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Abstract This article deals with the uniqueness and the behavior of solutions of
non-local reaction diffusion equations. Since these equations share many proper-
ties with the usual reaction diffusion model, such as a form of maximum principle
and the translation invariance, uniqueness and monotone behavior for the solution,
as in the usual case, are expected. I present an elementary proof of this monotone
behavior. The proof essentially uses techniques based on the maximum principle
and the sliding method.

Keywords Maximum principle · Sliding method · Non-local reaction diffusion
equation

1 Introduction and main result

In this note, I investigate monotonicity and uniqueness of positive solutions of the
following integrodifferential problem

J � u − u − cu′ + f (u) = 0 in R, (1.1)

u(x) → 0 as x → −∞, (1.2)

u(x) → 1 as x → +∞, (1.3)

where J is an even non-negative continuous function on R with
∫
R

J (z)dz = 1, c
is a real constant, J � u(x) = ∫

R
J (x − y)u(y)dy is the standard convolution and

f : R → R is appropriately smooth, with f (0) = f (1) = 0.

Remark 1.1 The previous problem is invariant under translation, which means that
for any real τ , uτ := u(. + τ) is still a solution of (1.1)–(1.3).
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Such a problem arises in the study of so-called Travelling Fronts (solutions of
the form u(x, t) = φ(x +ct)) of the following non-local phase-transition problem

∂u

∂t
− (J � u − u) = f (u) in R × R

+. (1.4)

The constant c is called the speed of the front and is usually unknown. The opera-
tor Lu = ∫

R
J �u −u can be viewed as a diffusion operator. This kind of equation

was originally introduced in 1937 by Kolmogorov, Petrovskii and Piskunov [20]
as a way to derive the Fisher equation (i.e 1.5 below with f (s) = s(1 − s))

∂U

∂t
= Uxx + f (U ) for (x, t) ∈ R × R

+. (1.5)

In the literature, much attention has been drawn to reaction–diffusion equations
like (1.5), as they have proved to give a robust and accurate description of a wide
variety of phenomena, ranging from combustion to bacterial growth, nerve prop-
agation or epidemiology. We point the interested reader to the following articles
for more informations: [5, 6, 16, 18–21, 24].

For nonlinearities f satisfying f ∈ C1(R), f (0) = f (1) = 0 and for some
ε > 0, f ′(s) ≤ 0 when s < ε and when 1 − ε < s, monotonicity and uniqueness
of travelling-front solutions of the reaction–diffusion Eq. (1.5) is well-known, see
[5,7–9,17,22]. By uniqueness of travelling wave solution, we mean that if (u, c)
and (v, c′) are travelling-wave solutions of (1.5) then c = c′ and u(x) = v(x + τ)
for some real τ . Observe that the Fisher nonlinearity ( f (s) = s(1 − s)) does
not satisfy these assumptions. For this kind of nonlinearity, it is known that sev-
eral travelling-wave solutions exist, see [3, 9, 20]. However, in that case, using
a precise exponential asymptotic expansion of the solutions in a neighborhood
(−∞, M) of −∞, Berestycki and Nirenberg obtained in [9] the monotonicity and
uniqueness up to translation of the travelling-wave solutions of (1.5) i.e. If (u, c)
and (v, c) are travelling-wave solutions of (1.5) then u(x) = v(x + τ) for some
real τ .

For the non-local Eqs. (1.1)–(1.3), existence, uniqueness and monotonicity
were first obtained by Bates, Fife, Ren and Wang [4] and later by Chen [11] for a
bistable nonlinearity f , i.e. a nonlinearity f ∈ C1(R) satisfying for some ρ > 0,
f |(0,ρ) < 0, f |(ρ,1) > 0, f (0) = f (1) = 0, f ′(0) < 0 and f ′(1) < 0. In that
case, they showed the following

Theorem 1.1 [4] Assume that J ∈ C1(R) is a positive, even, integrable function
with unit mass. Let (u, c) and (v, c′) be solutions of (1.1)–(1.3) with bistable non-
linearity and assume that (u, c) is monotone increasing, then c = c′. Moreover,
if either u or v is continuous or if v is monotone then v(x) = u(x + τ) for some
τ ∈ R.

Note that Theorem 1.1 contains two distinct uniqueness results. Indeed, it
states that the speed is unique and the profile u is unique. It also shows how rigid
Problem (1.1)–(1.3) is, since it has a positive solution only for one real value of c.

Our first result is a generalization of the uniqueness result for the continuous
profile contained in Theorem 1.1 to more general nonlinearities,
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Theorem 1.2 Assume that J ∈ C0(R) is a positive, even, integrable function with
unit mass. Let f ∈ C1(R), f (0) = f (1) = 0 be such that f satisfies for some
ε > 0, f ′(s) ≤ 0 when s < ε and when 1 − ε < s. Let (u, c) and (v, c) be two
continuous solutions of (1.1)–(1.3) then u(.) = v(.+τ) for some real τ . Moreover,
the solution u is monotone increasing.

Note that the assumption on f in the previous theorem covers the case of
bistable nonlinearities and that in the case of continuous solutions, the existence
of a monotone solution u is not needed anymore.

Also observe that our theorem does not cover the case of discontinuous solu-
tions of (1.1)–(1.3) which appears when the speed c = 0. However when c = 0,
there is an example of existence of several discontinuous positive solutions of
(1.1)–(1.3). A generalization of Theorem 1.2 for monotone discontinuous solu-
tions is currently under investigation.

Our second result concerns the uniqueness of the speed c for continuous solu-
tions when they exist. Namely, we have

Theorem 1.3 Assume that J ∈ C0(R) is a positive even integrable function with
unit integral. Let f ∈ C1(R), f (0) = f (1) = 0 be such that for some ε > 0,
f ′(s) ≤ 0 when s < ε and when 1 − ε < s . Let (u, c) and (v, c′) be two
continuous positive solutions of (1.1)–(1.3), then c = c′.

As we previously mentioned, the assumptions made on f in Theorem 1.2, do
not cover the case of the Fisher nonlinearity. Our next result deals with the mono-
tonicity of solutions in that case. With some extra assumption on the behavior of
the solution in some neighborhood (−∞, M) of −∞, we show that the solutions
are monotone increasing. More precisely we have

Theorem 1.4 Assume that J ∈ C0(R) is a positive even integrable function with
unit mass. Let f ∈ C1(R), f (0) = f (1) = 0 be such that for some ε > 0,
f ′(s) ≤ 0 when 1 − ε < s. Let (u, c) be a positive continuous solution of (1.1)–
(1.3), such that u is monotone increasing in some neighborhood (−∞, M) of −∞
then u is monotone increasing in all of R.

