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Abstract This work deals with an initial- and boundary-value problem for a
quasilinear parabolic equation that includes a possibly discontinuous hysteresis
operator, F :

∂

∂t
[u + F(u)] − �u = f.

In particular the case of F equal to a so-called relay operator is studied. Well-
posedness is proved, as well as regularity of the solution and its robustness w.r.t.
perturbations of F . The large-time behaviour is studied; asymptotic stability and
compactness are shown. For a time-periodic f , existence of a periodic solution is
also established.

Keywords Hysteresis · Parabolic equations · Weak formulation · Entropy
condition
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Introduction

Hysteresis occurs in several phenomena. In [6] (see also [7]), Krasnosel’skiı̆ and
co-workers introduced the notion of hysteresis operator to represent hysteresis
effects. An operator F of this class establishes a relation between two functions
of time, u and w, such that at any instant t , w(t) depends not only on u(t) but
also on the previous evolution of u. The operator F is also assumed to be rate-
independent; by this we mean that, for any increasing diffeomorphism ϕ, if w =
F(u) then w ◦ ϕ = F(u ◦ ϕ).
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Fig. 1 Nonmonotone curve in part a, corresponding hysteresis loop in part b

An Equation with Hysteresis. In this paper we deal with an initial- and boundary-
value problem for a quasilinear parabolic equation that contains an either contin-
uous or discontinuous hysteresis operator, F :

∂

∂t
[u + F(u)] − �u = f. (1)

An equation like this may arise in diffusion processes. Let us assume that a phe-
nomenon is described by the equation ∂z/∂t − �u = f , and that the variables
u, z are related by a nonmonotone function: u = α(z), cf. Fig. 1. The decreasing
branch of the graph of α being unstable, the pair (z, u) is expected to move along
a discontinuous hysteresis loop, as it is indicated by the arrows; this issue is dis-
cussed in [18] and references therein. This discontinuous relation between z and
u can be represented in the form z = u +F(u), where F is a relay operator. As F
is not closed, in the framework of a weak formulation we replace it by the closure
w.r.t. to natural topologies.

For N = 1, the Eq. (1) can model processes in a univariate ferromagnetic
metal. It can be derived from the Maxwell–Ohm equations, neglecting the dis-
placement current and assuming that coefficients are normalized, cf. [19]; the
operator F then represents the relation between the magnetization, M , and the
magnetic field, H . Here we deal with (1) for any N ≥ 1, although the physical
case is just N = 1; relevant modifications are needed to extend the above interpre-
tation to multivariate ferromagnetism, see [21]. The Eq. (1) may also be regarded
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as a crude model of phase transitions with undercooling and superheating; in this
case u represents the temperature, F(u) the phase function, and z the density of
internal energy. Because of the discontinuity of F , (1) may account for occur-
rence of moving fronts, corresponding to u = ρ1 or u = ρ2. The location of these
interfaces is a priori unknown; namely, they are free boundaries.

Independently from these and other applications, here we are interested into
(1) for this is a typical example of quasilinear P.D.E. with hysteresis. We also
aim to develop new techniques, in view of application to other equations with
hysteresis.

Main Results. In the last years research on hysteresis has been progressing, see
e.g. the monographs [2, 7, 10, 13, 17]. Quasilinear parabolic equations like (1)
have been studied for more than twenty years by now, for either continuous and
discontinuous hysteresis operators; see e.g. [8, 15–17]. Semilinear parabolic equa-
tions have also been investigated, see e.g. [17], as well as first- and second-order
quasilinear hyperbolic equations, see [9, 10, 19, 21, 22].

So far the main concern has been devoted to Eq. (1) with a continuous hys-
teresis operator, set on a bounded Euclidean domain, �. In this paper we use a
weak formulation of the relay operator, and deal with a possibly unbounded �.
We prove existence of a solution, study its regularity, its robustness w.r.t. pertur-
bations of F . We also deal with its large-time behaviour, and prove existence of
a time-periodic solution whenever the forcing term f is periodic; this extends re-
sults known for continuous hysteresis operators, cf. [5, 8], and is achieved via a
unified treatment of the cases of continuous and discontinuous hysteresis.

After [4] it is known that for a continuous hysteresis operator F the solu-
tion of (1) is unique. For discontinuous F , well-posedness of a rather weak no-
tion of solution was also established via a formulation based on the theory of
contraction-semigroups, see ([17]; Chap. IX). In presence of an either continuous
or discontinuous relay operator, here we prove that the solution depends Lipschitz-
continuously and monotonically on the data, and is thus unique. Our argument is
based on the derivation of an entropy-like condition, and on a procedure analogous
to that introduced by Kružkov in [11, 12]. However for discontinuous F this proof
is restricted to the case of � = RN and f ≡ 0. Recently this technique was also
used in [22], for the hyperbolic equation: ∂[u + F(u)]/∂t + ∂u/∂x = f , F being
a relay operator.

Although the relay is a rather special example of discontinuous hysteresis op-
erator, relays can be combined to generate a large class of either continuous or
discontinuous operators via the classic Preisach model [14]. Due to the linear-
ity of this construction, our results might easily be extended to this much more
general class of hysteresis operators.

Other classes of partial differential equations with hysteresis might also be
studied similarly, including the degenerate equation

∂

∂t
F(u) − �u = f. (2)

Open questions include a more general uniqueness result for the case of dis-
continuous hysteresis, and a deeper analysis of the large-time behaviour of the
solution. The use of time-discretization makes our approach prone to numerical
approximation, but so far this issue has only been addressed in few papers.
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Here is the plan of the paper. In Sect. 1 we review the relay operator and
its weak representation. In Sect. 2 we formulate an initial- and boundary-value
problem for Eq. (1), and in Sect. 3 we prove existence of a solution and its ro-
bustness w.r.t. perturbations of F . In Sect. 4 we derive some regularity results,
that we use in Sect. 5 to study the large-time behaviour of the solution; in partic-
ular we prove its asymptotic stability and compactness. In Sect. 6 we deal with
the Lipschitz-continuous and monotone dependence of the solution on the data,
whence its uniqueness. In Sect. 7 we show existence of a time-periodic solution
under periodic forcing, and finally in Sect. 8 we draw conclusions.

1 Continuous and discontinuous hysteresis

The so-called (delayed) relay operator is the most simple model of discontinuous
hysteresis. In this section we review its definition, specify the functional frame-
work along the lines of [17], and provide a weak formulation in view of coupling
it with a P.D.E., cf. [19]. We also introduce a regularization of this operator.

Let us fix any pair ρ := (ρ1, ρ2) ∈ R2, with ρ1 < ρ2. For any continuous
function u : [0, T ] → R and any ξ ∈ {−1, 1}, let us set Xu(t) := {τ ∈]0, t] :
u(τ ) = ρ1 or ρ2} and

w(0) :=
⎧
⎨

⎩

−1 if u(0) ≤ ρ1

ξ if ρ1 < u(0) < ρ2

1 if u(0) ≥ ρ2,

(1.1)

w(t) :=
⎧
⎨

⎩

w(0) if Xu(t) = ∅
−1 if Xu(t) 	= ∅ and u(max Xu(t)) = ρ1

1 if Xu(t) 	= ∅ and u(max Xu(t)) = ρ2

∀t ∈ ]0, T ]; (1.2)

cf. Fig. 2. Any continuous function u : [0, T ] → R is uniformly continuous, hence
it may have at most a finite number of oscillations between the two thresholds
ρ1, ρ2; therefore w may jump at most a finite number of times between −1 and
1, and thus w ∈ BV (0, T ). By setting hρ(u, ξ) := w, a single-valued operator
hρ : C0([0, T ]) × {−1, 1} → BV (0, T ) is thus defined.

For any diffeomorphism ϕ : [0, T ] → [0, T ], if w = hρ(u, ξ) then w ◦ ϕ =
hρ(u ◦ ϕ, ξ), that is, hρ is rate-independent; thus it is a hysteresis operator in the
sense of [17].

Closure. It is easy to see that hρ(·, ξ) is not closed as an operator C0([0, T ]) →
L1(0, T ). We then introduce the multi-valued completed relay operator, kρ , we
define as follows. For any u ∈ C0([0, T ]) and any ξ ∈ [−1, 1], we set w ∈
kρ(u, ξ) if and only if w is measurable in ]0, T [,

w(0) :=
⎧
⎨

⎩

−1 if u(0) < ρ1

ξ if ρ1 ≤ u(0) ≤ ρ2

1 if u(0) > ρ2,

(1.3)



P.D.E.s with hysteresis 491

Fig. 2 Relay operator

and, for any t ∈ ]0, T ],

w(t) ∈
⎧
⎨

⎩

{−1} if u(t) < ρ1

[ − 1, 1] if ρ1 ≤ u(t) ≤ ρ2

{1} if u(t) > ρ2,

(1.4)

⎧
⎨

⎩

if u(t) 	= ρ1, ρ2, then w is constant in a neighbourhood of t

if u(t) = ρ1, then w is nonincreasing in a neighbourhood of t

if u(t) = ρ2, then w is nondecreasing in a neighbourhood of t ;
(1.5)

cf. Fig. 3a. (1.4) will be referred to as the confinement condition, since it restricts
the pair (u, w) to stay either in the rectangle [ρ1, ρ2]× [−1, 1] or on the two half-
lines ] − ∞, ρ1[×{−1} and ]ρ2, +∞[×{1}. On the other hand (1.5) concerns the
dynamics, and will be named the dissipation condition, for reasons that will be
clear in the sequel.

For any u ∈ C0([0, T ]), w ∈ BV (0, T ) by the argument we saw for hρ ; thus

kρ =: C0([0, T ]) × [−1, 1] → P(BV (0, T )).

This operator is the closure of hρ w.r.t. suitable topologies, see ([17], Sect. VI.1).
In the analysis of P.D.E.s it is especially convenient to replace hρ by this closure.

