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Abstract In this paper, we study the curve shortening flow in a general Riemannian
manifold. We have many results for the global behavior of the flow. In particular, we
show the following results: let M be a compact Riemannian manifold. (1) If the curve
shortening flow exists for infinite time, and limt→∞ L(γt) > 0, then for every n > 0,

limt→∞ sup
(∣∣∣DnT

∂sn

∣∣∣
)

= 0. Furthermore, the limiting curve exists and is a closed geode-

sic in M. (2) In M ×S1, if γ0 is a ramp, then we have a global flow which converges to a
closed geodesic in C∞ norm. As an application, we prove the theorem of Lyusternik
and Fet.

Keywords Curve shortening flow · Global flow · Ramp flow · Closed geodesic ·
Lyusternik-Fet theorem

Mathematics Subject Classification (1991) 53C44

1 Introduction

Very recently, the curve shortening flow in a closed Riemannian manifold has been
used by Perelman [10] to study the Ricci-Hamilton flow. Motivated by his work, we
study the curve shortening flow in a general Riemannian manifold in this paper.

By definition, our curve shortening flow in a Riemannian manifold (M, g) is evolv-
ing the initial closed curve γ0 along the flow

∂γt

∂t
= DT

∂s
, (1)

where s is the time-dependent arc-length parameter of γt, T is the unit tangent vector
of γt, and DT

∂s is the covariant derivative of T with respect to T in the space (M, g).
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It has been shown that there always exists a short time flow for the curve shortening
problem in any Riemannian manifold (see Sect. 2 in [6]).

Curve shortening flows have been studied intensively by many authors since 1980s,
for example, Gage and Hamilton [6], Grayson [7,8], etc. Their work solves the
so-called Jordan conjecture concerning the embedded curves in the plane. Actually
they proved

Theorem A Equation (1) shrinks embedded curves in the plane R2 to points. As they
shrink, they become convex, and then become circular in the sense that

(a) the ratio of the inscribed radius to the circumscribed radius approaches 1,
(b) the radio of the maximum curvature to the minimum curvature approaches 1, and
(c) the higher order derivatives of the curvature converges to 0 uniformly.

Later, Grayson [8] generalized this results to surfaces and proved

Theorem B Let M be a smooth Riemannian surface which is convex at infinity. For
any embedded curve, along the curve shortening flow, either it shrinks to a point in finite
time, or its curvature converges to zero in the C∞ norm as time t → ∞.

Moreover, as an application of Theorem B, he proved the following

Theorem C (Lusternik-Schnirelmann) A two-sphere with a smooth Riemannian met-
ric has at least three simple closed geodesic.

If the initial curve is not embedded, then singularities can develop in the form of
loops which pinch off to form what are conjectured to be cusps. Abresch and Langer
[1] studied non-embedded curves in the plane which evolve by homothety. These
curves develop complex singularities at the moment that they disappear. Later, Alts-
chuler [2] and Altschuler and Grayson [3] studied the formation of singularities of the
curve shortening flow for space curves. In this case, singularities can develop even if
the initial curve is embedded. It is an interesting problem to systematically investigate
the singularities of the curve shortening flow in a general Riemannian manifold. But
we will not cover that in present paper.

In this work, we shall study the global behavior of the curve shortening flow. To
state our result, we introduce a class of special curves–ramps in a product space.

Definition We shall call a curve γ : S1 → M × S1 a ramp if there exists a unit tangent
vector field U to S1 such that

〈
(πS1)∗(T), U

〉
S1 > 0

along γ , where T is the unit tangent vector of γ as before and πS1 : M × S1 → S1 is the
projection.

Our main result is the following

Theorem D Let M be a compact Riemannian manifold.

1. If the curve shortening flow exists for infinite time, and limt→∞ L(γt) > 0, then for

every n > 0, limt→∞ sup
(∣∣∣DnT

∂sn

∣∣∣
)

= 0. Furthermore, the limiting curve exists and is

a closed geodesic in M.
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2. In M × S1, if γ0 is a ramp, then we have a global flow which converges to a closed
geodesic in C∞ norm.

Theorem D will be proved in Sects. 4 and 5. In fact, Theorem D will be separated
as two results: Theorems 10 and 15 below. As an application of Theorem D, we can
prove the following

Theorem E (Lyusternik-Fet) Each compact Riemannian manifold contains a non-
trivial closed geodesic.

We also obtain many other results for the curve shortening problem. They will be
exhibited in the sequent sections. We remark that in many cases, we do not require
M is compact and only assume that it satisfies some curvature conditions (see the
beginning of Sect. 3).

Curve shortening flow is of some interest in differential geometry, for instance in
the problem of finding geodesic and minimal surfaces. Because of the huge literature
on this area, we shall not list all of them here. The interest is not only theoretical
since the motions by curvature appear in the modeling of various phenomena as
crystal growth, flame propagation and interfaces between phases. More recently, this
flow has also appeared in the young field of image progressing where it provides an
efficient way to smooth curves representing the contours of the objects. For further
information, one may read [4].

This paper is organized as follows:

In Sect. 2, we compute the first order variation of curve length, and then intro-
duce the concept of curve shortening flow naturally. For later use, we include some
fundamental computations.
In Sect. 3, after assuming that the target manifold M satisfies some curvature con-
ditions, we deduce the important Bernstein type estimates. Our main tool is the
classical maximum principle for heat equation.
In Sect. 4, we use the Bernstein type estimates to prove the convergence result for
the global flow in compact manifolds. To do that, we first bound the L2-norm of the
curvature and its each order derivative, and then control their L∞-norm by using
Sobolev inequality.
In Sect. 5, we introduce the concept of ramp, and prove the ramp flow is a global
flow.
In Sect. 6, through constructing ramp flows, we prove the theorem of Lyusternik
and Fet.
In Sect. 7, we analyze in details the evolution of the curve shortening flow in S3(1),
which requires us to solve a system of second order ordinary differential equations.

2 Preliminaries

Let (M, g) be an n-dimensional Riemannian manifold, and ∇ is its Riemannian con-
nection. Assume that

γ : S1 × (a, b) → M

is an evolving immersed curve. Denote by γt the associated trajectory, i.e.,

γt(·) = γ (·, t).
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Then the length of γt is

L(γt) =
∫

S1

∣∣∣∣
d

du
γt

∣∣∣∣du =
∫

S1

∣∣∣∣
∂γ

∂u

∣∣∣∣du =
∫

S1

v du,

where v = | ∂γ
∂u |. We define the arc-length parameter s by

∂

∂s
= 1

v
∂

∂u
,

which implies ds = v du. As usual, we denote by T the unit tangent vector, i.e.,

T = ∂γ

∂s
= 1

v
∂γ

∂u
.

