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Abstract We treat the stability issue for an inverse problem arising from non-
destructive evaluation by thermal imaging. We consider the determination of an
unknown portion of the boundary of a thermic conducting body by overdetermined
boundary data for a parabolic initial-boundary value problem. We obtain that when
the unknown part of the boundary is a priori known to be smooth, the data are
as regular as possible and all possible measurements are taken into account, the
problem is exponentially ill-posed. Then, we prove that a single measurement
with some a priori information on the unknown part of the boundary and minimal
assumptions on the data, in particular on the thermal conductivity, is enough to
have stable determination of the unknown boundary. Given the exponential ill-
posedness, the stability estimate obtained is optimal.
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1 Introduction

Let � be a bounded domain in R
N , N ≥ 2, with a sufficiently smooth boundary

∂�, a closed part of which, say I , is not known and not accessible. For instance,
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I could be some interior component of ∂� or some inaccessible portion of the
exterior component of ∂�. On the other hand, we assume that the set A = ∂�\I
is accessible and known. Let T be a positive number and let κ = κ(x, t), (x, t) ∈
R

N × R, be a symmetric N × N matrix whose entries are Lipschitz continuous
(real) functions. We assume that κ is also uniformly elliptic. Given a nontrivial
function f on A × [0, T ] such that supp f is compactly contained in A × [0, T ],
let us consider the initial-boundary value problem






∂t u − div(κ(x, t)∇u) = 0 in � × (0, T ),

u(x, 0) = 0 x ∈ �̄,

u = 0 on I × [0, T ],
u = f on A × [0, T ].

(1.1)

Given an open portion � of ∂� such that � ⊂ A, we consider the inverse
problem of determining I from the knowledge of κ∇u · ν on � × [0, T ], where ν
denotes the exterior normal to �.

This problem arises, for instance, from non-destructive testing using thermal
imaging. In fact, � may represent a thermic conducting body, with thermal con-
ductivity κ , A is a known part of the boundary and I may represent an unknown
privileged isothermal surface, such as a solidification front [2], a corroded portion
of ∂� or the boundary of a cavity inside � [3, 21]. We prescribe the temperature
on the accessible part of the boundary, A, and we measure on � × [0, T ] the heat
flux exiting the body, and, through this additional measurement, we want to de-
termine I . Actually in some applications, in particular in the continuous casting
of steel, see [2, 8], the conductivity κ depends explicitly on the temperature u,
rather than on t . Nevertheless, the case in which κ depends on x and t only is an
important starting point to study the stability also for the general non-linear case.
We shall return to this point later.

The uniqueness result for the problem discussed earlier has been proved by
Isakov, see [12]. In [5] it is shown via a counterexample that uniqueness may fail
when u(·, 0) �≡ 0.

In this paper we approach the stability issue of this problem from two differ-
ent points of view. First of all, we analyse the instability character of the problem
and we find that this inverse problem is exponentially unstable, that is logarith-
mic stability estimates are best possible. Then, we prove a stability estimate under
some a priori information on I and some assumptions on A, κ and the oscillation
character of f . The stability estimate we prove is of logarithmic type and it is
therefore very weak; however, it is essentially optimal. We wish to remark that
to properly analyse the instability of the problem, we study what happens in the
most favourable situation, that is we suppose to have strong a priori information
on I , A and κ as simple as possible and, more notably, instead of a single mea-
surement with a given f we take into account all possible measurements. Still,
the instability is of exponential type, and this means that performing different or
more measurements does not substantially improve the stability of the problem.
Conversely, for what concerns the stability estimate, the aim is to keep as minimal
as possible the a priori information on the unknown I and the assumptions on the
data A, κ and f while still keeping the optimality of the estimate.

By the stability estimates and the instability analysis we can therefore char-
acterize in a quite precise manner the modulus of continuity of the map which
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associates to the measurement κ∇u · ν on � × [0, T ] the unknown part of the
boundary I .

More precisely, in the instability analysis we deal with the following frame-
work. We assume that � = B1(0)\D, where D represents an unknown cavity.
Therefore, we identify A with the exterior boundary of �, ∂ B1(0), and I with the
boundary of the cavity, ∂ D. We further assume that κ is identically equal to the
identity matrix, that is the body is homogeneous and isotropic. Let us fix an inte-
ger m. To each Cm regular cavity D we associate its Dirichlet-to-Neumann map
D(D), that is the operator that maps each prescribed temperature f on A × [0, T ]
into the corresponding heat flux ∂u

∂ν
|A×[0,T ], where u solves (1.1). We establish

the instability properties of the function that associates to each operator D(D) the
corresponding cavity D.

The basic idea of the method we use for such a purpose goes back to [13].
More recently, this idea has been applied successfully to the inverse problem of
conductivity, see [18]. Later, in [7], the method has been formulated in an abstract
framework suitable to be applied in the context of inverse problems. In that paper,
in fact, the abstract formulation has been applied to many different inverse elliptic
problems. Here we also make use of the abstract setting; however, the parabolic
case presents additional difficulties with respect to the elliptic case. A crucial step
in order to apply the abstract method relies on the construction of a sequence
{uk}k∈N of solutions to an auxiliary initial-boundary value problem (namely (1.1)
with � = B1(0), that is D = ∅), satisfying the following properties. First, the
linear space generated by {uk}k∈N should be dense among all possible solutions to
the auxiliary problem and, second, uk should decay exponentially with respect to
k on any compact subset of B1(0). In the elliptic case, such a sequence is provided
by the harmonic polynomials, whereas in the parabolic case its construction is
much more delicate and is performed in Sect. 3, with the crucial exponential decay
estimate given in Proposition 3.5.

We wish to remark that the stability estimate is established when I is assumed
to be C1,β , 0 < β ≤ 1, whereas A is just Lipschitz. Furthermore, κ may depend
on both time and space variables. We notice that in [5] an analogous logarithmic
stability estimate has been proved when A is assumed to be C1,1 and κ does not
depend on t .