Weak formulation of the relay operator. We reformulate the completed relay
operator, kρ , in view of coupling it with P.D.E.s. The conditions (1.4) and (1.5)
are respectively equivalent to

|w| ≤ 1,

{
(w − 1)(u − ρ2) ≥ 0

(w + 1)(u − ρ1) ≥ 0
a.e. in ]0, T [, (1.6)
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Fig. 3 The graph of the completed relay operator is outlined in part a. Any point of the rectangle
[ρ1, ρ2]×[−1, 1] is accessible to the pair (u, w). If u(t) = ρ1 (u(t) = ρ2, respectively) then
w is locally nonincreasing (nondecreasing, respectively); if ρ1 < u(t) < ρ2 then w is locally
constant. The graph of the corresponding regularized relay operator is represented in part b

∫ t

0
u dw =

∫ t

0
ρ2dw+ −

∫ t

0
ρ1dw− = ρ2 + ρ1

2
[w(t) − w(0)]

+ ρ2 − ρ1

2

∫ t

0
|dw| =: 	0(w; [0, t]) ∀t ∈ ]0, T ] (1.7)

(these are Stieltjes integrals), cf. [19]. The condition (1.4) entails that

u dw ≤ ρ2dw+ − ρ1dw−, whence
∫ t

0
u dw ≤ 	0(w; [0, t]),

independently from the dynamics of the pair (u, w) through the rectangle
[ρ1, ρ2] × [−1, 1]; the opposite inequality is then equivalent to the equality (1.7).
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In conclusion, the system (1.4), (1.5) is equivalent to (1.6) coupled with the
inequality

∫ t

0
u dw ≥ 	0(w; [0, t]) ∀t ∈ ]0, T ]. (1.8)

Notice that by (1.7)

	0(w; [0, t]) ≥ ρ2 − ρ1

2

∫ t

0
|dw| − (ρ1 + ρ2). (1.9)

Regularized relay operator. Now we approximate the completed relay op-
erator, kρ , of Fig. 3a as it is outlined in Fig. 3b. For any ε > 0, the two vertical
segments of Fig. 3a are here replaced by two segments of slope 1/ε, that intersect
the u-axis at (ρ1, 0) and (ρ2, 0), resp. The dynamics illustrated by the arrows de-
fines a mapping u �→ w for any piecewise monotone input function u. After ([17];
Chap. II) this mapping is Lipschitz-continuous w.r.t. the metric of C0([0, T ]); it
can then be extended by continuity to a continuous hysteresis operator

kε
ρ : C0([0, T ]) × [−1, 1] → C0([0, T ]) ∩ BV (0, T ). (1.10)

In passing we notice that kε
ρ can be represented as a Preisach model: kε

ρ is
the average of a family of relays that are uniformly distributed with thresholds
{(ρ1 − s, ρ2 + s) : −ε ≤ s ≤ ε}, cf. [14], [17; Chap. IV]. Moreover, as ε → 0

kε
ρ(v, ξ) → kρ(v, ξ) weakly star in BV (0, T ), ∀(v, ξ) ∈ C0([0, T ])×[−1, 1];

see [17; Chap. VI]. Notice that

w = kε
ρ(u, ξ) ⇔ w ∈ kρ(u − εw, ξ). (1.11)

Thus kρ = k0
ρ . The regularized relay operator, kε

ρ may then also be set in weak
form. By (1.6) and (1.7), the latter inclusion is equivalent to the following system
of inequalities:

|w| ≤ 1,

{
(w − 1)(u − εw − ρ2) ≥ 0

(w + 1)(u − εw − ρ1) ≥ 0
a.e. in ]0, T [, (1.12)

∫ t

0
(u − εw) dw ≥ 	0(w; [0, t]) ∀t ∈ ]0, T ]. (1.13)

The latter inequality also reads

∫ t

0
u dw ≥ 	0(w; [0, t]) + ε

2
[w(t)2 − w(0)2] =: 	ε(w; [0, t]) ∀t ∈ ]0, T ].

(1.14)
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2 Weak formulation

In this section we provide a weak formulation in the framework of Sobolev spaces
for an initial- and boundary-value problem for the Eq. (1), in the case that F is
either the (completed) relay operator kρ or the regularized operator kε

ρ . In order to
achieve a unified treatment, we deal with kε

ρ for any ε ≥ 0.
We assume that � is a (possibly unbounded) uniformly Lipschitz domain of

RN , fix any T > 0, and set �t := �×]0, t[ for any t > 0. We also fix any smooth
subset �0 of ∂� of possibly vanishing Hausdorff (N − 1)-dimensional measure
(� = RN is not excluded), set

V := {v ∈ H1(�) : γ0v = 0 a.e. on �0} (γ0 := trace operator), (2.1)

and identify the space H := L2(�) with its topological dual H ′; as V is a dense
subspace of H with continuous injection, in turn H ′ can be identified with a dense
subspace of V ′. Thus

V ⊂ H = H ′ ⊂ V ′ with continuous and dense injections.

We denote by 〈·, ·〉 the duality pairing between V ′ and V , and define the linear and
continuous operator

A : V → V ′, 〈Au, v〉 :=
∫

�

∇u ·∇v dx ∀u, v ∈ V .

We fix any ε ≥ 0, any ρ := (ρ1, ρ2) ∈ R2 with ρ1 < ρ2, define 	ε as in (1.14),
and assume that

u0 ∈ H, w0 ∈ L∞(�), |w0| ≤ 1, (2.2)

f = f1 + f2, f1 ∈ L1(0, T ; H), f2 ∈ L2(0, T ; V ′). (2.3)

We now formulate our initial- and boundary-value problem for any ε ≥ 0.

Problem 2.1ε,T . Find uε ∈ L∞(0, T ; H)∩ L2(0, T ; V ) and wε ∈ L∞(�T ) such
that

|wε| ≤ 1 a.e. in �T ,
∂wε

∂t
∈ C0(�T )′, (2.4)

∫∫

�T

(

(u0 − uε + w0 − wε)
∂v

∂t
+ ∇uε ·∇v

)

dx dt

=
∫∫

�T

f1v dx dt +
∫ T

0
〈 f2, v〉 dt

∀v ∈ H1(0, T ; H) ∩ L2(0, T ; V ), v(·, T ) = 0 a.e. in �,

(2.5)

{
(wε − 1)(uε − εwε − ρ2) ≥ 0

(wε + 1)(uε − εwε − ρ1) ≥ 0
a.e. in �T , (2.6)

1

2

∫

�

(uε(x, t)2 − u0(x)2)dx +
∫

�

	ε(wε(x, ·); [0, t]) dx +
∫∫

�t

|∇uε|2 dx dτ

≤
∫∫

�t

f1uε dx dτ +
∫ t

0
〈 f2, uε〉 dτ for a.a. t ∈ ]0, T [. (2.7)
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wε(x, 0) = w0(x) in R. (2.8)

Interpretation. The initial condition (2.8) makes sense because of the second part
of (2.4).

The Eq. (2.5) yields

∂

∂t
(uε + wε) + Auε = f in V ′, for a.a. t ∈]0, T [, (2.9)

whence uε + wε ∈ W 1,1(0, T ; V ′). The initial condition

(uε + wε)|t=0 = u0 + w0 in V ′ (2.10)

then follows. Let us now set �1 := � \ �0 and denote by ∂/∂ν the trace of the
outward normal derivative on �1. If, for instance,

g ∈ L2(�1×]0, T [), 〈 f2, v〉 :=
∫

�1

g γ0v dσ ∀v ∈ V, a.e. in ]0, T [, (2.11)

then (2.9) is a weak formulation of the boundary-value problem
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂

∂t
(uε + wε) − �uε = f1 in D′(�T )

γ0uε = 0 on �0×]0, T [
∂uε

∂ν
= g on �1×]0, T [.

(2.12)

Multiplying (2.9) by uε and integrating in space and time, we see that (2.7) is
equivalent to
∫ t

0

〈
∂

∂τ
(uε + wε), u

〉

dτ ≥ 1

2

∫

�

[uε(x, t)2 − u0(x)2]dx +
∫

�

	ε(wε; [0, t]) dx

for a.a. t ∈ ]0, T [. (2.13)

If ∂uε/∂t ∈ L2(0, T ; V ′) then
∫ t

0
〈∂uε/∂τ , u〉 dτ = 1

2

∫

�

[uε(x, t)2 − u0(x)2]dx;

moreover, as uε + wε ∈ W 1,1(0, T ; V ′), it follows that ∂wε/∂t ∈ L1(0, T ; V ′).
The inequality (2.13) then reads

∫ t

0

〈
∂wε

∂τ
, u

〉

dτ ≥
∫

�

	ε(wε; [0, t]) dx for a.a. t ∈ ]0, T [. (2.14)

In Sect. 4, under regularity hypotheses on the data, we shall see that ∂uε/∂t ∈
L2(0, T ; H), cf. Proposition 4.2; in that case (2.14) will be fully justified.
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The inequality (2.14) extends the dissipation condition (1.14) to space-
distributed systems. By the developments of Sect. 1, we see that (2.6), (2.8) and
(2.14) stand for the hysteresis relation

wε(x, t) ∈ [
kε
ρ(uε(x, ·), w0(x))

]
(t) in [0, T ], a.e. in �, (2.15)

although here uε(x, ·) need not be continuous. We have thus further weakened the
formulation of the relay operator.

In conclusion, Problem 2.1ε,T is a weak formulation of the system (2.9),
(2.10), (2.15).

Remarks (i) The formulation of Problem 2.1ε,T also applies for T = +∞, pro-
vided that the second formula of (2.4) is replaced by ∂wε/∂t ∈ C0(�t )

′ for any
t ∈ ]0, +∞[.

(ii) In the limit case of ρ1 = ρ2, (2.6) is equivalent to

wε ∈ sign(uε − εwε − ρ1) a.e. in �T , (2.16)

(2.7) can be dropped, and the regularity ∂wε/∂t ∈ C0(�T )′ is lost. In this case
for ε = 0, Problem 2.1ε,T is equivalent to the weak formulation of the Stefan
problem.

3 Existence of a solution

In this section we prove existence of a solution of Problem 2.1ε,T for any ε ≥ 0
and any finite T > 0, and derive some uniform estimates w.r.t. T , that will be
used in Sect. 5 in the study of the large-time behaviour of the solution(s).

