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Abstract We extend the recent existence result of Dal Maso and Lazzaroni (Ann Inst
H Poincaré Anal Non Linéaire 27:257–290, 2010) for quasistatic evolutions of cracks in
finite elasticity, allowing for boundary conditions and external forces with discontinuous
first derivatives.
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0 Introduction

The purpose of this paper is to generalize a recent result [10], concerning the quasistatic
evolution of cracks in finite elasticity, in order to cover the case of boundary conditions and
external forces that are not smooth in time or space.

The physics of the problem relies on Griffith’s principle [19] that the propagation of a crack
is the result of the competition between the elastic energy released when the crack opens and
the energy spent to produce new crack. The elastic body is represented by a bounded open
set Ω ⊂ R

n , and the state of the system is described by a pair of variables (u, �), where u
is the deformation of Ω and � is the crack. The internal energy is defined as
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166 G. Lazzaroni

E int(u, Γ ) := W(u)+ K(Γ ), (0.1)

where K(Γ ) is the energy dissipated to open the crack Γ , and W(u) = ∫
Ω

W (∇u(x))dx
is the elastic energy stored in the body under the deformation u; it depends on the strain
∇u, according to the hypothesis of hyperelasticity. The body is subject to external forces,
dependent on the time instant t ∈ [0, 1], with potential Eext(t, u). Hence, the total energy is

E(t, u, Γ ) := E int(u, Γ )− Eext(t, u). (0.2)

Moreover, a time-dependent boundary condition u = ψ(t) can be imposed on a part of ∂Ω .
The variational model, developed by Francfort and Marigo [15], is based on a process of

time discretization, which gives rise to some incremental problems, solved through global
minimization. In particular, the crack path need not be prescribed a priori, but it is determined
by the energy criterion. For an account of the results obtained on this argument, we refer to
[5].

In the first existence theorems in the literature, Ω is contained in R
2, the crack

Γ is supposed to be a closed set, and the deformation u is represented by a Sobo-
lev function on the domain Ω\Γ : this was studied by Dal Maso and Toader [12] and
Chambolle [7]. Instead, in the formulation of Francfort and Larsen [14], the functional set-
ting for the deformation is the space of special functions of bounded variation SBV (Ω),
while the crack is a rectifiable set containing the jump S(u): this allows them to consider
the case of arbitrary space dimension. All these results were obtained in the case of linear-
ized elasticity, when W (A) = |A − I |2. They were generalized by Dal Maso et al. in [9],
where the energy density W is only assumed to be a quasiconvex function with a condi-
tion of polynomial growth of the type c |A|p ≤ W (A) ≤ C |A|p (here, c,C > 0, and
p > 1).

The usual hypothesis in finite elasticity is that the strain energy diverges as the determinant
of the deformation gradient vanishes:

W(u) = +∞ if det ∇u ≤ 0 and W(u) → +∞ if det ∇u → 0+. (0.3)

This ensures the “physical” feature that the deformations with finite energy preserve orien-
tation, i.e.,

det ∇u(x) > 0 for a.e. x ∈ Ω . (0.4)

Unfortunately, (0.3) is incompatible with polynomial growth, which is a basic tool in the
above mentioned articles for proving semicontinuity and controlling energy from above. The
previous results were extended in [10] under some general assumptions compatible with
finite elasticity, introduced in Ball [4], Francfort and Mielke [16], and Fusco et al. [17].

In [10], we work in spaces of SBV functions, thanks to the hypothesis that the body
� is confined in a compact set K ⊂ R

n where all the deformations take place. We
prove the existence of quasistatic evolutions t �→ (u(t), Γ (t)) minimizing (0.2) and
satisfying an energy-dissipation balance law, which states that the time derivative of
the internal energy E int(u(t), Γ (t)) equals the power of the external forces Eext(t, u(t)).
These are the two fundamental properties of the variational approach to rate-indepen-
dent processes introduced by Mielke (see [21] and the references therein). Moreover,
a strong non-interpenetration requirement, called Ciarlet-Nečas condition [8], can be
imposed on the solutions, which not only preserve orientation as in (0.4), but are glob-
ally invertible, too; this property was studied in the SBV context by Giacomini and
Ponsiglione [18].
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Quasistatic crack growth in finite elasticity with Lipschitz data 167

The key point for the energy estimates is replacing polynomial controls by a bound from
above which is compatible with (0.3): namely, we suppose that for every A ∈ GL+

n

∣
∣ATDAW (A)

∣
∣ ≤ c1

W

(
W (A)+ c0

W

)
, (0.5)

where c0
W ≥ 0 and c1

W > 0 are two constants. The multiplicative stress estimate (0.5) is
well studied in mechanics [4]; in order to exploit it, we use a method introduced in [16] and
manipulate the solutions in a multiplicative way. More precisely, we look for minimizers to
(0.2) of the form

u = ψ(t) ◦ z, (0.6)

where z coincides with the identity function on the Dirichlet part of ∂�. This can be done
provided that the boundary datum ψ(t) is extended to a function defined on the whole set K
(which contains �) and is a diffeomorphism of K onto itself.

Following [16], in [10] we suppose both ψ(t)(x) and its spatial gradient ∇ψ(t)(x) to be
of class C1 in (t, x), and the same for the spatial inverse φ(t) := ψ(t)−1. These hypotheses,
which were made for the sake of simplicity, are not satisfactory for two reasons:

• the spatial smoothness is a strong requirement (while the solutions are only SBV );
• the class of data is not invariant under Lipschitz time reparametrizations.

In the present paper, we assume thatψ, φ ∈ W 1,∞([0, 1]; W 1,∞(K ; K )), which implies they
are Lipschitz in both variables, but not necessarily C1 (see Sect. 1.7 for the detailed definition
of this space). Hence, we consider a wider class of data, which is invariant under Lipschitz
reparametrizations of time: this is important from the point of view of rate-independent
processes.

Due to the lack of regularity, the chain rule is non-trivial when deriving (0.6): indeed, if z
is SBV it may happen that the counterimage through z of the set of points of non-differen-
tiability of ψ(t) is a set of positive measure. This does not occur in our case because det ∇z
is a.e. positive, as well as det ∇u (see Remark 1.2 and Lemma 2.1 for the details). Notice
that this property follows from (0.4) and does not require global invertibility.

Following [9], in this work we introduce also volume and surface forces (Eext in (0.2)),
which were not present in [10]. As we employ the multiplicative splitting (0.6), the minimal
hypotheses on the external forces are strictly related with those on the boundary data. The
assumptions we make here (see Sect. 1.6) are compatible with Lipschitz reparametrizations
of time; moreover, they hold in the case of dead loads (Example 1.1).

The multiplicative splitting method leads us to an alternative formulation of the problem,
where the time dependence of the boundary conditions is transferred to the volume energy
terms (see Sect. 2.2). As in [10], we are interested in incrementally approximable quasistatic
evolutions (Definition 3.2). The proof of the global minimality and of the energy balance
(Theorem 3.3) requires some remarks about the consequences of (0.5), stated in Sect. 2.3,
and some results concerning the approximation of Lebesgue integrals with Riemann sums
(Lemmas 3.2 and 3.3).

The structure of the article is the following. In Sect. 1, we introduce the hypotheses on
the geometry of the body, on the strain energy, on the external forces, and on the prescribed
deformations. In Sect. 2, we present the multiplicative splitting method and the auxiliary for-
mulation with time-independent boundary data, with the properties of the energy terms after
the change of variables (0.6). Section 3 is devoted to the definition of quasistatic evolution
and to the proof of the main results.
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168 G. Lazzaroni

1 Setting of the problem

1.1 Notation

Throughout the paper, n ≥ 2 is fixed; the symbol · stands for the Euclidean scalar product on
R

n and |·| for the corresponding norm. The n×n real matrices are denoted by M
n×n , the ones

with positive determinant by GL+
n , and the rotation matrices by SOn ; the symbol I stands

for the identity matrix. The space M
n×n is endowed with the scalar product A : B := tr ABT;

we denote by |·| the corresponding norm. Given A ∈ M
n×n , we define adj j A as the vector

composed of the minors of A of order j .
We call modulus of continuity a non-decreasing function ω : [0, 1] → [0,+∞), such that

ω(h) → 0 as h → 0.
Henceforth, Ln is the Lebesgue measure in R

n , while Hn−1 is the (n−1)-dimensional
Hausdorff measure. The expression almost everywhere (a.e.) refers to Ln unless otherwise
specified. Given two sets A and B in R

n , we say that A
∼⊂ B when Hn−1(A\B) = 0 and

that A ∼= B when Hn−1(A � B) = 0, where A � B stands for the symmetric difference
(A\B) ∪ (B\A).

We refer to [2] for all the following definitions. For a bounded open set U ⊂ R
n and

m ≥ 1, BV (U ; R
m) is the space of functions of bounded variation and SBV (U ; R

m) the
subspace of special functions of bounded variation. The symbol Du stands for the gradient
of u, |Du| (U ) for its total variation, ∇u for its absolutely continuous part, and D j u for its
jump part. We denote the jump set of u by S(u) and its unit normal vector field by νu . For
p > 1, we consider the subspace

SBV p(U ; R
m) := {

u ∈ SBV (U ; R
m) : ∇u ∈ L p(U ; M

m×n)
}

,

endowed with the norm

‖u‖SBV p(U ;Rm ) :=
∫

U

|u| dx +
⎛

⎝
∫

U

|∇u|p dx

⎞

⎠

1
p

+ |Du| (U ).

In SBV p(U ; R
m), we provide the following notion of weak∗ convergence.

Definition 1.1 A sequence uk converges to u weakly∗ in SBV p(U ; R
m) if

• uk, u ∈ SBV p(U ; R
m);

• uk → u in measure;
• ‖uk‖L∞(U ;Rm ) is bounded uniformly with respect to k;
• ∇uk ⇀ ∇u weakly in L p(U ; M

m×n);
• Hn−1(S(uk)) is bounded uniformly with respect to k.

1.2 The geometry of the body

As in [10], we will consider the deformations of an elastic body, whose reference configura-
tion is the closureΩ of a bounded open setΩ ⊂ R

n . We suppose thatΩ ⊂ K , i.e., the body
is confined in a container K , the closure of a bounded open set. The body has a brittle part
ΩB , the closure of an open subsetΩB ofΩ . We fix an open setΩD withΩ ⊂ ΩD ⊂ K : the
setΩD\Ω is an unbreakable body, whose deformation is known, in contact withΩ . We will
assume that K ,ΩD,Ω , andΩB have Lipschitz boundaries. The Dirichlet part of the bound-
ary ofΩ is ∂DΩ := ∂Ω ∩ΩD , while ∂NΩ := ∂Ω\∂DΩ is the Neumann part. Moreover, a
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Quasistatic crack growth in finite elasticity with Lipschitz data 169

surface force is acting on a closed set ∂SΩ ⊂ ∂NΩ . We need a technical requirement:

ΩB ∩ ∂DΩ = Ø and ΩB ∩ ∂SΩ = Ø; (1.1)

this means that Ω\ΩB is a layer of unbreakable material where the surface deformations
are impressed. We refer to [10] for further comments.

