more accurate scale. For that reason, GRW spacetimes could be suit-
able spacetimes to model universes with inhomogeneous spacelike geometry. Besides, small
deformations of the metric on the fiber of RW spacetimes fit into the class of GRW spacetimes
(see, for instance, [18] and [24]).

It follows from Proposition 7.42 of [22] that a GRW spacetime −I × f Mn has constant
sectional curvature κ if, and only if, its Riemannian fiber Mn has constant sectional curvature
κ (that is, −I × f Mn is in fact a RW spacetime) and the warping function f satisfies the
following differential equations

f ′′

f
= κ =

(
f ′)2 + κ

f 2 . (2.1)

From now on, we deal with spacelike hypersurfaces immersed in a GRW spacetime. We
recall that a smooth immersion ψ : �n → −I × f Mn of an n-dimensional connected man-
ifold �n is said to be a spacelike hypersurface if the induced metric via ψ is a Riemannian
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metric on �n , which, as usual, is also denoted for 〈, 〉. In that case, since

∂t = (∂/∂t )(t,x) , (t, x) ∈ −I × f Mn,

is a unitary timelike vector field globally defined on the ambient spacetime, then there exists a
unique timelike unitary normal vector field N globally defined on the spacelike hypersurface
�n , which is in the same time orientation as ∂t . By using Cauchy–Schwarz inequality, we get

〈N , ∂t 〉 ≤ −1 < 0 on �n . (2.2)

We will refer to that normal vector field N as the future-pointing Gauss map of the space-
like hypersurface �n .

Let ∇ and ∇ denote the Levi–Civita connections in −I × f Mn and�n , respectively. Then,
the Gauss and Weingarten formulas for the spacelike hypersurface ψ : �n → −I × f Mn

are given, respectively, by

∇X Y = ∇X Y − 〈AX, Y 〉N (2.3)

and

AX = −∇X N , (2.4)

for every tangent vector fields X, Y ∈ X(�), where A : X(�) → X(�) stands for the shape
operator (or Weingarten endomorphism) of �n with respect to the future-pointing Gauss
map N .

As in [22], the curvature tensor R of the spacelike hypersurface �n is given by

R(X, Y )Z = ∇[X,Y ] Z − [∇X ,∇Y ]Z ,

where [ ] denotes the Lie bracket and X, Y, Z ∈ X(�).
A well-known fact is that the curvature tensor R of the spacelike hypersurface �n can

be described in terms of the shape operator A and the curvature tensor R of the ambient

spacetime M
n+1

by the so-called Gauss equation given by

R(X, Y )Z = (R(X, Y )Z) − 〈AX, Z〉AY + 〈AY, Z〉AX, (2.5)

for every tangent vector fields X, Y, Z ∈ X(�), where ( ) denotes the tangential component
of a vector field in X(M) along �n .

Associated with the shape operator A, there are n algebraic invariants given by

Sr (p) = σr (κ1(p), . . . , κn(p)) , 1 ≤ r ≤ n,

where σr : R
n → R is the elementary symmetric function in R

n given by

σr (x1, . . . , xn) =
∑

i1<···<ir

xi1 · · · xir

and κ1, . . . , κn are the principal curvatures of �n .
The r th mean curvature Hr of the spacelike hypersurface �n is then defined by

(
n

r

)
Hr = (−1)r Sr (κ1, . . . , κn) = Sr (−κ1, . . . ,−κn).

In particular, when r = 1, H1 = − 1

n

∑n

i=1
κi = − 1

n tr (A) = H is the mean curvature of

�n , which is the main extrinsic curvature of the hypersurface. The choice of the sign (−1)r

in the definition of Hr is justified by the fact that in this case, the mean curvature vector is
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given by
−→
H = H N and, therefore, H(p) > 0 at a point p ∈ �n if, and only if,

−→
H (p) is in

the same time orientation as N (p) (in the sense that 〈−→H , N 〉p < 0).
When r = 2, it follows from the Gauss equation that

H2 = R − R + 2

n(n − 1)
Ric(N , N ),

where R and R are, respectively, the normalized scalar curvatures of −I × f Mn and �n

and Ric stands for the Ricci tensor of the ambient GRW spacetime. In particular, when the
ambient GRW spacetime has constant sectional curvature κ , one gets that

R = κ − H2. (2.6)