Theorem 3.1 (Existence) For any ε ≥ 0 and any T > 0, if (2.2) and (2.3) hold,
then Problem 2.1ε,T has a solution (uε, wε). Moreover the (possibly multi-valued)
solution operator (u0, w0, f ) �→ (uε, wε) has a selection that maps bounded sets
to bounded sets, uniformly w.r.t. T, ε. This also applies for T = +∞.

By the latter statement we mean that for any M > 0 there exists N > 0 such
that, if

‖u0‖H + ‖ f ‖L1(0,T ;H)+L2(0,T ;V ′) ≤ M, (3.1)

then, for any ε ≥ 0 and any T > 0 (T = +∞ included), there exists a solution of
Problem 2.1ε,T such that

‖uε‖L∞(0,T ;H)∩L2(0,T ;V ) +
∥
∥
∥
∂wε

∂t

∥
∥
∥

C0(�T )′
+ ‖uε + wε‖W 1,1(0,T ;V ′) ≤ N . (3.2)

This notion of T -uniform boundedness will be encountered repeatedly in this
work, and will be used to study the large-time behaviour of the solution.

Henceforth we shall write (u, w) in place of (uε, wε).

Proof This argument is based on approximation, derivation of a priori estimates
and passage to the limit.
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Fig. 4 Graphs of the multi-valued function G(·, ξ) in part a, and of the corresponding single-
valued function Gε(·, ξ) in part b, for any fixed ξ ∈ [−1, 1]

(i) Approximation. Let us fix any m ∈ N, set h := T/m and
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f n
1m(x) := 1

h

∫ nh

(n−1)h
f1(x, t) dt for a.a. x ∈ �,

f n
2m := 1

h

∫ nh

(n−1)h
f2(t) dt in V ′,

f n
m := f n

1m + f n
2m, u0

m := u0, w0
m := w0, for n = 1, . . . , m,

G(v, ξ) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

{−1} if v < ρ1

[ − 1, ξ ] if v = ρ1

{ξ} if ρ1 < v < ρ2

[ξ, 1] if v = ρ2

{1} if v > ρ2

∀(v, ξ) ∈ R × [−1, 1], (3.3)

cf. Fig. 4a. Notice that the relation z ∈ G(v − εz, ξ) is equivalent to z ∈ Gε(v, ξ),
where Gε(·, ξ) is the maximal monotone function outlined in Fig. 4b.

We now approximate our problem via an implicit time-discretization scheme.
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Problem 2.1ε,T,m. For n = 1, . . . , m, find un
m ∈ V and wn

m ∈ H such that

wn
m ∈ Gε

(
un

m, wn−1
m

)
a.e. in �, for n = 1, . . . , m, (3.4)

un
m − un−1

m

h
+ wn

m − wn−1
m

h
+ Aun

m = f n
m in V ′, for n = 1, . . . , m. (3.5)

By the maximal monotonicity of Gε(·, wn−1
m ), existence and uniqueness of the

approximate solution can easily be proved step by step. (Time-discretization over-
comes difficulties due to the occurrence of memory: at any instant the only relevant
unknown is the actual value, since the past is known and the future has no influ-
ence on the present. Notice that this remark only applies to the time-discretized
problem.)

(ii) A Priori Estimates. Multiplying the Eq. (3.5) by un
m we get

∫

�

(
un

m

)2 − (
un−1

m

)2

2h
dx +

∫

�

wn
m − wn−1

m

h
un

m dx +
∫

�

|∇un
m |2 dx

≤ ∥
∥ f n

1m

∥
∥

H

∥
∥un

m

∥
∥

H + ∥
∥ f n

2m

∥
∥

V ′
∥
∥un

m

∥
∥

V for n = 1, . . . , m. (3.6)

Defining 	ε as in (1.14), by (3.4) we have

�∑

n=1

(
wn

m − wn−1
m

)
un

m ≥
�∑

n=1

[(
wn

m − wn−1
m

)+
ρ2 − (

wn
m − wn−1

m

)−
ρ1

]

= 	ε(wm; [0, �h]) a.e. in �, for � = 1, . . . , m. (3.7)

Multiplying (3.6) by h and summing w.r.t. n, we then get

1

2

∫

�

[(
u�

m

)2 − (u0)2]dx +
∫

�

	ε(wm; [0, �h]) dx + h
�∑

n=1

∫

�

∣
∣∇un

m

∣
∣2

dx

≤ ∥
∥ f1

∥
∥

L1(0,T ;H)
maxn=0,...,�

∥
∥un

m‖H + ‖ f2‖L2(0,T ;V ′)

(

h
�∑

n=1

∥
∥un

m

∥
∥2

V

)1/2

(3.8)

for n = 1, . . . , �. By (1.9), a standard calculation then yields

max
n=1,...,m

∥
∥un

m

∥
∥

H , h
m∑

n=1

∥
∥un

m

∥
∥2

V ,

m∑

n=1

∫

�

∣
∣wn

m − wn−1
m

∣
∣ dx ≤ C1. (3.9)

(By C1, C2, . . . we denote suitable positive constants independent of m, T, ε.)
For any family {vn

m}n=1,...,m of functions � → R, let us set

vm := piecewise-linear interpolate of v0
m, . . . , vm

m in [0, T ], a.e. in �,

v̄m(·, t) := vn
m a.e. in �, ∀t ∈](n − 1)h, nh[, for n = 1, . . . , m.

After comparison in (3.5), the estimates (3.9) also read

‖um‖L∞(0,T ;H)∩L2(0,T ;V ),

∥
∥
∥
∥
∂wm

∂t

∥
∥
∥
∥

L1(�T )

, ‖um+wm‖W 1,1(0,T ;V ′) ≤ C2. (3.10)
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(iii) Limit Procedure. By the above estimates, there exist u, w such that, as m →
∞ along a suitable sequence,

um → u weakly star in L∞(0, T ; H) ∩ L2(0, T ; V )

wm → w weakly star in L∞(�T )

∂wm

∂t
→ ∂w

∂t
weakly star in C0(�T )′

um + wm → u + w weakly in Ha(0, T ; V ′), ∀a < 1/2.

(3.11)

(3.5) and (3.8) respectively read

∂

∂t
(um + wm) + Aūm = f̄m in V ′, a.e. in ]0, T [, (3.12)

1

2

∫

�

[ūm(x, t)2 − u0(x)2]dx +
∫

�

	ε(wm; [0, t]) dx +
∫∫

�t

|∇ūm |2 dxdτ

≤
∫ t

0
〈 f̄m, ūm〉dτ a.e. in ]0, T [. (3.13)

By passing to the limit in (3.12) and to the inferior limit in (3.13), we then get
(2.9) and (2.7).

(iv) Proof of (2.6). Hysteresis operators are not monotone in the sense of
L2(0, T ), cf. [17, Sect. III.1]. Therefore to pass to the limit in the hysteresis non-
linearity we may just use a compactness argument. For any ϕ ∈ D(�T ) with
ϕ ≥ 0, (3.4) entails

∫∫

�T

(w̄m − 1)(ūm − εw̄m − ρ2)ϕ dx dt ≥ 0. (3.14)

By (3.11) for any ϕ ∈ D(�T ), ϕ ≥ 0,

(ūm + w̄m)ϕ → (u + w)ϕ

weakly star in L∞(0, T ; H) ∩ Ha(0, T ; V ′), ∀a < 1/2, (3.15)

hence strongly in L2(0, T ; V ′); therefore

lim sup
m→+∞

∫∫

�T

w̄mūmϕ dx dt

= lim
m→+∞

∫ T

0
〈ūm + w̄m, ūmϕ〉 dt − lim inf

m→+∞

∫∫

�T

ū2
mϕ dx dt

≤
∫ T

0
〈u + w, uϕ〉 dt −

∫∫

�T

u2ϕ dx dt =
∫∫

�T

wuϕ dx dt.

By passing to the superior limit in (3.14), we then get
∫∫

�T

(w − 1)(u − εw − ρ2)ϕ dx dt ≥ 0 ∀ϕ ∈ D(�T ), ϕ ≥ 0,

which yields (2.6)1; (2.6)2 can be proved similarly. ��
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Proposition 3.2 (Robustness) For any n ∈ N let ρ1n < ρ2n, and for any ε ≥ 0 let
(un, wn) be a corresponding solution of Problem 2.1ε,T . If ρ1n → ρ1, ρ2n → ρ2
and ρ1 < ρ2, then there exists (u, w) such that, as n → ∞ along a subsequence,

un → u weakly star in L∞(0, T ; H) ∩ L2(0, T ; V ),

wn → w weakly star in L∞(�T ),

∂wn
∂t → ∂w

∂t weakly star in C0(�T )′,
un + wn → u + w weakly in Ha(0, T ; V ′), ∀a < 1/2. (3.16)

Moreover (u, w) is a solution of Problem 2.1ε,T corresponding to the pair
(ρ1, ρ2).

Outline of the Proof. The argument follows the lines of the above estimate and
limit procedure. In particular notice that (3.16)2 and (3.16)3 entail

lim inf
n→∞ 	ρn (wn; [0, t]) ≥ 	ρ(w; [0, t]). �

An analogous statement holds if ρ1 = ρ2; in this case however the conver-
gence (3.16)3 is lost, as well as the inequality (2.7).

Remarks (i) The above existence result can be extended in several directions; in
particular the Laplace operator can be replaced by more general, possibly time-
dependent and possibly non-self-adjoint, elliptic operators. The relay operator can
also be replaced by a more general Preisach operator.

(ii) Problem 2.1ε,T and the above existence theorem can easily be extended to
the initial- and boundary-value problems for degenerate equations like

∂

∂t
kε
ρ(u, w0) − �u = f in �T (ε ≥ 0); (3.17)

of course in this case in general the regularity u ∈ L∞(0, T ; H) is lost. For in-
stance existence of a solution can be proved for the equation

∂

∂t
kε
ρ(u, w0) − �u − ∂

∂z
kε
ρ(u, w0) = f in �T , (3.18)

that arises as a simplified model of porous medium filtration (with normalized co-
efficients); here u represents the water pressure, kε

ρ(u, w0) the medium saturation,
and z is the vertical coordinate; cf. [20].