Assuming that the solutions u are monotone increasing in some neighbor-
hood (−∞, M) of −∞ may seem strange, however such behavior holds true
for travelling-front solutions of the reaction–diffusion Eq. (1.5). Indeed, when f
is monostable, ( f ∈ C1(R), such that f (0) = f (1) = 0, f |(0,1) > 0) with
f ′(0) > 0, the positive solutions (u, c) of (1.5) satisfies the following expansion
near −∞,

u(x) = Ceλ0x + o(eλ0x )

u′(x) = λ0Ceλ0x + o(eλ0x ),

where C is a positive constant and λ0 is one of the positive roots of λ2−cλ+ f ′(0).
u′ is therefore strictly positive in a neighborhood (−∞, M) of −∞, which is
our needed assumption. For details on the proof of this expansion, see [1, 9].
For Eqs. (1.1)–(1.3), it seems that such exponential expansion of the solution no
longer stands in general. The assumption on the monotone behavior of the solution
in Theorem 1.4 fills the lack of such exponential expansion.
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1.1 General remarks and comments

For the uniqueness of the speed c (Theorem 1.3), we originally required that
the solutions are continuous. It appears that the proof of this result can easily
be adapted to solutions u with a finite number of discontinuities. This is briefly
discussed in the end of Sect. 3.

In the case of monostable nonlinearities, the uniqueness of the speed c no
longer holds, see [3, 9, 13]. However, the uniqueness up to translation of the
travelling-fronts of (1.5) still holds. We expect to have similar results for posi-
tive solution of (1.1)–(1.3), but we were not able to prove it.

Theorems 1.2–1.4 stand for more general linear operators than Lu := J � u −
u − cu′. Namely, our proofs hold for operators of the form

Lu := αu′′ + β

∫

R

J (x − y)(u(y) − u(x)) dy − cu′ − du, (1.6)

where α, β and d are non-negative real numbers such that α + β > 0 and J
a positive continuous integrable kernel such that [−b,−a] ∪ [a, b] ⊂ supp(J )
for some 0 ≤ a < b. Observe that when α 	= 0, even in the case of stationary
travelling fronts (i.e. c = 0), there is no need to consider discontinuous travelling
fronts since the local elliptic regularity implies that solutions are smooth. Note
also that the kernel J does not need to be an even function.

In our analysis for linear operators L satisfying Lemma 1.1 below, we have
also observed that some assumptions can be weakened, in particular the translation
invariance. We summarize below the required condition on L

(H1) For all positive functions U , let Uh(.) := U (. + h). Then for all h > 0 we
have L[Uh](x) ≤ L[U ](x + h) ∀x ∈ R.

(H2) Let v a positive constant then we have L[v] ≤ 0.

Operators satisfying these two conditions are easily constructed. For example, let
J be a positive, even, continuous, integrable kernel of mass one, then the operator
Lu := ∫ +∞

−r J (x − y)u(y)dy − u where r > 0, is not translation-invariant but
satisfies (H1) and (H2).

Most of the results that we obtain can be generalized to multidimensional
situations. For example, Theorems 1.2–1.4 can be generalized to the following
problem

ε
u + β

∫

�

J (x − t, y − s)(u(t, s) − u(x, y)) dtds

+ γ (y)ux + f (u) = 0 on � (1.7)

∂u

∂ν
= 0 at ∂� (1.8)

u(x, y) → 0 uniformly in y as x → −∞ (1.9)

u(x, y) → 1 uniformly in y as x → +∞, (1.10)

where � := R × � is a cylinder.
Here ε and β are non-negative constants, � ⊂ R

n−1, (n ≥ 2) is a bounded
domain with a C2,α boundary for some α > 0 if n > 2, ν is the outward normal
to the boundary of R × �, γ (y) : � → R is a smooth function and the spatial
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coordinates are denoted by (x, y) where x = x1 and y = (x2, . . . , xn). J (x, y) is
a positive, continuous, integrable kernel on � such that the support of J contains
a set of the form ([−b,−a] ∪ [a, b])×ω for some 0 ≤ a < b, where ω is an open
subset of � containing 0.

When β = 0, such kind of equations arise in combustion theory to describe the
propagation of flames in a tube. The term γ (y) is usually composed of two terms
γ (y) = c+γ1(y), where c is the unknown speed of the flame and γ1(y) is the given
drifting flow. The operator Lu := β

∫
�

J (x − t, y − s)(u(t, s) − u(x, y))dtds is a
natural multidimensional generalization of the one dimensional diffusion operator
J � u − u.

1.2 Method and plan

To prove Theorems 1.2–1.4, we use a sliding technique introduced by Berestycki–
Nirenberg in [9], combined with some ideas of Alikakos–Bates–Chen [2] (see also
Chen [11, 17]) and Vega [22]. We also use extensively a strong maximum principle
that holds for the operator Lu := J � u − u − cu′:
Theorem 1.5 Maximum Principle
Let u be a smooth (C1) function on R, such that

L[u](x) ≥ 0 (resp. L[u](x) ≤ 0) in R.

Then u cannot achieve a global maximum (resp. a global minimum) without being
constant.

and some property attached to our operator L:

Lemma 1.1 Let u be a smooth (C1) function. If u achieves a global minimum
(resp. a global maximum) at some point ξ then the following holds:

• Either L[u](ξ) > 0 (resp. L[u](ξ) < 0)
• Or L[u](ξ) = 0 and u is identically constant.

Remark 1.2 The assumption on the regularity of u in Theorem 1.5 and Lemma 1.1
have to be adjusted to the regularity requirements of L . More precisely, if Lu :=
J � u − u, C1 regularity is not really needed. Indeed in that case analog of Lemma
1.1 and the Maximum Principle stand for u ∈ L∞, continuous by parts and with a
finite number of discontinuities. Observe that operators of the form Lu := αu′′ +
β

∫
R

J (x − y)
(
u(y)−u(x)

)
dy−cu′−du also satisfy Theorem 1.5 and Lemma 1.1

when β 	= 0 under the additional assumption u ∈ C2.

Remark 1.3 The maximum principle for Lu = J � u − u needs that u achieves
a global extrema on R. It will be untrue if we only assume that u achieves a
local extrema. For the Laplacian operator the maximum principle holds even if we
assume that u achieves a local extrema. This difference is easily explained by the
global/local nature of our operator and the Laplacian operator. This also implies
that local analysis will fail for our operator.

Remark 1.4 For general multidimensional operators Lu := ∫
�

J (x − t, y, s)
(u(t, s) − u(x, y))dtds the strong maximum principle stated as in Theorem 1.5
no longer holds. However, our proofs will still hold only by assuming that at a
global minimum (x0, y0) (resp. a global maximum), we have
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• Either L[u](x0, y0) > 0 (resp. L[u](x0, y0) < 0)
• Or L[u](x0, y0) = 0 and u(x, y) = u(x0, y0) on R × {y} for some y ∈ �̄.

This conditions enables to consider a much greater variety of kernels.

Details of the proof of the maximum principle and the previous lemma can
be found in [12, 13]. Let me describe in a few words the idea of the method. We
compare translations of two solutions u and v on R. We show that for some real
τ , we have

u(. + τ) ≥ v(·) on all R. (1.11)

Then, using standard procedures we obtain the desired conclusion. To obtain
(1.11), a global approach is needed, since we deal with non-local operators. The
method used by Berestycki–Nirenberg [7, 9] and Vega [22] fails in our case be-
cause it relies on comparison results either on compact set or semi infinite cylin-
ders, which cannot be obtained in our case.

This note is organized as follows: Sect. 2 is devoted to some preliminary results
which will be used extensively in the other sections. Uniqueness and monotonicity
of travelling front solution (i.e. Theorems 1.2 and 1.3) is proved in Sect. 3. The-
orem 1.4 is then proved in Sect. 4. In the last section we examine some aspect of
the multidimensional problem.