The proof of the stability estimate has the same structure of those given in
[1, 4, 5, 19]. As in these papers, the main effort consists of deducing some quanti-
tative estimates of unique continuation, in particular three cylinder inequalities in
the interior and at the boundary and stability estimates for Cauchy problems. An
optimal three cylinder inequality in the interior has been proved in [10, 22] and it
is recalled in Theorem 4.4. We also need an optimal three cylinder inequality at
the boundary and this is obtained in Theorem 4.5. In turn, in order to obtain such
quantitative estimates of unique continuation, the main effort is to find a suitable
Carleman estimate, see Theorem 4.1. The main novelty here is the dependence
of the thermal conductivity by time, too. This leads to three cylinder inequali-
ties whose constants depend on the parameters of the cylinders in a different way
with respect to the time autonomous case. However, we show that, even with this
difference, analogous estimates of unique continuation can be proved, a stability
estimate for Cauchy problems, Theorem 4.6, which by the way has been obtained
for a Lipschitz boundary, and a smallness propagation estimate, Proposition 4.7.
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Let us further remark that treating the case in which κ depends on t is a basic
step to approach the non-linear case in which κ depends on u. In fact, we observe
that the techniques used for proving quantitative estimates of unique continuation,
such as Theorems 4.4–4.6 and Proposition 4.7, can be applied also to the differ-
ential inequality

|∂t u − div(κ(x, t)∇u)| ≤ C(|∇u| + |u|)
instead of the corresponding homogeneous equation, we refer for the obvious
changes to [10, 22], and this would allow us, provided that κ and the boundary
of � are regular enough, to extend the results also to the non-linear case.

Finally, let us note that similar results may be obtained also if we consider a
homogeneous Neumann condition on I . For what concerns the stability estimate,
however, the regularity assumptions on I need to be changed, for instance I should
be of C1,1 class, see the discussion in [1] and [4].

The plan of the paper is as follows. In Sect. 2 we state the main results of
the paper: the exponential instability, Theorem 2.3, and the stability estimate,
Theorem 2.5. In Sect. 3, we prove Theorem 2.3. In Sect. 4 we prove Theorem 2.5,
in particular we prove the Carleman inequality, Theorem 4.1, and state the
quantitative estimates of unique continuation. In the appendix the rather technical
proofs of the quantitative estimates are developed.

2 Statement of the main results

We begin by giving some notation and definitions. We shall fix the space
dimension N , N ≥ 2, throughout the paper. We shall use the letter C or K to
denote positive constants. The value of the constants may change from line to
line, but we shall specify their dependence everywhere they appear (sometimes
we emphasize their difference writing C0, C1, . . . ). We shall always omit the
dependence of the constants on N .

For every x ∈ R
N we shall set x = (x ′, xN ), where x ′ ∈ R

N−1 and xN ∈ R,
and we shall denote by Br (x) and B ′

r (x ′), respectively, the open ball in R
N centred

at x of radius r and the open ball in R
N−1 centred at x ′ of radius r . Sometimes we

shall write Br and B ′
r instead of Br (0) and B ′

r (0), respectively.
Let r , t0 be positive numbers. For every x ∈ R

N , ζ ∈ R
N such that |ζ | = 1 and

α ∈ (0, π) we shall denote by C(x, ζ, α, r) the cone {y ∈ Br (x) : (y−x)·ζ
|y−x | >cos α} and

we shall denote by Ct0(x, ζ, α, r) the set C(x, ζ, α, r) × (0, t0). We shall denote
by Dt0

r (x) the cylinder Br (x) × (0, t0). For every function ψ on R
N−1 such that

ψ(0) = 0, we shall denote by Dt0
ψ,r the set {(x ′, xN , t) ∈ Br × (0, t0) : ψ(x ′) <

xN }. When dealing with N + 1 variables (x, t), with x = (x1, . . . , xN ), we shall
denote ∇ = ∇x , div = divx , � = div(∇), D2 = D2

x . We shall write, for brevity,
∂i f = ∂ f

∂xi
, ∂t f = ∂ f

∂t . Finally, we shall denote by I the identity matrix.

Definition 2.1 Let � be a bounded domain in R
N . Given a nonnegative integer

m and β, 0 ≤ β ≤ 1, we shall say that a portion � of ∂� is of Cm,β class with
constants R0, E > 0, if for every P ∈ �, there exists a rigid transformation of
coordinates under which we have P = 0 and

� ∩ BR0 = {(x ′, xN ) ∈ BR0 : xN > ϕ(x ′)},
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where ϕ is a Cm,β function on B′
R0

satisfying ϕ(0) = 0, ‖ϕ‖Cm,β (B′
R0

) ≤ E R0 and,

whenever m ≥ 1, also |∇ϕ(0)| = 0. We remark that when m = 0 and β = 1
we shall also speak of Lipschitz class and that when β = 0 we shall speak of Cm

class.

Remark 2.2 We have chosen to normalize all norms in such a way that their terms
are dimensionally homogeneous and coincide with the standard definition when
the dimensional parameter R0 is equal to one. For instance, we have that

‖ϕ‖
C1,β
(

B′
R0

) = ‖ϕ‖
L∞
(

B′
R0

) + R0‖∇ϕ‖L∞(B′
R0

) + R1+β

0 |∇ϕ|β,B′
R0

,

where

|∇ϕ|β,B′
R0

= sup
x ′,y′∈BR0

′
x ′ �=y′

|∇ϕ(x ′) − ∇ϕ(y′)|
|x ′ − y′|β .

In the same fashion, if D = � × (0, T ), T > 0, and u is a function belonging
to H2,1(D) the norm ‖u‖H2,1(D) is meant as follows

‖u‖2
H2,1(D)

= 1

T RN
0

∫

D

(
u2 + R2

0 |∇u|2 + R4
0 |D2u|2 + T 2(∂t u)2) dx dt,

and so on for any other integral or fractional order Sobolev space defined on D
or on � × (0, T ), � being a portion of ∂�. For what concerns the definition and
main properties of these Sobolev spaces we refer to [17].