1.3 Admissible cracks and deformations

The state of the system is described by a pair of variables (u, �), where u is the deformation
of the domain and � is its fracture. More precisely, the admissible cracks of Ω are given by

R :=
{
Γ : countably (Hn−1, n−1)-rectifiable, Γ

∼⊂ ΩB ∩ΩD , Hn−1(Γ )<+ ∞
}

, (1.2)

while the deformations ofΩD are represented by functions in SBV (ΩD; K ), which is defined
as the set of functions u ∈ SBV (ΩD; R

n) such that u(x) ∈ K for a.e. x ∈ ΩD . The defor-
mation and the crack are related by the inclusion S(u)

∼⊂ Γ .
Furthermore, we require a condition of non-interpenetration of matter in the sense of

Ciarlet and Nečas [8]; the definition was proposed in [18].

Definition 1.2 A function u ∈ SBV (ΩD; K ) satisfies the Ciarlet-Nečas non-interpenetra-
tion condition if the following hold:

(CN1) u preserves orientation, i.e., for a.e. x ∈ ΩD, det ∇u(x) > 0;
(CN2) u is a.e.-injective, i.e., there exists a set N ⊂ ΩD , with Ln(N ) = 0, such that u is

injective on ΩD\N .

In the following remarks, we state some consequences of (CN1), which will be funda-
mental in the sequel.

Remark 1.1 Arguing as in [18], one can see that if u ∈ SBV (ΩD; K ) satisfies (CN1), then
for any E ⊂ ΩD

∫

E

|det ∇u| dx =
∫

Rn

m(ū, y, E) dy, (1.3)

where

m(ū, y, E) := card{x ∈ E : ū(x) = y},
while ū is a representative of u which coincides with the approximate limit of u on the set of
points of approximate differentiability and is zero elsewhere.

Remark 1.2 It is possible to prove that, if u satisfies (CN1) and Ln(F) = 0, then
Ln(u−1(F)) = 0 (independently on the choice of the representative of u).

Indeed, by (CN1) and (1.3) with E = ū−1(F), we get Ln(ū−1(F)) = 0 (ū is the repre-
sentative of u introduced in the previous remark). If ũ is another representative of u, ũ−1(F)
differs from ū−1(F) by a set of null measure, so Ln(ũ−1(F)) = 0, too.

Remark 1.3 Every function u satisfying (CN1) has the following property: given a measur-
able set M , the preimage u−1(M) is measurable.

Indeed, we can write M = B ∪ M0, with B Borel and M0 negligible; then, u−1(B) is
measurable and, by Remark 1.2, u−1(M0) has null measure. This implies that u−1(M) =
u−1(B) ∪ u−1(M0) is measurable.
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170 G. Lazzaroni

The prescribed deformation ofΩD\Ω is given by a function ψ ∈ W 1,1(ΩD\Ω; K ). The
Dirichlet condition takes the form u = ψ a.e. in ΩD\Ω; on ∂DΩ the equality u = ψ is
satisfied in the sense of traces, because by (1.1) u is of class W 1,1 in the neighbourhood
ΩD\ΩB of ∂DΩ (recall that S(u)

∼⊂ Γ ). We refer to [10] for further comments.
The admissible deformations, corresponding to a crack Γ ∈ R and a Dirichlet datum

ψ ∈ W 1,1(ΩD\Ω; K ), are

AD(ψ, Γ ) : =
{

u ∈ SBV (ΩD; K ) : u satisfies (CN1), (CN2),

u|ΩD\Ω = ψ , and S(u)
∼⊂ Γ

}
. (1.4)

At each time t ∈ [0, 1], given ψ and Γ , we are looking for deformations u ∈ AD(ψ, Γ )
minimizing the total energy

E(t, u, Γ ) := Eel(t, u)+ K(Γ ), (1.5)

with

Eel(t, u) := W(u)− G(t, u)− S(t, u), (1.6)

where W represents the bulk energy, K is the energy spent to produce the crack, G is the
potential of the volume forces, and S is the potential of the surface forces. Their properties
are stated in the following sections.

1.4 Bulk energy

We quote from [10] the hypotheses on the bulk energy, which were presented in [4,16,17].
They are compatible with the setting of finite elasticity, in particular with the case of Ogden
materials (see [10, Example 1.8]).

The bulk energy on Ω of any deformation u ∈ SBV (ΩD; K ) is

W(u) :=
∫

Ω

W (x,∇u(x)) dx , (1.7)

where W : Ω × M
n×n → [0,+∞] satisfies the following properties:

(W0) Frame indifference: for every (x, A) ∈ Ω×M
n×n,W (x, Q A) = W (x, A) for every

Q ∈ SOn ;
(W1) Polyconvexity: there exists a function W̃ : Ω × R

τ → [0,+∞] such that x �→
W̃ (x, ξ) is Ln-measurable on Ω for every ξ ∈ R

τ , ξ �→ W̃ (x, ξ) is continuous and
convex on R

τ for every x ∈ Ω , and W (x, A) = W̃ (x,M(A)) for every (x, A) ∈
Ω × M

n×n , where M(A) := (adj1 A, . . . , adjn A) is the vector (of dimension τ :=
τ1 + · · · + τn) composed of all minors of A;

(W2) Finiteness and regularity: for every x ∈ Ω we have W (x, A) < +∞ if and only if
A ∈ GL+

n ; moreover, A �→ W (x, A) is of class C1 on GL+
n .

Furthermore, we require that there exist a function c0
W ∈ L1+(Ω), some constants c1

W > 0,
β0

W ≥ 0, β1
W , . . . , β

n
W > 0 and some exponents p1, p2, . . . , pn , such that for every x ∈ Ω

the following hold:

(W3) Bound at identity: we have W (x, I ) ≤ c0
W (x);
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Quasistatic crack growth in finite elasticity with Lipschitz data 171

(W4) Lower growth condition: for every A ∈ M
n×n

W (x, A) ≥
n∑

j=1

β
j
W

∣
∣adj j A

∣
∣p j − β0

W ,

with p1 ≥ 2, p j ≥ p′
1 := p1

p1−1 for j = 2, . . . , n − 1, and pn > 1;

(W5) Multiplicative stress estimate: for every A ∈ GL+
n

∣
∣AT DAW (x, A)

∣
∣ ≤ c1

W

(
W (x, A)+ c0

W (x)
)

;

(W6) Continuity of Kirchhoff stress: for every ε > 0, there exists δ > 0, independent of x ,
such that for every A ∈ GL+

n and B ∈ GL+
n with |B − I | < δ

∣
∣DAW (x, B A) (B A)T − DAW (x, A) AT

∣
∣ ≤ ε

(
W (x, A)+ c0

W (x)
)

.

Henceforth, we will set p := p1.

Remark 1.4 If a deformation u ∈ SBV (ΩD; K ) is such that W(u) < +∞, then by (W2) u
preserves orientation as in (CN1); moreover, by (W4) u belongs to the space SBV p(ΩD; K ).
Hypotheses (W1) and (W4) guarantee the semicontinuity of W with respect to the weak∗
convergence in SBV p(ΩD; K ), thanks to [17, Theorem 3.5]; see also [10, Theorem 3.1].
Properties (W5) and (W6) will be used for the proof of the global stability and of the energy
balance. Notice that (W6) can be avoided in the case of a pure Neumann problem (or in the
case of a Dirichlet problem with time-independent boundary conditions): see [11] for the
details.

1.5 The crack energy and the σ p-convergence

In this section, we define the energy spent to produce a crack and highlight its semicontinuity
properties. Beforehand, we give a notion of convergence in the set of admissible cracks,
introduced in [9].

Definition 1.3 A sequenceΓk σ
p-converges toΓ ifΓk andΓ are contained inΩD,Hn−1(Γk)

is bounded uniformly with respect to k, and the following conditions are satisfied:

• if u j converges weakly∗ to u in SBV p(ΩD) and S(u j )
∼⊂ Γk j for some sequence k j →

∞, then S(u)
∼⊂ Γ ;

• there exist a function u ∈ SBV p(ΩD) and a sequence uk converging to u weakly∗ in
SBV p(ΩD) such that S(u) ∼= Γ and S(uk)

∼⊂ Γk for every k.

According to Griffith’s theory [19], we assume that the energy spent to produce the crack
Γ ∈ R is given by

K(Γ ) :=
∫

Γ

κ(x, νΓ (x)) dHn−1(x), (1.8)

where νΓ is a unit normal vector field on Γ and κ : (ΩB ∩ ΩD) × R
n → R is a locally

bounded Borel function. We suppose that

(K1) for every ε > 0 there exists an open set A of 1-capacity C1(A) < ε such that
x �→ κ(x, ν) is lower semicontinuous on (ΩB ∩ΩD)\A for every ν ∈ R

n ,
(K2) ν �→ κ(x, ν) is a norm on R

n for every x ∈ ΩB ∩ΩD ,
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172 G. Lazzaroni

(K3) κ1 |ν| ≤ κ(x, ν) ≤ κ2 |ν| for every (x, ν) ∈ (ΩB ∩ΩD)× R
n ,

for some constants κ1 > 0 and κ2 > 0. As a consequence, we have

κ1 Hn−1(Γ ) ≤ K(Γ ) ≤ κ2 Hn−1(Γ ). (1.9)

To simplify the exposition of auxiliary results, we extend κ toΩD ×R
n by setting κ(x, ν) :=

κ2 |ν| if x ∈ ΩD\ΩB , and we define K(Γ ) by (1.8) for every countably (Hn−1, n−1) recti-
fiable subset Γ of R

n .
The crack energy is lower semicontinuous with respect to the σ p-convergence: this fact

can be deduced by [1, Theorem 3.3], adapting the result as in [9, Theorems 2.8 and 4.3].

Theorem 1.1 (Semicontinuity) Let κ satisfy (K1–3), let Γ0, Γk , and Γ be countably
(Hn−1, n−1) rectifiable subsets of ΩD with Hn−1(Γ0) < +∞, and let E be an Hn−1-
measurable set with Hn−1(E) < +∞. If Γk σ

p-converges to Γ , then
∫

(Γ∪Γ0)\E

κ(x, ν) dHn−1(x) ≤ lim inf
k→∞

∫

(Γk∪Γ0)\E

κ(x, νk) dHn−1(x), (1.10)

where ν and νk are unit normal vector fields on Γ ∪ Γ0 and Γk ∪ Γ0, respectively.