For 0 ≤ r ≤ n, one defines the r th Newton transformation Pr on �n by setting P0 = I (the
identity operator) and, for 1 ≤ r ≤ n, via the recurrence relation

Pr = (−1)r Sr I + APr−1. (2.7)

A trivial induction shows that

Pr = (−1)r (Sr I − Sr−1 A + Sr−2 A2 − · · · + (−1)r Ar ),

so that Cayley–Hamilton theorem gives Pn = 0. Moreover, since Pr is a polynomial in A
for every r , it is also self-adjoint and commutes with A. Therefore, all bases of Tp� that
diagonalize A at p ∈ �n also diagonalize all of the Pr at p. Let {ek} be such a basis.

The following formulas hold (cf. [7], Lemma 2.1):

(a) tr(Pr ) = (n − r)
(n

r

)
Hr ;

(b) tr(APr ) = −(n − r)
(n

r

)
Hr+1;

(c) tr(A2 Pr ) = ( n
r+1

)
(nH1 Hr+1 − (n − r − 1)Hr+2).

Associated with each Newton transformation Pr , one has the second-order linear differ-
ential operator Lr : D(�) → D(�), given by

Lr ( f ) = tr(Pr ◦ Hess f ).

We observe, by taking a local orthonormal frame {E1, . . . , En} on �n , that

Lr ( f ) = tr(Pr Hess f ) =
n∑

k=1

〈Pr (∇Ek ∇ f ), Ek〉

=
n∑

k=1

〈∇Ek ∇ f, Pr (Ek)〉 =
n∑

k=1

〈∇Pr (Ek )∇ f, Ek〉

= tr(Hess f ◦ Pr ).

3 The strong null convergence condition

In what follows, we consider two particular functions naturally attached to a spacelike hyper-
surface�n immersed into a GRW spacetime −I × f Mn , namely the (vertical) height function
h = (πI )|� and the support function 〈N , ∂t 〉, where we recall that N denotes the future-point-
ing Gauss map of �n and ∂t is the coordinate vector field induced by the universal time on
−I × f Mn .
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A simple computation shows that the gradient of πI on −I × f Mn is given by

∇πI = −〈∇πI , ∂t 〉 = −∂t ,

so that the gradient of h on �n is

∇h = (∇πI )
 = −∂

t = −∂t − 〈N , ∂t 〉N . (3.1)

Thus, we get

|∇h|2 = 〈N , ∂t 〉2 − 1, (3.2)

where | | denotes the norm of a vector field on �n .
Now, set X ∈ X(�) and a local orthonormal frame {E1, . . . , En} of X(�). Then, it follows

from (2.5) that the Ricci curvature Ric of �n is given by

Ric(X, X) =
∑

i

〈R(X, Ei )X, Ei 〉 + nH〈AX, X〉 + 〈AX, AX〉

=
∑

i

〈R(X, Ei )X, Ei 〉 +
∣
∣
∣∣AX + nH

2
X

∣
∣
∣∣

2

− n2 H2

4
|X |2. (3.3)

Consequently, we get

Ric(X, X) ≥
∑

i

〈R(X, Ei )X, Ei 〉 − n2 H2

4
|X |2.

Thus, if the mean curvature H is supposed to be bounded, then Ric(X, X) is bounded
from below if and only if

∑

i
〈R(X, Ei )X, Ei 〉 is bounded from below.

On the other hand, by using the equation (33) of [4] (or Proposition 7.42 of [22]) and
taking into account Eq. (3.1), we get

∑

i

〈R(X, Ei )X, Ei 〉 =
∑

i

〈RM (X
∗, E∗

i )X
∗, E∗

i 〉

+(n − 1)((log f )′)2|X |2
−(n − 2)(log f )′′〈X,∇h〉2

−(log f )′′|∇h|2|X |2. (3.4)

where E∗
i = (πM )∗(Ei ) and X∗ = (πM )∗(X).

By computing the first parcel of the right side of (3.4), we get

∑

i

〈RM (X
∗, E∗

i )X
∗, E∗

i 〉 ≥ 1

f 2 ((n − 1)|X |2 + |∇h|2|X |2

+(n − 2)〈X,∇h〉2)min
i

KM (X
∗, E∗

i ).