(iii) The problem with discontinuous hysteresis, Problem 2.10,T , can also be
approximated by passing to the limit as ε → 0 in Problem 2.1ε,T . The argument
is analogous to that above, since the estimates we derived are uniform w.r.t. ε.

4 Regularity of solutions

In this section we derive some regularity properties for the solution(s) of
Problem 2.1ε,T for any ε ≥ 0, in view of the study of the large-time behaviour.
(We still write (u, w) in place of (uε, wε).)
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Proposition 4.1 Let ε ≥ 0, p ∈ ]2, +∞], and let (2.2) be fulfilled. If

u0 ∈ L p(�), f ∈ L1(0, T ; L p(�)), (4.1)

then Problem 2.1ε,T has a solution such that

u ∈ L∞(0, T ; L p(�)). (4.2)

Moreover the (possibly multi-valued) solution operator (u0, f ) �→ (u, w) has
a selection that maps bounded subsets of L p(�) × L1

(
0, T ; L p(�)

)
to bounded

subsets of L∞(
0, T ; L p(�)

)
, uniformly w.r.t. T, ε. This also applies for T = +∞.

Proof (i) First let us assume that 2 < p < +∞, and set

am,p−1(v) :=min{|v|p−2, m}v, Am,p(v) :=
∫ v

0
am,p−1(ξ) dξ ∀v ∈ R,∀m ∈ N.

Let us multiply (3.5) by am,p−1(un
m) (∈ V ); by (3.4) there exists a constant C ≥ 0

such that

�∑

n=1

(
wn

m − wn−1
m

)
am,p−1

(
un

m

) ≥ −C a.e. in �, for � = 1, . . . , m.

We then get

∫

�

[
Am,p

(
u�

m

) − Am,p
(
u0)]dx + h

�∑

n=1

∫

�

a′
m,p−1

(
un

m

)∣
∣∇un

m

∣
∣2 dx

≤ ∥
∥ f

∥
∥

L1(0,T ;L p(�))
max

n=1,...,�

∥
∥am,p−1

(
un

m

)∥
∥

L p/(p−1)(�)
+ C

for � = 1, . . . , m. (4.3)

It is then easy to see that um is bounded in L∞(
0, T ; L p(�)

)
uniformly w.r.t.

m, T, ε. The thesis thus holds for any p < +∞.
If p = ∞, let us set M := max{‖u0‖L∞(�), ρ1, ρ2}, and multiply the approx-

imate Eq. (3.5) by zn
m := (un

m − M)+ − (un
m − M)−. As (wn

m − wn−1
m )zn

m ≥ 0, a
standard procedure yields zn

m = 0 a.e. in � for any n. Hence |u| ≤ M a.e. in �T . �

Now we show that a stronger regularity of the inital data and of the second
member improve the regularity of the solution.

Proposition 4.2 Let ε ≥ 0. If (2.2) hold and

u0 ∈ V, f = f1 + f2, f1 ∈ L2(0, T ; H), f2 ∈ W 1,1(0, T ; V ′), (4.4)

then Problem 2.1ε,T has a solution such that

u ∈ H1(0, T ; H) ∩ L∞(0, T ; V ). (4.5)

Moreover the (possibly multi-valued) solution operator (u0, f ) �→ (u, w) has a
selection that maps bounded sets to bounded sets, uniformly w.r.t. T, ε. This also
applies for T = +∞.

By (4.5) and by the Lipschitz continuity of kε
ρ , if ε > 0 then w ∈ H1(0, T ; H).
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Proof (i) Let us multiply the time-discretized Eq. (3.5) by un
m − un−1

m and sum for
n = 1, . . . , �, for any � ∈ {1, . . . , m}. By the monotonicity of Gε,

(
wn

m − wn−1
m

)(
un

m − un−1
m

) ≥ 0 a.e. in �, for n = 1, . . . , m, (4.6)

whence

h
∫

�

∣
∣un

m − un−1
m

h

∣
∣2 dx + 1

2

∫

�

(∣
∣∇un

m |2 − ∣
∣∇un−1

m

∣
∣2)

dx

≤
∫

�

f n
1m

(
un

m − un−1
m

)
dx + 〈

f n
2m, un

m − un−1
m

〉

≤ h

2

∥
∥ f n

1m

∥
∥2

H + h

2

∫

�

∣
∣
∣
un

m − un−1
m

h

∣
∣
∣
2

dx + 〈
f n
2m, un

m

〉

−〈
f n−1
2m , un−1

m

〉 − 〈
f n
2m − f n−1

2m , un−1
m

〉 ∀n ∈ N. (4.7)

Setting zn
m := 1

2

∫

�
|∇un

m |2 dx − 〈 f n
2m, un

m〉 for any n, we get

h

2

∫

�

∣
∣un

m − un−1
m

h

∣
∣2 dx + zn

m − zn−1
m

≤ h

2

∥
∥ f n

1m

∥
∥2

H + ∥
∥ f n

2m − f n−1
2m

∥
∥

V ′
∥
∥un−1

m

∥
∥

V for n = 1, . . . , m. (4.8)

A simple calculation then yields

‖um‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ C3, (4.9)

and passing to the limit in m the thesis follows. �

In view of the analysis of the large-time behaviour of the solution, we intro-
duce the following cut-off function

β(t) := min{t, 1} ∀t > 0, (4.10)

and use it to derive some regularity properties independently from the initial data.

Proposition 4.3 Let ε ≥ 0, let (2.2) and (2.3) be fulfilled, and assume that
√

β(t) f1 ∈ L2(0, T ; H),
√

β(t) f2 ∈ H1(0, T ; V ′). (4.11)

Then Problem 2.1ε,T has a solution such that

√
β(t)

∂u

∂t
∈ L2(0, T ; H),

√
β(t) u ∈ L∞(0, T ; V ). (4.12)

Moreover there exists a selection of the (possibly multi-valued) solution oper-
ator (u0, f ) �→ (u, w) that maps bounded sets to bounded sets, uniformly w.r.t. T
and ε in the following sense: for any M > 0 there exists N > 0 such that, if

‖u0‖H , ‖ f1‖L1(0,T ;H), ‖
√

β(t) f1‖L2(0,T ;H),

‖ f2‖L2(0,T ;V ′), ‖
√

β(t) f2
∥
∥

L∞(0,T ;V ′)∩H1(0,T ;V ′) ≤ M, (4.13)
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then, for any T > 0 and any ε ≥ 0, there exists a solution of Problem 2.1ε,T such
that ∥

∥
∥
√

β(t)
∂u

∂t

∥
∥
∥

L2(0,T ;H)
+ ‖√β(t) u‖L∞(0,T ;V ) ≤ N . (4.14)

This also applies for T = +∞.

Proof Multiplying (3.5) by β(nh) (un
m − un−1

m ), by (4.6) we get

hβ(nh)

∫

�

∣
∣
∣
un

m − un−1
m

h

∣
∣
∣
2

dx + β(nh)

2

∫

�

(∣
∣∇un

m

∣
∣2 − ∣

∣∇un−1
m

∣
∣2) dx

≤ β(nh)

∫

�

f n
1m

(
un

m − un−1
m

)
dx + β(nh)

〈
f n
2m, un

m − un−1
m

〉
for n = 1, . . . , m,

(4.15)
that is,

hβ(nh)

∫

�

∣
∣
∣
un

m − un−1
m

h

∣
∣
∣
2
dx + β(nh)

2

∫

�

∣
∣∇un

m

∣
∣2 dx − β(nh−h)

2

∫

�

∣
∣∇un−1

m

∣
∣2 dx

≤ β(nh) − β(nh−h)

2

∫

�

∣
∣∇un−1

m

∣
∣2 dx + β(nh)

∫

�

f n
1m

(
un

m − un−1
m

)
dx

+ β(nh)
〈
f n
2m, un

m

〉 − β(nh−h)
〈
f n−1
2m , un−1

m

〉

− 〈
β(nh) f n

2m − β(nh−h) f n−1
2m , un−1

m

〉
. (4.16)

Notice that

β(nh) − β(nh−h)

2

∫

�

∣
∣∇un−1

m

∣
∣2 dx ≤ h

2

∥
∥un−1

m

∥
∥2

V ,

β(nh)

∫

�

f n
1m

(
un

m − un−1
m

)
dx ≤ hβ(nh)

2

∫

�

∣
∣ f n

1m

∣
∣2 dx+ hβ(nh)

2

∫

�

∣
∣
∣
un

m − un−1
m

h

∣
∣
∣
2

dx,

β(nh)
〈
f n
2m, un

m

〉 ≤
√

β(nh)

2

∥
∥ f n

2m

∥
∥2

V ′ +
√

β(nh)

2

∥
∥un

m

∥
∥2

V ,

〈
β(nh) f n

2m − β(nh−h) f n−1
2m , un−1

m

〉

≤ 1

2

∥
∥
∥
β(nh) f n

2m − β(nh−h) f n−1
2m

h

∥
∥
∥

2

V ′ + h

2

∥
∥un−1

m

∥
∥2

V ,

and ‖β(t) f2‖H1(0,T ;V ′) ≤ ‖√β(t) f2‖H1(0,T ;V ′). By (4.16) and by these inequal-
ities, recalling that h

∑m
n=1 ‖un

m‖2
V is uniformly bounded (cf. (3.9)), we infer that

there exists a real sequence {gn
m} such that

∑∞
n=1 gn

m converges uniformly w.r.t.
m, T , and such that

hβ(nh)

2

∫

�

∣
∣
∣
un

m −un−1
m

h

∣
∣
∣
2
dx + β(nh)

2

∫

�

∣
∣∇un

m

∣
∣2 dx

−β(nh−h)

2

∫

�

∣
∣∇un−1

m

∣
∣2 dx ≤ gn

m ∀n. (4.17)
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We then conclude that
∥
∥
∥
√

β(t)
∂um

∂t

∥
∥
∥

L2(0,T ;H)
+ ‖√β(t) um‖L∞(0,T ;V ) ≤ C4. (4.18)

The latter constant is independent of m, T and depends on the data u0, f only
through the norms of (4.13). Therefore Problem 2.1ε,T has a solution that fulfils
(4.12), and the solution operator has the stated boundedness property. �

L1-Type Results. First let us set

s0(η) := −1 if η < 0, s0(0) := 0, s0(η) := 1 if η > 0.