1.6 Forces

The body is subjected to a conservative volume force, depending on time, with potential
G : [0, 1] × Ω × K → R. We suppose that for every t ∈ [0, 1], (x, y) �→ G(t, x, y) is
Ln(Ω)-measurable in x and continuous in y, so that we can define the work of the body force
under any deformation u ∈ L∞(Ω; K )

G(t, u) :=
∫

Ω

G(t, x, u(x)) dx . (1.11)

As for the regularity in time and space, following [9] we prefer to prescribe hypotheses on
the functional G rather than on the integrand G. We assume that there is an exponent q ≥ 1
such that the following hold:

(G1) there is a constant cG > 0 such that, for every t ∈ [0, 1], every u ∈ L∞(Ω; K ), and
every v,w ∈ L∞(Ω; R

n) such that u+v, u+w, u+v+w ∈ L∞(Ω; K ), we have

|G(t, u)| ≤ cG ,

|G(t, u+v)− G(t, u)| ≤ cG ‖v‖Lq ,

|G(t, u+v+w)− G(t, u+v)− G(t, u+w)+ G(t, u)| ≤ cG ‖v‖Lq ‖w‖Lq ;

(G2) there is a function aG ∈ L1+([0, 1]) such that for every t1, t2 ∈ [0, 1] with t1 < t2 and
every u ∈ L∞(Ω; K )

|G(t2, u)− G(t1, u)| ≤
t2∫

t1

aG(s) ds;

(G3) there is a function bG ∈ L1+([0, 1]) such that for every t1, t2 ∈ [0, 1] with t1 < t2 and
every u1, u2 ∈ L∞(Ω; K )

|G(t2, u1)− G(t1, u1)− G(t2, u2)+ G(t1, u2)| ≤
t2∫

t1

bG(s) ds ‖u1 − u2‖Lq .
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Quasistatic crack growth in finite elasticity with Lipschitz data 173

In the previous formulas, the symbol ‖·‖Lq stands for ‖·‖Lq (Ω;Rn). Thanks to (G2), the
function t �→ G(t, u) is absolutely continuous on [0, 1] for every u ∈ L∞(Ω; K ), so that
DtG(t, u) is defined L1-a.e.; hence, (G3) is equivalent to requiring that for every u1, u2 ∈
L∞(Ω; K )

|DtG(t, u1)− DtG(t, u2)| ≤ bG(t) ‖u1 − u2‖Lq (Ω;Rn) for L1−a.e. t ∈ [0, 1],
where bG(t) denotes the approximate limit of bG at the Lebesgue points. Analogously, (G1)
provides estimates on DuG and D2

uG, if they exist.
We impose also a boundary force, with potential S : [0, 1] × ∂SΩ × K → R, (Hn−1-

measurable in the second variable and continuous in the third), so that the work of the surface
force for a deformation u ∈ L1(∂SΩ; K ) is

S(t, u) :=
∫

∂SΩ

S(t, x, u(x)) dHn−1(x). (1.12)

We impose these conditions on S:

(S1) there is a constant cS > 0 such that, for every t ∈ [0, 1], every u ∈ L∞(∂SΩ; K ), and
every v,w ∈ L∞(∂SΩ; R

n) such that u+v, u+w, u+v+w ∈ L∞(∂SΩ; K )

|S(t, u)| ≤ cS ,

|S(t, u+v)− S(t, u)| ≤ cS ‖v‖Lq ,

|S(t, u+v+w)− S(t, u+v)− S(t, u+w)+ S(t, u)| ≤ cS ‖v‖Lq ‖w‖Lq ;

(S2) there is a function aS ∈ L1+([0, 1]) such that for every t1, t2 ∈ [0, 1] with t1 < t2 and
every u ∈ L∞(∂SΩ; K )

|S(t2, u)− S(t1, u)| ≤
t2∫

t1

aS(s) ds;

(S3) there is a function bS ∈ L1+([0, 1]) such that for every t1, t2 ∈ [0, 1] with t1 < t2 and
every u1, u2 ∈ L∞(∂SΩ; K )

|S(t2, u1)− S(t1, u1)− S(t2, u2)+ S(t1, u2)| ≤
t2∫

t1

bS(s) ds ‖u1 − u2‖Lq .

In the previous formulas, the symbol ‖·‖Lq stands for ‖·‖Lq (∂SΩ;Rn). Also in this case, the
function t �→ S(t, u) is absolutely continuous on [0, 1] for every u ∈ L∞(∂SΩ; K ), and the
time derivative exists L1-a.e.

Notice that if u ∈ AD(ψ, Γ ) for some ψ ∈ W 1,1(ΩD\Ω; K ) and some Γ ∈ R, since by
(1.1) u is of class W 1,1 in the neighbourhood ΩD\ΩB of ∂SΩ , one can define its trace on
∂SΩ . Moreover, by the confinement condition, the trace takes values in K , so that S(t, u) is
well defined.

Remark 1.5 In the case of a pure Neumann problem (or in the case of a Dirichlet problem
with time-independent boundary conditions), the last estimates of (G1) and of (S1) can be
avoided: see Sect. 2.4 for the details.

Remark 1.6 If (G1–3) and (S1–3) are satisfied for an exponent q , then they hold even substi-
tuting q with any r ≥ q . So, the bigger is the exponent, the weaker are the assumptions.
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Remark 1.7 Properties (G1–3) are satisfied if we assume the following requirements on the
integrand G(t, x, y):

• there exists a non-negative function α1
G ∈ L1(Ω) such that for every (t, x, y) ∈ [0, 1] ×

Ω × K

|G(t, x, y)| ≤ α1
G(x);

• there exists a non-negative function α2
G ∈ L

q
q−1 (Ω) such that for every (t, x, y) ∈

[0, 1] ×Ω × K and every y′ ∈ R
n such that y+y′ ∈ K

∣
∣G(t, x, y+y′)− G(t, x, y)

∣
∣ ≤ α2

G(x)
∣
∣y′∣∣ ;

• there exists a non-negative function α3
G ∈ L

q
q−2 (Ω) such that for every (t, x, y) ∈

[0, 1] ×Ω × K and every y′, y′′ ∈ R
n such that y+y′, y+y′′ ∈ K

∣
∣G(t, x, y+y′+y′′)− G(t, x, y+y′)− G(t, x, y+y′′)+ G(t, x, y)

∣
∣ ≤ α3

G(x)
∣
∣y′∣∣ ∣∣y′′∣∣ ;

• there exists a non-negative function α4
G ∈ L1([0, 1]; L1(Ω)) such that for every (x, y) ∈

Ω × K and every t1, t2 ∈ [0, 1] with t1 < t2

|G(t2, x, y)− G(t1, x, y)| ≤
t2∫

t1

α4
G(s)(x) ds;

• there exists a non-negative function α5
G ∈ L1([0, 1]; L

q
q−1 (Ω)) such that for every

(x, y) ∈ Ω × K , every t1, t2 ∈ [0, 1] with t1 < t2, and every y′ ∈ R
n such that

y+y′ ∈ K

∣
∣G(t2, x, y+y′)− G(t1, x, y+y′)− G(t2, x, y)+ G(t1, x, y)

∣
∣ ≤ ∣

∣y′∣∣
t2∫

t1

α5
G(s)(x) ds.

Analogous hypotheses can be made on S(t, x, y).

Example 1.1 The properties we assumed are compatible with the case of dead loads, where
the density of the forces per unit volume in the reference configuration does not depend
on the deformation. Let r > 1; if g(t, ·) ∈ Lr (Ω; R

n) and s(t, ·) ∈ Lr (∂SΩ; R
n) are

the densities of the body and surface force at time t , we set G(t, x, y) := g(t, x) · y and
S(t, x, y) := s(t, x) · y. If we suppose that t �→ g(t, ·) and t �→ s(t, ·) are absolutely con-
tinuous into Lr (Ω; R

n) and Lr (∂SΩ; R
n), respectively, then (G1–3) and (S1–3) are satisfied

with q = r ′ := r
r−1 .

Remark 1.8 We have seen that by (G2), for every u ∈ L∞(Ω; K ), there is an L1-negligible
set Nu such that DtG(t, u) exists for t /∈ Nu . We would like to redefine this derivative in such
a way that the exceptional set does not depend on u.

Fix a countable set D, dense in L∞(Ω; K ) with respect to the norm of Lq(Ω; R
n). Let

ND := (⋃
u∈D Nu

) ∪ NG , where NG is an L1-negligible set such that each t /∈ NG is a
Lebesgue point for the function bG of (G3). For u ∈ D, define

D∗
t G(t, u) :=

{
DtG(t, u) if t /∈ ND ,
0 if t ∈ ND .
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By (G3), we have for every u1, u2 ∈ D and every t
∣
∣D∗

t G(t, u1)− D∗
t G(t, u2)

∣
∣ ≤ bG(t) ‖u1 − u2‖Lq (Ω;Rn) .

Then we can extend D∗
t G(t, ·) to a Lq(Ω; R

n)-Lipschitz function on L∞(Ω; K ).
Let u ∈ L∞(Ω; K ) and uk ∈ D such that uk converges to u in Lq(Ω; R

n). If t /∈ Nu ∪ND ,
we have by (G3)

∣
∣DtG(t, u)− D∗

t G(t, uk)
∣
∣ ≤ bG(t) ‖u − uk‖Lq (Ω;Rn) ,

so that, passing to the limit as k → ∞, we get D∗
t G(t, u) = DtG(t, u). We have proven that

for every t ∈ [0, 1] there exists a Lq(Ω; R
n)-Lipschitz function D∗

t G(t, ·) such that for every
u ∈ L∞(Ω; K ) we have D∗

t G(t, u) = DtG(t, u) for L1-a.e. t ∈ [0, 1].
Arguing in the same way, we can find a function D∗

t S(t, ·) with analogous properties. In
the following integral formulas, we will identify DtG(t, ·) and DtS(t, ·) with D∗

t G(t, ·) and
D∗

t S(t, ·), respectively.

1.7 Prescribed deformations

At every time t ∈ [0, 1], we prescribe the deformation of ΩD\Ω , requiring that u(x) =
ψ(t, x) for a.e. x ∈ ΩD\Ω . As in [10], we suppose that x �→ ψ(t, x) is defined for every x ∈
K , takes values in K , and has an inverse function on K , denoted by y �→ φ(t, y). This deter-
mines two functions

ψ, φ : [0, 1] × K → K ,

satisfying, for every (t, x) ∈ [0, 1] × K ,

ψ(t, φ(t, x)) = x = φ(t, ψ(t, x)). (BC1)

In the present work, we weaken the hypotheses on the prescribed deformations made
in [10]. As for the space dependence, we assume that, for every t ∈ [0, 1], ψ(t) := ψ(t, ·)
and φ(t) := φ(t, ·) are Lipschitz functions of K in itself. To be more precise, consider
the Sobolev space W 1,∞(K̊ ; K ); since ∂K is Lipschitz, by standard results every func-
tion v ∈ W 1,∞(K̊ ; K ) admits a Lipschitz continuous representative v̄. We extend each
function v̄ to K and, with a slight abuse of notation, denote by W 1,∞(K ; K ) the space
of all such extensions v̄, endowed with the complete norm ‖v‖W 1,∞(K ;K ) := supK |v| +
supK |∇v|.

As for the time dependence, we require that

ψ ∈ W 1,∞([0, 1]; W 1,∞(K ; K )) (BC2)

and

φ ∈ W 1,∞([0, 1]; W 1,∞(K ; K )), (BC3)

where W 1,∞([0, 1]; W 1,∞(K ; K )) denotes the space of Sobolev functions valued in
W 1,∞(K ; K ). By definition, this means that ψ, φ ∈ C0([0, 1]; W 1,∞(K ; K )) and there
exist two functions ψ̇, φ̇ ∈ L∞([0, 1]; W 1,∞(K ; K )) such that for every t ∈ [0, 1]

ψ(t) = ψ(0)+
t∫

0

ψ̇(s) ds and φ(t) = φ(0)+
t∫

0

φ̇(s) ds, (1.13)
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where the integrals are defined in the sense of Bochner, with respect to the topology of
W 1,∞(K ; K ). In particular, the Jacobian matrices∇ψ,∇φ,∇ψ̇ , and∇φ̇ are defined a.e. in K .
For an overview about the spaces of Sobolev functions valued in a Banach space, we refer
to [6, Appendix].