Remark 1.5 Even though the Laplacian (i.e. L := 
) does not satisfy
Lemma 1.1, one can show that our proof of Theorems 1.2–1.3 holds for this
operator.

2 Preliminary results, nonlinear comparison principle

In this section we present some useful results concerning sub and supersolutions
of the problem

Lu + f (u) = 0 on R (2.1)

u(x) → 0 as x → −∞ (2.2)

u(x) → 1 as x → +∞, (2.3)

where f ∈ C1 satisfies the set of conditions in Theorem 1.2. For the sake of
simplicity, we will only consider linear translation-invariant operators L satisfying
Lemma 1.1 and (H2). For convenience, we introduce the notation uτ := u(. + τ).
As briefly mentioned in the introduction, all our proofs rely on a comparison result
on translations of two solutions. So we start by showing a Nonlinear Comparison
Principle which will enable us to order translations of sub and supersolutions of
(2.1)–(2.3). More precisely we have the following result.

Theorem 2.1 Nonlinear Comparison Principle
Let f satisfy the assumptions of Theorem 1.2. Let u and v be two smooth (C1)
functions on R, such that

Lu + f (u) ≤ 0 on R (2.4)

Lv + f (v) ≥ 0 on R (2.5)
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lim
x→−∞ u(x) ≥ 0, lim

x→−∞ v(x) ≤ 0 (2.6)

lim
x→+∞ u(x) ≥ 1, lim

x→+∞ v(x) ≤ 1. (2.7)

Then there exists a positive real τ such that uτ ≥ v. Moreover, either uτ > v or
uτ ≡ v.

Remark 2.1 Observe that by the Maximum Principle (i.e. Theorem 1.5) and since
f (s) ≥ 0 ∀s ≤ 0, the supersolution u is necessarily positive. Similarly, since
f (s) ≤ 0 ∀s ≥ 1, the Maximum Principle implies that v < 1.

Before proving Theorem 2.1, we start with some definitions of quantities that
we will use all along this section.
Let 0 < δ ≤ ε

2 such that

f ′(p) ≤ 0 for p < δ and 1 − p < δ. (2.8)

Choose M > 0 so that

1 − u(x) <
δ

2
∀x > M (2.9)

and v(x) <
δ

2
∀x < −M. (2.10)

The proof of Theorem 2.1 is mainly based on the following technical lemma,
which will be proved later on.

Lemma 2.1 Let u and v be as in Theorem 2.1 and satisfy Conditions (2.9) and
(2.10) above. If there exists a positive constant b such that u and v satisfy:

u(x + b) > v(x) ∀x ∈ [−M − 1, M + 1] (2.11)

and u(x + b) + δ

2
> v(x) ∀x ∈ R, (2.12)

then we have u(x + b) ≥ v(x) ∀x ∈ R.

Proof of Theorem 2.1 Note that if infR u > maxR v, the theorem trivially holds. In
the sequel, we assume that infR u ≤ maxR v. Assume for a moment that Lemma
2.1 holds. To prove Theorem 2.1, by construction of M and δ, we just have to find
an appropriate constant b which satisfies (2.11) and (2.12). Since u and v satisfy
(2.6)–(2.7) using Remark 2.1, there exists a positive constant D such that on the
compact set [−M − 1, M + 1], we have for every b ≥ D

u(x + b) > v(x) ∀x ∈ [−M − 1, M + 1].
Now, we claim that there exists b ≥ D such that u(x + b) + δ

2 > v(x) ∀x ∈ R.
If not then we have,

∀b ≥ D there exists x(b) such that u(x(b) + b) + δ

2
≤ v(x(b)). (2.13)



468 J. Coville

Since u is non-negative and v satisfies 2.6 there exists a positive constant A such
that

u(x + b) + δ

2
> v(x) for all b > 0 and x ≤ −A. (2.14)

Take now a sequence (bn)n∈N which tends to +∞. Let x(bn) be the point defined
by (2.13). Thus we have for that sequence

u(x(bn) + bn) + δ

2
≤ v(x(bn)). (2.15)

According to (2.14) we have x(bn) ≥ −A. Therefore the sequence x(bn) + bn
converges to +∞. Pass to the limit in (2.15) to get

1 + δ

4
≤ lim

n→+∞ u(x(bn) + bn) + δ

2
≤ lim sup

n→+∞
v(x(bn)) ≤ 1,

which is a contradiction. Therefore there exists a b > D such that

u(x + b) + δ

2
> v(x) ∀x ∈ R.

Since we have found our appropriate constant b, we can apply Lemma 2.1 to
obtain

u(x + τ) ≥ v(x) ∀x ∈ R,

with τ = b. It remains to prove that either uτ > v or uτ ≡ v. We argue as follows.
Let w := uτ − v, then either w > 0 or w achieves a non-negative minimum at
some point x0 ∈ R. If such x0 exists then at this point we have w(x) ≥ w(x0) = 0
and

0 ≤ Lw(x0) ≤ f (v(x0)) − f (u(x0 + τ)) = f (v(x0)) − f (v(x0)) = 0. (2.16)

Then using Lemma 1.1, we obtain w ≡ 0, which means uτ ≡ v. This ends the
proof of Theorem 2.1. �

Remark 2.2 Note that the construction of b still stands if we only assume that u is
continuous and v < 1 has a finite number of discontinuities.

We now turn our attention to the proof of Lemma 2.1.
Proof of Lemma 2.1 Let u and v be respectively a super and a subsolution of
(2.1)–(2.3) satisfying (2.9) and (2.10). Let a > 0 be such that

u(x + b) + a > v(x) ∀x ∈ R. (2.17)

Note that for b defined by (2.11) and (2.12), any a ≥ δ
2 satisfies (2.17). Define

a∗ = inf{a > 0 | u(x + b) + a > v(x) ∀x ∈ R}. (2.18)

We claim that

Claim 2.1 a∗ = 0.

Observe that Claim 2.1 implies that u(x +b) ≥ v(x) ∀x ∈ R, which is the desired
conclusion. �
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Proof of Claim 2.1 We argue by contradiction. If a∗ > 0, since

lim
x→±∞ u(x + b) + a∗ − v(x) ≥ a∗ > 0,

there exists x0 ∈ R such that u(x0 + b) + a∗ = v(x0). Let w(x) := u(x + b) +
a∗ − v(x), then

0 = w(x0) = min
R

w(x). (2.19)

Observe that w also satisfies the following equations:

Lw ≤ f (v(x)) − f (u(x + b)) (2.20)

w(+∞) ≥ a∗ (2.21)

w(−∞) ≥ a∗. (2.22)

Since w ≥	≡ 0, by Lemma 1.1

Lw(x0) > 0. (2.23)

By our assumption, u(x + b) > v(x) on [−M − 1, M + 1]. Hence |x0| > M + 1.
Let us define

Q(x) := f (v(x)) − f (u(x + b)). (2.24)

We now have to consider the two following cases:

• x0 < −M − 1:
At x0 we have

Q(x0) = f (v(x0)) − f (v(x0) − a∗) ≤ 0, (2.25)

since f is non-increasing for s ≤ ε, a∗ > 0 and v ≤ δ
2 < ε for x < −M . Now,

combining (2.20), (2.23) and (2.25) yields the following contradiction

0 < Lw(x0) ≤ Q(x0) ≤ 0.