In the next three results we assume that ε > 0.

Lemma 4.4 Hilpert’s Inequality [4]) Let ε > 0. For any (ui , ξi ) ∈ W 1,1(0, T )×R
(i = 1, 2), setting w̃ := kε

ρ(u1, ξ1) − kε
ρ(u2, ξ2),

dw̃

dt
s0(u1 − u2) ≥ d

dt
|w̃| a.e. in ]0, T [. (4.19)

For the proof of this statement we refer the reader to [4], [17; Sect. III.2].
In view of the next result, let us fix any direction ξ̂ , and for any η > 0

let us denote by δ
ξ̂ ,η

the space-increment operator in the direction ξ̂ , that is,

δ
ξ̂ ,η

z(x) := z(x + ηξ̂) − z(x) for any function z : RN → R and any x ∈ RN .

Lemma 4.5 Assume that (2.2) and (2.3) hold and that f ∈ L1(�T ). Let �1, �2 be
bounded subsets of � such that �̄1 ⊂ �2, and set �i,t := �i×]0, t[ for i = 1, 2.
Then there exists a constant C7 > 0 such that, for any ε > 0 and any solution
(u, w) of Problem 2.1ε,T ,

∫

�1

(∣
∣δ

ξ̂ ,η
u
∣
∣ + ∣

∣δ
ξ̂ ,η

w
∣
∣
)
(x, t) dx

≤
∫

�2

(∣
∣δ

ξ̂ ,η
u0| + ∣

∣δ
ξ̂ ,η

w0
∣
∣
)
dx +

∫∫

�2,t

∣
∣δ

ξ̂ ,η
f
∣
∣ dxdτ + C7η

∀η > 0 such that �1 + ηξ̂ ⊂ �2 for a.a. t ∈ ]0, T [. (4.20)

Proof Let us approximate the function s0 by setting

s j (ζ ) := max{min{ jζ, 1},−1} ∀ζ ∈ R, ∀ j ∈ N. (4.21)

Let ϕ : � → [0, 1] be of class C2 and such that

0 ≤ ϕ ≤ 1 in �, ϕ = 1 in �1, ϕ = 0 in � \ �2. (4.22)

Setting

� j (v) :=
∫ v

0
s j (ζ ) dζ ∀v ∈ R, ∀ j ∈ N, (4.23)



P.D.E.s with hysteresis 505

for suitable constants C5, C6, C7 that depend on �1 and �2 via ϕ, we have

∫ T

0
〈Aδ

ξ̂ ,η
u, s j (δξ̂ ,η

u)ϕ〉dt

=
∫∫

�2,T

(s′
j (δξ̂ ,η

u)|∇δ
ξ̂ ,η

u|2ϕ + s j (δξ̂ ,η
u)∇δ

ξ̂ ,η
u ·∇ϕ) dx dt

≥
∫∫

�2,T

∇� j (δξ̂ ,η
u)·∇ϕ dx dt = −

∫∫

�2,T

� j (δξ̂ ,η
u)·�ϕ dx dt

≥ −C5

∫∫

�2,T

|δ
ξ̂ ,η

u| dx dt ≥ −C6η‖u‖L2(0,T ;V ) ≥ −C7η.

Applying δ
ξ̂ ,η

to the Eq. (2.9) and multiplying it by s j (δξ̂ ,η
u)ϕ, we get

∫∫

�t

(
∂δ

ξ̂ ,η
u

∂τ
+ ∂δ

ξ̂ ,η
w

∂τ

)

s j (δξ̂ ,η
u)ϕ dxdτ ≤

∫∫

�t

|δ
ξ̂ ,η

f |ϕ dxdτ + C7η

for a.a. t ∈ ]0, T [, ∀η > 0.

As s j (δξ̂ ,η
u) → s0(δξ̂ ,η

u) a.e. in �T as j → ∞, by passing to the limit in this
inequality we get

∫∫

�t

(∂δ
ξ̂ ,η

u

∂τ
+ ∂δ

ξ̂ ,η
w

∂τ

)
s0(δξ̂ ,η

u)ϕ dxdτ ≤
∫∫

�t

|δ
ξ̂ ,η

f |ϕ dxdτ + C7η

for a.a. t ∈ ]0, T [.
Note that

∂δ
ξ̂,η

u

∂τ
s0(δξ̂ ,η

u) = ∂

∂τ
|δ

ξ̂ ,η
u| a.e. in �t .

Moreover, as ∂δ
ξ̂ ,η

u/∂τ ∈ L2(�T ) we can apply the Hilpert inequality (4.19),
getting

∂δ
ξ̂ ,η

w

∂τ
s0(δξ̂ ,η

u) ≥ ∂

∂τ
|δ

ξ̂ ,η
w| a.e. in �t .

We then get
∫∫

�t

[ ∂

∂τ
(|δ

ξ̂ ,η
u| + |δ

ξ̂ ,η
w|)

]
ϕ dxdτ ≤

∫∫

�t

|δ
ξ̂ ,η

f |ϕ dxdτ + C7η

for a.a. t ∈ ]0, T [,
and this yields (4.20). �

Proposition 4.6 Assume that (2.2) and (2.3) hold and that f ∈ L1(�T ). For any
ε > 0 let (uε, wε) be a solution of Problem 2.1ε,T . Then there exists (u, w) ∈
L1

loc(�T )2 such that, as ε → 0 along a suitable sequence,

uε → u, wε → w strongly in L1
loc(�T ). (4.24)

Moreover, (u, w) is a solution of Problem 2.10,T .
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Outline of the Proof. By (3.2) and (4.20), the classic Fréchet–Riesz–Kolmogorov
compactness criterion yields (4.24). The limit procedure can then be performed
as for Theorem 3.1. �

Proposition 4.7 (Local Space Regularity) Let ε ≥ 0 and the hypotheses of Theo-
rem 3.1 be fulfilled. Let �1, �2 be bounded subsets of � such that �̄1 ⊂ �2, and
assume that

∇u0,∇w0 ∈ (C0(�̄2)
N )′, ∇ f ∈ L1(0, T ; (C0(�̄2)

N )′). (4.25)

Then Problem 2.1ε,T has a solution such that

∇uε, ∇wε ∈ L∞(0, T ; (C0(�̄1)
N )′). (4.26)

This also applies for T = +∞. Moreover
∫

�1

(|∇uε|+ |∇wε|)(·, t) dx ≤
∫

�2

(|∇u0|+|∇w0|) dx+
∫∫

�2×]0,T [
|∇ f | dx dt + C7.

(4.27)

Proof For any ε > 0 (4.26) follows from (4.20). Passing to the limit as ε → 0 we
then get the result for ε = 0, too. �

So far we dealt with a relay operator; the above results can be generalized
to include Preisach operators (namely, linear combinations of a possibly-infinite
family of relays).

5 Uniform asymptotic stability and compactness

In this section we deal with the large-time behaviour of the solution(s) of
Problem 2.1ε,T . We already pointed out that this problem is meaningful also for
T = +∞; however here we introduce a slightly different formulation, still for any
ε ≥ 0.

Problem 5.1ε,∞. Find

u ∈ (L∞(0, +∞; H) ∩ L2(0, +∞; V )) + V, w ∈ L∞(�∞) (5.1)

such that for any T ∈ ]0, +∞[ the restriction of (u, w) to �×]0, T [ solves
Problem 2.1ε,T .

Theorem 5.1 (Large-Time Existence and Uniform Asymptotic Stability in H)
Assume that (2.2) holds, and that

� is comprised between two parallel hyperplanes of RN ,

�0 (⊂ ∂�) has positive Hausdorff (N − 1)-dimensional measure, (5.2)

f = f2 + f∞, f2 ∈ L2(0, +∞; V ′), f∞ ∈ V ′. (5.3)
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Then for any ε ≥ 0 there exists a solution (u, w) of Problem 5.1ε,∞ such that,
setting u∞ := A−1 f∞ (∈ V ),

u ∈ (L∞(0, +∞; H) ∩ L2(0, +∞; V )) + u∞. (5.4)

Moreover, possibly after redefining u(·, t) on a subset of R+ of vanishing mea-
sure,

u(·, t) → u∞ strongly in H, as t → +∞, (5.5)

uniformly as u0 ranges in any bounded subset of H.

The latter statement means that

∀R > 0,∀δ > 0, ∃t̃ > 0 :
‖u0‖H ≤ R ⇒ ‖u(·, t) − u∞‖H ≤ δ for a.a. t > t̃ . (5.6)

Any neighbourhood of u∞ in H is thus absorbing.

Proof We fix any T > 0, for any m ∈ N consider the time-discretizated scheme of
Problem 2.1ε,T,m of Sect. 3, but here we let n range through the whole N. Setting
ũn

m := un
m − u∞, (3.5) also reads

ũn
m − ũn−1

m

h
+ wn

m − wn−1
m

h
+ Aũn

m = f n
2m in V ′, ∀n ∈ N. (5.7)

Multiplying this equation by ũn
m we get

∫

�

(
ũn

m

)2 − (
ũn−1

m

)2

2h
dx +

∫

�

wn
m − wn−1

m

h
ũn

m dx +
∫

�

∣
∣∇ũn

m

∣
∣2 dx

≤ 1

4a

∥
∥ f n

2m

∥
∥2

V ′ + a
∥
∥ũn

m

∥
∥2

V ∀n ∈ N, ∀a > 0. (5.8)

By (5.3) we then get a uniform estimate like (3.9) for ũn
m , and conclude that there

exists a pair (u, w) that solves Problem 2.1ε,T for any T > 0, with u as in (5.4).
By (5.2) we can apply the Poincaré inequality. For suitable constants a, c > 0,

(5.8) yields

∫

�

(
ũn

m

)2 − (
ũn−1

m

)2

2h
dx +

∫

�

wn
m − wn−1

m

h
ũn

m dx

+ c
∫

�

(
ũn

m

)2 dx ≤ 1

4a

∥
∥ f n

2m

∥
∥2

V ′∀n ∈ N. (5.9)

Setting ρ̂ := (ρ2 − ρ1)/2, we have

∞∑

n=1

∫

�

(
wn

m − wn−1
m

)
ũn

m dx =
∞∑

n=1

∫

�

(
wn

m − wn−1
m

)(
un

m − ρ̂
)

dx

−
∞∑

n=1

∫

�

(
wn

m − wn−1
m

)
(u∞ − ρ̂) dx .
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By (3.4) the first sum of the right member is nonnegative; moreover

∞∑

n=1

∫

�

(
wn

m − wn−1
m

)
(u∞ − ρ̂) dx ≤

∫

�

∣
∣
∣
∣

∞∑

n=1

(
wn

m − wn−1
m

)
∣
∣
∣
∣|u∞ − ρ̂| dx

≤ 2
∫

�

|u∞ − ρ̂| dx < ∞.