According to the terminology established in [4], we suppose valid the strong null conver-
gence condition

KM ≥ sup
I
( f 2(log f )′′), (3.5)

where KM denotes the sectional curvatures of Mn .
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Remark 3.1 The strong null convergence condition is a slight change on the so-called null
convergence condition, namely we say that a GRW spacetime −I × f Mn obeys the null
convergence condition if

RicM ≥ (n − 1) sup
I
( f 2(log f )′′)〈, 〉M , (3.6)

where RicM and 〈, 〉M are, respectively, the Ricci and metric tensors of the fiber Mn . We

observe that the null convergence condition (3.6) is equivalent to the Ricci curvature of M
n+1

be nonnegative on null or lightlike directions (cf. [20]). Moreover, we also note that when the
ambient space is a RW spacetime, the convergence conditions (3.5) and (3.6) are equivalent.

Now, by using the strong null convergence condition (3.5), we obtain
∑

i

〈RM (X
∗, E∗

i )X
∗, E∗

i 〉 ≥ ((n − 1)|X |2 + |∇h|2|X |2

+(n − 2)〈X,∇h〉2)(log f )′′. (3.7)

Substituting (3.7) in (3.4), we get that
∑

i

〈R(X, Ei )X, Ei 〉 ≥ ((n − 1)|X |2 + (n − 2)〈X,∇h〉2

+|∇h|2|X |2)(log f )′′ + (n − 1)((log f )′)2|X |2

−(n − 2)〈X,∇h〉2(log f )′′ − |∇h|2|X |2(log f )′′

= (n − 1)
f ′′

f
|X |2.

Therefore, we obtain the following

Proposition 3.2 Let M
n+1 = −I × f Mn be a GRW spacetime obeying the strong null con-

vergence condition (3.5). Let ψ : �n → M
n+1

be a complete spacelike hypersurface, with

bounded mean curvature. If
f ′′

f
is bounded from below on �n, then the Ricci curvature of

�n is bounded from below.

Remark 3.3 From Eq. (2.1), we easily see that GRW spacetimes with constant sectional cur-
vature obey the strong null convergence condition (3.5), and hence, from the proof of Prop-
osition 3.2, we conclude that all complete spacelike hypersurfaces immersed with bounded
mean curvature in such spacetimes have Ricci curvature bounded from below.

4 Characterizations of totally geodesic hypersurfaces

The formulas collected in the following lemma are due to Alías and Colares (cf. [4], Lemma
4.1 and Corollaries 8.2 and 8.4).

Lemma 4.1 Let ψ : �n → −I × f Mn be a spacelike hypersurface immersed in a GRW
spacetime. Then

Lr h = −(log f )′(h)
(
(n − r)

(
n

r

)
Hr + 〈Pr∇h,∇h〉

)

−(n − r)

(
n

r

)
Hr+1〈N , ∂t 〉
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and

	( f (h)〈N , ∂t 〉) = n f (h)〈∇ H, ∂t 〉 + nH f ′(h)+ f (h)〈N , ∂t 〉|A|2
−(n − 1) f (h)〈N , ∂t 〉(log f )′′(h)|∇h|2
+ f (h)〈N , ∂t 〉RicM (N

∗, N∗),

where RicM stands for the Ricci tensor of the Riemannian fiber Mn. Moreover, if −I × f Mn

is a RW spacetime, then

Lr ( f (h)〈N , ∂t 〉) =
(

n

r + 1

)
f (h)〈∇ Hr+1, ∂t 〉 + (n − r)

(
n

r

)
Hr+1 f ′(h)

+
(

n

r + 1

)
f (h)〈N , ∂t 〉 (nH Hr+1 − (n − r − 1)Hr+2)

+ f (h)〈N , ∂t 〉
(

κ

f 2(h)
− (ln f )′′(h)

)

·
(
(n − r)

(
n

r

)
Hr |∇h|2 − 〈Pr∇h,∇h〉

)
,

where κ stands for the sectional curvature of the Riemannian fiber Mn.

We will also need the well-known generalized maximum principle of Omori-Yau [21,26].