• x0 > M + 1:
We argue similarly for that case. At x0 we have

Q(x0) = f (u(x0 + b) + a∗) − f (u(x0 + b)) ≤ 0, (2.26)

since f is non-increasing for s ≥ 1 − ε, a∗ > 0 and 1 − ε < 1 − δ
2 ≤ u for

x > M . Again, combining (2.20), (2.23) and (2.26) yields the contradiction

0 < Lw(x0) ≤ Q(x0) ≤ 0.

Hence a∗ = 0, which ends the proof of Claim 2.1. �

Remark 2.3 One can observe that the proof of Lemma 2.1 still holds for any δ < ε
2

and M such that (2.8)–(2.10) hold. In particular, since u and v satisfies (2.6)–(2.7),
Lemma 2.1 holds if we increase M .
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General remarks and comments:

One can observe that most of the arguments used in the above two proofs hold for
the Laplacian operator (L = 
). Only the final argument in the alternative fails.
We can still obtain a contradiction, in this case, by arguing as follows:
Set z := u(x + b) + a∗ and �− = {x < −M − 1|w(x) = 0}.
If x0 < −M − 1, we have �− 	= ∅ and

Q(x) := f (v(x)) − f (z(x) − a∗) = f ′(θ(x))(v − z) + a∗ f ′(θ(x)),

for some θ(x) ∈ [min{v(x), z(x) − a∗}, max{v(x), z(x) − a∗}].
Since x0 < −M − 1, we have

z(x0) − a∗ < v(x0) <
δ

2
≤ ε

4
.

Therefore on a small neighborhood V (x0) of x0, z(x) − a∗ < ε
2 and v(x) < ε

2 .
Hence, on V (x0) we have f (θ(x)) ≤ 0. By observing that w = z − v, from
(2.20)–(2.22), we then have on V (x0)

Lw + f ′(θ(x))w ≤ a∗ f ′(θ(x)) ≤ 0 on V (x0) (2.27)

w ≥ 0 on V (x0). (2.28)

Apply now the usual Strong Maximum Principle (i.e. Theorem 1.5) to obtain
w ≡ 0 on V (x0). Observe that the previous computation holds for any x ∈ �−,
therefore �− is an open subset of (−∞,−M − 1). Since w is continuous, �−
is obviously a closed subset of (−∞, −M − 1). By connectedness, we then have
�− = (−∞,−M − 1), which is a contradiction since limx→−∞w(x) ≥ a∗ > 0.
A similar argument can be used for the case x0 > M + 1.

In the case of a continuous supersolution u and a subsolution v with a finite
number of discontinuities, the first part of Theorem 2.1 holds. Similarly, this result
also holds if the subsolution v is continuous and the supersolution u has a finite
number of discontinuities.

Recall that u and v satisfy (2.9)–(2.10) for a positive M . Let us assume that v is
discontinuous, the proof in the other case is similar. Since v has finite discontinu-
ities, we can increase M further if necessary so that all the point of discontinuities
of v are in (−M, M). By doing so, w := u(. + b) + a − v is then continuous
on (−∞, −M] ∪ [M, +∞) for all positive a, b. Using Remark 2.2, there exists
b such that u and v satisfy (2.11)–(2.12). As in the proof of Lemma 2.1 we can
define

a∗ = inf{a > 0 | u(x + b) + a > v(x) ∀x ∈ R}.
If a∗ > 0, since w > a∗ on (−M−1, M+1) and w is continuous on (−∞,−M]∪
[M,+∞), w achieves a global minimum at some point x0 ∈ R \ [−M − 1, M +
1]. Since Lemma 1.1 holds for discontinuous functions with a finite number of
discontinuities, arguing as in the continuous case we end up with u(. + b) ≥ v.
If u is discontinuous and v continuous, we choose M such that all the points of
discontinuity of u are in (−M, M). We argue as above, with the function w̃ :=
u − v(. − b) − a instead of w.

Theorem 2.1 and Lemma 2.1 will be used extensively in other proofs.
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3 Uniqueness and monotonicity of solutions of the integrodifferential
equation on R

In this section we present the proof of Theorems 1.2 and 1.3. We show that smooth
positive solutions of the following problem are unique up to translation and are
always monotone.

Lu + f (u) = 0 on R (3.1)

u(x) → 0 as x → −∞ (3.2)

u(x) → 1 as x → +∞, (3.3)

where f ∈ C1 satisfies the assumptions of Theorem 1.2. For a sake of simplicity,
in the sequel we will only consider continuous solutions and linear translation-
invariant operators L satisfying Lemma 1.1 and (H2). Using the comparison prin-
ciple and the translation invariance, without loss of generality, we may also assume
that the solutions satisfy

0 < u < 1. (3.4)

We break down this section in three subsections. In the first two subsections, we
show that the solution is unique up to translation and monotone, which proves
Theorem 1.2. The last subsection deals with non-existence of the solution of (3.1)–
(3.4), and as a corollary, we obtain the uniqueness of the speed c of a travelling
wave, which proves Theorem 1.3.

3.1 Uniqueness up to translation:

Let u and v be two solutions of (3.1)–(3.4).
First we define the following real number:

τ ∗ = inf{τ ≥ 0| uτ (x) ≥ v(x) ∀x ∈ R}. (3.5)

Since u and v are solutions of (3.1)–(3.4), they satisfy the assumptions of Theo-
rem 2.1 and therefore τ ∗ is well defined and has an upper bound. Since v is positive
and u satisfies (3.2), there exists τ0 > 0 such that u(−τ) < v(0) ∀τ ≥ τ0. There-
fore τ ∗ is bounded from above. By continuity, we have at τ ∗, uτ∗ ≥ v. We claim
the following

Lemma 3.1 uτ∗(x) = v(x), for all x ∈ R.

Proof: We argue by contradiction and assume that w := uτ∗ − v ≥	≡ 0. We will
show that for ε small enough, we have

uτ∗−ε(x) ≥ v(x) for all x ∈ R, (3.6)

which will contradict the definition of τ ∗. Let us start the construction of our
desired ε. We first show that w > 0. Assume that there exists x0 in R such that w
achieves a non-negative minimum at this point. Then we have w(x) ≥ w(x0) = 0
and

0 ≤ Lw(x0) = f (v(x0)) − f (u(x0 + τ ∗)) = f (v(x0)) − f (v(x0)) = 0. (3.7)
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Using Lemma 1.1, we obtain w ≡ 0, which contradicts uτ∗ ≥	≡ v. Therefore, we
must have w > 0.

Choose M > 0 and δ < ε
2 as in Sect. 2 such that u and v satisfy 2.9 and 2.10.

By continuity and since uτ∗ > v, we can then find ε1 > 0 such that

∀ε ∈ [0, ε1) u(x + (τ ∗ − ε)) > v(x) for all x ∈ [−M − 1, M + 1]. (3.8)

We claim the following �
Claim 3.1 There exists ε ∈ (0, ε1] such that u and v satisfy

u(x + (τ ∗ − ε)) + δ

2
> v(x) for all x ∈ R. (3.9)

Fix now ε ∈ (0, ε1), such that (3.9) holds. Observe that b := τ ∗ − ε satisfies
assumptions (2.11) and (2.12) of Lemma 2.1. Therefore by Lemma 2.1 we end up
with the desired contradiction

u(x + (τ ∗ − ε)) ≥ v(x) for all x ∈ R.