Applying Lemma 5.2 below with yn := ∫

�
(un

m)2 dx for any n, by (5.9) we then
infer that

‖ũm(t)‖H → 0 as t → +∞, uniformly w.r.t. m;
possibly after redefining u(·, t) on a subset of R+ of vanishing measure, (5.6)
then follows. �

Lemma 5.2 Let c, C be positive constants, and g : R+ → R+ be a continuous
integrable function. For any h ∈ ]0, 1] let yh := {yn

h }n∈N be a nonnegative real
sequence such that

y0
h ≤ C,

yn
h − yn−1

h

h
+ cyn

h ≤ g(nh) ∀n ∈ N, (5.10)

and set ỹh(t) := yn for any t ∈](n − 1)h, nh] and any n ∈ N. Then

ỹh(t) → 0 as t → +∞, uniformly w.r.t. h ∈]0, 1] and w.r.t. y0
h ≤ C. (5.11)

Proof The homogeneous difference equation zn − zn−1 + chzn = 0 generates
the discrete semigroup z0 �→ zn = (1 + ch)−nz0 for any n ∈ N. Let us set
Mh := h

∑∞
j=1 g( jh) for any h > 0, and note that Mh → ∫ +∞

0 g(τ ) dτ as
h → 0. The discrete formula of variation of constants yields �

yn ≤ (1 + ch)−n y0 + h
n∑

j=1

(1 + ch) j−ng( jh) ≤ C + Mh ∀n ∈ N,

yn ≤ (1 + ch)m−n ym + h
n∑

j=m

(1 + ch) j−ng( jh)

≤ (1 + ch)m−n(C + Mh) + h
n∑

j=m+1

g( jh) ∀n > m, ∀m ∈ N. (5.12)

Without loss of generality, we can assume that 1/h ∈ N; setting T := mh and
t := nh we then have

ỹh(t) = yt/h ≤ (1 + ch)(T −t)/h(C + Mh) + h
t/h∑

j=(T/h)+1

g( jh)

≤ eT −t (C + Mh) + h
∞∑

j=(T/h)+1

g( jh) ∀t ≥ T, ∀T ≥ 0,∀h.
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For any δ > 0, there exist t̃, T > 0 such that

eT −t (C + Mh) ≤ δ ∀t > t̃, h
∞∑

j=(T/h)+1

g( jh) ≤ δ,

whence ỹh(t) ≤ 2δ; (5.11) thus holds. �

Proposition 5.3 Let (2.2) and (5.3) hold and assume that, setting β(t) :=
min{t, 1},

√
β(t) f2 ∈ H1(0, +∞; V ′) ∩ L∞(0, +∞; V ′). (5.13)

For any ε ≥ 0 then there exists a solution (u, w) of Problem 5.1ε,∞ such that

√
β(t)

∂u

∂t
∈ L2(0, +∞; H),

√
β(t) u ∈ L∞(0, +∞; V ). (5.14)

Moreover the (possibly multi-valued) solution operator (u0, f ) �→ (u, w) has
a bounded selection, in the following sense. For any M > 0 there exists N > 0
such that, if

‖ f2‖L2(0,+∞;V ′),‖
√

β(t) f2‖H1(0,+∞;V ′)∩L∞(0,+∞;V ′), ‖ f∞‖V ′ ≤ M, (5.15)

then there exists a solution of Problem 5.1ε,∞ such that

∥
∥
∥
√

β(t)
∂u

∂t

∥
∥
∥

L2(0,+∞;H)
+ ‖√β(t) u‖L∞(0,+∞;V ) ≤ N . (5.16)

Proof Let us set ũn
m := un

m − u∞ as above. As ũn
m − ũn−1

m = un
m − un−1

m , by
applying the argument of Proposition 4.3 one gets (4.17) with ũn

m in place of un
m .

The regularity (5.14) and the stated boundedness then follow. �

The next theorem is a simple consequence of (5.5) and of Proposition 5.3, and
states the compactness of the transformation that maps the data to the solution(s)
of Problem 5.1ε,∞.

Theorem 5.4 (Asymptotic Compactness) Assume (5.2). For any M > 0 and any
neighbourhood U of the origin in H, then there exist t̃ > 0 and a set K ⊂ U ∩ V
such that the following holds. For any u0, w0, f that fulfil (2.2), (5.3) and (5.15),
there exists a solution of Problem 5.1ε,∞ such that

u(t) ∈ K + u∞ for a.a. t ≥ t̃ . (5.17)
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6 Uniqueness of the solution

In this section we prove the uniqueness of the solution of Problem 2.1ε,T for any
ε ≥ 0, under appropriate retrictions. First we deal with ε > 0; in this case for the
equivalent formulation in terms of hysteresis operator this result is already known
to hold; here we extend it to the case of unbounded �. In the next statement we
replace the notation f by g, so that we can write g1 and g2 without raising any
ambiguity.

Theorem 6.1 (Dependence on the Data and Uniqueness for ε > 0, after Hilpert
[4]) Let ε > 0,

u0
i ∈ V, w0

i ∈ H, gi ∈ L2(0, T ; H) + W 1,1(0, T ; V ′) (i = 1, 2), (6.1)

assume that (2.2) is fulfilled and that g1 − g2 ∈ L1(�T ). For i = 1, 2, let (ui , wi )
be corresponding solutions of Problem 2.1ε,T such that ui ∈ H1(0, T ; H) ∩
L∞(0, T ; V ) (these exist after Proposition 4.2). Then

∫

�

(|u1 − u2|+|w1 − w2|)(x, t) dx ≤
∫

�

(∣
∣u0

1 − u0
2

∣
∣ + ∣

∣w0
1 − w0

2

∣
∣
)
dx

+
∫ t

0
dτ

∫

�

|g1 − g2|(x, τ ) dx for a.a. t ∈ ]0, T [. (6.2)

Therefore the solution of Problem 2.1ε,T is unique.

Proof This argument extends to unbounded domains that of [4]; see also [17;
Sect. IX.2]. Let ϕ : � → [0, 1] be of class C2 and such that, for some
0 < r < R,

0 ≤ ϕ ≤ 1 in RN , ϕ(x) = 1 if |x | < r, ϕ(x) = 0 if |x | > R. (6.3)

Let us also approximate s0 as in (4.21), write (2.9) for i = 1, 2, take the difference
of these equations, multiply it by s j (u1 − u2)ϕ(x), and integrate it in �t for a.a.
t ∈ ]0, T [. By the monotonicity of s j ,

〈Au1 − Au2, s j (u1 − u2)ϕ〉 =
∫

�

(s′
j (u1 − u2)|∇uε|2ϕ

+ s j (u1 − u2)∇(u1 − u2)·∇ϕ) dx

≥ −
∫

�

|∇(u1 − u2)| |∇ϕ| dx =: −Cϕ, (6.4)

the constant Cϕ depending on the cut-off function ϕ. Thus we get

∫ ∫

�t

( ∂

∂τ
(u1 − u2) + ∂

∂τ
(w1 − w2)

)
s j (u1 − u2) ϕ dxdτ

≤
∫ ∫

�t

|g1 − g2| dxdτ + Cϕ for a.a. t ∈ ]0, T [.
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As j → ∞, s j (u1 − u2) → s0(u1 − u2) a.e. in �T . By passing to the limit in the
latter formula we then get

∫ ∫

�t

( ∂

∂τ
(u1 − u2) + ∂

∂τ
(w1 − w2)

)
s0(u1 − u2)ϕ(x) dxdτ

≤
∫∫

�t

|g1 − g2| dxdτ + Cϕ ∀t ∈]0, T ]. (6.5)

Notice that
(

∂

∂τ
(u1 − u2)

)

s0(u1 − u2) = ∂

∂τ
|u1 − u2| a.e. in �t ;

moreover, as ∂(w1 − w2)/∂τ ∈ L2(�T ), we can apply the Hilpert inequality
(4.19):

(
∂

∂τ
(w1 − w2)

)

s0(u1 − u2) ≥ ∂

∂τ
|w1 − w2| a.e. in �t .

The inequality (6.5) then yields
∫ ∫

�t

∂

∂τ
(|u1 − u2| + |w1 − w2|)ϕ(x) dxdτ

≤
∫∫

�t

|g1 − g2| dxdτ + Cϕ for a.a. t ∈ ]0, T [.

Let us now ϕ vary along a sequence {ϕn} such that the corresponding sequences
{rn} and {Rn} diverge; this entails that ϕn → 1 a.e. in �T . A suitable choice of
the ϕn’s also yields Cϕn → 0; the inequality (6.1) then follows. �

Let us now come to the case of ε = 0. Here the lack of time regularity of w
prevents us from using the above argument. In order to select a unique solution
of Problem 2.10,T , we append a further condition in the formulation of the prob-
lem, show that any limit of solutions of the above time-dicretized problems fulfils
that additional condition, and use it to prove uniqueness. This procedure can be
compared with the classic one that Kružkov introduced for quasilinear first-order
equations without hysteresis [11, 12].

For technical reasons we are able to perform this program only assuming that
� = RN and that the source term vanishes in the differential equation, i.e. f ≡ 0.