Lemma 4.2 Let �n be an n-dimensional complete Riemannian manifold whose Ricci cur-
vature is bounded from below and u : �n → R be a smooth function that is bounded from
below on �n. Then, there is a sequence of points {pk} in �n, such that

lim
k→∞ u(pk) = inf u, lim

k→∞ |∇u(pk)| = 0 and lim
k→∞	u(pk) ≥ 0. (4.1)

In what follows, a slab

[t1, t2] × Mn = {
(t, q) ∈ −I × f Mn : t1 ≤ t ≤ t2

}

is called a timelike bounded region of the GRW spacetime −I × f Mn . Now, we state and
prove our first theorem.

Theorem 4.3 Let M
n+1 = −I × f Mn be a GRW spacetime which obeys the strong null

convergence condition (3.5). Let ψ : �n → M
n+1

be a complete maximal spacelike hyper-

surface contained in a timelike bounded region of M
n+1

. If |∇h| is bounded on �n, then
the norm of the second fundamental form A of �n is not globally bounded away from zero.
Moreover, if H2 is constant, then �n is totally geodesic.

Proof Let us consider the Gauss map N of �n , such that ∂t belongs to the timecone deter-
mined by N , and set the function g : �n → R given by g = f 〈N , ∂t 〉.

From Lemma 4.1, we get

	g = g
(
RicM (N

∗, N∗)− (n − 1)(log f )′′|∇h|2 + |A|2) .
On the other hand, taking into account that N∗ = N +〈N , ∂t 〉∂t , from Eq. (3.1), we easily

verify that

〈N∗, N∗〉M = 1

f 2(h)
|∇h|2.
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On the geometry of maximal spacelike hypersurfaces 657

Consequently, from the strong null convergence condition (3.5), we have

RicM (N
∗, N∗)− (n − 1)(log f )′′|∇h|2 ≥ 0.

Thus, since the function g is negative, we obtain that

	g ≤ g|A|2 ≤ 0. (4.2)

Now, we want to apply Lemma 4.2 to prove our result. For this, first we note that, since
we are supposing that �n is contained in a timelike bounded region of −I × f Mn , Propo-
sition 3.2 guarantees that the Ricci curvature of �n is bounded from below. Moreover, the
function g is bounded on �n . In fact,

|g| = f |〈N , ∂t 〉| ≤ f 〈N , ∂t 〉2 = f (1 + |∇h|2)
and, since that f is bounded on some interval [t1, t2] ⊂ I and |∇h| is bounded on �n , it
follows the assertion. In particular, we have that the infimum inf p∈� g(p) exists and is a
negative number.

Hence, from Lemma 4.2 and inequality (4.2), we have that there exists a sequence of
points pk in �n , such that

0 ≤ lim
k→∞	g(pk) ≤ inf

p∈� g(p) lim
k→∞ |A|2(pk) ≤ 0.

Thus, lim
k→∞ |A|2(pk) = 0, and hence, |A| cannot be bounded away from zero on �n . More-

over, since for a maximal spacelike hypersurface we have that |A|2 = −n(n − 1)H2, if H2

is constant, then |A| is also constant. By the same arguments above, it follows that A ≡ 0
and, therefore, �n are totally geodesic. ��
Remark 4.4 Taking into account the estimate of the norm of the second fundamental form
of a complete maximal spacelike hypersurface immersed in the anti-de Sitter space due to
Ishihara (cf. [19], Theorem 1.2) and the fact that a GRW spacetime of constant sectional
curvature trivially satisfies the strong null convergence condition (see Remark 3.3), Theo-
rem 4.3 can be considered as a natural extension of Theorem 1.1 of [12] to the context of the
GRW spacetimes.

In the paper [27], Yau obtained the following version of Stokes’ theorem on an n-dimen-
sional, complete noncompact Riemannian manifold �n : If ω ∈ �n−1(�) is an n − 1 dif-
ferential form on �n , then there exists a sequence Bi of domains on �n , such that Bi ⊂
Bi+1, �

n = ⋃
i≥1 Bi and

lim
i→+∞

∫

Bi

dω = 0.

By applying this result to ω = ι∇g , where g : �n → R is a smooth function, ∇g denotes its
gradient and ι∇g the contraction in the direction of ∇g, Yau established an extension of H.
Hopf’s theorem on a complete noncompact Riemannian manifold. In what follows, L1(�)

denotes the space of Lebesgue integrable functions on �n .

Lemma 4.5 (Corollary on p. 660 of [27]) Let �n be an n-dimensional, complete noncom-
pact Riemannian manifold and let g : �n → R be a smooth function. If g is a subharmonic
(or superharmonic) function with |∇g| ∈ L1(�), then g must actually be harmonic.