Assume for the moment that Claim 3.1 holds. �

Proof of Claim 3.1 We argue by contradiction. If (3.9) fails, then for all ε ∈ (0, ε1)
there exists x(ε) ∈ R such that

u(x(ε) + (τ ∗ − ε)) + δ

2
≤ v(x(ε)). (3.10)

Now take a sequence (εn)n∈N which tends to zero. Let (xn)n∈N be the sequence
defined by (3.10). Thus u satisfies for each positive integer n

u(xn + (τ ∗ − εn)) + δ

2
≤ v(xn). (3.11)

Since u and v satisfy (2.9) and (2.10), (xn)n∈N stays in the compact [−M,M].
Therefore we can extract a subsequence of (xn)n∈N which converges to some x̄ ∈
R. Letting now n go to +∞ in (3.11) we end up with

u(x̄ + τ ∗) + δ

2
≤ v(x̄), (3.12)

which contradicts uτ∗ ≥ v. �

3.2 Monotonicity of the solution

Now, we show the second part of Theorem 1.2 on the monotone behavior of the
solution of (3.1)–(3.3). More precisely we show

Theorem 3.1 Let f be as in Theorem 1.2, then the solution u of (3.1)–(3.3) is
monotone increasing.

We break down our proof into three steps:
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• first step: we prove that for any solution u of (3.1)–(3.3) there exists a positive
τ such that

u(x + τ) ≥ u(x) ∀x ∈ R.

• second step: we show that for any τ̃ ≥ τ , u satisfies

u(x + τ̃ ) ≥ u(x) ∀x ∈ R.

• third step: we prove that

inf{τ > 0 | ∀τ̃ > τ, u(x + τ̃ ) ≥ u(x) ∀x ∈ R.} ≤ 0.

We easily see that the last step provides the conclusion of Theorem 3.1.
Proof of Theorem 3.1:
First step: The first step is easily obtained from Theorem 2.1 by observing that
u is a sub and a supersolution of (3.1)–(3.3). Therefore we have uτ ≥ u for one
positive τ .
Second step: Choose 0 < δ ≤ ε

2 and M such that

f ′(p) ≤ 0 for p < δ and 1 − p < δ (3.13)

and so that u satisfies

1 − u(x) <
δ

2
∀x > M, (3.14)

and u(x) <
δ

2
∀x < −M. (3.15)

We achieve the second step with the following proposition.

Proposition 3.1 Let u be a positive solution of (3.1)–(3.4) satisfying (3.14) and
(3.15). If there exists τ > 0 such that u(x + τ) ≥ u(x) ∀x ∈ R, then for all τ̃ ≥ τ
we have, u(x + τ̃ ) ≥ u(x) ∀x ∈ R.

From the previous step we know that such a τ exists.
The proof of Proposition 3.1 is based on the following two technical lemmas

which will be proved later on.

Lemma 3.2 Let u be a positive solution of (3.1)–(3.4) and τ > 0 such that u(x +
τ) ≥ u(x) ∀x ∈ R. Then, we have u(x + τ) > u(x) ∀x ∈ R.

Lemma 3.3 Let u be a positive solution of (3.1)–(3.4) satisfying (3.14) and (3.15)
and τ > 0 such that u(x + τ) > u(x) ∀x ∈ R. Then, there exists ε0(τ ) > 0 such
that for all τ̃ ∈ [τ, τ + ε0], we have

u(x + τ̃ ) > u(x) ∀x ∈ R. (3.16)

�
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Proof of Proposition 3.1 We know from the first step that we can find a positive τ
such that,

u(x + τ) ≥ u(x) ∀x ∈ R.

Therefore by Lemmas 3.2 and 3.3 we can construct an interval [τ, τ + ε], such
that for all τ̃ ∈ [τ, τ + ε] we have

u(x + τ̃ ) ≥ u(x) ∀x ∈ R.

Let us define the quantity

γ̄ = sup{γ | ∀τ̂ ∈ [τ, γ ], u(x + τ̂ ) ≥ u(x) ∀x ∈ R}. (3.17)

We claim that γ̄ = +∞. If not, γ̄ < +∞ and by continuity we have

u(x + γ̄ ) ≥ u(x) ∀x ∈ R. (3.18)

Recall that from the definition of γ̄ we have

∀τ̂ ∈ [τ, γ̄ ], u(x + τ̂ ) ≥ u(x) ∀x ∈ R. (3.19)

Therefore to get a contradiction it is sufficient to construct ε0 such that for all
ε ∈ [0, ε0] we have

u(x + (γ̄ + ε)) ≥ u(x) ∀x ∈ R. (3.20)

Since γ̄ > 0, we can apply Lemma 3.2 to get

u(x + γ̄ ) > u(x) ∀x ∈ R. (3.21)

We can now apply Lemma 3.3 to find the desired ε > 0. Therefore, from the
definition of γ̄ we get

∀τ̂ ∈ [τ, +∞], u(x + τ̂ ) ≥ u(x) ∀x ∈ R,

which proves Proposition 3.1. �
We now turn our attention to the proofs of the two technical lemmas. We start

with the proof of Lemma 3.2.
Proof of Lemma 3.2 To prove that

u(x + τ) > u(x) ∀x ∈ R, (3.22)

we argue by contradiction. Assume there exists a point x0 such that

w(x) = u(x + τ) − u(x) ≥ w(x0) = 0 ∀ x ∈ R.

At this point, w satisfies :

Lw(x0) = f (u(x0)) − f (u(x0 + τ)) = f (u(x0)) − f (u(x0)) = 0.

By Lemma 1.1 we get w ≡ Cte. Since w(x0) = 0, we have w ≡ 0. Therefore we
have u(x + τ) = u(x) for all x in R, which says that u is τ periodic.

Now, since τ > 0, we have for any positive integer N,

u(0) = u(Nτ). (3.23)
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Letting N go to infinity in (3.23), we end up with

1 = u(0) < 1,

which is a contradiction. Therefore (3.22) holds for every x in R.
We now turn our attention to the proof of Lemma 3.3. �

Proof of Lemma 3.3 Let u be a positive solution of (3.1)–(3.3), which satisfies

u(x + τ) > u(x) ∀x ∈ R, (3.24)

for a given τ > 0. Observe that since 0 < u < 1 satisfies (3.14) and (3.15) we
have for all ε > 0,

u(x + τ + ε) + δ

2
> u(x) ∀x ∈ R \ [−M, M]. (3.25)

Since u is continuous and satisfies (3.24), we can find ε0, such that for all ε ∈
[0, ε0], we have

u(x + τ + ε) > u(x) for x ∈ [−M − 1, M + 1]. (3.26)

Therefore for all ε ∈ [0, ε0], we have

u(x + τ + ε) + δ

2
> u(x) ∀x ∈ R. (3.27)

Observe that for all ε ∈ [0, ε0], b := τ + ε satisfies assumptions (2.11) and (2.12)
of Lemma 2.1. Therefore we can apply Lemma 2.1 for each ε ∈ [0, ε0] and get

u(x + τ + ε) ≥ u(x) ∀x ∈ R. (3.28)

Thus, we end up with
u(x + τ̃ ) ≥ u(x) ∀x ∈ R, (3.29)

for all τ̃ ∈ [τ, τ + ε0]. This ends the proof of Lemma 3.3. �
Third step: By the first step and Proposition 3.1, we can define the quantity

τ ∗ = inf{τ > 0| ∀τ̃ > τ, u(x + τ̃ ) ≥ u(x) ∀x ∈ R}. (3.30)

We end the proof of Theorem 3.1, by proving the following claim

Claim 3.2 τ ∗ ≤ 0.