Let us denote by L the hysteresis region of the relay, namely, the union of
the rectangle [ρ1, ρ2] × [−1, 1] and of the two half-lines ] − ∞, ρ1[×{−1} and
]ρ2, +∞[×{1}. Note that, trivially, θ̂ ∈ k0

ρ(θ, θ̂) for any (θ, θ̂) ∈ L.

Theorem 6.2 Assume that (2.2), is fulfilled and that f ≡ 0, ε ≥ 0. Then there
exists a solution (u, w) of Problem 2.1ε,T such that

∫ ∫

�T

[

(|u − θ | + |w − θ̂ |)∂v

∂t
− ∇|u − θ |·∇v

]

dx dt ≥ 0

∀(θ, θ̂ ) ∈ L, ∀v ∈ D(RT ), v ≥ 0. (6.6)
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Moreover the regularity results of Sect. 4 apply to this solution.
Whenever u ∈ L∞(�T ), taking θ = ±‖u‖L∞(�T ) one easily sees that (6.6)

entails (2.9).

Proof Let us first assume that (θ, θ̂) does not stay on the boundary of the rectangle
[ρ1, ρ2]×[−1, 1]. Then there exists ε > 0 such that kε

ρ maps θ to θ̂ . Once we prove

our statement for any pair (θ, θ̂) like this, an obvious approximation procedure
will provide it for any (θ, θ̂) ∈ L.

Still for ε > 0, let us approximate s0 as in (4.21), consider the solution (uε, wε)
of Problem 2.1ε,T , and multiply the corresponding Eq. (2.9) by s j (uε − θ)v (∈
L2(0, T ; V )) for any nonnegative v ∈ D(RT ) and any j ∈ N. Notice that, defining
� j as in (4.22),

〈Auε, s j (uε − θ)v〉 =
∫

�

(s′
j (uε − θ)|∇uε|2v + s j (uε − θ)∇uε ·∇v) dx

≥
∫

�

∇� j (uε − θ)·∇v dx .

As ε > 0, by the Lipschitz continuity of the regularized hysteresis operator kε
ρ we

have uε + wε ∈ H1(0, T ; H); we can then pass to the limit as j → ∞, getting
∫∫

�T

[
∂(uε + wε)

∂τ
s0(uε − θ) v + ∇|uε − θ |·∇v

]

dx dτ ≤ 0.

Now notice that

∂uε

∂τ
s0(uε − θ) = ∂

∂τ
|uε − θ | a.e. in �T ,

and that kε
ρ maps uε to wε and (as we saw) θ to θ̂ . As ∂wε/∂τ ∈ L2(�T ), by the

Hilpert inequality (4.19), we have

∂wε

∂τ
s0(uε − θ) ≥ ∂

∂τ
|wε − θ̂ | a.e. in �T .

We thus get
∫∫

�T

[(
∂

∂τ
|uε − θ | + ∂

∂τ
|wε − θ̂ |

)

v + ∇|uε − θ |·∇v

]

dx dτ ≤ 0,

whence, integrating by parts in time,
∫∫

�T

[

(|uε − θ | + |wε − θ̂ |)∂v

∂t
− ∇|uε − θ |·∇v

]

dx dt ≥ 0.

On account of Proposition 4.6, passing to the limit as ε → 0 we then get (6.6) for
any ε ≥ 0.

Finally, notice that the regularity results of Sect. 4 apply to (uε, wε) uniformly
w.r.t ε. Therefore they also hold for solutions that fulfil (6.6). �
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Theorem 6.3 (Dependence on the Data and Uniqueness for ε ≥ 0) Assume that
� = RN , f ≡ 0 and ε ≥ 0. For i = 1, 2, let

u0
i , w

0
i ∈ L∞(RN ), u0

i ∈ V (6.7)

fulfil (2.2), and let (ui , wi ) ∈ L∞(RN )2 be a corresponding solution of Problem
2.1ε,T that fulfils (6.6) (this exists after Proposition 4.1 for p = ∞). Then

u1 − u2, w1 − w2 ∈ L∞(0, T ; L1(RN )), (6.8)

∫

RN
(|u1 − u2| + |w1 − w2|)(x, t) dx ≤

∫

RN
(|u0

1 − u0
2| + |w0

1 − w0
2|)dx

for a.a. t ∈ ]0, T [, (6.9)

∫

RN
[(u1 − u2)

+ + (w1 − w2)
+](x, t) dx ≤

∫

RN

[(
u0

1 − u0
2

)+ + (
w0

1 − w0
2

)+]
dx

for a.a. t ∈]0, T [. (6.10)

Therefore Problem 2.1ε,T has a unique solution (u, w) ∈ L∞(RN )2 that ful-
fils (6.4).

Proof This argument is based on Hilpert’s inequality (4.19) and on Kružkov’s
technique of doubling the variables, cf. [11, 12]. The hypothesis � = RN allows
us to integrate by parts in space without getting any boundary term. By writing
the inequality (6.6) for (u1(x, t), w1(x, t)) and (θ, θ̂ ) = (u2(ξ, τ ), w2(ξ, τ )) for
any fixed (ξ, τ ) ∈ RN

T (:= RN ×]0, T [), we have

∫ ∫

RN
T

[

(|u1(x, t) − u2(ξ, τ )| + |w1(x, t) − w2(ξ, τ )|)∂v

∂t
(x, t)

+|u1(x, t) − u2(ξ, τ )|�xv(x, t)

]

dx dt ≥ 0 ∀v ∈ D(RT ), v ≥ 0; (6.11)

on the other hand, by writing (6.6) for (u2(ξ, τ ), w2(ξ, τ )) and (θ, θ̂) =
(u1(x, t), w1(x, t)) for any fixed (x, t) ∈ RN

T , we also get

∫ ∫

RN
T

[(|u2(ξ, τ ) − u1(x, t)| + |w2(ξ, τ ) − w1(x, t)|)∂v

∂τ
(ξ, τ )

+|u2(ξ, τ ) − u1(x, t)|�ξv(ξ, τ )
]
dξdτ ≥ 0 ∀v ∈ D(RT ), v ≥ 0. (6.12)

In both of these inequalities let us now take any nonnegative v =
v(x, t, ξ, τ ) ∈ D(RN

T ). Integrating (6.11) ((6.12), resp.) w.r.t. (ξ, τ ) (w.r.t. (x, t),
resp.), and summing them, we get

∫∫∫∫

(RN
T )2

[

(|u1(x, t) − u2(ξ, τ )| + |w1(x, t) − w2(ξ, τ )|)
(

∂v

∂t
+ ∂v

∂τ

)

+|u1(x, t) − u2(ξ, τ )|·(�xv + �ξv)

]

dxdtdξdτ ≥ 0. (6.13)
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Let us fix any nonnegative λ ∈ D(RN ) and µ ∈ D(0, T ), and two mollifiers
ψ1 ∈ C∞(R) and ψN ∈ C∞(RN ), e.g.,

ψ1(t) := π−1/2 e−|t |2 ∀t ∈ R, ψN (x) := π−N/2 e−|x |2 ∀x ∈ RN . (6.14)

For any η > 0, let us then take

v = vη(x, t, ξ, τ ) := 1

ηN+1
ψN

( |x − ξ |
η

)

ψ1

(
t − τ

η

)

λ

(
x + ξ

2

)

µ

(
t + τ

2

)

in (6.13), and pass to the limit as η → 0. Denoting by δ0 the Dirac measure, we
have

∂vη

∂t
+ ∂vη

∂τ
= 1

ηN+1
ψN

( |x − ξ |
η

)
ψ1

( t − τ

η

)
λ
( x + ξ

2

)
µ′( t + τ

2

)

→ δ0(x − ξ)δ0(t − τ)λ(x)µ′(t) in D′(RN
T

)
, as η → 0.

Notice that

�x

[
ψN

( |x − ξ |
η

)
λ
( x + ξ

2

)]
= 2∇xψ1

( |x − ξ |
η

)
·∇xλ

( x + ξ

2

)

+λ
( x + ξ

2

)
�xψN

( |x − ξ |
η

)
+ ψ1

( |x − ξ |
η

)
�xλ

( x + ξ

2

)

= −2∇ξψN

( |x − ξ |
η

)
·∇ξ λ

( x + ξ

2

)

+λ
( x + ξ

2

)
�ξψn

( |x − ξ |
η

)
+ ψN

( |x − ξ |
η

)
�ξλ

( x + ξ

2

)
;

by adding this formula with the analogous one for �ξ [ψN ((|x − ξ |)/η)
λ((x + ξ)/2)], we obtain

(�x + �ξ)
[
ψN

( |x−ξ |
η

)
λ
(

x+ξ
2

)]

= 2λ
(

x+ξ
2

)
�xψN

( |x−ξ |
η

)
+ 2ψN

( |x−ξ |
η

)
�xλ

(
x+ξ

2

)
.

Moreover, as �ψN (x) = (−2N + 4|x |2) π−N/2 e−|x |2 ,

1

ηN
�xψN

( |x − ξ |
η

)

→ −2Nδ0 in D′(RN ), as η → 0.