Remark 1.9 In particular, these hypotheses imply that there exists l > 0 such that for every
t, t1, t2 ∈ [0, 1]

‖ψ(t)‖W 1,∞(K ;K ) ≤ l, ‖φ(t)‖W 1,∞(K ;K ) ≤ l, (1.14)

‖ψ(t1)−ψ(t2)‖W 1,∞(K ;K ) ≤ l |t1−t2| , ‖φ(t1)−φ(t2)‖W 1,∞(K ;K ) ≤ l |t1−t2| , (1.15)

so t �→ ψ(t) and t �→ φ(t) are Lipschitz functions of [0, 1] in W 1,∞(K ; K ). Since the
difference quotients are bounded by a constant depending on the maximum of the derivatives
and on the measure of the domain, we can choose l so that

|ψ(t, y1)−ψ(t, y2)| ≤ l |y1−y2| , (1.16)

|(ψ(t1)−ψ(t2)) (y1)− (ψ(t1)−ψ(t2)) (y2)| ≤ l |t1−t2| |y1−y2| (1.17)

for every t, t1, t2 ∈ [0, 1] and every y1, y2 ∈ K . Moreover, employing in (1.13) the Lebesgue
Differentiation Theorem [13, Theorem III.12.8], one gets the uniform convergence of the
difference quotients to the derivative: for L1-a.e. t ∈ [0, 1], there is a modulus of continuity
ωt : [0, 1] → [0,+∞) such that

∥
∥
∥
∥
ψ(t + h)− ψ(t)

h
− ψ̇(t)

∥
∥
∥
∥

W 1,∞(K ;K )
≤ ωt (h) (1.18)

for every h ∈ [0, 1]. It is not restrictive to assume that ωt (h) is uniformly bounded in both t
and h: indeed, we can define

ωt (h) := sup
h′≤h

∥
∥
∥
∥
ψ(t + h′)− ψ(t)

h′ − ψ̇(t)

∥
∥
∥
∥

W 1,∞(K ;K )
.

Since W 1,∞(K ; K ) is not separable, (1.18) may not be implied by the Lipschitz property
(1.15): for more details, see [3, Chapter II, Sect. 2, Lemma 1, and Sect. 3, Example I] and
Example 1.2 below.

We need also a uniform bound on the energy of the prescribed deformation: we suppose
that there exists M such that for every t ∈ [0, 1]

W(ψ(t)) < M . (BC4)

Fixed t , (BC4) and (W2) give

det ∇ψ(t, x) > 0 for a.e. x ∈ K , (1.19)

so that ψ(t), being injective, satisfies the Ciarlet-Nečas condition; as S(ψ(t)) = ∅, this
implies that ψ(t) ∈ AD(ψ(t), Γ ) for every Γ ∈ R.

Remark 1.10 In these hypotheses, it is possible to find a negligible set Nψ ⊂ K containing
∂K , independent of t , such that, for every t ∈ [0, 1] and every x /∈ Nψ , the function ψ(t, ·)
is differentiable at x and det ∇ψ(t, x) > 0.

Indeed, let D be a countable dense subset of [0, 1]; by (1.19) there is a set Nψ ⊂ K of
null measure containing ∂K such that when t ∈ D, ψ(t, ·) is differentiable in Ω\Nψ and
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det ∇ψ(t, x) > 0 if x /∈ Nψ . Given t0 ∈ [0, 1], let tk ∈ D such that tk → t0; let x0 /∈ Nψ .
Since ψ(tk) is differentiable at x0 and converges to ψ(t0) strongly in W 1,∞(K ; K ), ψ(t0) is
also differentiable at x0 and ∇ψ(tk, x0) → ∇ψ(t0, x0): this is guaranteed by Lemma 1.1, as
stated below.

By convergence, we have det ∇ψ(t0, x0) ≥ 0; we must show that det ∇ψ(t0, x0) �= 0.
Suppose by contradiction that det ∇ψ(t0, x0) = 0; then, there is a vector ξ such that
∇ψ(t0, x0) ξ = 0. Take h �= 0 so small that x0 + h ξ ∈ K ; let y0 := ψ(t0, x0) and
yh := ψ(t0, x0 + h ξ). By the hypothesis on ξ , we have, as h → 0,

|yh − y0|
|φ(t0, yh)− φ(t0, y0)| = |ψ(t0, x0 + h ξ)− ψ(t0, x0)|

|h| → 0,

which is forbidden by the Lipschitz property of φ(t0).
To conclude, we must only prove the following lemma.

Lemma 1.1 Let vk be a sequence converging to v strongly in W 1,∞(K ; K ). Let x0 ∈ K̊ be
such that vk is differentiable at x0 for every k. Then, v is differentiable at x0 and ∇vk(x0) →
∇v(x0).

Proof Fixed ε > 0, we have for every k and j large enough
∣
∣(vk − v j )(x)− (vk − v j )(x0)

∣
∣ ≤ ε |x − x0| (1.20)

for every x ∈ K ; indeed, by convergence in W 1,∞(K ; K ), the function vk − v j is Lipschitz
with vanishing constant. As x → x0, we get

∣
∣∇vk(x0)− ∇v j (x0)

∣
∣ ≤ ε; then there exists

A0 ∈ M
n×n such that, as k → ∞,∇vk(x0) → A0. We deduce from (1.20) that for every

ε > 0 there is k such that
∣
∣
∣
∣
vk(x)− vk(x0)− ∇vk(x0)(x − x0)

|x − x0| − v(x)− v(x0)− A0(x − x0)

|x − x0|
∣
∣
∣
∣ ≤ ε

for every x ∈ K . By differentiability, for every k, there is δ > 0 such that for |x − x0| < δ

|vk(x)− vk(x0)− ∇vk(x0)(x − x0)|
|x − x0| ≤ ε.

Hence, v is differentiable at x0 with differential A0. ��
Example 1.2 We conclude the discussion about W 1,∞ spaces by showing an example (in
dimension n = 1) of Lipschitz function from [0, 1] into W 1,∞([0, 1]), which does not
belong to the space W 1,∞([0, 1]; W 1,∞([0, 1])). Let ψ(t, x) := 1

2 |x − t |2 sgn(x − t) and
consider the partial derivative Dxψ(t, x) = |x − t |. Fixed t ∈ [0, 1], the difference quo-
tients 1

h (Dxψ(t + h, x) − Dxψ(t, x)) are continuous in x and uniformly bounded with
respect to h; moreover, as h → 0 they converge to 1[0,t) − 1(t,1] strongly in Lr ([0, 1]) for
every r < +∞. Nevertheless, being the limit discontinuous in x , the convergence cannot
be uniform. Therefore, ψ satisfies (1.15), while (1.18) does not hold. Notice that also the
property of Remark 1.10 is not satisfied in this example.

1.8 Minimum energy configurations

Following [15], we consider evolutions of minimum energy configurations for E : given a
boundary datum ψ ∈ W 1,∞([0, 1]; W 1,∞(K ; K )), at each time t ∈ [0, 1] we look for solu-
tions (u(t), Γ (t)), with Γ (t) ∈ R and u(t) ∈ AD(ψ(t), Γ (t)), such that the unilateral
minimality condition holds:
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E(t, u(t), Γ (t)) ≤ E(t, u, Γ ) (1.21)

for every Γ ∈ R, with Γ (t)
∼⊂ Γ , and every u ∈ AD(ψ(t), Γ ).

Hence, fixed t ∈ [0, 1] and given an initial datum Γ0 ∈ R, we consider the minimum
problem

min
{
E(t, u, Γ ) : Γ ∈ R, Γ0

∼⊂ Γ, u ∈ AD(ψ(t), Γ )
}

. (1.22)

The next theorem ensures that there exists at least a solution; for the proof, we refer to [10,
Theorem 2.2].

Theorem 1.2 (Minimization of the total energy) Let E be the energy defined in (1.5) and (1.6),
where W satisfies (W0–6), G satisfies (G1–3), S satisfies (S1–3), and K satisfies (K1–3).
Consider the prescribed deformations defined in (BC1–4). Then, for every t ∈ [0, 1] and
Γ0 ∈ R, the minimum problem (1.22) has a solution.

2 The auxiliary formulation

Following [10,16], we study the properties of the system described in the previous section,
through a change of variables. Then, we are led to consider an auxiliary problem with time-
independent prescribed deformations and time-dependent bulk energy. In this section, we
pass to this auxiliary formulation via the so-called multiplicative splitting method and state
the properties of the new energy terms.

2.1 The multiplicative splitting method

The formulation with time-independent prescribed deformations is obtained using the method
of multiplicative splitting introduced in [16], which will allow us to employ the multiplicative
estimates (W5) and (W6).

Given ψ ∈ W 1,∞([0, 1]; W 1,∞(K ; K )) and Γ ∈ R, we look for a solution u ∈
AD(ψ(t), Γ ) to (1.22) of the form u = ψ(t) ◦ z, with z ∈ SBV (ΩD; K ). This request
implies z ∈ AD(I, Γ ), where I denotes the identical deformation onΩD . In order to express
∇u in terms of ψ(t) and z, we have to check the chain rule for these functions, exploiting
the non-interpenetration property of the solutions.

Lemma 2.1 Let v ∈ W 1,∞(K ; K ) and z ∈ SBV (ΩD; K ) such that Ln(z−1(F)) = 0
whenever Ln(F) = 0. Then u := v ◦ z ∈ SBV (ΩD; K ) and ∇u(x) = ∇v(z(x))∇z(x) for
a.e. x ∈ ΩD.

Proof The proof is obtained by modifying the one of [2, Theorem 3.99]. By [2, Theo-
rem 3.101] we get that u = v ◦ z ∈ SBV (ΩD; K ) and D j u = (v(z+) − v(z−)) ⊗
νz Hn−1 S(z). It is possible to approximate v by mollification with a sequence vk ; let
uk := vk ◦ z. By [2, Theorem 3.96] we have ∇uk = ∇vk(z)∇z and D j uk = (vk(z+) −
vk(z−))⊗ νz Hn−1 S(z). As uk converges to u uniformly and |Duk | (ΩD) is equibounded,
we get that Duk converges to Du weakly∗ in the sense of measures. As D j uk converges to
D j u strongly, ∇uk converges to ∇u weakly∗ in the sense of measures. In order to see the
convergence of ∇vk(z), let F be the set of the points that are not Lebesgue for ∇v. As ∇vk

converges to ∇v pointwise onΩD\F and Ln(z−1(F)) = 0, we obtain that ∇vk(z) converges
to ∇v(z) a.e. in ΩD . The conclusion follows from the dominated convergence theorem. ��
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Thanks to the non-interpenetration property (see Remark 1.2), we get from the previous
lemma ∇u(x) = ∇ψ(t, z(x))∇z(x) for a.e. x ∈ ΩD .