We now compute the time derivative of the length functional:

d
dt

L(γt) =
∫

S1

∂v
∂t

du

=
∫

S1

〈
∇t

∂γ

∂u
, T
〉

du

=
∫

S1

〈
∇u

∂γ

∂t
, T
〉

du

=
∫

S1

{
∂

∂u

〈
∂γ

∂t
, T
〉
−
〈
∂γ

∂t
, ∇uT

〉}
du

= −
∫

S1

〈
∂γ

∂t
, ∇uT

〉
du

= −
∫

S1

〈
∂γ

∂t
,

DT
∂s

〉
ds.

If γ evolves according to Eq. (1), then we find that

d
dt

L(γt) = −
∫

S1

κ2ds ≤ 0,

where κ =
∣∣∣DT

∂s

∣∣∣ is the non-negative curvature of the curve γt. This leads us to give

the following

Definition 1 A curve shortening flow is a family of evolving immersed curves γ (·, t)
satisfying Eq. (1).

We like to regard γt(S1) as a one-dimensional sub-manifold of M. With the induced
metric from M, its mean curvature vector field of γt(S1) in M is

H = (∇TT)⊥.
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Note that 〈T, T〉 ≡ 1. Then we have 〈∇TT, T〉 ≡ 0. This implies ∇TT ⊥ T·γt. So

H = ∇TT.

It follows that the curve shortening flow is a mean curvature flow of higher co-dimen-
sion in the manifold M.

In the remaining part of this section, we shall make some elementary computations
and derive some useful formulae (see also [8]).

Lemma 2 The evolution of v is

∂v
∂t

= −κ2v.

Proof By definition, we have

v2 =
〈
∂γ

∂u
,
∂γ

∂u

〉
.

Differentiating it with respect to t, we get

2v
∂v
∂t

= 2
〈
∇t

∂γ

∂u
,
∂γ

∂u

〉

= 2
〈
∇u

∂γ

∂t
,
∂γ

∂u

〉

= 2v2
〈
∇T

DT
∂s

, T
〉

= −2v2
〈

DT
∂s

,
DT
∂s

〉

= −2κ2v2.


�
Lemma 3 Covariant differentiations with respect to s and t are related by the equation

∇t∇s = ∇s∇t + κ2∇s + R
(

T,
DT
∂s

)
,

where R is the curvature operator on M.

Proof We have (see [5]) that

∇t∇u = ∇u∇t + R
(

∂

∂u
,

∂

∂t

)
.

Note that ∇s = 1
v∇u. Using Lemma 2, we get

∇t∇s = ∂

∂t

(
1
v

)
∇u + 1

v
∇t∇u

= κ2 1
v
∇u + 1

v
∇u∇t + 1

v
R
(

∂

∂u
,

∂

∂t

)

= ∇s∇t + κ2∇s + R
(

T,
DT
∂s

)
.


�
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Lemma 4 The covariant derivative of T with respect to time t is

∇tT = κ2T + D2T
∂s2 .

Proof The proof is a straightforward calculation.

∇tT = ∇t

(
1
v

∂γ

∂u

)
= κ2 1

v
∂γ

∂u
+ 1

v
∇u

∂γ

∂t
= κ2T + D2T

∂s2 .


�

3 Bernstein type estimates

From now on, we shall assume that the Riemannian manifold M satisfies the following
conditions: ∀i ≥ 0, ∃λi > 0, such that

∇ iR(Y1, . . . , Yi+4) ≤ λi

i+4∏
j=1

|Yj|

for all Yj ∈ T·M, j = 1, . . . , i + 4. Here R is the curvature tensor of M which has order
4, and ∇ iR is its ith covariant differential which is a tensor of order i + 4.

Remark 5 If M is compact, then it satisfies the above conditions autonomously.

With these assumptions, we can give the following Bernstein type estimates for the
curve shortening flow. Similar estimates appeared in [2] for the curve shortening flow
in R3.

Theorem 6 Fix t0 ∈ [0, ∞). Let Mt0 = max κ2(·, t0). If Mt0 < ∞, then there exist con-

stants cl < ∞ independent of t0 such that for t ∈
(

t0, t0 + 1
2λ0

log
(

1 + λ0
4Mt0 +λ0+1

))
, we

have
∣∣∣∣∣
DlT

∂sl

∣∣∣∣∣
2

≤ clMt0

(t − t0)l−1
.

Proof Without loss of generality, we may assume that t0 = 0, and then translate the
estimates.

First, let us compute the time derivative of
∣∣∣DlT

∂sl

∣∣∣
2

as follows:

∂

∂t

⎛
⎝
∣∣∣∣∣
DlT

∂sl

∣∣∣∣∣
2
⎞
⎠ = 2

〈
D
∂t

DlT

∂sl
,

DlT

∂sl

〉

= 2

〈
D
∂s

D
∂t

Dl−1T

∂sl−1
+ κ2 DlT

∂sl
+ R

(
T,

DT
∂s

)
Dl−1T

∂sl−1
,

DlT

∂sl

〉

= 2

〈
D
∂s

D
∂t

Dl−1T

∂sl−1
,

DlT

∂sl

〉
+ 2κ2

∣∣∣∣∣
DlT

∂sl

∣∣∣∣∣
2

+ 2R

(
T,

DT
∂s

,
Dl−1T

∂sl−1
,

DlT

∂sl

)
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= 2

〈
D
∂s

(
D
∂s

D
∂t

Dl−2T

∂sl−2
+ κ2 Dl−1T

∂sl−1
+ R

(
T,

DT
∂s

)
Dl−2T

∂sl−2

)
,

DlT

∂sl

〉

+ 2κ2

∣∣∣∣∣
DlT

∂sl

∣∣∣∣∣
2

+ 2R

(
T,

DT
∂s

,
Dl−1T

∂sl−1
,

DlT

∂sl

)

= 2

〈
D2

∂s2

D
∂t

Dl−2T

∂sl−2
,

DlT

∂sl

〉
+ 2

〈
D
∂s

(
κ2 Dl−1T

∂sl−1

)
,

DlT

∂sl

〉
+ 2κ2

∣∣∣∣∣
DlT

∂sl

∣∣∣∣∣
2

+ 2

〈
D
∂s

(
R
(

T,
DT
∂s

)
Dl−2T

∂sl−2

)
,

DlT

∂sl

〉
+ 2R

(
T,

DT
∂s

,
Dl−1T

∂sl−1
,

DlT

∂sl

)