2.1 The instability result

Let � = B1\D, where D is a compact subset of B1. Let A = ∂ B1 = S
N−1, I =

∂ D. We also set � = A. For simplicity, throughout this subsection, we also set
the dimensional parameter R0 equal to 1. We set Q = B1 × (π/2, 3π/2) ⊂ R

N+1

and  = A × (π/2, 3π/2).
We wish to remark that we could equivalently consider the time interval (0, π)

or (0, 1) instead. We have chosen (π/2, 3π/2) only because it will turn out to be
convenient for the purpose of the proof.

The following Hilbert spaces will be used. The space H = H3/2,3/4
,0 (), its

dual H ′ = H1 = H−3/2,−3/4(), and H0 = H1/2,1/4(). We consider now the
interpolation spaces between H0 and H1. For what concerns interpolation we refer
again to [17]. For any θ , 0 ≤ θ ≤ 1, we define Hθ as [H0, H1]θ , where this denotes
the interpolation at level θ between the two spaces H0 and H1. The norm in Hθ

will be denoted by ‖ · ‖θ . First, we notice that for any θ , 0 ≤ θ ≤ 1, there exists
a constant Cθ , which depends on θ only, such that the following interpolation
inequality holds for any ψ ∈ H0

‖ψ‖θ ≤ Cθ‖ψ‖1−θ
0 ‖ψ‖θ

1. (2.1)
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By using the interpolation properties of fractional order Sobolev spaces on ,
see [17], we can characterize Hθ as follows

Hθ =
{

H2(1/4−θ),1/4−θ () if 0 ≤ θ ≤ 1/4,

H−2(θ−1/4),−(θ−1/4)() if 1/4 ≤ θ ≤ 1, θ �= 3/4.
(2.2)

Let us notice the interesting case of θ = 1/4, where we have Hθ = L2(), and
that H3/4 does not coincide with H−1,−1/2().

Let us fix an integer m ≥ 2 and positive constants δ, b and r .
To any strictly positive function g defined on rS

N−1 = ∂ Br , we denote
its radial subgraph as subgraphrad(g) = {y ∈ R

N : y = ρω, 0 ≤ ρ ≤
g(rω), ω ∈ S

N−1}. Then, Xmbδ(B̄r ) denotes the set given by {subgraphrad(g) :
g ∈ C∞(rS

N−1), ‖g‖Cm (rSN−1) ≤ b and r ≤ g ≤ r + δ}.
Let us consider the metric space (X, d) = (Xmb 1

4
(B̄1/2), dH) where dH de-

notes the Hausdorff distance, namely

dH(D1, D2) = max

{

sup
x∈D1

dist(x, D2), sup
x∈D2

dist(x, D1)

}

,

for any D1, D2 ∈ X . Let us notice that every D ∈ X is closed, is star-shaped with
respect to the origin and satisfies B̄1/2 ⊂ D ⊂ B̄3/4.

For any D ∈ X , we set Q(D) = (B1\D) × (π/2, 3π/2), (D) = ∂ D ×
(π/2, 3π/2). If D = ∅, then we set Q(D) = Q and (D) = ∅.

For any D ∈ X ∪ {∅}, we consider the operator D(D) : H �→ H0 which is
defined as follows. For any ψ ∈ H , let u ∈ H2,1(Q(D)) be the solution to






∂t u − �u = 0 in Q(D),

u(x, π/2) = 0 x ∈ �\D,

u = 0 on (D),

u = ψ on .

(2.3)

Then, for any ψ ∈ H , we set

D(D)ψ = ∂u

∂ν
|, u solution to (2.3). (2.4)

We have that Theorems 4.3 and 6.2 in [17, Chapter 4] imply, respectively,
existence and uniqueness of a solution u ∈ H2,1(Q(D)) to (2.3) and its continuous
dependence from the boundary datum ψ ∈ H . Finally, by the trace theorem [17,
Chapter 4, Theorem 2.1], we can conclude that, for any D ∈ X ∪{∅}, the operator
D(D) : H �→ H0 is linear and bounded. We can also consider D(D) as a linear
and bounded operator between H and H ′ = H1, by setting

〈D(D)ψ, φ〉H ′,H =
〈
∂u

∂ν
|, φ

〉

H ′,H
=
∫



∂u

∂ν
φ, for any ψ, φ ∈ H, (2.5)

where u solves (2.3) and 〈·, ·〉H ′,H is the duality pairing between H ′ and H .
Let us remark that the operator D is usually referred to as the Dirichlet-to-

Neumann map. We are in the position of stating the instability result.
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Theorem 2.3 Let us fix an integer m ≥ 2 and a positive constant b. Let (X, d) =
(Xmb 1

4
(B̄1/2),dH). Then there exists a positive constant δ1, depending on m and b

only, such that for every δ, 0 < δ < δ1, we can find D1, D2 ∈ X satisfying

d(Di , B̄1/2) ≤ δ, f or any i = 1, 2; d(D1, D2) ≥ δ; (2.6)

and, for any θ , 0 ≤ θ ≤ 1,

‖D(D1) − D(D2)‖L(H,Hθ ) ≤ K exp




−θδ

− N − 1

2m(2N + 1)




 , (2.7)

where K is a constant depending on m, b and θ only.

2.2 The stability result

Let M , R0, E , F , λ, �, T and β be given positive numbers with λ, β ∈ (0, 1].
Theorem 2.5 is based on the following assumptions and a priori information.

Assumptions on the domain and the accessible part of the boundary

We assume that � is a bounded domain in R
N satisfying

|�| ≤ M RN
0 , (2.8)

where |�| denotes the Lebesgue measure of �. We also assume that

∂� is of C0,1 class with constants R0, E . (2.9)

We shall distinguish two nonempty parts A, I of ∂� which satisfy

I ∪ A = ∂�,
◦
I ∩ ◦

A= ∅, I ∩ A = ∂ A = ∂ I, (2.10)

where interiors and boundaries are intended here in the relative topology of ∂�.
Moreover we assume that we can select a portion � of A satisfying

∂� ∩ BR0(P1) ⊂ � ⊂ AR0, (2.11)

where P1 is a point belonging to � and AR0 = {x ∈ ∂� : dist(x, I ) ≥ R0}.
Remark 2.4 Observe that earlier condition (2.9) implies a lower bound on the di-
ameter of � and on the diameter of every connected component of ∂�. On the
other hand, conditions (2.8) and (2.9) imply an upper bound on the diameter of �.