Recall that, by Remark 1.10, there is a negligible set Nψ containing ∂K such that, for
every t ∈ [0, 1], ψ(t, ·) is differentiable in K\Nψ , with det ∇ψ(t, y) > 0 at every y /∈ Nψ .
This leads us to define the auxiliary volume energy density imposing the chain rule where
∇ψ(t, y) exists:

V (t, x, y, A) :=
{

W (x,∇ψ(t, y) A) if y /∈ Nψ ,
W (x, A) if y ∈ Nψ .

(2.1)

We consider the integral functional, defined for z ∈ AD(I, Γ ),

V(t, z) :=
∫

Ω

V (t, x, z(x),∇z(x)) dx . (2.2)

Notice that, in order to study V(t, z), we are free to choose any value for V (t, x, y, A) when
y ∈ Nψ , because z−1(Nψ) has null measure. For u = ψ(t) ◦ z we have

W(u) = V(t, φ(t) ◦ u), V(t, z) = W(ψ(t) ◦ z).

As for the external forces, we set

L(t, z) := G(t, ψ(t) ◦ z), (2.3)

T (t, z) := S(t, ψ(t) ◦ z). (2.4)

Finally, we define

Fel(t, z) := V(t, z)− L(t, z)− T (t, z), (2.5)

F(t, z, Γ ) := Fel(t, z)+ K(Γ ). (2.6)

Hence,

Eel(t, u) = Fel(t, φ(t) ◦ u), Fel(t, z) = Eel(t, ψ(t) ◦ z). (2.7)

The properties of the auxiliary bulk energy and of the new force terms are stated in axi-
omatic form in the following sections.

2.2 Formulation with time-independent prescribed deformations

The previous discussion leads us to introduce a class of functions V : [0, 1] × Ω × K ×
M

n×n → [0,+∞] satisfying the following requirements:

(V1) Measurability: for every (t, A) ∈ [0, 1]×M
n×n , the function (x, y) �→ V (t, x, y, A)

is Ln(Ω)⊗Ln(K )-measurable onΩ× K , and for every (x, y) ∈ Ω× K , the function
(t, A) �→ V (t, x, y, A) is continuous on [0, 1] × M

n×n .
(V2) Finiteness: for every (t, x, y) ∈ [0, 1]×Ω× K , we have V (t, x, y, A) < +∞ if and

only if A ∈ GL+
n .

Thanks to Remark 1.3, property (V1) ensures, for every z ∈ AD(I, Γ ), the measurability
of V (t, x, z(x),∇z(x)); hence, V(t, z) is well defined by (2.2).

We require the following properties on this integral functional:

(V3) Bound at identity: there exists a constant M > 0 such that V(t, I ) ≤ M for every
t ∈ [0, 1];
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(V4) Semicontinuity and coercivity: if zk converges to z weakly∗ in SBV p(ΩD; K ) and
tk → t , then

V(t, z) ≤ lim inf
k→∞ V(tk, zk);

moreover, there exist some constants β0
V , . . . , β

n
V > 0 such that, for every t ∈ [0, 1]

and every z ∈ AD(I, Γ ),

V(t, z) ≥
n∑

j=1

β
j
V

∥
∥adj j∇u

∥
∥p j

L p j (ΩD;Rτ j )
− β0

V ,

where p1 ≥ 2, p j ≥ p′
1 := p1

p1−1 for j = 2, . . . , n − 1, pn > 1, and τ j is the
dimension of adj j∇u.

Furthermore, we assume that there exist a constant γV ∈ (0, 1), a function c0
V ∈ L1+(Ω)

and a constant c1
V > 0, such that:

(V5) Multiplicative stress estimate: for every (t, x, y, A) ∈ [0, 1] ×Ω × K × GL+
n and

every B ∈ GL+
n with |B − I | < γV ,

V (t, x, y, AB)+ c0
V (x) ≤ c1

V

(
V (t, x, y, A)+ c0

V (x)
)

;

(V6) Estimate on time increments: for every (t1, x, y, A) ∈ [0, 1] ×Ω × K × GL+
n and

every t2 ∈ [0, 1] such that |t1 − t2| < γV ,

|V (t1, x, y, A)− V (t2, x, y, A)| ≤ c1
V

(
V (t1, x, y, A)+ c0

V (x)
) |t1 − t2| ;

(V7) Estimate on the convergence of time increments: there exists an L1-negligible set N
such that for t /∈ N the partial time derivative Dt V (t, x, y, A) is defined for every
(x, A) ∈ Ω × GL+

n and a.e. y ∈ K , and we have for every h > 0 with t ± h ∈ [0, 1]
that
∣
∣
∣
∣Dt V (t, x, y, A)∓ V (t±h, x, y, A)−V (t, x, y, A)

h

∣
∣
∣
∣≤ωt (h)

(
V (t, x, y, A)+c0

V (x)
)
,

where ωt : [0, 1] → [0,+∞) is a modulus of continuity, depending only on t , with
t �→ ωt (h) in L∞([0, 1]) for every h ∈ [0, 1];

(V8) Estimate on spatial increments: for every (t, x, y, A) ∈ [0, 1] ×Ω × K × GL+
n and

every y′ ∈ K ,

V (t, x, y′, A)+ c0
V (x) ≤ c1

V

(
V (t, x, y, A)+ c0

V (x)
)

.

Remark 2.1 Let z ∈ SBV (ΩD; K ); suppose that V(t0, z) < +∞ for some t0 ∈ [0, 1]. Then
V(t, z) < +∞ for every t ∈ [0, 1]: indeed, by (V6)

V (t, x, z(x),∇z(x))+ c0
V (x) ≤ (

c1
V + 1

) (
V (t0, x, z(x),∇z(x))+ c0

V (x)
)

.

Using again (V6), one sees that t �→ V(t, z) is Lipschitz, with constant depending on V(t0, z).
Hence, it has a derivative DtV(·, z) ∈ L∞([0, 1]), defined L1-a.e. in [0, 1]. Also, t �→
V (t, x, z(x),∇z(x)) is Lipschitz, so it is derivable L1-a.e.; more precisely, by (V7) and by
Remark 1.2, we find for each t /∈ N a set Nt,z of null measure such that Dt V (t, x, z(x),∇z(x))
exists for every x /∈ Nt,z .
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We are going to establish a representation formula for DtV(·, z). Let us extend t �→
V (t, x, z(x),∇z(x)) to [0,+∞) by setting its value to be V (1, x, z(x),∇z(x)) for t > 1.
Consider the function

D∗
t V (t, x) := lim inf

k→∞
V

(
t + 1

k , x, z(x),∇z(x)
) − V (t, x, z(x),∇z(x))

1
k

,

which is integrable on [0, 1]×Ω by (V6). Since D∗
t V (t, x) = Dt V (t, x, z(x),∇z(x))where

the derivative is defined, we have for every t1, t2 ∈ [0, 1]

V(t2, z)− V(t1, z) =
∫

Ω

t2∫

t1

D∗
t V (t, x) dt dx .

Finally, exchanging the order of integration, we obtain for L1-a.e. t ∈ [0, 1]
DtV(t, z) =

∫

Ω

D∗
t V (t, x) dx .

Given t /∈ N , we have D∗
t V (t, x) = Dt V (t, x, z(x),∇z(x)) in Ω\Nt,z : integrating (V7) we

deduce that
∣
∣
∣
∣DtV(t, z)∓ V(t ± h, z)− V(t, z)

h

∣
∣
∣
∣ ≤ ωt (h)

(
V(t, z)+ ∥

∥c0
V

∥
∥

L1(Ω)

)
.

In particular, this shows that the partial time derivative DtV(·, z) is defined out of an L1-neg-
ligible set independent of z.

In the following section, we prove that the auxiliary energy introduced in Sect. 2.1 satisfies
the axioms stated above.

2.3 Proof of the properties of the auxiliary energy

In this section, we prove that the volume energy V , obtained from W and ψ through the
change of variable described in (2.1), satisfies the properties (V1–8) stated above.

We start with some consequences of hypothesis (W5).

Proposition 2.1 Let W (x, A) be a Carathéodory function satisfying (W2) and (W5). Then
there exists a constant γ ∈ (0, 1) (depending only on n) such that, for every (x, A) ∈
Ω × GL+

n and every B ∈ M
n×n with |B − I | < γ , we have B ∈ GL+

n and

W (x, AB)+ c0
W (x) ≤ n

n − 1

(
W (x, A)+ c0

W (x)
)

. (2.8)

If W satisfies also (W0), then for every (x, A) ∈ Ω × GL+
n

∣
∣DAW (x, A) AT

∣
∣ ≤ c1

W

(
W (x, A)+ c0

W (x)
)

. (2.9)

If W satisfies (2.9), there exists a constant, still denoted γ , such that, for every A ∈ GL+
n

and every B ∈ M
n×n with |B − I | < γ , we have B ∈ GL+

n and

W (x, B A)+ c0
W (x) ≤ n

n − 1

(
W (x, A)+ c0

W (x)
)

(2.10)

and

∣
∣DAW (x, B A) AT

∣
∣ ≤ n2

n − 1
c1

W

(
W (x, A)+ c0

W (x)
)

. (2.11)
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Proof Argue as in [4, Sect. 2.4]. ��
The Kirchhoff tensor DAW (x, A) AT appearing in (2.9) is related with the “multiplicative

increments” of type W (x, B A)− W (x, A), because

DAW (x, A) AT : (B − I ) = dAW (x, A)[B A − A].
This suggests to write (2.9) without using derivatives.

Proposition 2.2 Let W (x, A) be a Carathéodory function satisfying (W2) and (2.9). Then

|W (x, B A)− W (x, A)| ≤ n2

n − 1
c1

W

(
W (x, A)+ c0

W (x)
) |B − I | (2.12)

for every (x, A) ∈ Ω×GL+
n and every B ∈ GL+

n with |B − I | < γ , where γ is the constant
introduced in the previous proposition.

Proof Fixed (x, A) and B as in the statement, define for λ ∈ [0, 1] the function w(λ) :=
W (x, (1−λ)A+λ B A), whose derivative isw′(λ) = DAW (x, (1 − λ)A + λ B A) AT : (B−
I ). We have W (x, B A) − W (x, A) = ∫ 1

0 w
′(λ) dλ. By (2.11), we get

∣
∣w′(λ)

∣
∣ ≤

n2

n−1 c1
W (W (x, A)+ c0

W (x)) |B − I |, so we conclude. ��
In the next proposition, we present an estimate where multipliers need not to be near I .

Proposition 2.3 Let W (x, A) be a Carathéodory function satisfying (W0), (W2), and (2.9).
Then for every M > 0 there exists cM > 0 such that

W (x, B A)+ c0
W (x) ≤ cM

(
W (x, A)+ c0

W (x)
)

(2.13)

for every (x, A) ∈ Ω × GL+
n and every B ∈ GL+

n with |B| < M and
∣
∣B−1

∣
∣ < M.

Proof Let A, B, and M be as in the statement. Consider a decomposition B = QC with
Q ∈ SOn and C symmetric and positive definite (take C := √

BT B). We can find an integer
N such that

∣
∣
∣C

1
N − I

∣
∣
∣ < γ ;

here, N depends only on the constant γ of Proposition 2.1 and on M , which controls |B| and∣
∣B−1

∣
∣. We can apply (W0) and (2.10) to get

W (x, B A)+ c0
W (x) = W

(

x,
(

C
1
N

)N
A

)

+ c0
W (x) ≤

(
n

n − 1

)N (
W (x, A)+ c0

W (x)
)

.