= · · ·

= 2

〈
Dl

∂sl

DT
∂t

,
DlT

∂sl

〉
+ 2

l−1∑
i=0

〈
Di

∂si

(
κ2 Dl−iT

∂sl−i

)
,

DlT

∂sl

〉

+ 2
l−1∑
i=0

〈
Di

∂si

(
R
(

T,
DT
∂s

)
Dl−1−iT

∂sl−1−i

)
,

DlT

∂sl

〉
. (2)

Using Lemma 4, we get

2

〈
Dl

∂sl

DT
∂t

,
DlT

∂sl

〉
= 2

〈
Dl+2T

∂sl+2
,

DlT

∂sl

〉
+ 2

〈
Dl

∂sl

(
κ2T

)
,

DlT

∂sl

〉

= ∂2

∂s2

⎛
⎝
∣∣∣∣∣
DlT

∂sl

∣∣∣∣∣
2
⎞
⎠− 2

∣∣∣∣∣
Dl+1T

∂sl+1

∣∣∣∣∣
2

+ 2

〈
Dl

∂sl

(
κ2T

)
,

DlT

∂sl

〉
. (3)

Substituting (2) into (3), we have

∂

∂t

⎛
⎝
∣∣∣∣∣
DlT

∂sl

∣∣∣∣∣
2
⎞
⎠ = ∂2

∂s2

⎛
⎝
∣∣∣∣∣
DlT

∂sl

∣∣∣∣∣
2
⎞
⎠− 2

∣∣∣∣∣
Dl+1T

∂sl+1

∣∣∣∣∣
2

+ 2
l∑

i=0

〈
Di

∂si

(
κ2 Dl−iT

∂sl−i

)
,

DlT

∂sl

〉

+ 2
l−1∑
i=0

〈
Di

∂si

(
R
(

T,
DT
∂s

)
Dl−1−iT

∂sl−1−i

)
,

DlT

∂sl

〉
. (4)

It is easy to see that

Di

∂si

(
κ2 Dl−iT

∂sl−i

)
=

i∑
j=0

j∑
k=0

Cijk

〈
Dk+1T

∂sk+1
,

Dj−k+1T

∂sj−k+1

〉
Dl−jT

∂sl−j
, (5)
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where Cijk = Cj
iCk

j . Substituting (5) into (4), we obtain

∂

∂t

⎛
⎝
∣∣∣∣∣
DlT

∂sl

∣∣∣∣∣
2
⎞
⎠ = ∂2

∂s2

⎛
⎝
∣∣∣∣∣
DlT

∂sl

∣∣∣∣∣
2
⎞
⎠− 2

∣∣∣∣∣
Dl+1T

∂sl+1

∣∣∣∣∣
2

+ 2
l∑

i=0

i∑
j=0

j∑
k=0

Cijk

〈
Dk+1T

∂sk+1
,

Dj−k+1T

∂sj−k+1

〉 〈
Dl−jT

∂sl−j
,

DlT

∂sl

〉

+ 2
l−1∑
i=0

〈
Di

∂si

(
R
(

T,
DT
∂s

)
Dl−1−iT

∂sl−1−i

)
,

DlT

∂sl

〉
. (6)

In the following, we shall finish the proof by induction.
(1) For l = 1, we have

∂

∂t

(∣∣∣∣
DT
∂s

∣∣∣∣
2
)

= ∂2

∂s2

(∣∣∣∣
DT
∂s

∣∣∣∣
2
)

− 2
∣∣∣∣
D2T
∂s2

∣∣∣∣
2

+ 4κ4 + 2R
(

T,
DT
∂s

, T,
DT
∂s

)

≤ ∂2

∂s2

(∣∣∣∣
DT
∂s

∣∣∣∣
2
)

− 2
∣∣∣∣
D2T
∂s2

∣∣∣∣
2

+ 4κ4 + 2λ0κ
2.

Since
∣∣∣∣
D2T
∂s2

∣∣∣∣ ≥
∣∣∣∣
D |DT/ds|

∂s

∣∣∣∣ =
∣∣∣∣
Dκ

∂s

∣∣∣∣ ,

we get at the maximum point of κ2 (·, t) that

d
dt

Mt ≤ 4M2
t + 2λ0Mt.

It implies that Mt satisfies

log
Mt

2
λ0

Mt + 1
− log

M0
2
λ0

M0 + 1
≤ 2λ0t.

If t ≤ 1
2λ0

log
(

1 + λ0
4M0+λ0+1

)
, then Mt ≤ 2M0. So we may choose c1 = 2.

(2) For l = 2, we have

∂

∂t

(∣∣∣∣
D2T
∂s2

∣∣∣∣
2)

= ∂2

∂s2

(∣∣∣∣
D2T
∂s2

∣∣∣∣
2)

− 2
∣∣∣∣
D3T
∂s3

∣∣∣∣
2

+ 2
2∑

i=0

i∑
j=0

j∑
k=0

Cijk

〈
Dk+1T

∂sk+1
,

Dj−k+1T

∂sj−k+1

〉 〈
D2−jT
∂s2−j ,

D2T
∂s2

〉

+ 2
1∑

i=0

〈
Di

∂si

(
R
(

T,
DT
∂s

)
D1−iT

∂s1−i

)
,

D2T
∂s2

〉
. (7)
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By the definition of the covariant differential of a tensor [5], we have

∇R
(

T,
DT
∂s

, T,
D2T
∂s2 , T

)

= T
(

R
(

T,
DT
∂s

, T,
D2T
∂s2

))
− R

(
DT
∂s

,
DT
∂s

, T,
D2T
∂s2

)
− R

(
T,

D2T
∂s2 , T,

D2T
∂s2

)

−R
(

T,
DT
∂s

,
DT
∂s

,
D2T
∂s2

)
− R

(
T,

DT
∂s

, T,
D3T
∂s3

)

=
〈

D
∂s

(
R
(

T,
DT
∂s

)
T
)

,
D2T
∂s2

〉
− R

(
DT
∂s

,
DT
∂s

, T,
D2T
∂s2

)

−R
(

T,
D2T
∂s2 , T,

D2T
∂s2

)
− R

(
T,

DT
∂s

,
DT
∂s

,
D2T
∂s2

)
.