Proof: We follow the arguments used in the previous subsection on the uniqueness
up to translation. We argue by contradiction and assume that τ ∗ > 0. We will show
that for ε small enough, we still have,

u(x + (τ ∗ − ε)) ≥ u(x) for all x ∈ R. (3.31)

Using the previous step, we will have for all τ̃ ≥ τ ∗ − ε

u(x + τ̃ ) ≥ u(x) for all x ∈ R, (3.32)

which will contradict the definition of τ ∗.
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The construction of ε is obtained as follows. By the definition of τ ∗ and by
continuity, we have

u(x + τ ∗) ≥ u(x) for all x ∈ R. (3.33)

Since τ ∗ > 0, by Lemma 3.2, we have

u(x + τ ∗) > u(x) for all x ∈ R. (3.34)

Therefore, on the compact [−M−1,M+1], we can find ε1 > 0 such that

∀ε ∈ [0, ε1) u(x + (τ ∗ − ε)) > u(x) for all x ∈ [−M − 1, M + 1]. (3.35)

The arguments used in the proof of Claim 3.1 apply to u, therefore there exists
ε ∈ (0, ε1] such that u satisfies

u(x + (τ ∗ − ε)) + δ

2
> u(x) for all x ∈ R. (3.36)

Fix now ε ∈ (0, ε1), such that (3.36) holds. Again, observing that b := τ ∗ − ε
satisfies assumptions (2.11) and (2.12) of Lemma 2.1 with u as sub and superso-
lution, we conclude that (3.31) holds.This ends the proof of Claim 3.2 and at the
same time proves Theorem 3.1. �

3.3 Non-existence and applications

In this subsection, we obtain non-existence results. More precisely, we have the
following non-existence result.

Theorem 3.2 Let f be as in Theorem 1.2. If there exists a continuous sub or
supersolution u of Problem (3.1)–(3.3), such that u is not a solution of (3.1)–(3.3)
then there exists no solution of Problem (3.1)–(3.3).

Theorem 3.2 comes as a consequence of the uniqueness up to translation of
the solution. The uniqueness of the speed of a travelling front (Theorem 1.3) is
then obtained as a corollary of Theorem 3.2 and the monotonicity of the solution.

Indeed, let us assume that Theorem 3.2 holds and assume by contradiction that
there exist (u, c) and (v, c′) two continuous solutions of (3.1)–(3.3) with different
speeds (c 	= c′). Recall that

Lu = αu′′ + β

∫

R

J (x − y)(u(y) − u(x))dy − cu′ − du.

We note Lc and Lc′ the operator L with parameter respectively c and c′. By the
previous subsection we have u′ > 0 and v′ > 0. Note that u satisfies the set of
equations

Lc′u + f (u) = (c − c′)u′ on R (3.37)

u(x) → 0 as x → −∞ (3.38)

u(x) → 1 as x → +∞. (3.39)
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Since u′ > 0, u is not a solution of (3.1)–(3.3) with speed c′ and is either a sub or
a supersolution of this problem. Theorem 3.2 then provides a contradiction. Thus
we must have c = c′.

Let us turn our attention to the proof of Theorem 3.2.
Proof of Theorem 3.2 Without loss of generality we can assume that u is a superso-
lution of (3.1)–(3.3). We argue with a contradiction argument. Let us assume that
there exists a continuous solution v to (3.1)–(3.3). Since u and v are respectively a
super and a subsolution of (3.1)–(3.3), the argument developed in the proof of the
uniqueness up to translation (i.e. Sect. 3.1) holds. We then have uτ = v for some
real τ , which is a contradiction. �
Remark: When c′ = 0 and v have finitely many discontinuities, the proof of the
uniqueness of the speed still holds. Indeed, assume by contradiction that (u, c) is
another solution with c 	= 0. Following the previous argumentation, u is continu-
ous and is either a supersolution or a subsolution of (3.1)–(3.3) with speed c′ = 0.
We can assume that u is a supersolution. The proof in the other case is similar. Us-
ing the observation in Sect. 2 on the first part of Theorem 2.1, there exists τ > 0
such that uτ > v. Define as in Sect. 3.1

τ ∗ = inf{τ ≥ 0| uτ (x) ≥ v(x) ∀x ∈ R}.
Since a Maximum Principle holds for uτ and v, working as in Sect. 3.1 yields a
contradiction. Thus we must have c = 0.

4 Monotonicity of solutions of the integrodifferential equation:
the monostable case

In this section, we present a proof of Theorem 1.4. Recall that we are interested
in the monotonicity of solutions of problem (3.1)–(3.3), when the nonlinearity f
is monostable (i.e. f ∈ C1(R) satisfying f (0) = f (1) = 0, f|(0,1) ≥ 0 and
f ′(s) ≤ 0 in 1 − ε < s for some ε > 0).

Using the comparison principle and the translation invariance, without loss of
generality, as in the previous section we can restrict our attention on solutions
satisfying 0 < u < 1.

We start as in Sect. 3.2 by breaking down our proof in three steps.

• first step: we prove that for any solution u of (3.1)–(3.3) there exists a positive
τ such that

u(x) ≥ u(x − τ) ∀x ∈ R.

• second step: we show that for any τ̃ ≥ τ , u satisfies

u(x) ≥ u(x − τ̃ ) ∀x ∈ R.

• third step: we prove that

inf{τ > 0|∀τ̃ > τ, u(x) ≥ u(x − τ̃ ) ∀x ∈ R} ≤ 0.
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We easily see that the last step provides the conclusion of the theorem. The next
three subsections are devoted to each step of the proof.
Proof of the first step We show that most of the technical lemmas developed in the
previous section can be adapted to this situation. First we show the following

Lemma 4.1 Let u be a positive solution of (3.1)–(3.3), such that u is increasing
in a neighborhood (−∞, −M) of −∞. Then there exists a positive τ such that

u(x) ≥ u(x − τ) ∀x ∈ R.

Remark 4.1 Since f does not satisfy f ′(s) ≤ 0 when s < ε for some ε > 0,
Theorem 2.1 does not readily apply. However, in the case of monotonicity, an
analogue of Lemma 2.1 can be obtained with minor change to the proof.

Proof of Lemma 4.1 Let u be a positive solution of (3.1)–(3.3).

We start with the definition of quantities that we will use all along the proof.
Let δ positive be such that

f ′(p) ≤ 0 ∀p such that 1 − p < δ. (4.1)

Choose M > 0 such that:

|u(x) − 1| <
δ

2
∀x > M, (4.2)

u(x) <
δ

2
∀x < −M, (4.3)

u(x) > u(̃x) ∀x̃ < x ≤ −M. (4.4)

Again the proof of Lemma 4.1 is mainly based on the following technical lemma
which will be proved later on.