A priori information on the unknown part of the boundary

We suppose that

I is of C1,β class with constants R0, E . (2.12)
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Assumptions about the prescribed boundary datum

We shall assume that the Dirichlet datum f appearing in problem (1.1) belongs to
H1/2,1/4(A × (0, T )), it is nontrivial and satisfies

supp f ⊂ AR0 × [0, T ], ‖ f ‖H1/2,1/4(A×(0,T ))

‖ f ‖L2(A×(0,T ))

≤ F. (2.13)

Let us notice that f can be trivially extended to ∂� × (0, T ) by setting f = 0 on
I × (0, T ). In such a way, denoting

ST = ∂� × (0, T ),

we shall often consider f as belonging to H1/2,1/4(ST ) and we shall set, unless
otherwise specified,

‖ f ‖ = ‖ f ‖H1/2,1/4(ST ).

Assumptions about the thermal conductivity

We assume that the thermal conductivity κ = κ(x, t), (x, t) ∈ R
N × R, is a

symmetric N × N matrix satisfying the following conditions for every (x, t),
(y, s) ∈ R

N+1 and every ξ ∈ R
N

λ|ξ |2 ≤ κ(x, t)ξ · ξ ≤ λ−1|ξ |2, (2.14)

|κ(x, t) − κ(y, s)| ≤ �

( |x − y|
R0

+ |t − s|
T

)

. (2.15)

In the sequel we shall refer to the set of numbers {R2
0/T, M, E, F, λ,�, β} as

to the a priori data. We shall also use the following notation

W (� × (0, T )) = {v : v ∈ L2((0, T ); H1(�)), ∂tv ∈ L2((0, T ); H−1(�))}.

Theorem 2.5 Let �1, �2 be two domains satisfying (2.8), (2.9). For any i =
1, 2, let Ai , Ii , satisfying (2.10), be the accessible and inaccessible part of ∂�i ,
respectively. Assume that A1 = A2 = A and that �1 and �2 lie on the same
side of A. Let us take � ⊂ A satisfying (2.11). Finally, we suppose that, for any
i = 1, 2, Ii satisfies the a priori information (2.12).

Let us assume that (2.13)–(2.15) are also satisfied and let ui ∈ W (�i ×(0, T ))
be the weak solution to (1.1) when � = �i , i = 1, 2. If, given ε > 0, we have

R1/2
0 ‖κ∇u1 · ν − κ∇u2 · ν‖L2(�×(0,T )) ≤ ε, (2.16)

then we have
dH(�̄1, �̄2) ≤ R0ω(ε/‖ f ‖), (2.17)

where ω is an increasing continuous function on [0, ∞) which satisfies

ω(s) ≤ C | log s|−C1, f or every s < 1, (2.18)

and C, C1 are positive constants depending on the a priori data only.
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3 Proof of Theorem 2.3

We begin with the following definition.

Definition 3.1 Let (X, d) be a metric space. For a given positive δ, Z ⊂ X is
δ-discrete if for any two distinct points z1, z′

1 in Z we have d(z1, z′
1) ≥ δ.

Let (X, d) be as in the hypotheses of Theorem 2.3. Let us set D0 = B̄1/2 and
let us call, for any δ > 0, Xδ = {D ∈ X : d(D, D0) ≤ δ}. We observe that for
any δ, 0 < δ ≤ 1/4, we have Xδ = Xmbδ(B̄1/2). We have that (X, d) satisfies the
following proposition, see for instance [7, Proposition 3.1].

Proposition 3.2 There exists δ0 > 0, depending on m and b only, such that for any
δ, 0 < δ < δ0, we can find Zδ ⊂ Xδ such that Zδ is δ-discrete, with respect to the
Hausdorff distance, and Zδ has at least exp(2−N δ

(N−1)/m
0 δ−(N−1)/m) elements.

Before proving Theorem 2.3, we need to introduce some further notation. Let
Q̃ = � × (0, 2π), ̃ = A × (0, 2π) and, for any D ∈ X , let Q̃(D) = (�\D) ×
(0, 2π) and ̃(D) = ∂ D × (0, 2π). Clearly, we set Q̃(∅) = Q̃ and ̃(∅) = ∅.

Let us consider the Hilbert space L2(̃) endowed with the scalar product

(ψ, φ)0 =
∫

̃

ψφ, for any ψ, φ ∈ L2(̃).

We can choose as an orthonormal basis of L2(A) the following set

{ f jp : j ≥ 0 and 1 ≤ p ≤ p j } (3.1)

where each f jp is a real valued spherical harmonic of degree j , j being a non-
negative integer. Therefore, we have that

−�A f jp = λ j f j p = j ( j + N − 2) f jp, (3.2)

where �A is the Laplace–Beltrami operator on A. For any j ≥ 0, the integer p j is
the dimension of the space of spherical harmonics of degree j and we have that,
see for instance [20, p. 4],

p j =





1 if j = 0,

(2 j + N − 2)( j + N − 3)!
j !(N − 2)! if j ≥ 1,

so that
p j ≤ 2( j + 1)N−2, j ≥ 0.

Then we have that the set
{

ψnjp = 1√
π

sin

(
n

2
t

)

f jp(ω) : n ≥ 1, j ≥ 0 and 1 ≤ p ≤ p j

}

(3.3)

is an orthonormal basis of L2(̃) with respect to the scalar product (·, ·)0.
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For any s, 0 < s ≤ 1, let us consider the Sobolev space H2s,s
,0 (̃). We have the

following properties. First, H2s,s
,0 (̃) = H2s,s(̃) if and only if s ≤ 1/2. Then, for

any s �= 1/2, we can endow H2s,s
,0 (̃) with the following scalar product

(ψ, φ)s =
∑

n≥1, j≥0
1≤p≤p j

(

1 + λ2s
j +
(n

2

)2s
)

(ψ,ψnjp)0(φ, ψnjp)0,

for any ψ, φ ∈ H2s,s
,0 (̃), (3.4)

with respect to which the set




ψ̃njp = ψnjp

√

1 + λ2s
j + ( n2

)2s
: n ≥ 1, j ≥ 0 and 1 ≤ p ≤ p j





(3.5)

is an orthonormal basis of H2s,s
,0 (̃).