Hence
〈

D
∂s

(
R
(

T,
DT
∂s

)
T
)

,
D2T
∂s2

〉
= ∇R

(
T,

DT
∂s

, T,
D2T
∂s2 , T

)
+ R

(
DT
∂s

,
DT
∂s

, T,
D2T
∂s2

)

+R
(

T,
D2T
∂s2 , T,

D2T
∂s2

)
+ R

(
T,

DT
∂s

,
DT
∂s

,
D2T
∂s2

)
.

(8)

Substituting (8) into (7) and repeating to use the Peter-Paul inequality, i.e., ab ≤
εa2 + 1

4ε
b2, allows us to obtain that

∂

∂t

(∣∣∣∣
D2T
∂s2

∣∣∣∣
2)

≤ ∂2

∂s2

(∣∣∣∣
D2T
∂s2

∣∣∣∣
2)

−
∣∣∣∣
D3T
∂s3

∣∣∣∣
2

+
(

19κ2 + 2λ0 + 1
) ∣∣∣∣

D2T
∂s2

∣∣∣∣
2

+
(

9λ2
0 + λ2

1

)
κ2.

So

∂

∂t

(
t

∣∣∣∣
D2T
∂s2

∣∣∣∣
2

+ 2
∣∣∣∣
DT
∂s

∣∣∣∣
2
)

≤ ∂2

∂s2

(
t

∣∣∣∣
D2T
∂s2

∣∣∣∣
2

+ 2
∣∣∣∣
DT
∂s

∣∣∣∣
2
)

− t

∣∣∣∣
D3T
∂s3

∣∣∣∣
2

+
[
t
(

19κ2 + 2λ0 + 1
)

− 3
] ∣∣∣∣

D2T
∂s2

∣∣∣∣
2

+8κ4 +
[
t
(

9λ2
0 + λ2

1

)
+ 4λ0

]
κ2.

Since 0 < t ≤ 1
2λ0

log
(

1 + λ0
4M0+λ0+1

)
≤ 1

2(4M0+λ0+1)
< 1, we have

∂

∂t

(
t

∣∣∣∣
D2T
∂s2

∣∣∣∣
2

+ 2
∣∣∣∣
DT
∂s

∣∣∣∣
2
)

≤ ∂2

∂s2

(
t

∣∣∣∣
D2T
∂s2

∣∣∣∣
2

+ 2
∣∣∣∣
DT
∂s

∣∣∣∣
2
)

+ 32M2
0 + 2

[
t
(

9λ2
0 + λ2

1

)
+ 4λ0

]
M0.
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Thus it follows that

t

∣∣∣∣
D2T
∂s2

∣∣∣∣
2

+ 2
∣∣∣∣
DT
∂s

∣∣∣∣
2

≤ 49 + λ2
1

4
M0,

and we may conclude on this time interval that

∣∣∣∣
D2T
∂s2

∣∣∣∣
2

≤
49+λ2

1
4 M0

t
.

So we may choose c2 = 49+λ2
1

4 .
Note that by using the definition of the covariant derivatives of tensors repeatedly,

we can write 〈
Di

∂si

(
R
(

T,
DT
∂s

)
Dm−1−iT

∂sm−1−i

)
,

DmT
∂sm

〉

= ∇ iR

(
T,

DT
∂s

,
Dm−1−iT

∂sm−1−i
,

DmT
∂sm , T, . . . , T

)
+ P, (9)

where P only involves lower order covariant derivatives of R. For example, if m = 3,
i = 2, then we have

〈
D2

∂s2

(
R
(

T,
DT
∂s

)
T
)

,
D3T
∂s3

〉

= ∇2R
(

T,
DT
∂s

, T,
D3T
∂s3 , T, T

)
+ 2∇R

(
DT
∂s

,
DT
∂s

, T,
D3T
∂s3 , T

)

+2∇R
(

T,
D2T
∂s2 , T,

D3T
∂s3 , T

)
+ 2∇R

(
T,

DT
∂s

,
DT
∂s

,
D3T
∂s3 , T

)

+∇R
(

T,
DT
∂s

, T,
D3T
∂s3 ,

DT
∂s

)
+ 2R

(
DT
∂s

,
D2T
∂s2 , T,

D3T
∂s3

)

+2R
(

DT
∂s

,
DT
∂s

,
DT
∂s

,
D3T
∂s3

)
+ 2R

(
T,

D2T
∂s2 ,

DT
∂s

,
D3T
∂s3

)

+R
(

D2T
∂s2 ,

DT
∂s

, T,
D3T
∂s3

)
+ R

(
T,

D3T
∂s3 , T,

D3T
∂s3

)

+R
(

T,
DT
∂s

,
D2T
∂s2 ,

D3T
∂s3

)
.

Substituting (9) into (6), then the induction hypothesis and repeated use of the Peter-
Paul inequality allow us to find constants ai and A, B on our time interval such that

∂

∂t

(
m∑

i=1

aiti−1
∣∣∣∣
DiT
∂si

∣∣∣∣
2
)

≤ AM2
0 + BM0.

Thus we obtain cm as before. 
�
We remark that these Bernstein type estimates give us the long time existence result
of the flow. That is, as long as the curvature remains uniform bounded on finite time
interval [0, α), one can define a smooth limit for the tangent vector T at time α. Thus,
by integrating the tangent vector T, one can obtain a smooth limit curve.
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4 Convergence results about global flows

In this section, we assume that the curve shortening flow exists globally. We want to
prove convergence results of the global flow. Similar results can be found in [8] where
the author considered the curve shortening flow in a two-dimensional Riemannian
manifold.

Let ω be the maximal existence time of the curve shortening flow. For a global flow,
we mean that ω = ∞. Throughout this section, we shall assume that limt→∞ L (γt) > 0.
Let lt = L (γt), for 0 ≤ t < +∞, and l∞ = limt→∞ lt. Then along the curve-shortening
flow, we have

l0 ≥ lt ≥ l∞.

First we have

Lemma 7 The L2-norm of curvature converges to zero as t → ∞.

Proof We use the argument of Grayson (see p. 105 in [8]). We first note that by our
assumption, the length L (γt) monotone strictly decrease to a positive constant. In
fact, we have that

d
dt

L (γt) = −
∫

κ2ds,

which implies that
∫

κ2ds approaches zero at an ε-dense of sufficiently large times,
i.e., for any time sequence Ik approaching ∞ of any fixed length ε > 0, we have a
sequence tk ∈ Ik → +∞ such that

∫
κ2ds (tk) → 0.

So what we need to do is to bound the time derivative of
∫

κ2ds at the large time.