Lemma 4.2 Let u be a positive solution of (3.1)–(3.3) satisfying (4.2)–(4.4). As-
sume there exist positive constants a and b such that u satisfies:

u(x) > u(x − b) ∀x ∈ (−∞, M + 1] (4.5)

u(x) + a > u(x − b) ∀x ∈ R. (4.6)

Then we have u(x) ≥ u(x − b) ∀x ∈ R.

Proof of Lemma 4.1 Assume for the moment that Lemma 4.2 holds. Then to prove
Lemma 4.1 we just have to find appropriate constants a and b which satisfy (4.5)
and (4.6).
Since we chose M such that u is increasing on (−∞, −M], then for every positive
b, u satisfies

u(x) > u(x − b) ∀x ∈ (−∞, −M − 1].
Now, since u satisfies (3.2) and (3.3), there exists a positive constant D such that
on the compact set [−M − 1, M + 1] we have for every b ≥ D,

u(x) > u(x − b) ∀x ∈ [−M − 1, M + 1].
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Therefore, for b greater than D, u satisfies

u(x) > u(x − b) ∀x ∈ (−∞, M + 1].
Now take a = 1 and observe that u(x) + a > u(x − b) ∀x ∈ R since u < 1. This
ends the construction of the constants a and b. �

Now we turn our attention to Lemma 4.2.
Proof of Lemma 4.2 As in the previous section, let us define

a∗ = inf{a > 0 | u(x) + a > u(x − b) ∀x ∈ R}. (4.7)

We claim that

Claim 4.1 a∗ = 0.

Observe that by Claim 4.1 we end up with u(x) ≥ u(x − b) ∀x ∈ R which is the
desired conclusion. �

Proof of Claim 4.1 As in Sect. 2 we argue by contradiction. If not, since
limx→±∞ u(x) + a∗ − u(x − b) = a∗ > 0, there exists x0 ∈ R such that
u(x0) + a∗ = u(x0 − b).

Let w(x) := u(x) + a∗ − u(x − b), then we have

0 = w(x0) = min
R

w(x).

Observe that w also satisfies the following equation:

Lw = f (u(x − b)) − f (u(x))

w(+∞) = a∗

w(−∞) = a∗.
From (4.5) we deduce that

w(x) = u(x) + a∗ − u(x − b) ≥ u(x) − u(x − b) > 0 ∀x ∈ (−∞, M + 1].
Thus, x0 > M + 1.

As in Sect. 3.2, by the maximum principle property, at its minimum x0, w
satisfies:

f (u(x0) + a∗) − f (u(x0)) = Lw(x0) > 0.

Thus

Q = f
(
u(x0) + a∗) − f (u(x0)) > 0 (4.8)

Q = f ′(d)a∗ > 0, (4.9)

for some d ∈]u(x0), u(x0) + a∗[.
Since x0 > M + 1, (4.2) implies that 1 − d < δ.
Thus, Q would verify :

Q = f ′(d)a∗ ≤ 0,

which contradicts (4.9). Hence a∗ = 0, which ends the proof of Claim 4.1. �
Now, we turn our attention to the second step in the proof of Theorem 1.4.

Proof of the second step As in Sect. 3.2 we achieve the second step with the fol-
lowing proposition.
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Proposition 4.1 Let u be a positive solution of (3.1)–(3.3) satisfying (4.2)–(4.4).
If there exists τ > 0 such that

u(x) ≥ u(x − τ) ∀x ∈ R. (4.10)

Then, for all τ̃ we have, u(x) ≥ u(x − τ̃ ) ∀x ∈ R.

As in Sect. 3.2, the proof of the proposition is based on the two following technical
lemmas.

Lemma 4.3 Let u be a positive solution of (3.1)–(3.3) and τ > 0 be such that
u(x) ≥ u(x − τ) ∀x ∈ R.

Then, we have u(x) > u(x − τ) ∀x ∈ R.

Lemma 4.4 Let u be a positive solution of (3.1)–(3.3) satisfying (4.2)–(4.4) and
τ > 0 be such that
u(x) > u(x − τ) ∀x ∈ R.
Then, there exists ε0(τ ) > 0 such that for all τ̃ ∈ [τ, τ + ε0], we have

u(x) > u(x − τ̃ ) ∀x ∈ R. (4.11)

We omit the details of the proofs since essentially all the arguments developed
in the previous section work. We proceed to the last step.
Proof of the third step By Lemma 4.1 and Proposition 4.1, we can define the
quantity

τ ∗ = inf{τ > 0| ∀τ̃ > τ, u(x) ≥ u(x − τ̃ ) ∀x ∈ R}. (4.12)

We end the proof of Theorem 1.4 with the following lemma

Lemma 4.5 Let u be a positive solution of (3.1)–(3.3) satisfying (4.2)–(4.4).
Then, we have τ ∗ ≤ 0.

Proof of Lemma 4.5 Again, we argue by contradiction, suppose that τ ∗ > 0. We
will show that for ε small enough, we still have

u(x) ≥ u(x − (τ ∗ − ε)) for all x ∈ R. (4.13)

Then by the previous step, we will have for all τ̃ ≥ τ ∗ − ε,

u(x) ≥ u(x − τ̃ ) for all x ∈ R, (4.14)

which contradicts the definition of τ ∗.
Now, we start the construction. Using the definition of τ ∗, the continuity of u

and Lemma 4, we end up with

u(x) > u(x − τ ∗) for all x ∈ R.

Thus, on the compact [M, M], we can find ε1 > 0 such that,

∀ε ∈ [0, ε1) u(x) > u(x − (τ ∗ − ε)) ∀x ∈ [−M − 1, M + 1].
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Since u is increasing on (−∞, −M], we indeed have

∀ε ∈ [0, ε1) u(x) > u(x − (τ ∗ − ε)) on(−∞, M + 1].
Now fix ε ∈ (0, ε1). We can easily find a positive constant a such that

u(x) + a > u(x − (τ ∗ − ε)) for all x ∈ R.

We can then apply Lemma 4.2 to obtain the desired result. �

5 The multidimensional case

In this section, we study the extension of the uniqueness results to multidimen-
sional problems. Let us consider the following integrodifferential problem:

ε
u + θ

∫

�

J (x − t, y, s)(u(t, s) − u(x, y))dtds

+ β(y)ux + f (u) = 0 on � (5.1)

∂u

∂ν
= 0 on ∂� (5.2)

u(x, y) → 0 uniformly in y as x → −∞ (5.3)

u(x, y) → 1 uniformly in y as x → +∞. (5.4)

As we briefly mentioned in the introduction, for general operator Lu :=
θ

∫
�

J (x − t, y, s)(u(t, s) − u(x, y))dsdt + β(y)ux the Strong Maximum Prin-
ciple as state in Theorem 1.5 no longer holds. However, for operator of the
form Lu = θ

∫
�

J (x − t, y − s)(u(t, s) − u(x, y))dsdt + β(y)ux with a non-
negative kernel J (x, y) such that the support of J contains a set of the form
([−b,−a] ∪ [a, b]) × ω for some 0 ≤ a < b, where ω is an open subset of
� containing 0, we can show the following,

Theorem 5.1 Multidimensional Maximum Principle
Let u be a continuous function such that L[u](x, y) ≥ 0 (resp. L[u](x, y) ≤ 0)
on �. Assume that u achieves at a global maximum (resp. a global minimum) at
some point (x0, y0) ∈ �, then there exists y ∈ �̄ such that u(x, y) = u(x0, y0) on
R × {y}.
We obtain as a consequence of this maximum principle the following characteri-
zation of such operators,

Lemma 5.1 Let u be a smooth function on �̄. If u achieves a global minimum
(resp. a global maximum) at some point (x0, y0) ∈ �̄ then the following holds :

• Either L[u](x0, y0) > 0 (resp. L[u](x0, y0) < 0)
• Or L[u](x0, y0) = 0 and u(x, y) = u(x0, y0) on R × {y} for some y ∈ �̄ .