For any n, j and p, let us define γ (ψ̃njp) = √
n + j and let us call, for any

positive integer q , N1(q) = #{(n, j, p) : γ (ψ̃njp) ≤ q}, where # denotes the
number of elements. By the previous estimate on p j , we have that

N1(q) ≤ 2(1 + q)2N , for any q ∈ N. (3.6)

Let H̃ = H3/2,3/4
,0 (̃), H̃ ′ = H̃1 = H−3/2,−3/4(̃) and H̃0 = H1/2,1/4(̃).

For any D ∈ X ∪ {∅}, let us define in the same fashion as before the Dirichlet-
to-Neumann map associated to D, that is the linear and bounded operator D̃(D) :
H̃ �→ H̃0 such that for any ψ̃ ∈ H̃ we have

D̃(D)ψ̃ = ∂ ũ

∂ν

∣
∣
∣
∣
̃

,

where ũ solves 




∂t ũ − �ũ = 0 in Q̃(D),

ũ(x, 0) = 0 x ∈ �\D,

ũ = 0 on ̃(D),

ũ = ψ̃ on ̃.

(3.7)

Let us also define the following two linear and bounded operators G̃, G̃∗ :
H̃ �→ H̃ such that for any ψ̃ ∈ H̃ we have

G̃ψ̃(ω, t) = ψ̃(ω, t)e−1/t t−3/2,
(3.8)

G̃∗ψ̃(ω, t) = ψ̃(ω, t)e−1/(2π−t)(2π − t)−3/2.

We have that there exists a constant C1 such that

‖G̃‖L(H̃ ,H̃)
, ‖G̃∗‖L(H̃ ,H̃)

≤ C1. (3.9)
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Now we can define, for any D ∈ X ∪ {∅}, the following linear and bounded
operator D̃1(D) : H̃ �→ H̃ ′ as follows

〈D̃1(D)ψ̃, φ̃〉H̃ ′,H̃ = 〈D̃(D)G̃ψ̃, G̃∗φ̃〉H̃ ′,H̃ , for any ψ̃, φ̃ ∈ H̃ . (3.10)

Then the proof of Theorem 2.3 is an immediate consequence of the following
two propositions.

Proposition 3.3 There exists a constant C2, depending on m and b only, such that
for any D ∈ X and any ψ̃ ∈ H̃

‖(D̃(D) − D̃(∅))ψ̃‖H̃0
≤ C2‖ũ0‖H2,1(B7/8×(0,2π)), (3.11)

where ũ0 solves (3.7) with D = ∅.

Proposition 3.4 There exists a positive constant δ1, depending on m and b only,
such that for any δ, 0 < δ < δ1, we can find D1, D2 ∈ X satisfying (2.6) and such
that

‖D̃1(D1) − D̃1(D2)‖L(H̃ ,H̃ ′) ≤ 2 exp
(− δ

− N−1
2m(2N+1)

)
. (3.12)

Proof of Theorem 2.3 We observe that there exists a constant C3 such that the
following two inequalities are satisfied for any ψ̃ ∈ H̃

‖D̃(∅)ψ̃‖H̃0
≤ C3‖ũ0‖H2,1(Q̃)

, ‖ũ0‖H2,1(Q̃)
≤ C3‖ψ̃‖H̃ .

By Proposition 3.3, we have that there exists a constant C4, depending on m
and b only, such that

‖D̃(D)‖L(H̃ ,H̃0)
≤ C4, for any D ∈ X. (3.13)

Then, we consider the following fact. For any ψ ∈ H , let ψ̃ ∈ H̃ be its
extension by 0 outside . We have that J : H �→ H̃ , where J (ψ) = ψ̃ for
any ψ ∈ H , is a linear isometry. Furthermore, we have that the linear operators
G, G∗ : H �→ H such that for any ψ ∈ H

G(ψ) = G̃(ψ̃)|, G∗(ψ) = G̃∗(ψ̃)|,

are invertible and there exists a constant C5 such that

‖G‖L(H,H), ‖G∗‖L(H,H), ‖G−1‖L(H,H), ‖(G∗)−1‖L(H,H) ≤ C5. (3.14)

For any D ∈ X , for any ψ , φ ∈ H , we have that

D(D)ψ = D̃(D)Jψ | (3.15)

and

〈D(D)ψ, φ〉H ′,H = 〈D̃(D)Jψ, Jφ〉H̃ ′,H̃

= 〈D̃1(D)J G−1ψ, J (G∗)−1φ〉H̃ ′,H̃ . (3.16)
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By (3.15) and (3.13), we infer that for any D1, D2 ∈ X we have

‖D(D1) − D(D2)‖L(H,H0) ≤ 2C4. (3.17)

By (3.16) and (3.14), we infer that for any D1, D2 ∈ X we have

‖D(D1) − D(D2)‖L(H,H ′) ≤ C2
5‖D̃1(D1) − D̃1(D2)‖L(H̃ ,H̃ ′). (3.18)

The proof of Theorem 2.3 follows immediately from Proposition 3.4, (3.17),
(3.18) and the interpolation inequality (2.1). �

Proof of Proposition 3.3 Let χ ∈ C∞
0 (B1) be a cutoff function such that

0 ≤ χ ≤ 1, χ ≡ 1 in B5/6, χ ≡ 0 outside B7/8.

Let us take the auxiliary function v = ũ − (1 − χ)ũ0, ũ being the solution to
(3.7). We have that ∂v

∂ν
|̃ = (D̃(D) − D̃(∅))ψ̃ and that v solves






∂tv − �v = f in Q̃(D),

v(x, 0) = 0 x ∈ �\D,

v = 0 on ̃(D),

v = 0 on ̃,

(3.19)

where f = −�χ ũ0 − 2∇χ · ∇ũ0 and hence, by construction of χ , it is supported
in (B̄7/8\B5/6) × [0, 2π] and, for a constant C6,

‖ f ‖L2(Q̃(B̄1/2)
≤ C6‖ũ0‖H2,1(B7/8×(0,2π)). (3.20)

Then we perform the following change of variables. There exists a constant
C7, depending on m and b only, such that for any D ∈ X we can find a bijective
function ϕ : B1 �→ B1 satisfying

ϕ(x) = x, for any x ∈ B̄1/4 ∪ (B1\B5/6), ϕ(B̄1/2) = D,

‖ϕ‖Cm(B̄1)
, ‖ϕ−1‖Cm (B̄1)

≤ C7.