Therefore, as λ ≥ 0, there exists σ ∈ D′(RN
T ) such that σ ≤ 0 and

1

ηN
(�x + �ξ)

[
ψN

( |x − ξ |
η

)
λ
( x + ξ

2

)]

→ σ + 1

2
δ0(x − ξ)�λ(x) in D′(RN ), as η → 0,

1

ηN+1
(�x + �ξ)

[
ψN

( |x − ξ |
η

)
ψ1

( t − τ

η

)
λ
( x + ξ

2

)
µ

( t + τ

2

)]

→
[

σ + 1

2
δ0(x − ξ)�λ(x)

]

δ0(t − τ)µ(t) in D′(RN
T ), as η → 0.
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By (6.13) and by Lemma 6.4 below we then infer that
∫∫

RN
T

(|u1(x, t) − u2(x, t)| + |w1(x, t) − w2(x, t)|)λ(x)µ′(t) dx dt

+1

2

∫∫

RN
T

|u1(x, t) − u2(x, t)| �λ(x)µ(t) dx dt ≥ 0. (6.15)

For any fixed t ∈]0, T ], let µ converge to the indicator function of the interval
[0, t]. Moreover let λ = ϕr,R be as in (6.3), and let r, R → +∞ in such a way
that Mr,R := maxRN |�λr,R| → 0. This yields (6.9), whence (6.8). Finally, let us
multiply the Eq. (2.9) by ϕr,R , integrate in x, t , and pass to the limit as r, R →
+∞ as we just indicated. This yields

∫

RN
(u1 − u2 + w1 − w2)(x, t) dx =

∫

RN
(u0

1 − u0
2 + w0

1 − w0
2)dx

for a.a. t ∈]0, T [,
and by adding this equality to (6.9) we get (6.10). �

Lemma 6.4 Let ϕ ∈ L∞(]0, T [2) and ψ1 be as in (6.14). Then
∫∫

]0,T [2

1

η
ψ1

(
t − τ

η

)

ϕ(t, τ ) dtdτ →
∫

]0,T [
ϕ(t, t) dt (6.16)

Proof For any ε > 0 there exists a function ϕε ∈ L1
t (0, T ; C0

τ ([0, T ])) such that
(denoting the one-dimensional Lebesgue measure by µ)

‖ϕε(t, ·)‖C0([0,T ]) ≤ ‖ϕ(t, ·)‖L∞(]0,T [2) =: C

µ({τ ∈ ]0, T [: ϕ(t, τ ) 	= ϕε(t, τ )|}) ≤ ε for a.a. t ∈ ]0, T [.
Therefore
∣
∣
∣
∣

∫∫

]0,T [2

1

η
ψ1

(
t − τ

η

)

ϕ(t, τ ) dtdτ−
∫∫

]0,T [2

1

η
ψ1

( t − τ

η

)
ϕε(t, τ ) dtdτ

∣
∣
∣
∣≤ Cε.

As ∫∫

]0,T [2

1

η
ψ1

(
t − τ

η

)

ϕε(t, τ ) dtdτ →
∫

]0,T [
ϕ(t, t) dt,

we then get (6.16). �

7 Periodic problem

In this section we associate a time-periodic problem to the Eq. (1) for F = kρ ,
and prove existence of a solution via approximation by regularization of the relay
operator. In this argument we take advantage of the fact that a solution is known
to exist for the corresponding regularized problem, in which kρ is replaced by kε

ρ ,
cf. [5]. We assume that

f = f1 + f2, f1 ∈ L1(0, T ; H), f2 ∈ L2(0, T ; V ′). (7.1)
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Problem 7.1. Find u ∈ C0
([0, T ]; H

)∩ L2(0, T ; V ) and w ∈ L∞(�T ) such that
u + w ∈ H1(0, T ; V ′) and

|w| ≤ 1 a.e. in �T ,
∂w

∂t
∈ C0(�T )′, (7.2)

∂

∂t
(u + w) + Au = f in V ′, for a.a. t ∈]0, T [, (7.3)

{
(w − 1)(u − ρ2) ≥ 0

(w + 1)(u − ρ1) ≥ 0
a.e. in �T , (7.4)

1

2

∫

�

[u(x, t)2 − u(x, 0)2]dx +
∫

�

	0(w(x, ·); [0, t]) dx +
∫∫

�t

|∇u|2 dxdτ

≤
∫∫

�t

f1u dxdτ +
∫ t

0
〈 f2, u〉 dτ ∀t ∈ ]0, T [, (7.5)

u(·, 0) = u(·, T ), a.e. in �, (u + w)(0) = (u + w)(T ) in V ′. (7.6)

The interpretation of this problem is analogous to that of Problem 2.1ε,T .

Theorem 7.1 Let (5.2) be fulfilled, and

f = f1 + f2, f1 ∈ L2(0, T ; H), f2 ∈ H1(0, T ; V ′), f2(0) = f2(T ),
(7.7)

∃ f∗, f ∗ ∈ V ′ : f∗ ≤ f2 ≤ f ∗ in D′(�), ∀t ∈ [0, T ]. (7.8)

Then Problem 7.1 has a solution such that

u ∈ H1(0, T ; H) ∩ L2(0, T ; V ), (7.9)

A−1 f∗ ≤ u ≤ A−1 f ∗ a.e. in �T . (7.10)

Proof For any ε > 0, let us define the regularized relay operator kε
ρ as in Sect. 1,

cf. (1.11), and consider the following corresponding regularized time-periodic
problem.

Problem 7.1ε. Find uε, wε : � → C0([0, T ]) measurable such that

uε ∈ L2(0, T ; V ), uε + wε ∈ H1(0, T ; V ′),

wε(x, t) = [
kε
ρ(uε(x, ·), wε(x, 0))

]
(t) ∀t ∈ [0, T ], for a.a. x ∈ �, (7.11)

∂

∂t
(uε + wε) + Auε = f in V ′, for a.a. t ∈]0, T [, (7.12)

uε(·, 0) = uε(·, T ) a.e. in �, (uε + wε)(0) = (uε + wε)(T ) in V ′.
(7.13)

After the results of [5] (see also [20]), by the Lipschitz-continuity of the hys-
teresis operator kε

ρ(·, ξ), for any ε > 0 this problem has a solution (uε, wε) such
that

uε ∈ H1(0, T ; H) ∩ L∞(0, T ; V ), wε ∈ H1(0, T ; H). (7.14)
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More precisely, the set of the solutions of Problem 7.1ε has minimal and maximal
elements w.r.t. the pointwise ordering, and for any solution

A−1 f∗ ≤ uε ≤ A−1 f ∗ a.e. in �T , ∀ε > 0.

Let us now multiply (7.12) by uε and integrate in [0, T ]. By (3.7) and by the
time-periodicity of uε, we have

∫

�

	ε(wε; [0, T ]) dx +
∫∫

�T

|∇uε|2 dx dt ≤
∫ T

0
〈 f, uε〉 dt

≤ ‖ f1‖L2(0,T ;H)‖uε‖L2(0,T ;H) + ‖ f2‖L2(0,T ;V ′)‖uε‖L2(0,T ;V ).

Let us now multiply (7.12) ∂uε/∂t and integrate in [0, T ]. As ∂wε

∂t
∂uε

∂t ≥ 0 a.e. in
�T and again by the time-periodicity of uε, we get

∫∫

�T

∣
∣
∣
∣
∂uε

∂t

∣
∣
∣
∣

2

dx dt ≤
∫ T

0

〈

f,
∂uε

∂t

〉

dt[3pt]

≤ ‖ f1‖L2(0,T ;H)

∥
∥
∥
∂uε

∂t

∥
∥
∥

L2(0,T ;H)
+

∥
∥
∥
∂ f2

∂t

∥
∥
∥

L2(0,T ;V ′)
‖uε‖L2(0,T ;V ).

By the Poincaré inequality, the two latter inequalities entail that

‖uε‖H1(0,T ;H)∩L2(0,T ;V ),

∥
∥
∥
∂wε

∂t

∥
∥
∥

C0(�T )′
≤ Constant (independent of ε).

Therefore there exists u, w such that, up to subsequences,

uε → u weakly star in H1(0, T ; H) ∩ L∞(0, T ; V )

wε → w weakly star in L∞(�T )

∂wε

∂t
→ ∂w

∂t
weakly star in C0(�T )′.

(7.15)

Passing to the limit in (7.12) and (7.13) we then get (7.3) and (7.6). Finally, (7.4)
and (7.5) can be derived as in the proof of Theorem 7.2. �

8 Conclusions

We dealt with an initial- and boundary-value problem for a quasilinear parabolic
equation that contains a possibly multi-valued hysteresis operator, F :

∂

∂t
[u + F(u)] − �u = f. (8.1)

We considered two basic examples of F : the discontinuous relay operator k0
ρ and

the corresponding (continuous) regularized operator kε
ρ ; we represented these op-

erators in a way that allowed us to provide a unified formulation of both settings.
We proved existence of a solution via time-discretization, derivation a priori es-
timates and passage to the limit. A key role was here played by the weak formu-
lation of the relay operator that we outlined in Sect. 2; this allowed us to deal
with an especially weak notion of solution, possibly nondifferentiable w.r.t. time.
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We then proved regularity results, and derived uniform-in-time estimates, that al-
lowed us to study the large-time behaviour of the solution; in particular we proved
asymptotic stability and compactness of the trasformation that maps the data to
the solution(s). We also showed existence of a periodic solution, in presence of a
periodic forcing term. As the Eq. (7.1) arises as a model of univariate ferromag-
netism and of other physical phenomena, information on the large-time behaviour
of the solution and on the time-periodic problem may be of some interest.

Uniqueness of the solution was one of the main issues. After [17; Chap. VIII]
it is known that a semigroup formulation of our problem is well-posed for any
ε ≥ 0. That is based on the notion of integral solution in the sense of Bénilan [1];
this solution is rather weak, and thus we were interested into a statement that di-
rectly refers to Problem 2.1ε,T . For the case of continuous hysteresis (i.e., ε > 0),
it was already known that the solution is unique, because of the Hilpert inequality
(4.19), cf. [4]. On the other hand for Problem 2.10,T uniqueness of the solution
does not seem trivial, as the lack of regularity of the solution prevents one from
applying the procedure we used for ε > 0. Indeed the Hilpert inequality is just
known to hold if w is absolutely continuous w.r.t. time, and in general this fails
for discontinuous hysteresis operators.

We showed that any limit of solutions of the above time-dicretized problems
fulfils an extra condition, and used it to prove uniqueness of the solution. This
procedure is reminiscent of the use of an entropy condition to select a unique
solution of quasilinear first-order equations; actually these developments have
been expired by the classic results of Kružkov [11, 12]. The analogy between
our second-order equation and first-order equations goes further: it is known
that Kružkov’s entropic solution coincides with the mild semigroup solution,
cf. [3]; the same applies to the solution of Problem 2.1ε,T (ε ≥ 0) fulfilling
the entropy-like condition. In a work apart [22] this procedure is applied to
quasilinear first-order equations with hysteresis.

Acknowledgements This research was supported by the project Free boundary problems in
applied sciences of Italian M.I.U.R.
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