∂

∂t

∫
κ2ds ≤

∫ (
∂2

∂s2

(∣∣∣∣
DT
∂s

∣∣∣∣
2
)

− 2
∣∣∣∣
D2T
∂s2

∣∣∣∣
2

+ 4κ4 + 2λ0κ
2

)
ds −

∫
κ4ds

≤ −2
∫ ∣∣∣∣

D2T
∂s2

∣∣∣∣
2

ds +
(

3 sup κ2 + 2λ0

) ∫
κ2ds.

From this we obtain that

sup κ2 ≤
(

inf κ +
∫ ∣∣∣∣

∂

∂s

∣∣∣∣
DT
∂s

∣∣∣∣
∣∣∣∣ds
)2

≤
(

inf κ +
∫ ∣∣∣∣

D2T
∂s2

∣∣∣∣ds
)2

≤ 2 inf κ2 + 2
(∫ ∣∣∣∣

D2T
∂s2

∣∣∣∣ds
)2

≤ 2
l∞

∫
κ2ds + 2l0

∫ ∣∣∣∣
D2T
∂s2

∣∣∣∣
2

ds.

This implies that

−2
∫ ∣∣∣∣

D2T
∂s2

∣∣∣∣
2

ds ≤ 2
l0l∞

∫
κ2ds − 1

l0
sup κ2
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Hence,

∂

∂t

∫
κ2ds ≤

(
2λ0 + 2

l∞l0

)∫
κ2ds + sup κ2

(
3
∫

κ2ds − 1
l0

)
.

Therefore,
∫

κ2ds has at most exponential growth when it is sufficiently small. This
implies that it must converge to zero at t → ∞. 
�

Lemma 8 limt→∞
∫ ∣∣∣D2T

∂s2

∣∣∣
2

ds = 0.

Proof Suppose not. We need only consider those times when
∫ ∣∣∣D2T

∂s2

∣∣∣
2

ds is suffi-

ciently larger than
∫

κ2ds. Look at the time derivative of
∫ ∣∣∣D2T

∂s2

∣∣∣
2

ds. The rules for

differentiating yields that

∂

∂t

∫ ∣∣∣∣
D2T
∂s2

∣∣∣∣
2

ds ≤
∫

−
∣∣∣∣
D3T
∂s3

∣∣∣∣
2

+ 19κ2
∣∣∣∣
D2T
∂s2

∣∣∣∣
2

+ (1 + 2λ0)

∣∣∣∣
D2T
∂s2

∣∣∣∣
2

+
(

9λ2
0 + λ2

1

)
κ2.

We shall bound the last three terms in this integral by the first.
Notice that

∂

∂s

〈
DT
∂s

,
DT
∂s

〉
=
〈

DT
∂s

,
D3T
∂s3

〉
+
∣∣∣∣
D2T
∂s2

∣∣∣∣
2

.

Then,

0 =
∫ 〈

DT
∂s

,
D3T
∂s3

〉
ds +

∫ ∣∣∣∣
D2T
∂s2

∣∣∣∣
2

ds.

Using the Cauchy–Schwartz inequality we get that

∫ ∣∣∣∣
D2T
∂s2

∣∣∣∣
2

ds ≤
(∫ ∣∣∣∣

DT
∂s

∣∣∣∣
2

ds ·
∫ ∣∣∣∣

D3T
∂s3

∣∣∣∣
2

ds

) 1
2

.

If we assume that
∫ ∣∣∣∣

D2T
∂s2

∣∣∣∣
2

ds > α ·
∫

κ2ds,

then we get

∫ ∣∣∣∣
D2T
∂s2

∣∣∣∣
2

ds ≤ α−1 ·
∫ ∣∣∣∣

D3T
∂s3

∣∣∣∣
2

ds.

Assume that ∫
κ2ds ≤ ε

for some small ε > 0. We estimate the second term:
∫

κ2
∣∣∣∣
D2T
∂s2

∣∣∣∣
2

ds ≤ ε · sup

∣∣∣∣
D2T
∂s2

∣∣∣∣
2

.
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But

sup

∣∣∣∣
D2T
∂s2

∣∣∣∣
2

≤
{

inf

∣∣∣∣
D2T
∂s2

∣∣∣∣+
∫ ∣∣∣∣

∂

∂s

(∣∣∣∣
D2T
∂s2

∣∣∣∣
)∣∣∣∣ds

}2

≤
(

inf

∣∣∣∣
D2T
∂s2

∣∣∣∣+
∫ ∣∣∣∣

D3T
∂s3

∣∣∣∣ds
)2

≤ 2
l∞

∫ ∣∣∣∣
D2T
∂s2

∣∣∣∣
2

ds + 2l0

∫ ∣∣∣∣
D3T
∂s3

∣∣∣∣
2

ds

≤
(

2
αl∞

+ 2l0

)∫ ∣∣∣∣
D3T
∂s3

∣∣∣∣
2

ds.

Hence

∂

∂t

∫ ∣∣∣∣
D2T
∂s2

∣∣∣∣
2

ds ≤
[
−1 + 19ε ·

(
2

αl∞
+ 2l0

)
+ 1 + 2λ0

α
+ 9λ2

0 + λ2
1

α2

]∫ ∣∣∣∣
D3T
∂s3

∣∣∣∣
2

ds

≤ −1
2

∫ ∣∣∣∣
D3T
∂s3

∣∣∣∣
2

ds

≤ −1
2

∫ ∣∣∣∣
D2T
∂s2

∣∣∣∣
2

ds.

So, either
∫ ∣∣∣D2T

∂s2

∣∣∣
2

ds decays exponentially, or it is comparable to
∫

κ2ds. In either

event, it decreases to zero.

The following Sobolev inequality is useful.

Lemma 9 If ‖f‖2 ≤ C and ‖f ′‖2 ≤ C, then

‖f‖∞ ≤
(

1√
2π

+ √
2π

)
C,

where ‖ · ‖2 is the L2 norm and ‖ · ‖∞ is the sup norm for functions on S1.

Note that
∣∣∣ ∂
∂s

(∣∣∣DT
∂s

∣∣∣
)∣∣∣

2 ≤
∣∣∣D2T

∂s2

∣∣∣
2
. So, from Lemma 8, we have

lim
t→∞

∫ ∣∣∣∣
∂

∂s

(∣∣∣∣
DT
∂s

∣∣∣∣
)∣∣∣∣

2

ds = 0.

Then it follows from Lemma 9 that sup
(∣∣∣DT

∂s

∣∣∣
)

decreases to zero.

Together with Theorem 6, we have proved

Theorem 10 If the curve shortening flow exists for infinite time, and limt→∞ L (γt) > 0,

then for every n > 0, limt→∞ sup
(∣∣∣DnT

∂sn

∣∣∣
)

= 0. Moreover, if M is compact, then the

limiting curve exists and is a closed geodesic.