Let w(x, t) = v(ϕ(x), t). We have that w solves






a∂tw − div(A∇w) = f in Q̃(B̄1/2),

w(x, 0) = 0 x ∈ �\B̄1/2,

w = 0 on ̃(B̄1/2),

w = 0 on ̃,

(3.21)

where a is a function depending on x only, A is a symmetric N × N matrix
depending on x only, and there exists a constant c1 > 0, depending on m and
b only, such that for any x ∈ B1 we have

a(x) ≥ c1, A(x)� · � ≥ c1‖�‖2, for any � ∈ R
N ,

‖a‖Cm−1(B̄1)
, ‖A‖Cm−1(B̄1)

≤ 1/c1.
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By standard regularity estimates, see for instance [14, Chapter III, Sect. 6], we
obtain that there exists a constant C8, depending on c1 only, so that

‖w‖H2,1(Q̃(B̄1/2))
≤ C8‖ f ‖L2(Q̃(B̄1/2))

.

Therefore, the proof is concluded by noticing that, by the trace theorem [17,
Chapter 4, Theorem 2.1], there exists a constant C9 such that

∥
∥
∥
∥
∂w

∂ν

∣
∣
∣
∣
̃

∥
∥
∥
∥

H̃0

≤ C9‖w‖H2,1(Q̃(B̄1/2))

and that, by construction, ∂w
∂ν

|̃ = ∂v
∂ν

|̃ . �
We now turn our attention to Proposition 3.4. Let us fix integers n ≥ 1, j ≥ 0,

p, 1 ≤ p ≤ p j , and let

�njp(ω, t) = yn(t) f jp(ω), (ω, t) ∈ A × R,

where

yn(t) =
{

1√
π

sin( n
2 t)e−1/t t−3/2 if t > 0,

0 if t ≤ 0.

Let us remark that yn ∈ C∞(R) and yn ∈ Hm(R) for any nonnegative integer
m. Then we consider the following boundary value problem. Let U = Unjp(x, t)
be a classical solution to






∂tU − �U = 0 in � × (0, +∞),

U (x, t) = 0 (x, t) ∈ � × (−∞, 0],
U = �njp on A × R.

(3.22)

The following decay estimate of exponential type will be crucial.

Proposition 3.5 For any n, j , p, let Unjp solve (3.22). Let us fix ρ0, 0 < ρ0 < 1.
Then there exist positive constants K1 and k1, depending on ρ0 only, such that

‖Unjp‖L2(Bρ0×R) ≤ K1 exp(−k1
√

n + j). (3.23)

The proof of Proposition 3.5 is rather technical and, therefore, we postpone it
to the end of the section. As a corollary of Proposition 3.5, we obtain the following
result.

Lemma 3.6 For any n, j , p, and any D ∈ X, we have

‖(D̃1(D) − D̃1(∅))ψ̃njp‖H̃ ′ ≤ K2 exp(−k1γ (ψ̃njp)), (3.24)

where K2 depends on m and b only.
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Proof By (3.9) and (3.10), and the relation between ψnjp and ψ̃njp, (3.5), we
obtain that

‖(D̃1(D) − D̃1(∅))ψ̃njp‖H̃ ′ ≤ C1‖(D̃(D) − D̃(∅))G̃ψnjp‖H̃ ′ .

Let Unjp solve (3.22). Then we have that the restriction of Unjp to the time
interval (0, 2π) solves (3.7) with D = ∅ and boundary datum G̃ψnjp. By (3.11),
we infer that there exists a constant K3, depending on m and b only, such that

‖(D̃1(D) − D̃1(∅))ψ̃njp‖H̃ ′ ≤ K3‖Unjp‖H2,1(B7/8×(0,2π)).

Then the conclusion follows by Proposition 3.5 and a Caccioppoli-type in-
equality of the form

‖Unjp‖H2,1(Bρ1×(0,2π)) ≤ K4‖Unjp‖L2(Bρ0×(0,2π)),

where 0 < ρ1 < ρ0 < 1 and K4 depends on ρ0 and ρ1 only. For similar
Caccioppoli-type inequalities we refer to [14, Chapter III, Sect. 6]. �

Now we almost have what is needed to prove Proposition 3.4 and, hence, con-
clude the proof of Theorem 2.3.

Proof of Proposition 3.4 We need to introduce the operator which is adjoint to
D̃1. For any D ∈ X ∪ {∅}, let us define the bounded and linear operator D̃∗(D) :
H̃ �→ H̃0 such that, for any φ̃ ∈ H̃ , we have

D̃∗(D)φ̃ = ∂ṽ

∂ν

∣
∣
∣
∣
̃

,

where ṽ solves 




∂t ṽ + �ṽ = 0 in Q̃(D),

ṽ(x, 2π) = 0 x ∈ �\D,

ṽ = 0 on ̃(D),

ṽ = φ̃ on ̃.

(3.25)

Then we define D̃∗
1(D) : H̃ �→ H̃ ′ so that

〈D̃∗
1(D)φ̃, ψ̃〉H̃ ′,H̃ = 〈D̃∗(D)G̃∗φ̃, G̃ψ̃〉H̃ ′,H̃ , for any φ̃, ψ̃ ∈ H̃ .

Using the weak formulation of (3.7) and (3.25), it is easy to show that the
following adjointness property holds true for any D ∈ X ∪ {∅}

〈D̃1(D)ψ̃, φ̃〉H̃ ′,H̃ = 〈D̃∗
1(D)φ̃, ψ̃〉H̃ ′,H̃ , for any ψ̃, φ̃ ∈ H̃ .