Now, we are in position to present our next result.
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658 H. F. de Lima, U. L. Parente

Theorem 4.6 Let M
n+1 = −I × f Mn be a GRW spacetime which obeys the null conver-

gence condition (3.6). Let ψ : �n → M
n+1

be a complete maximal spacelike hypersurface

contained in a timelike bounded region of M
n+1

, and with bounded second fundamental form
A. If |∇h| ∈ L1(�), then �n is totally geodesic.

Proof We take the Gauss map N of�n such that ∂t belongs to the timecone determined by N .
Another application of Lemma 4.1 gives us 	( f 〈N , ∂t 〉) ≤ 0 on �n . Besides, if we

consider X = ∇( f 〈N , ∂t 〉), we get X = − f A(∂
t ), since that the vector field K = f ∂t is

closed and conformal. In fact, for any Y ∈ X(M),

〈∇〈K , N 〉, Y 〉 = Y (〈K , N 〉)
= 〈∇Y K , N 〉 + 〈K ,∇Y N 〉
= f ′〈Y, N 〉 − 〈K , AY 〉
= − f 〈A(∂

t ), Y 〉.
Thus,

|X | = | f A(∂
t )| ≤ f |A||∇h|,

where we have used ∇h = −∂
t to obtain the last inequality. Consequently, since we are sup-

posing that f and |A| are bounded and that |∇h| is Lebesgue integrable on�n , we conclude
that X has Lebesgue integrable norm on �n . Now, it is enough to apply the Lemma 4.5 for
the function g = f 〈N , ∂t 〉 to conclude that |A| ≡ 0 and so that �n must actually be totally
geodesic. ��
Remark 4.7 By a similar way as observed in Remark 4.4, Theorem 4.6 is an extension of
Theorem 1.2 of [12].

5 Entire vertical graphs in a GRW spacetime −I × f Mn

Let � ⊆ Mn be a connected domain of Mn . A vertical graph over � is determined by a
smooth function u ∈ C∞(�), and it is given by

�n(u) = {(u(x), x) : x ∈ �} ⊂ −I × f Mn .

The metric induced on � from the Lorentzian metric on the ambient space via �n(u) is

〈, 〉 = −du2 + f 2(u)〈, 〉Mn . (5.1)

The graph is said to be entire if� = Mn . It can be easily seen that a graph�n(u) is a spacelike
hypersurface if and only if |Du|2Mn < f 2(u), Du being the gradient of u in � and |Du|Mn

its norm, both with respect to the metric 〈, 〉Mn in�. Observe that by Lemma 3.1 in [6], in the
case where Mn is a simply connected manifold, every complete spacelike hypersurface �n

in −I × f Mn such that the warping function f is bounded on�n is an entire spacelike graph
in such space. In particular, this happens for complete spacelike hypersurfaces bounded away
from the infinity of −I × f Mn . However, in contrast to the case of graphs into a Riemannian
space, an entire spacelike graph in a Lorentzian spacetime is not necessarily complete, in
the sense that the induced Riemannian metric (5.1) is not necessarily complete on Mn . For
instance, A.L. Albujer has obtained explicit examples of noncomplete entire maximal graphs
in −R × H

2 (cf. [1], Sect. 3).
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In this context, by using the ideas of [2], we obtain the following nonparametric version
of Theorem 4.3.

Corollary 5.1 Let M
n+1 = −I × f Mn be a GRW spacetime which obeys the strong null

convergence condition (3.5) and whose fiber Mn is complete. Let�n(u) be an entire maximal

spacelike vertical graph contained in a timelike bounded region of M
n+1

. If

|Du|Mn ≤ α f (u), (5.2)

for some constant 0 ≤ α < 1, then �n(u) is complete and the norm of its second fundamen-
tal form is not globally bounded away from zero. Moreover, if H2 is constant, then �n(u) is
totally geodesic.