This concludes the proof. ��
Now, we are ready to show the passage between the two formulations presented above.

We will use the following fact.

Remark 2.2 By (2.9) we get for every (x, A) ∈ Ω × GL+
n and every B ∈ GL+

n
∣
∣DAW (x, B A) AT

∣
∣ ≤ c1

W

(
W (x, B A)+ c0

W (x)
) ∣
∣B−1

∣
∣ . (2.14)

Proposition 2.4 If (W0–6) and (BC1–4) hold, then the functional V defined in (2.1) satisfies
properties (V1–8).

123



Quasistatic crack growth in finite elasticity with Lipschitz data 183

Proof Properties (V1–3) are given by (W1–3). After a change of variables, one sees that
(V4) is a consequence of (W1) and (W4), thanks to the lower semicontinuity of W (see
Remark 1.4).

In what follows, we will take c0
V := c0

W , c1
V ≥ n

n−1 , and γV ≤ γ , where γ is the constant
introduced in Proposition 2.1. Then (V5) is implied by (2.8), because

W (x,∇ψ(t, y)AB)+ c0
W (x) ≤ n

n − 1

(
W (x,∇ψ(t, y)A)+ c0

W (x)
)

.

In order to see (V6), take γV ≤ l−2γ , where l is the constant appearing in Remark 1.9.
By (1.14) and (1.15), for a.e. y ∈ K we have

|∇ψ(t2, y)∇φ(t1, ψ(t1, y))− I | < γ

if |t1 − t2| < γV . Hence, we can apply (2.12) to get for every A ∈ GL+
n

|W (x,∇ψ(t2, y)A)− W (x,∇ψ(t1, y)A)|
≤ n2

n − 1
l2c1

W

(
W (x,∇ψ(t1, y)A)+ c0

W (x)
) |t1 − t2| ;

then (V6) follows for c1
V large enough.

The partial time derivative of V exists everywhere ψ̇ is defined. By (2.1), property (V7)
is trivially satisfied when y ∈ Nψ , where Nψ is the negligible subset of K defined in
Remark 1.10. If y /∈ Nψ , we have Dt V (t, x, y, A) = DAW (x,∇ψ(t, y)A) AT : ∇ψ̇(t, y)
where the derivatives exist. Given h > 0 small enough, using the mean value theorem we
can find a convex combination Bh of ∇ψ(t + h, y) and ∇ψ(t, y) such that

∣
∣
∣
∣DAW (∇ψ(t)A) AT : ∇ψ̇(t)− W (∇ψ(t + h)A)− W (∇ψ(t)A)

h

∣
∣
∣
∣

=
∣
∣
∣
∣DAW (∇ψ(t)A) AT : ∇ψ̇(t)− DAW (Bh A) AT : ∇ψ(t + h)− ∇ψ(t)

h

∣
∣
∣
∣

≤ ∣
∣DAW (∇ψ(t)A) AT

∣
∣
∣
∣
∣
∣∇ψ̇(t)− ∇ψ(t + h)− ∇ψ(t)

h

∣
∣
∣
∣

+ ∣
∣DAW (∇ψ(t)A) AT − DAW (Bh A) AT

∣
∣
∣
∣
∣
∣
∇ψ(t + h)− ∇ψ(t)

h

∣
∣
∣
∣ .

Here and henceforth, we omit the arguments x and y when they are obvious; it is understood
that Bh is invertible for h small. Consider the first summand of the last expression; using
(2.14) and (1.14) in the first factor and (1.18) in the second, we get

∣
∣DAW (∇ψ(t)A) AT

∣
∣
∣
∣
∣
∣∇ψ̇(t)− ∇ψ(t + h)− ∇ψ(t)

h

∣
∣
∣
∣ ≤ l c1

W ωt (h)
(
W (∇ψ(t)A)+ c0

W

)
,

where ωt is the modulus of continuity defined in Remark 1.9. As for the second summand,
we can use (1.15) to control the last factor; the remaining part is

∣
∣DAW (Bh A) AT − DAW (∇ψ(t, y)A) AT

∣
∣

≤ ∣
∣DAW (B ′

h A′) (B ′
h A′)T − DAW (A′) A′T∣

∣
∣
∣
∣B−1

h

∣
∣
∣

+ ∣
∣DAW (A′) A′T∣

∣
∣
∣
∣B−1

h − ∇φ(t, ψ(t, y))
∣
∣
∣ ,

where B ′
h := Bh ∇φ(t, ψ(t, y)) and A′ := ∇ψ(t, y)A. The first term is estimated by (W6),

since
∣
∣
∣B−1

h

∣
∣
∣ is bounded by (1.14); as for the second one, we use (2.9), recalling that, if h is
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small enough, Bh is uniformly near to ∇ψ(t, y), being a convex combination of ∇ψ(t, y)
and ∇ψ(t + h, y). Hence, there is a modulus of continuity ω : [0, 1] → [0,+∞) such that

∣
∣DAW (Bh A) AT − DAW (∇ψ(t, y)A) AT

∣
∣ ≤ ω(h)

(
W (∇ψ(t)A)+ c0

W

)
;

notice that, by (1.14) and (2.13), ω is bounded. This concludes the proof of (V7) in the case
of t + h; the case of t − h is analogous.

Finally, (V8) follows from (2.13), because the functions ∇ψ(t, ·) and ∇φ(t, ·) are uni-
formly bounded in W 1,∞(K ; K ) by (1.14). ��
2.4 Properties of the force terms

The volume forces in the new formulation are given by a functional L(t, z), defined in
[0, 1] × AD(I, Γ ), where Γ ∈ R. We assume that there is an exponent q ≥ 1 such that the
following hold:

(L1) there is a constant cL > 0 such that for every t ∈ [0, 1] and every z, z1, z2 ∈
L∞(Ω; K )

|L(t, z)| ≤ cL ,

|L(t, z1)− L(t, z2)| ≤ cL ‖z1−z2‖Lq (Ω;Rn) ;

(L2) there is a function aL ∈ L1+([0, 1]) such that for every t1, t2 ∈ [0, 1] with t1 < t2
and every z ∈ L∞(Ω; K )

|L(t2, z)− L(t1, z)| ≤
t2∫

t1

aL(s) ds;

(L3) there is a function bL ∈ L1+([0, 1]) such that for every t1, t2 ∈ [0, 1] with t1 < t2
and every z1, z2 ∈ L∞(Ω; K )

|L(t2, z1)− L(t1, z1)− L(t2, z2)+ L(t1, z2)| ≤
t2∫

t1

bL(s) ds ‖z1−z2‖Lq (Ω;Rn) .

As for the surface forces, they are given by a functional T (t, z), defined in [0, 1] ×
AD(I, Γ ). We suppose:

(T1) there is a constant cT > 0 such that for every t ∈ [0, 1] and every z, z1, z2 ∈
L∞(∂SΩ; K )

|T (t, z)| ≤ cT ,

|T (t, z1)− T (t, z2)| ≤ cT ‖z1−z2‖Lq (∂SΩ;Rn) ;

(T2) there is a function aT ∈ L1+([0, 1]) such that for every t1, t2 ∈ [0, 1] with t1 < t2 and
every z ∈ L∞(∂SΩ; K )

|T (t2, z)− T (t1, z)| ≤
t2∫

t1

aT (s) ds;
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(T3) there is a function bT ∈ L1+([0, 1]) such that for every t1, t2 ∈ [0, 1] with t1 < t2 and
every z1, z2 ∈ L∞(∂SΩ; K )

|T (t2, z1)−T (t1, z1)−T (t2, z2)+T (t1, z2)| ≤
t2∫

t1

bT (s) ds ‖z1−z2‖Lq (∂SΩ;Rn) .

Thanks to (L2) and (T2), given any z ∈ AD(I, Γ ) the functions t �→ L(t, z) and t �→
T (t, z) are absolutely continuous on [0, 1], so that DtL(t, z) and DtT (t, z) exist L1-a.e. Argu-
ing as in Remark 1.8, we may define for every t ∈ [0, 1] some Lq(Ω; R

n)-Lipschitz functions
D∗

t L(t, ·) and D∗
t T (t, ·), such that for every z ∈ AD(I, Γ ) we have D∗

t L(t, u) = DtL(t, u)
and D∗

t T (t, u) = DtT (t, u) for L1-a.e. t ∈ [0, 1]. We identify DtL(t, ·) with D∗
t L(t, ·) and

DtT (t, ·) with D∗
t T (t, ·); we set also

DtFel(t, z) := DtV(t, z)− DtL(t, z)− DtT (t, z). (2.15)

We will use in particular these consequences of (L1–3) and (T1–3) for z, zk ∈ AD(I, Γ )
such that zk → z in measure:

if tk → t , L(tk, zk) → L(t, z) and T (tk, zk) → T (t, z); (2.16)

for L1-a.e. t , DtL(t, zk) → DtL(t, z) and DtT (t, zk) → DtT (t, z). (2.17)

Finally, we prove that (L1–3) and (T1–3) are satisfied when L and T are given by (2.3)
and (2.4).

Proposition 2.5 If (G1–3), (S1–3), and (BC1–4) hold, then the functionals L and T defined
in (2.3) and (2.4) satisfy properties (L1–3) and (T1–3).

Proof We show (L1–3); the proof of (T1–3) is analogous.
Property (L1) comes immediately from (G1), taking cL := cG(1 ∨ l), where l is the

constant of Remark 1.9.
Henceforth, we write ψ1 := ψ(t1) and ψ2 := ψ(t2). As for (L2), by (G1), (G2), and

(1.15) we have

|L(t2, z)− L(t1, z)| ≤ |G(t2, ψ1◦z)− G(t1, ψ1◦z)| + |G(t1, ψ1◦z)− G(t1, ψ2◦z)|

≤
t2∫

t1

aG(s) ds + l cG Ln(Ω)
1
q (t2 − t1),

so we define aL(s) := aG(s)+ l cG Ln(Ω)
1
q .

To prove (L3), adding and subtracting we obtain

|L(t2, z1)− L(t1, z1)− L(t2, z2)+ L(t1, z2)|
≤ |G(t2, ψ1◦z1)− G(t1, ψ1◦z1)− G(t2, ψ1◦z2)+ G(t1, ψ1◦z2)|

+ |G(t2, ψ2◦z1)− G(t2, ψ1◦z1)− G(t2, ψ2◦z2)+ G(t2, ψ1◦z2)| .

The first summand is controlled by l
∫ t2

t1
bG(s) ds ‖z1 − z2‖Lq (Ω;Rn) thanks to (G3) and

(1.16). As for the second summand, we get from (G1), (1.16), and (1.15)

|G(t2, ψ1◦z1 + ψ2◦z2 − ψ1◦z2)− G(t2, ψ1◦z1)− G(t2, ψ2◦z2)+ G(t2, ψ1◦z2)|
≤ l2 cG(t2 − t1) ‖z1 − z2‖Lq (Ω;Rn) .
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What remains is estimated with (G1) and (1.17):

|G(t2, ψ1◦z1 + ψ2◦z2 − ψ1◦z2)− G(t2, ψ2◦z1)| ≤ l cG(t2 − t1) ‖z1 − z2‖Lq (Ω;Rn) .