5 Ramp flows

In this section, we consider the curve shortening flow in a class of Riemannian mani-
folds, i.e., product manifolds

(
M × S1, g + dσ 2). We introduce the so-called ramp flow
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in these special manifolds and study its properties. We shall show that the ramp flow
is a global flow.

We recall the definition of ramp. As before, define

γ (·) : S1 → M × S1

is an immersed curve. Let

πS1 : M × S1 → S1

be the canonical projection. It naturally induces a linear mapping
(
πS1
)
∗ : T·

(
M × S1

)
→ TπS1 (·)S1.

Definition 11 We shall call γ a ramp if there exists a unit tangent vector field U to S1

such that
〈(
πS1
)
∗ (T), U

〉
S1 > 0

along γ .

From this definition, it is easy to deduce the following

Proposition 12 An immersed curve is a ramp if and only if the T·S1-component of its
tangent vector is non-zero everywhere.

Some authors have already studied ramps (for example, see [3,10]). As we shall
see, ramps have many good properties.

Proposition 13 For a curve shortening flow, if γ0 is a ramp, then for all t > 0, γt is also
a ramp.

Proof By definition, there exists a unit tangent vector field U ∈ TS1, such that

u = 〈(πS1
)
∗ (T), U

〉
S1 > 0

at t = 0. The time derivative of u is

∂u
∂t

= ∂2u
∂s2 + κ2u. (10)

If we define µt = minS1 u(·, t), then µ0 > 0. Equation (10) tells us that µt is non-
decreasing. This completes the proof.

Proposition 14 Assume that the sectional curvature of M × S1 has an upper bound

 > 0, and γ0 is a ramp. Then

κ(·, t) ≤ C exp(
t)

for all t ≥ 0, where C is a positive constant depending only on γ0.

Proof Since γ0 is a ramp, Proposition 13 guarantees that γt is always a ramp. So we
may divide κ by u. The time derivative of κ

u is

∂

∂t

(κ

u

)
= ∂2

∂s2

(κ

u

)
+ 2

∂

∂s
log u

∂

∂s

(κ

u

)
+ κ

u

(
κ2 −

∣∣∣∣
DN
∂s

∣∣∣∣
2
)

+ κ

u
R(T, N, T, N), (11)
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where N satisfies DT
∂s = κN. Note that

κ2 =
〈

DT
∂s

, N
〉2

=
〈
T,

DN
∂s

〉2

and then

κ2 ≤
∣∣∣∣
DN
∂s

∣∣∣∣
2

.

So the third term on the right-hand side of Eq. (11) is non-positive, and the fourth
term is bounded by 
κ

u since the sectional curvature R(T, N, T, N) is bounded from
above by 
.

If we define �t = maxS1
κ
u (·, t), then without loss of generality, we may assume

�t > 0 for all t ≥ 0. Equation (11) tells us that �t satisfies

∂

∂t
�t ≤ �t

(
κ2 −

∣∣∣∣
DN
∂s

∣∣∣∣
2
)

+ �tR(T, N, T, N)

which implies that

�−1
t

∂

∂t
�t ≤ 


and

�t ≤ �0 exp(
t).

Note �0 > 0 and u ≤ 1. Then we can obtain the desired inequality easily.

The following theorem is a direct consequence of Theorem 10 and Proposition 14.

Theorem 15 Let M be a compact Riemannian manifold. In M × S1, if γ0 is a ramp,
then the curve shortening flow will converge to a closed geodesic in the C∞ norm.

Proof M is compact, so is M × S1. Then the sectional curvature of M × S1 has an
upper bound. For γ0 is a ramp, Proposition 14 guarantees that the curve shortening
flow will not blow-up in finite time. This means that the flow will exists for infinite
time. Moreover, from the proof of Proposition 13, we know that µt is non-decreasing.
This will guarantee that limt→∞ L (γt) > 0. Then Theorem 10 tells us that the limiting
curve exists and is a closed geodesic in M × S1.

6 The theorem of Lyusternik and Fet

As an application of Theorem 14, we want to prove the following result:

Theorem 16 (Lyustrenik and Fet) Each compact Riemannian manifold contains a
non-trivial closed geodesic.

We shall slightly modify J.Jost’s proof (see [9]) by replacing his curve shortening
with our curve shortening. First of all, let us give some fundamental results.

Lemma 17 Let M be a compact Riemannian manifold. Then every homotopy class of
closed curves in M contains a geodesic.
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Proof Let γ0 be a curve in the given homotopy class. Define

γ̃0 : S1 → M × S1,

θ �→ (γ0(θ), θ) .

Obviously, γ̃0 is a ramp. Evolving it along the curve shortening flow, then by Theorem
15, we know that γ̃0 is homotopic to a geodesic, say γ̃∞, in M × S1. Let γ∞ = πM ◦ γ̃∞,
where πM : M × S1 → M is the canonical projection. Then it is easy to see that γ∞ is
a geodesic in M. By our process, γ0 is homotopic to γ∞. This completes the proof. 
�

The following lemma is well-known.

Lemma 18 Let M be a compact Riemannian manifold. Then there exists ρ0 > 0 with
the property that any two points p, q ∈ M with d(p, q) ≤ ρ0 can be connected by pre-
cisely one geodesic of shortest length. This geodesic depends continuously on p and
q.

Finally, we need the following result from algebraic topology. (A proof may be
found e.g. in [11].)

Lemma 19 Let M be a compact differentiable manifold of dimension n. Then there
exists some i, 1 ≤ i ≤ n, and a differentiable map h : Si → M, which is not homotopic
to a constant map.

Now we begin to prove Theorem 16.

Proof of Theorem 16 Let i be as in Lemma 19. If i = 1, the result is a consequence of
Lemma 17. We therefore only consider the case i ≥ 2. h from Lemma 19 then induces
a continuous map H of the (i−1)-cell Di−1 into the space of differentiable curves in M,
mapping ∂Di−1 to point curves. In order to see this, we first identify Di−1 with the half
equator {x1 ≥ 0, x2 = 0} of the unit sphere Si in Ri+1 with coordinates

(
x1, . . . , xi+1).