Proof Observe first that, under the assumptions of the theorem, �n(u) is a complete hyper-
surface. In fact, from (5.1) and the Cauchy–Schwarz inequality, we get

〈X, X〉 = −〈Du, X〉2
Mn + f 2(u)〈X, X〉Mn ≥ (

f 2(u)− |Du|2Mn

) 〈X, X〉Mn ,

for every tangent vector field X on �. Therefore,

〈X, X〉 ≥ c〈X, X〉Mn

for the positive constant c = (1 − α2) inf�n(u) f 2(u). This implies that L ≥ √
cL Mn , where

L and L Mn denote the length of a curve on�n(u)with respect to the Riemannian metrics 〈, 〉
and 〈, 〉Mn , respectively. As a consequence, as Mn is complete by assumption, the induced
metric on �n(u) from the metric of −I × f Mn is also complete.

On the other hand, we have that

N = −〈N , ∂t 〉∂t + N∗, (5.3)

where N∗ denotes the projection of N onto the fiber Mn . Consequently, from (3.1), (3.2) and
(5.3), we get

N∗ = −〈N , ∂t 〉∇h (5.4)

and

|∇h|2 = f 2(h)〈N∗, N∗〉Mn . (5.5)

Moreover, with a straightforward computation, we verify that

N = f (u)
√

f 2(u)− |Du|2Mn

(
∂t + 1

f 2(u)
Du

)
. (5.6)

Thus, from (5.4), (5.5) and (5.6), we obtain that

|∇h|2 = |Du|2Mn

f 2(u)− |Du|2Mn

. (5.7)

Therefore, from (5.2) and (5.7) we get

|∇h|2 ≤ 1

c
|Du|2Mn ≤ α2

c
sup
�(u)

f 2(u) (5.8)

and, hence, the result follows from Theorem 4.3. ��
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One can reason as in the proof of Corollary 5.1 to obtain the following nonparametric
version of Theorem 4.6.

Corollary 5.2 Let M
n+1 = −I × f Mn be a GRW spacetime which obeys the null con-

vergence condition (3.6) and whose fiber Mn is complete. Let �n(u) be an entire maximal

spacelike vertical graph contained in a timelike bounded region of M
n+1

, and with bounded
second fundamental form A. If |Du|Mn ≤ α f (u), for some constant 0 ≤ α < 1, and
|Du|Mn ∈ L1(Mn), then �n(u) is complete and totally geodesic.

Remark 5.3 In [3], the first author jointly with Albujer and Camargo obtained unique-
ness results concerning to complete spacelike hypersurfaces with constant mean curvature
immersed in a RW spacetime which is supposed to obey the null convergence condition
(3.6). As an application of such uniqueness results for the case of vertical graphs in a RW
spacetime, they also get nonparametric rigidity results.

6 Estimating the relative nullity in RW spacetimes

Let ψ : �n → −I × f Mn be a spacelike hypersurface, with second fundamental form A.
According [16], for p ∈ �n , we define the space of relative nullity 	(p) of �n at p by

	(p) = {v ∈ Tp�; v ∈ ker(Ap)},
where ker(Ap) denotes the kernel of Ap . The index of relative nullity ν(p) of �n at p is the
dimension of 	(p), that is,

ν(p) = dim (	(p)) ,

and the index of minimum relative nullity ν0 of �n is defined by

ν0 = min
p∈� ν(p).

In order to prove our next results, we need the following extension of Lemma 4.5 due to
Caminha et al. [14].

Lemma 6.1 Let �n be a complete spacelike hypersurface immersed in a RW spacetime of
constant sectional curvature, with bounded second fundamental form. If g : �n → R is a
smooth function such that |∇g| ∈ L1(�) and Lr g does not change sign on�n, then Lr g = 0
on �n.

Our next result establishes a lower estimate of the index of minimum relative nullity in
the case of complete r -maximal spacelike hypersurfaces (that is, with zero (r + 1)-th mean
curvature) in a RW spacetime.

Theorem 6.2 Let ψ : �n → −I × f Mn be a complete r-maximal spacelike hypersurface
contained in a timelike bounded region of a RW spacetime of constant sectional curvature.
Suppose that the second fundamental form of�n is bounded and that Hr+2 does not change
sign on �n. If |∇h| ∈ L1(�), then the index of minimum relative nullity ν0 of �n is at least
n − r .

Proof Initially, since we are supposing that our ambient RW spacetime −I × f Mn has
constant sectional curvature, we observe that equations (2.1) guarantee that

κ

f 2(h)
− (ln f )′′(h) ≡ 0,
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where κ stands for the sectional curvature of the Riemannian fiber Mn . Hence, from
Lemma 4.1, we get

Lr ( f (h)〈N , ∂t 〉) = −(n − r)

(
n

r

)
Hr+2 f (h)〈N , ∂t 〉.