Then, we conclude taking bL(s) := l bG(s)+ l cG + l2 cG . ��

Remark 2.3 The time derivatives of the energies considered above have L1-a.e. the following
form:

DtV(t, z) =
∫

Ω

DAW (x,∇(ψ(t) ◦ z)) : ∇ (
ψ̇(t) ◦ z

)
dx ,

DtL(t, z) =
∫

Ω

Dy G(t, x, ψ(t) ◦ z) · (
ψ̇(t) ◦ z

)
dx + DtG(t, ψ(t) ◦ z),

DtT (t, z) =
∫

∂SΩ

Dy S(t, x, ψ(t) ◦ z) · (
ψ̇(t) ◦ z

)
dHn−1(x)+ DtS(t, ψ(t) ◦ z).

For u = ψ(t) ◦ z, we define the power of the external forces

P(t, u) :=
∫

Ω

DAW (x,∇u) : ∇ (
ψ̇(t) ◦ φ(t) ◦ u

)
dx

−
∫

Ω

Dy G(t, x, u) · (
ψ̇(t) ◦ φ(t) ◦ u

)
dx

−
∫

∂SΩ

Dy S(t, x, u) · (
ψ̇(t) ◦ φ(t) ◦ u

)
dHn−1(x),

so that the time derivative of the total energy takes the form

DtFel(t, φ(t) ◦ u) = P(t, u)− DtG(t, u)− DtS(t, u).

These formulas allow us to pass from the problem with fixed boundary data to the original
one (see [10, Sects. 2.4 and 7]).

3 Quasistatic evolution

The goal of this work is to study quasistatic evolutions: namely, motions which at each time
minimize the total energy and satisfy an energy-dissipation balance law. We quote from [10]
the definition of incrementally approximable quasistatic evolution; in Theorems 3.2 and 3.3,
we present the existence result and the properties of global stability and energy balance, in
the weak hypotheses presented in Sect. 1.

Throughout the section, we adopt the formulation with time-independent boundary con-
ditions, introduced in Sect. 2. All definitions and theorems presented here can be formulated
in the framework with time-dependent boundary data (see Sect. 1), using Remark 2.3; for
the details we refer to [10, Sects. 2.4 and 7].
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3.1 Definitions and properties

We fix an initial condition (u0, Γ0), which is supposed to be a minimum energy configuration
at time 0, i.e., Γ0 ∈ R, u0 ∈ AD(I, Γ0), and

F(0, u0, Γ0) ≤ F(0, u, Γ ) (3.1)

for every Γ ∈ R with Γ0
∼⊂ Γ and every u ∈ AD(I, Γ ).

Consider a time discretization, i.e., a sequence of subdivisions {t i
k}0≤i≤k of the interval

[0, 1], with

0 = t0
k < t1

k < · · · < tk−1
k < tk

k = 1 and lim
k→∞ max

1≤i≤k

(
t i
k − t i−1

k

)
= 0. (3.2)

For a given subdivision, we define a corresponding incremental approximate solution.

Definition 3.1 Fix k ∈ N. An incremental approximate solution corresponding to the time
subdivision {t i

k}0≤i≤k with initial datum (u0, Γ0) is a function t �→ (uk(t), Γk(t)), such that

(a) (uk(0), Γk(0)) = (u0, Γ0);
(b) uk(t) = uk

(
t i
k

)
and Γk(t) = Γk

(
t i
k

)
for t ∈ [

t i
k, t i+1

k

)
and i = 0, . . . , k − 1;

(c) for i = 1, . . . , k,
(
u

(
t i
k

)
, Γ

(
t i
k

))
is a solution of

min
{
F

(
t i
k, u, Γ

)
: Γ ∈ R, Γ i−1

k
∼⊂ Γ, u ∈ AD(I, Γ )

}
. (3.3)

If (uk, Γk) satisfies the previous definition, by the minimality and by (V3) we have
F(t, uk(t), Γk(t)) < +∞ for every t , hence uk ∈ SBV p(ΩD; K ) by (V4). The existence
of incremental approximate solutions is guaranteed by the following theorem, which is the
counterpart of Theorem 1.2; for the proof, we refer to [10, Theorem 2.10].

Theorem 3.1 (Minimization of the total energy) Let F be the energy defined in (2.1)–(2.6),
where V satisfies (V1–8), L satisfies (L1–3), T satisfies (T1–3), and K satisfies (K1–3). Then,
for every t ∈ [0, 1] and Γ0 ∈ R, the minimum problem

min
{
F(t, u, Γ ) : Γ ∈ R, Γ0

∼⊂ Γ, u ∈ AD(I, Γ )
}

(3.4)

has a solution.

To find an incrementally approximable quasistatic evolution, we take a sequence of incre-
mental approximate solutions and pass to the limit as the time step vanishes. In the passage
to the limit, we use the weak∗ convergence in SBV p(ΩD; K ) for the deformations (see
Sect. 1.1) and the σ p-convergence for the cracks (see Sect. 1.5).

Definition 3.2 A function t �→ (u(t), Γ (t)) from [0, 1] in SBV p(ΩD; K )× R is an incre-
mentally approximable quasistatic evolution of minimum energy configurations with initial
datum (u0, Γ0), if there exist an increasing set function t �→ Γ ∗(t) ∈ R, a time discretization
{t i

k}0≤i≤k , and a corresponding sequence of incremental approximate solutions (uk(t), Γk(t))
with the same initial datum, such that for every t ∈ [0, 1]
(a) Γk(t) σ p-converges to Γ ∗(t) and Γ (t) = Γ ∗(t) ∪ Γ0;
(b) there is a subsequence uk j (t), depending on t , such that uk j (t) ⇀ u(t) weakly∗ in

SBV p(ΩD; K ); moreover, for L1-a.e. t ∈ [0, 1], limk→∞ θk j (t) = lim supk→∞ θk(t),
where

θk(t) := DtFel(t, uk(t)). (3.5)
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We state the existence result for measurable incrementally approximable quasistatic evo-
lutions; the proof can be done as in [10, Theorem 2.13, Theorem 6.1, and Corollary 6.2],
with minor modifications due to the presence of the forces (see (3.10) for the discrete energy
inequality).

Theorem 3.2 (Existence of quasistatic evolutions) Let F be the energy defined in (2.1)–(2.6),
where V satisfies (V1–8), L satisfies (L1–3), T satisfies (T1–3), and K satisfies (K1–3). Let
(u0, Γ0) be a minimum energy configuration at time 0 as in (3.1). Then there exists an incre-
mentally approximable quasistatic evolution t �→ (u(t), Γ (t)) with initial datum (u0, Γ0),
such that the function t �→ u(t) is strongly measurable, regarded as a function from [0, 1]
into SBV p(ΩD; R

n).

The main result of this work is the proof of the following properties, which characterize
quasistatic evolutions as rate-independent processes (see [21] and the references therein).
We refer to [10, Remark 2.16] for further comments on the energy balance rule.

Theorem 3.3 (Properties of quasistatic evolutions) For every incrementally approximable
quasistatic evolution (u(t), Γ (t)), the following hold:
1. Global stability: for every t ∈ [0, 1], the pair (u(t), Γ (t)) is a minimum energy configu-

ration at time t, i.e., Γ (t) ∈ R, u(t) ∈ AD(I, Γ (t)), and

F(t, u(t), Γ (t)) ≤ F(t, v, Γ ) (3.6)

for every Γ ∈ R, with Γ (t)
∼⊂ Γ , and every v ∈ AD(I, Γ );

2. Energy balance: the function F(t) := F(t, u(t), Γ (t)) is absolutely continuous on [0, 1]
and its time derivative satisfies

Ḟ(t) = DtFel(t, u(t)) for L1-a.e. t ∈ [0, 1]. (3.7)

In the next section, we provide the proof of Theorem 3.3, which is based on the arguments
of [9] and [10].

3.2 Proof of Theorem 3.3

Let (u(t), Γ (t)) be an incrementally approximable quasistatic evolution. Then there exist an
increasing set function t �→ Γ ∗(t) ∈ R, a time discretization {t i

k}0≤i≤k such that (3.2) holds,
and a sequence of incremental approximate solutions (uk(t), Γk(t)) with the same initial
datum (u0, Γ0), which fulfil properties (a) and (b) of Definition 3.2. Let θk(t) be as in (3.5);
set τk(t) := t i

k and Fk(t, ·) := F(t i
k, ·) for t ∈ [t i

k, t i+1
k ).

Global stability

The proof of the global stability can be done as in [10, Sect. 4], with obvious adaptations
to treat the case where volume and surface forces are added. The properties of V presented
before are sufficient to repeat the procedure of [10]; in particular, the properties of [10,
Remark 2.8] used in the Crack Transfer Lemma [10, Lemma 4.1] can be substituted by the
weaker ones (V6) and (V8) stated here.

Fixed t ∈ [0, 1], by Definition 3.2 there is a subsequence uk j (t) converging to u(t)weakly∗
in SBV p(ΩD; K ). Arguing as in [10, Remark 4.4], one can see that

V(τk j (t), uk j (t)) → V(t, u(t)). (3.8)
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Discrete energy inequality

Let now
(
ui

k, Γ
i

k

) := (
uk

(
t i
k

)
, Γk

(
t i
k

))
. Taking (u, Γ ) =

(
I, Γ i−1

k

)
in (3.3), we get

Fel
(
t i
k, ui

k

) ≤ Fel
(
t i
k, I

)
. Hence, by (V3), (L1), and (T1)

Fel
(

t i
k, ui

k

)
< M + cL + cT , (3.9)

so that
∥
∥∇ui

k

∥
∥

L p(ΩD;Mn×n)
is bounded uniformly in k and i by coercivity. As ui−1

k ∈
AD

(
I, Γ i−1

k

)
, by (3.3) we have F

(
t i
k, ui

k, Γ
i

k

) ≤ F
(

t i
k, ui−1

k , Γ i−1
k

)
. By (V6), (3.9), (L2),

and (T2), the function t �→ Fel
(

t, ui−1
k

)
is absolutely continuous; therefore,

Fel
(

t i
k, ui−1

k

)
− Fel

(
t i−1
k , ui−1

k

)
=

t i
k∫

t i−1
k

DtFel
(

t, ui−1
k

)
dt .

Summing up, we obtain for every t ∈ [0, 1] the discrete energy inequality

Fk(t, uk(t), Γk(t)) ≤ F(0, u0, Γ0)+
τk (t)∫

0

θk(s) ds. (3.10)

By (V6), (3.9), (L2), (T2), and (3.10), Fk(t, uk(t), Γk(t)) is bounded uniformly with respect
to k and t . The non-negativity of V , (L1), (T1), and (1.9) give a bound also on Hn−1(Γk(t)),
uniform in k and t .