To p ∈ Di−1 ⊂ Si, we assign that circle cp(θ), θ ∈ [0, 2π], parameterized proportion-
ally to angle that starts at p orthogonally to the hyperplane x2 = 0 into the half sphere
x2 ≥ 0 with constant values of x3, . . . , xi+1. For p ∈ ∂Di−1, cp then is the trivial (i.e.
constant) circle cp(θ) = p. The map H is then given by H(p)(θ) = h ◦ cp(θ). Each
q ∈ Si then has a representation of the form q = cp(θ) with p ∈ Di−1, p is uniquely
determined, and θ as well, unless q ∈ ∂Di−1. A homotopy H̃, i.e. a continuous map
{H̃ : Di−1 × [0, 1] → closed curves in M} that maps ∂Di−1 × [0, 1] to point curves and
satisfies H̃|Di−1×{0} = H, then induces a homotopy h̃ : Si × [0, 1] → M of h by

h̃(q, s) = h̃
(
cp(θ), s

) = H̃(p, s)(θ)

(q = cp(θ), as just described).
Now we define γp(θ , 0) = (H(p)(θ), θ). Then γp(·, 0) is a family of ramps in M × S1.

As before, we evolve them along the curve shortening flow. By Theorem 15, we get a
family of non-trivial closed geodesics in M × S1. We denote them by γp(·, ∞). Then
πM ◦ γp(·, ∞) is a family of closed geodesics in M.

Claim There exists some p0 ∈ Di−1, such that L
(
πM ◦ γp0 (·, ∞)

)
> 0.

Proof If not, then L
(
πM ◦ γp (·, ∞)

) = 0, ∀p ∈ Di−1. We take ρ0 as in Lemma
18. Since Di−1 is compact, we know that there must be some tρ0 > 0, such that
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maxp∈Di−1 L
(
πM ◦ γp

(·, tρ0

))
< ρ0. Then, for every curve cp = πM ◦γp

(·, tρ0

)
and each

θ ∈ [0, 2π], we have d
(
cp(0), cp(θ)

)
< ρ0. By Lemma 18, the shortest connection

from cp(0) to cp(θ) is uniquely determined; denote it by qp,θ (s), s ∈ [0.1]. Because of
uniqueness, qp,θ depends continuously on p and θ . H(p, s)(θ) = qp,θ (1−s) then defines
a homotopy between πM ◦ γ·

(·, tρ0

)
and a map that maps Di−1 into the space of point

curves in M, i.e. into M. Such a map, however, is homotopic to a constant map, for
example since Di−1 is homotopy equivalent to a point. This implies that πM ◦ γ·

(·, tρ0

)
is homotopic to a constant map, hence so are H and h, contracting the choice of h. So
our claim is true. 
�
Proof of Theorem 16 (continuous) γp0(·, ∞) in above claim is a non-trivial closed
geodesic in M. So we are done.

7 Curve shortening flows in S3(1)

In this section, we study the curve shortening problem in the three-dimensional unit
sphere S3(1) ⊂ R4 with constant sectional curvature 1. Similarly, the analysis of curve
shortening flows in other symmetric spaces is also very interesting.

Let T, N, B be the Frenet frame on the curve γ ⊂ S3(1). We have the well-known
Frenet matrix:

D
∂s

⎛
⎝

T
N
B

⎞
⎠ =

⎛
⎝

0 κ 0
−κ 0 τ

0 −τ 0

⎞
⎠
⎛
⎝

T
N
B

⎞
⎠ ,

here, s, κ , τ are γ ’s arc-length parameter, curvature, and torsion, respectively.
Another important fact is that the curvature operator R on S3(1) has a simple

expression, i.e.,

R (X1, X2) X3 = 〈X1, X3〉 X2 − 〈X2, X3〉 X1

for all Xi ∈ T·S3(1), i = 1, 2, 3. In particular, R(T, N)T = N, and R(T, N)N = −T.
These relations will significantly simplify our computations and make the results

very nice.

Lemma 20 ∇tT = ∂κ
∂s N + τκB.

Proof By Frenet matrix, we have

D2T
∂s2 = D

∂s
(κN)

= ∂κ

∂s
N + κ (−κT + τB) ,

⇒
κ2T + D2T

∂s2 = ∂κ

∂s
N + τκB.

Then, by Lemma 4, we obtain

∇tT = κ2T + D2T
∂s2

= ∂κ

∂s
N + τκB.
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Now, we can compute the evolution of curvature κ .

Lemma 21 ∂κ
∂t = ∂2κ

∂s2 + κ3 − τ 2κ + κ .

Proof By Lemmata 3 and 20, we have

∇t∇sT = ∇s∇tT + κ2∇sT + κR(T, N)T

= ∇s

(
∂κ

∂s
N + τκB

)
+ κ3N + κN

= ∂2κ

∂s2 N + ∂κ

∂s
(−κT + τB) + ∂

∂s
(τκ) B

+ (τκ) (−τN) + κ3N + κN

= −κ
∂κ

∂s
T +

(
∂2κ

∂s2 + κ3 − τ 2κ + κ

)
N

+
(

τ
∂κ

∂s
+ ∂

∂s
(τκ)

)
B,

so
∂κ

∂t
= ∂

∂t
〈∇sT, N〉

= 〈∇t∇sT, N〉 + 〈∇sT, ∇tN〉
= ∂2κ

∂s2 + κ3 − τ 2κ + κ .

We also need to know the rate at which the unit normal vector to the curve rotates.
This can be got directly from the proof of Lemma 21.

Corollary 22 ∇tN = − ∂κ
∂s T + ( ∂τ

∂s + 2 τ
κ

∂κ
∂s

)
B.

Proof Note that ∇sT = κN, so

∇t∇sT = ∇t(κN) = ∂κ

∂t
N + κ∇tN.

With this equation, and noticing that 〈∇tN, N〉 = 0, we get the following relation from
the proof of Lemma 21:

κ∇tN = −κ
∂κ

∂s
T +

(
κ

∂τ

∂s
+ 2τ

∂κ

∂s

)
B.

Multiplying both sides 1
κ

, we obtain what we want. 
�
Now we can compute the evolution of torsion τ .

Lemma 23 ∂τ
∂t = ∂2τ

∂s2 + 2 1
κ

∂κ
∂s

∂τ
∂s + 2 τ

κ

(
∂2κ
∂s2 − 1

κ

(
∂κ
∂s

)2 + κ3
)

.

Proof We have

∇sN = −κT + τB

⇒
∇t∇sN = −∂κ

∂t
T − κ∇tT + ∂τ

∂t
B + τ∇tB. (12)
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The left-hand side of (15) equals

∇s∇tN + κ2∇sN + κR(T, N)N

= ∇s

(
−∂κ

∂s
T +

(
∂τ

∂s
+ 2

τ

κ

∂κ

∂s

)
B
)

+ κ2 (−κT + τB) − κT

= −∂2κ

∂s2 T − κ
∂κ

∂s
N +

(
∂2τ

∂s2 + 2
∂

∂s

(
τ

κ

∂κ

∂s

))
B

+
(

∂τ

∂s
+ 2

τ

κ

∂κ

∂s

)
(−τN) − κ3T + τκ2B − κT.