It is not difficult to show, with a simple change of variable in time, that (3.24)
holds true if we replace D̃1 with D̃∗

1. Then, through the adjointness, we have that
for any n, n′, j , j ′, p, p′

|〈(D̃1(D)−D̃1(∅))ψ̃njp, ψ̃n′ j ′ p′ 〉H̃ ′,H̃ |≤K5 exp(−k1 max{γ (ψ̃njp), γ (ψ̃n′ j ′ p′)}),
(3.26)

where K5 depends on m and b only.
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Then, recalling Proposition 3.2, the properties of the orthonormal basis {ψ̃njp}
and of γ , in particular (3.6), and the decay estimate (3.26), we notice that we
are exactly in the position of applying the abstract instability theorem stated as
Theorem 2.1 in [7]. Hence, Proposition 3.4 follows. �

Proof of Proposition 3.5 We suppose that Unjp can be written as follows

Unjp(x, t) = Vnjp(r, t) f jp(ω), r = ‖x‖, ω = x/‖x‖.
For the time being, let us denote V = Vnjp(r, t), Vt = ∂t V and Vr = ∂V

∂r , Vrr = ∂2V
∂r2 .

We have that V satisfies





Vt − Vrr − N − 1

r
Vr + j ( j + N − 2)

r2
V = 0 in (0, 1) × (0, +∞),

V (r, t) = 0 (r, t) ∈ (0, 1) × (−∞, 0],
V (1, t) = yn(t) t ∈ (0,+∞),

V (0, t) = 0 (Vr (0, t) = 0) t ∈ (0,+∞), j ≥ 1 ( j = 0).
(3.27)

Let V̂ be the Fourier transform of V with respect to time, that is

V̂ (r, ξ) =
∫ +∞

−∞
e−iξ t V (r, t) dt, ξ ∈ R, r ∈ (0, 1).

By using classical tables of integral transforms, see for instance [9], we have
that the Fourier transform of yn is, for any ξ ∈ R,

ŷn(ξ) = e−√
2|ξ−n/2|

2i
(cos(
√

2|ξ − n/2|) − sign(ξ − n/2)i sin(
√

2|ξ − n/2|))

− e−√
2|ξ+n/2|

2i
(cos(
√

2|ξ + n/2|) − sign(ξ + n/2)i sin(
√

2|ξ + n/2|)),

hence the following estimate holds

|ŷn(ξ)| ≤ e−√
2|ξ−n/2| + e−√

2|ξ−(−n/2)|, for any ξ ∈ R. (3.28)

We have that V̂ solves





V̂rr + N−1
r V̂r − (iξ + j ( j+N−2)

r2

)
V̂ = 0 in (0, 1) × R,

V̂ (1, ξ) = ŷn(ξ) ξ ∈ R,

V̂ (0, ξ) = 0 (V̂r (0, ξ) = 0) ξ ∈ R, j ≥ 1 ( j = 0).

(3.29)

If we choose σ , α and ν so that σ 2 = −iξ , 1 − 2α = N − 1 and α2 − ν2 =
− j ( j + N − 2), that is

σ =
√

2|ξ |
2

(i − signξ), α = 2 − N

2
, ν =

√

(N − 2)2

4
+ j ( j + N − 2),

(3.30)
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then, using formulae (5.4.11) and (5.4.12) in [15], we infer that for any ξ ∈ R,
any r ∈ (0, 1),

V̂ (r, ξ) = r
2−N

2
(
aξ

1 Jν(σr) + aξ
2 Yν(σr)

)
,

where Jν and Yν are Bessel functions of order ν of first and second kind, respec-
tively, and aξ

1 and aξ
2 are coefficients depending on ξ . Concerning Bessel functions

we refer mainly to [23] and [15]. We always restrict ourselves to the case in which
ν ≥ 0, and we recall here the following basic properties. The Bessel functions
have the following asymptotic behaviour as z → 0

Jν ∼ zν, Yν ∼ (1/z)ν, as z → 0, if ν > 0,

J0 → 1, Y0 ∼ log z/2, as z → 0,
(3.31)

and these formulae hold for the derivative

d

dz
(z−ν Jν(z)) = −z−ν Jν+1(z),

d

dz
(z−νYν(z)) = −z−νYν+1(z). (3.32)

Then, it is easy to show that the boundary condition at r = 0 is satisfied if and
only if aξ

2 = 0.
For any r > 0 and any ξ �= 0, we have that Jν(σr) �= 0, see for instance

[15, Theorem 2, p. 127] and [23, Chapter XV]. Therefore, inserting the boundary
condition at r = 1, we obtain that for any r ∈ (0, 1),

V̂ (r, ξ) = r
2−N

2
Jν(σr)

Jν(σ )
ŷn(ξ), for any ξ �= 0. (3.33)

We wish to estimate the modulus of Jν (σr)
Jν (σ )

. We use the following formula, see
[23, formula 3, p. 498],

Jν(z) = (z/2)ν

(ν + 1)

+∞∏

l=1

(

1 − z2

τ 2
ν,l

)

, (3.34)

where 0 < τν,1 < τν,2 < · · · < τν,l < · · · are the positive zeroes of Jν and here
(ν + 1) is the value of the Gamma function in ν + 1.

We infer that
∣
∣
∣
∣

Jν(σr)

Jν(σ )

∣
∣
∣
∣ = rν

+∞∏

l=1

(
τ 4
ν,l + r4ξ2

τ 4
ν,l + ξ2

)1/2

.

We have that

log
+∞∏

l=1

(
τ 4
ν,l + r4ξ2

τ 4
ν,l + ξ2

)1/2

≤ −1

2
(1 − r4)ξ2

+∞∑

l=1

1

τ 4
ν,l + ξ2

.

In order to evaluate the right-hand side of the last formula, we make use of the
following properties of the zeroes of the Bessel functions. First, for any l ∈ N, the
function ν �→ τν,l is increasing, see [23, p. 508], therefore

+∞∑

l=1

1

τ 4
ν,l + ξ2

≥
+∞∑

l=1

1

τ 4[ν]+1,l + ξ2
,
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where [ν] denotes the integer part of ν. The so-called interlacing property [23,
p. 479], implies that

+∞∑

l=1

1

τ 4[ν]+1,l + ξ2
≥

+∞∑

l=[ν]+2

1

τ 4
0,l + ξ2

.