Remark 5.1 The Multidimensional Maximum Principle also holds for operators
defined in (5.1) provided that we assume further that ∂u

∂ν
= 0 on ∂�.
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Lemma 5.1 can be proved just as Theorem 5.1.
Proof of Theorem 5.1 Recall that

Lu = ε
u + θ

∫

R×�

J (x − t, y − s)(u(t, s) − u(x, y)) dsdt + β(y)ux .

First assume that ε = 0. Observe that since we only consider the derivatives of
u in the direction x , and that u is continuous, L[u](x, y) is well defined on �̄.
Assume that L[u](x, y) ≥ 0 and achieves a global maximum at (x0, y0) ∈ �̄.
Then at this point we have
∫

R×�

J (x0 − t, y0 − s)(u(t, s) − u(x0, y0)) dtds ≤ 0 and ux (x0, y0) = 0.

which implies that
∫

R×�

J (x0 − t, y0 − s)(u(t, s) − u(x0, y0)) dtds = 0.

Therefore u(t, s) = u(x0, y0) = M for all (t, s) ∈ � such that (x0 − t, y0 − s) ∈
supp(J ). In particular since ([−b,−a] ∪ [a, b]) × {0} ⊂ J we have u(t, y0) =
M for all t ∈ x0 + [−b,−a] ∪ [a, b]. Next we show that u(x, y0) = M for
x ∈ [x0, +∞). Let z ∈ x0 + [a, b], observe that at the point (z, y0), u achieves
a positive maximum since u(z, y0) = u(x0, y0). We may thus argue as above and
conclude that

u(x, y0) = M for all x ∈ x0

+ [−b,−a] ∪ [−(b − a), b − a] ∪ [a, b] ∪ [a + b, 2b]. (5.5)

Thus we have u(x, y0) = u(x0, y0) for all x ∈ x0 + [0, b − a]. Now repeat all the
computations with z = x0 +b−a instead of x0 to obtain that u(x, y0) = u(x0, y0)
for all x ∈ x0 + [0, 2(b − a)]. Therefore by repeating infinitely many times this
process we obtain u(x, y0) = M for x ∈ [x0, +∞). By using z = x0 − (b − a) in
the previous computation, we obtain u(x, y0) = M for x ∈ (−∞, x0]. Therefore
u(x, y0) = M on R × {y0}.

If ε > 0 we argue as follows. As in the above proof, assume that L[u](x, y) ≥
0 and achieves a global maximum at (x0, y0) ∈ �̄. If (x0, y0) ∈ R × �, then the
previous argument holds and u is constant on R × {y0}.
If (x0, y0) ∈ R × ∂�, then we have the following alternative

• Either
∫
R×�

J (x0−t, y0−s)(u(t, s)−u(x0, y0)) dtds = 0 and then the previous
argument holds.

• Or
∫
R×�

J (x0 − t, y0 − s)(u(t, s) − u(x0, y0)) dtds < 0.
In that case since

∫
R×�

J (x − t, y0 − s)(u(t, s)− u(x, y)) dtds is a continuous
function on �̄, in a small neighborhood V (x0, y0) = Br (x0, y0) ∩ �̄, we have

ε
u + β(y)ux ≥ −
∫

R×�

J (x − t, y − s)(u(t, s) − u(x, y)) dtds ≥ 0.

Applying the Hopf Lemma to Mu = ε
u + β(y)ux , we obtain a contradiction
since ∂u

∂ν
= 0. Therefore u = u(x0, y0) on R × {y0}. �
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Remark 5.2 In the case ε = 0, the assumption on the normal derivative is not
required. However, in that case there is no Hopf Lemma available.

Remark 5.3 The multidimensional Maximum Principle holds for Kernel of the
form J (x, y, s) = k(x )̃k(y, s) with

• k ∈ L1(R) is a positive continuous kernel such that [−b,−a]∪[a, b] ⊂ supp(k)
for some 0 ≤ a < b .

• k̃(y, s) is a positive continuous kernel, which satisfy the following properties:

∀ y ∈ �̄ ∃ sy ∈ �̄ such that k̃(y, sy) 	= 0

Remark 5.4 Whether generalizations of our Maximum Principle to operators such
as L := ∫

R×�
J (x − t, y − s)(u(t, s) − u(x, y))dtds + d(y)uy hold, is still open.

An equivalent of the Hopf Lemma for that case must be established in order to
treat the cases of extrema achieved on the boundary of the cylinder.

Using the multidimensional Maximum Principle, Lemma 5.1 and the ideas
developed in Sect. 2 we have

Theorem 5.2 Multidimensional Nonlinear Comparison Principle
Let f satisfy the assumptions of Theorem 1.2. Let u and v be two smooth (C1)
functions on �, such that

Lu + f (u) ≤ 0 on � (5.6)

Lv + f (v) ≥ 0 on � (5.7)

∂u

∂ν
= ∂v

∂ν
= 0 on R × ∂� (5.8)

limx→−∞ u(x, y) ≥ 0, limx→−∞ v(x, y) ≤ 0 uniformly in y (5.9)

limx→+∞ u(x, y) ≥ 1, limx→+∞ v(x, y) ≤ 1 uniformly in y . (5.10)

Then there exists a positive real τ such that uτ ≥ v. Moreover, either uτ > v on �̄
or uτ ≡ v on R × {y} for some y ∈ �̄.

As in Sect. 2, Theorem 5.2 is proved using the following construction.
Let 0 < δ ≤ ε

2 such that

f ′(p) ≤ 0 for p < δ and 1 − p < δ. (5.11)

Choose M > 0 so that

1 − u(x, y) <
δ

2
∀(x, y) ∈ (M, +∞) × �̄ (5.12)

and v(x, y) <
δ

2
∀(x, y) ∈ (−∞, −M) × �̄. (5.13)
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Lemma 5.2 Let u and v be as in Theorem 5.2 and satisfy Conditions (5.12) and
(5.13). If there exists a positive constant b such that u and v satisfy:

u(x + b, y) > v(x, y) ∀(x, y) ∈ [−M − 1, M + 1] × �̄ (5.14)

and u(x + b, y) + δ

2
> v(x, y) ∀(x, y) ∈ �̄, (5.15)

then we have u(x + b, y) ≥ v(x, y) ∀(x, y) ∈ �̄.

As we have already observed in the previous analysis, the proofs of Theorems
1.2–1.3 only rely on a nonlinear comparison principle, a technical lemma such as
Lemma 2.1 and a good characterization of L[u](x) at a global extrema of u. The
generalization of these two theorems will therefore be straightforward using their
multidimensional analog.
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