Energy inequality

By Theorem 1.1, we have for every t ∈ [0, 1]
K(Γ (t)) = K(Γ ∗(t) ∪ Γ0) ≤ lim inf

k→∞ K(Γk(t) ∪ Γ0) = lim inf
k→∞ K(Γk(t)); (3.11)

moreover, Fatou’s lemma implies that the function

θ∞(t) := lim sup
k→∞

θk(t) (3.12)

belongs to L1([0, 1]) and

lim sup
k→∞

τk (t)∫

0

θk(s) ds ≤
t∫

0

θ∞(s) ds. (3.13)

Fixed s ∈ [0, 1], by Definition 3.2 there is a subsequence (uk j (s), Γk j (s)) such that

uk j (s) ⇀ u(s) weakly∗ in SBV p(ΩD; K ) (3.14)

and

θ∞(s) = lim
k→∞ θk j (s). (3.15)
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By (3.8), (V6), and (2.16) we have

V(s, uk j (s)) → V(s, u(s)), L(s, uk j (s)) → L(s, u(s)), T (s, uk j (s)) → T (s, u(s)).

(3.16)

In order to pass to the limit as k j → ∞ in (3.10), we employ Lemma 3.1, which is based
on the following consequence of (V7).

Remark 3.1 From Remark 2.1, we deduce that for every s ∈ [0, 1] and M > 0 there exists
a modulus of continuity ωM

s : [0, 1] → [0,+∞), with s �→ ωM
s (h) in L∞([0, 1]) for every

h ∈ [0, 1], such that
∣
∣
∣
∣DtV(s, v)∓ V(s ± h, v)− V(s, v)

h

∣
∣
∣
∣ ≤ ωM

s (h) (3.17)

for every v ∈ SBV p(ΩD; K ) such that V(0, v) ≤ M and every h > 0 with s ± h ∈ [0, 1],
provided that DtV is defined.

Lemma 3.1 Let V : [0, 1] × SBV p(ΩD; K ) → [0,+∞] be lower semicontinuous with
respect to the weak∗ convergence in SBV p(ΩD; K ) and satisfying (3.17). Let u j be a
sequence converging to u∞ weakly∗ in SBV p(ΩD; K ); fix s ∈ [0, 1] where DtV is defined.
Assume that V(s, u j ) → V(s, u∞) < +∞. Then DtV(s, u j ) → DtV(s, u∞).

Proof This lemma was shown in [16, Proposition 3.3]; from that proof, it is clear that ωt

need not be uniform with respect to t . ��
Applying Lemma 3.1, from (3.14) and (3.16) we deduce that for L1-a.e. s ∈ [0, 1]

DtV(s, uk j (s)) → DtV(s, u(s)).

The convergence of the derivatives of the force terms is given by (2.17). Hence, by (2.5),
(3.5), and (3.15), we conclude that for L1-a.e. s ∈ [0, 1]

θ∞(s) = DtFel(s, u(s)). (3.18)

By (3.8), (2.16), and (3.11) we have

F(t, u(t), Γ (t)) ≤ lim inf
j→∞ Fk j (t, uk j (t), Γk j (t)) ≤ lim sup

k→∞
Fk(t, uk(t), Γk(t)).

From (3.10), (3.12), (3.13), and (3.18) we obtain

lim sup
k→∞

Fk(t, uk(t), Γk(t)) ≤ F(0, u0, Γ0)+
t∫

0

DtFel(s, u(s)) ds.

Then we get the energy inequality

F(t, u(t), Γ (t)) ≤ F(0, u0, Γ0)+
t∫

0

DtFel(s, u(s)) ds. (3.19)

Finally, comparing (u(t), Γ (t)) with (I, Γ (t)), by (3.6), (V3), (V4), (L1), and (T1), we
find a constant C > 0 such that

V(t, u(t)) ≤ C , ‖∇u(t)‖L p(ΩD;Mn×n) ≤ C , Hn−1(S(u(t))) ≤ C (3.20)

uniformly in t .
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Approximation with Riemann sums

For the next point, we will use the approximation of Lebesgue integrals with suitable
Riemann sums [20]. Let C1 a countable subset of L∞(Ω; K ), dense for the norm of
Lq(Ω; R

n), and C2 a countable subset of L∞(∂SΩ; K ), dense for the norm of Lq(∂SΩ; R
n).

By [9, Lemma 4.12 and Remark 4.13], we can find a sequence of subdivisions {si
k}0≤i≤ik

satisfying:

0 = s0
k < s1

k < · · · < sik−1
k < sik

k = t , lim
k→∞ max

1≤i≤ik

(
si

k − si−1
k

)
= 0, (3.21)

lim
k→∞

ik∑

i=1

si
k∫

si−1
k

∣
∣
∣bL

(
si

k

)
− bL(s)

∣
∣
∣ ds = 0, (3.22)

lim
k→∞

ik∑

i=1

si
k∫

si−1
k

∣
∣
∣bT

(
si

k

)
− bT (s)

∣
∣
∣ ds = 0, (3.23)

lim
k→∞

ik∑

i=1

si
k∫

si−1
k

∣
∣
∣DtFel

(
si

k, u
(

si
k

))
− DtFel(s, u(s))

∣
∣
∣ ds = 0, (3.24)

lim
k→∞

ik∑

i=1

si
k∫

si−1
k

∣
∣
∣DtL

(
si

k, v
)

− DtL(s, v)
∣
∣
∣ ds = 0 for every v ∈ C1, (3.25)

lim
k→∞

ik∑

i=1

si
k∫

si−1
k

∣
∣
∣DtT

(
si

k, v
)

− DtT (s, v)
∣
∣
∣ ds = 0 for every v ∈ C2, (3.26)

lim
k→∞

ik∑

i=1

si
k∫

si−1
k

∣
∣
∣
∣ω

C
si
k

(
1

m

)

− ωC
s

(
1

m

)∣
∣
∣
∣ ds = 0 for every m ∈ N, (3.27)

where ωC
s is defined in Remark 3.1 and C is the constant of (3.20). In the previous formulas,

it is understood that all time derivatives are well defined at si
k .

We can deduce the following lemma.

Lemma 3.2 In the previous assumptions,

lim
k→∞

ik∑

i=1

si
k∫

si−1
k

∣
∣
∣DtV

(
si

k, u
(

si
k

))
− DtV

(
s, u

(
si

k

))∣
∣
∣ ds = 0. (3.28)
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Proof Fixed m ∈ N, we have maxi (si
k − si−1

k ) ≤ 1/m for k large. Comparing the derivatives
with the difference quotients and employing twice (3.17), we get

si
k∫

si−1
k

∣
∣
∣DtV

(
si

k, u
(

si
k

))
− DtV

(
s, u

(
si

k

))∣
∣
∣ ds ≤

si
k∫

si−1
k

[

ωC
si
k

(
1

m

)

+ ωC
s

(
1

m

)]

ds

for every s ∈ [si−1
k , si

k). We deduce that

lim
k→∞

ik∑

i=1

si
k∫

si−1
k

∣
∣
∣DtV

(
si

k, u
(

si
k

))
− DtV

(
s, u

(
si

k

))∣
∣
∣ ds

≤ lim
k→∞

ik∑

i=1

si
k∫

si−1
k

[

ωC
si
k

(
1

m

)

+ ωC
s

(
1

m

)]

ds ≤ 2

t∫

0

ωC
s

(
1

m

)

ds,

where in the last estimate we used (3.27). Passing to the limit as m → ∞, we conclude by
dominated convergence, thanks to the uniform bound on ωC

s . ��

As for the approximation of the force terms, we follow [9, Lemma 5.7].

Lemma 3.3 In the previous assumptions,

lim
k→∞

ik∑

i=1

si
k∫

si−1
k

∣
∣
∣DtL

(
si

k, u
(

si
k

))
− DtL

(
s, u

(
si

k

))∣
∣
∣ ds = 0, (3.29)

lim
k→∞

ik∑

i=1

si
k∫

si−1
k

∣
∣
∣DtT

(
si

k, u
(

si
k

))
− DtT

(
s, u

(
si

k

))∣
∣
∣ ds = 0. (3.30)

Proof Consider the set H of all functions v ∈ SBV p(ΩD; K ) such that

‖∇v‖L p(ΩD;Mn×n) ≤ C and Hn−1(S(v)) ≤ C ,

where C is the constant appearing in (3.20). By the SBV compactness theorem [2, Theo-
rem 4.8], H is compact in L∞(Ω; K ) with respect to the norm of Lq(Ω; R

n). Fix ε > 0;
there exists a finite number of functions v1, . . . , vh ∈ C1 such that for every v ∈ H there
exists j with

∥
∥v − v j

∥
∥

Lq (Ω;Rn)
< ε. By (L3), we have

∣
∣DtL(s)(v)− DtL(s)(v j )

∣
∣ ≤ ε bL(s)
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for L1-a.e. s ∈ [0, 1] (including the points si
k). Then,

ik∑

i=1

sup
v∈H

si
k∫

si−1
k

∣
∣
∣DtL

(
si

k, v
)

− DtL(s, v)
∣
∣
∣ ds

≤
h∑

j=1

ik∑

i=1

si
k∫

si−1
k

∣
∣
∣DtL

(
si

k, v j

)
− DtL(s, v j )

∣
∣
∣ ds + ε

ik∑

i=1

t∫

0

[
bL

(
si

k

)
+ bL(s)

]
ds.

First, we pass to the lim sup as k → ∞, then we let ε → 0; recalling (3.22) and (3.25) we
find that the left hand side in the previous expression is vanishing. Hence, (3.29) follows.
The proof of (3.30) is analogous. ��

Summing up (3.24), (3.28), (3.29), and (3.30), we obtain

lim
k→∞

ik∑

i=1

si
k∫

si−1
k

∣
∣
∣DtFel

(
s, u

(
si

k

))
− DtFel(s, u(s))

∣
∣
∣ ds = 0. (3.31)

Energy equality

The converse of (3.19) is a consequence of the stability property, via a discretization argu-
ment.

For i = 1, . . . , ik,
(

u
(

si−1
k

)
, Γ

(
si−1

k

))
and

(
u

(
si

k

)
, Γ

(
si

k

))
are competitors in (3.6):

as u
(
si

k

) ∈ AD
(
I, Γ

(
si

k

))
and Γ

(
si−1

k

)
⊂ Γ

(
si

k

)
, we get

F
(

si−1
k , u

(
s
(

i−1
k

)
, Γ

(
si−1

k

))
≤ F

(
si−1

k , u
(

si
k

)
, Γ

(
si

k

))
.

Arguing as in the proof of the discrete energy inequality, by (3.20), (V6), (L2), and (T2) we
obtain

F
(

si−1
k , u

(
si

k

)
, Γ

(
si

k

))
= F

(
si

k, u
(

si
k

)
, Γ

(
si

k

))
−

si
k∫

si−1
k

DtFel
(

s, u
(

si
k

))
ds.

Summing up,

F(t, u(t), Γ (t)) ≥ F(0, u0, Γ0)+
ik∑

i=1

si
k∫

si−1
k

DtFel
(

s, u
(

si
k

))
ds.

By (3.19) and (3.31) we have

F(t, u(t), Γ (t)) = F(0, u0, Γ0)+
t∫

0

DtFel(s, u(s)) ds,

which implies (2). The proof of Theorem 3.3 is concluded. ��
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