Thus, the hypothesis that Hr+2 does not change sign on�n assures that Lr ( f (h)〈N , ∂t 〉) also
does not change sign on �n . Consequently, by applying Lemma 6.1, we get that Hr+2 = 0
on �n .

On the other hand, since�n is r -maximal, we have Hr+1 = 0 on�n . Consequently, from
Proposition 1(c) of [13], Hj = 0 for all j ≥ r + 1, and hence, we conclude that ν0 ≥ n − r .

��
Remark 6.3 We observe that the case r = 0 of the Theorem 6.2 corresponds to the Theo-
rem 4.6 when the ambient spacetime is a RW spacetime of constant sectional curvature. In
this sense, Theorem 6.2 can be seen as a natural extension of Theorem 4.6 for the context of
the higher-order mean curvatures.

By considering each one of the three standard RW models for (suitable open sets in) de
Sitter space S

n+1
1 (see [20], Sect. 4), that is,

−R ×cosh t S
n, −R ×et R

n and − (0,+∞)×sinh t H
n,

from Theorem 6.2, we get

Corollary 6.4 Let ψ : �n → S
n+1
1 be a complete 1-maximal spacelike hypersurface con-

tained in a timelike bounded region of S
n+1
1 . Suppose that �n has nonzero constant mean

curvature H and that H3 does not change sign on�n. If |∇h| ∈ L1(�), then�n is a rotation
hypersurface of S

n+1
1 .

Proof By our previous theorem, it follows that ν0 ≥ n − r . Therefore, Proposition 1.2 of [8]
guarantees that �n is a rotation hypersurface. ��

Let us recall that a RW spacetime −I × f Mn is said to be static when the warping function
f is constant. In this case, we can suppose without loss of generality that f ≡ 1. Following
the ideas of Caminha [13] and using the static RW model of the Minkowski space

L
n+1 � −R × R

n,

we obtain a weak extension of Calabi–Bernstein theorem (see [11], for n ≤ 4, and [15], for
arbitrary n).

Theorem 6.5 Let ψ : �n → −I × Mn be a complete spacelike hypersurface immersed
in a static RW spacetime of constant sectional curvature, with bounded second fundamental
form. Suppose that, for some r = 0, . . . , n − 2, Hr+1 and Hr+2 do not change sign on�n. If
|∇h| ∈ L1(�), then the index of minimum relative nullity ν0 of�n is at least n−r . Moreover,
when the ambient spacetime is the Minkowski space L

n+1, if Hr does not vanish on �n then
through every point of�n there passes an (n−r)-hyperplane of L

n+1 totally contained in�n.

Proof From Lemma 4.1 we have

Lr h = −(n − r)

(
n

r

)
Hr+1〈N , ∂t 〉.
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Thus, the hypothesis that Hr+1 does not change sign on �n assures that Lr h also does not
change sign on �n . Consequently, from Lemma 6.1, we conclude that Hr+1 = 0 on �n .
With analogous arguments, we also conclude that Hr+2 = 0 on �n . From [13], Proposition
1(c), Hj = 0 for all j ≥ r + 1 and, hence, ν0 ≥ n − r .

Now, suppose that the ambient RW spacetime is the Minkowski space L
n+1. By The-

orem 5.3 of [16] (see also [17]), since we are supposing that Hr does not vanish on �n ,
the distribution p �→ 	(p) of minimal relative nullity of �n is smooth and integrable with
complete leaves, totally geodesic in �n and in L

n+1. Therefore, the result follows from the
characterization of complete totally geodesic submanifolds of L

n+1 as spacelike hyperplanes
of suitable dimension. ��
Corollary 6.6 Let ψ : �n → −I × Mn be a complete spacelike hypersurface immersed in
a static RW spacetime of constant sectional curvature κ , with bounded second fundamental
form. Suppose that the mean curvature H does not change sign and that the normalized
scalar curvature R satisfies R ≤ κ or R ≥ κ . If |∇h| ∈ L1(�), then �n is totally geodesic.
Moreover, if the ambient spacetime is the Minkowski space L

n+1, then �n is a hyperplane.
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