The coefficient of B is

∂2τ

∂s2 + 2
∂

∂s

(
τ

κ

∂κ

∂s

)
+ τκ2.

The right-hand side of (15) equals

−∂κ

∂t
T − κ

(
∂κ

∂s
N + τκB

)
+ ∂τ

∂t
B + τ∇tB.

Note that 〈∇tB, B〉 = 0, so the coefficient of B is

−τκ2 + ∂τ

∂t
.

Then it must be

∂2τ

∂s2 + 2
∂

∂s

(
τ

κ

∂κ

∂s

)
+ τκ2 = −τκ2 + ∂τ

∂t
⇒

∂τ

∂t
= ∂2τ

∂s2 + 2
1
κ

∂κ

∂s
∂τ

∂s
+ 2

τ

κ

(
∂2κ

∂s2 − 1
κ

(
∂κ

∂s

)2

+ κ3

)
.

Now we consider a special case, i.e., both κ and τ only depend on time t. Then their
evolutions reduce to {

dκ
dt = κ3 − τ 2κ + κ ,
dτ
dt = 2τκ2.

(13)

Let {
u = κ2,
v = τ 2.

Then system (16) is equivalent to
{

du
dt = 2u2 + 2u − 2uv, · · · (∗)

dv
dt = 4uv. · · · (∗∗)

(14)

Assume that at t = 0,
{

u(0) > 0,
v(0) > 0.

Now we solve this initial value problem as follows.



682 L. Ma, D. Chen

From Eq. (∗∗), we know that v is non-decreasing. So v(t) > 0 for all t ≥ 0. Then we
can divide (∗) by (∗∗) to get

du
dv

= u + 1
2v

− 1
2

.

Define w = u + 1, then

dw
dv

= 1
2

(w
v

− 1
)

. (15)

Moreover, we define z = w
v , then w = zv. Substituting it into (18), we get

dz
dv

=
1
2 (z − 1) − z

v
= −z + 1

2v
.

⇒
dz

z + 1
= −dv

2v
.

Integrating above equation from time 0 to t, we have

z(v(t)) + 1
z(v(0)) + 1

=
(

v(t)
v(0)

)− 1
2

.

Note that z = u+1
v , so

u(v(t))+1
v(t) + 1

u(v(0))+1
v(0)

+ 1
=
(

v(t)
v(0)

)− 1
2

⇒

u(v(t)) = −1 + v(t)

[(
v(t)
v(0)

)− 1
2
(

u(v(0)) + 1
v(0)

+ 1
)

− 1

]

= −1 + (v(t)v(0))
1
2

(
u(v(0)) + 1

v(0)
+ 1
)

− v(t). (16)

Substituting (19) into (∗∗), we have

dv
dt

= 4v
(
−1 + �(vv0)

1
2 − v

)
,

where v0 = v(0), � = u(v(0))+1
v(0)

+ 1.

Let τ̃ = √
v, i.e., v = τ̃ 2, then

dτ̃

dt
= 2τ̃

(
−1 + aτ̃ − τ̃ 2

)
, (17)

where τ̃0 = τ̃ (0), a = �τ̃0. Note that

a =
(

u(v(0)) + 1
v(0)

+ 1
)√

v(0)

= u(v(0)) + 1√
v(0)

+√v(0)

≥ 2
√

u(v(0)) + 1

> 2. (18)
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Since v is non-decreasing, so is τ̃ . Then

dτ̃

dt
> 0.

By Eq. (20), it must be

−1 + aτ̃ − τ̃ 2 > 0

⇒
a − √

a2 − 4
2

< τ̃ <
a + √

a2 − 4
2

.

Solving (20), we obtain

τ̃

(
−τ̃ + a + √

a2 − 4
2

)b (
τ̃ − a − √

a2 − 4
2

)c

= τ̃0

(
−τ̃0 + a + √

a2 − 4
2

)b (
τ̃0 − a − √

a2 − 4
2

)c

· exp(−2t), (19)

where

b = −1
2

+ a

2
√

a2 − 4
,

c = −1
2

− a

2
√

a2 − 4
.

By (21), we know that b is positive. Let t → ∞, we find that the right-hand side of (22)

tends to 0. So it must be τ̃ → a+
√

a2−4
2 . Together with (19), we see that u → 0, i.e.,

κ → 0. This shows that the limiting curve is a geodesic, i.e., its trajectory is on some
great circle. Moreover, the limit of torsion is not zero, which reflects the fact that the
frame is twisting along the geodesic.

Acknowledgements The work is partially supported by the key 973 project of the ministry of science
and technology of China. The authors would like to thank the referee for helpful suggestions which
improve the presentation of this work.

References

1. Abresch, U., Langer, J.: The normalized curve shortening flow and homothetic solutions. J. Differ.
Geom. 23, 175–196 (1986)

2. Altschuler, S.J.: Singularities of the curve shrinking flow for space curves. J. Differ. Geom. 34,
491–514 (1991)

3. Altschuler, S.J., Grayson, M.A.: Shortening space curves and flow through singularities. J. Differ.
Geom. 35, 491–514 (1992)

4. Cao, F.: Geometric Curve Evolution and Image Processing. Springer, Berlin Heidelberg New
York (2003)

5. Carmo, M.P.do.: Riemannian geometry (translated by F. Flaherty, Math. Theory and Appl.).
Birkhauser, Boston (1992)

6. Gage, M., Hamilton, R.S.: The heat equation shrinking convex plane curves. J. Differ. Geom. 23,
69–96 (1986)

7. Grayson, M.A.: The heat equation shrinks embedded plane curves to round points. J. Differ.
Geom. 26, 285–314 (1987)



684 L. Ma, D. Chen

8. Grayson, M.A.: Shortening embedded curves. Ann. Math. 129, 71–111 (1989)
9. Jost, J.: Riemannian Geometry and Geometric Analysis, 2nd edn. Springer, Berlin Heidelberg

New York (1998)
10. Perelman, G.: Finite extinction time for the solutions to the Ricci flow on certain three-manifolds.

arXiv:math.DG/0307425 v1
11. Spanier, E.: Algebraic Topology. McGraw Hill, New York (1966)



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