By Bôcher’s Theorem, see [23, p. 494], we obtain that τ0,l ≤ (2l − 1)τ0,1, for any
l ∈ N. Therefore, if we denote τ = τ0,1, which is a positive absolute constant, we
can conclude that

+∞∑

l=1

1

τ 4
ν,l + ξ2

≥
+∞∑

l=[ν]+2

1

τ 4(2l − 1)4 + ξ2
,

which in turn is greater than or equal to

∫ +∞

[ν]+2

1

τ 4(2x − 1)4 + ξ2
dx = 1

2τ |ξ |3/2

∫ +∞
(2[ν]+3)τ√|ξ |

1

y4 + 1
dy.

If we estimate the last integral, distinguishing whether the first endpoint of the
interval of integration is less than 1 or not, we can find a positive absolute constant
K6 such that

1

2

+∞∑

l=1

1

τ 4
ν,l + ξ2

≥ K6 min

{
1

|ξ |3/2
,

1

(2[ν] + 3)3τ 3

}

.

We continue by noticing that there exists a positive constant K7 such that

1

(2[ν] + 3)3τ 3
≥ K7

( j + 1)3
, for any j ≥ 0.

Thus, recalling (3.33), there exists K8 > 0 such that we have, for any r ∈ (0, 1)
and any ξ �= 0, the following crucial estimate

|V̂ (r, ξ)| ≤ rν− N−2
2 exp

(

−K8(1 − r4)ξ2 min

{
1

|ξ |3/2
,

1

( j + 1)3

})

|ŷn(ξ)|.
(3.35)

We recall that |ŷn(ξ)| can be estimated as in (3.28).
Let us now fix ρ0, 0 < ρ0 < 1. We wish to estimate
∫

Bρ0×(0,+∞)

|u(x, t)|2 dx dt = 1

2π

∫ ρ0

0

∫ +∞

−∞
r N−1|V̂ (r, ξ)|2 dξ dr.

Here we have used the fact that ‖ f jp‖L2(A) = 1 and Plancherel’s Theorem. Then,
by (3.35) and (3.28) we have

∫

Bρ0×(0,+∞)

|u(x, t)|2 dx dt ≤ 1

2π

ρ2ν+2
0

2ν + 2
E, (3.36)
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where

E ≤ 4
∫ +∞

−∞
exp

(

−2K8(1 − ρ4
0)ξ2 min

{
1

|ξ |3/2
,

1

( j + 1)3

})

e−2
√

2|ξ−n/2| dξ.

Since ν ≥ j and ρ0 < 1, then

1

2π

ρ2ν+2
0

2ν + 2
≤ ρ

2 j
0 . (3.37)

We now turn our attention to the term E . We distinguish between two cases.
First, if n/4 ≥ ( j + 1)2, we have, setting K9 = K8(1 − ρ4

0),

E ≤ 4
∫

|ξ |≤n/4
exp(−√

2n) dξ + 4
∫

|ξ |≥n/4
exp(−K9

√
n) exp(−2

√
2|ξ − n/2|) dξ,

therefore, for a positive absolute constant K10,

E ≤ 2n exp(−√
2n) + K10 exp(−K9

√
n).

We conclude that there exist positive constants K11, K12, depending on ρ0
only, such that

E ≤
{

K11 exp(−K12
√

n), if n/4 ≥ ( j + 1)2,

K11, if n/4 < ( j + 1)2.
(3.38)

Then, inserting (3.37) and (3.38) into (3.36), a simple computation yields to
(3.23) with constants K1 and k1 depending on ρ0 only.

In order to conclude the proof, we have just to check that if we set

U (x, t) = V (‖x‖, t) f jp(x/‖x‖), (x, t) ∈ �\{0} × R,

where

V (r, t) = 1

2π

∫ +∞

−∞
eitξ V̂ (r, ξ) dξ, (r, t) ∈ (0, 1) × R

and V̂ is defined as in (3.33), then U can be extended to a continuous function on
�̄ × R which satisfies (3.22).

For this purpose, the following estimate will be crucial. For any η ≤ 0 and any
ξ ∈ R, let ζ = ξ + iη and σ 2 = −iζ , with arg(σ ) satisfying π/4 ≤ arg(σ ) ≤
3π/4. Then, if we apply (3.34) again we obtain that

∣
∣
∣
∣

Jν(σr)

Jν(σ )

∣
∣
∣
∣ ≤ rν, for any η ≤ 0, ξ �= 0, r ∈ (0, 1). (3.39)

Since the support of yn is contained in [0, +∞), (3.39) and the Paley–Wiener
theory, see for instance [11, Theorem 7.4.3], imply that, for any r ∈ (0, 1), the
support of V (r, t) is contained in [0, +∞) as well. Finally, the regularity of yn ,
(3.29), that is the equation and the boundary conditions at r = 0 and r = 1
satisfied by V̂ , the asymptotic behaviour of the Bessel functions as z → 0, and,
when j = 0, formula (3.32), imply that V satisfies (3.27) and, in turn, that the
function U defined previously is indeed the solution to (3.22). �
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4 Quantitative estimates of unique continuation and proof of Theorem 2.5

First, we shall prove some Carleman estimates and we shall apply them to
solutions to parabolic equations and we shall obtain an optimal three cylinder
inequality at the boundary, a stability estimate for Cauchy problems and an
estimate of smallness propagation, which are the main ingredients of the proof of
Theorem 2.5. Then, we shall sketch the proof of Theorem 2.5. Since the Carleman
estimates are obtained by the technique employed in [10] we shall adopt the
notation used in that paper.

Let {gi j (x, t)} be a symmetric N × N matrix whose entries are real functions.
When ξ ∈ R

N and (x, t), (y, s) ∈ R
N+1, we assume that

λ−1|ξ |2 ≤
N∑

i, j=1

gi j (x, t)ξiξ j ≤ λ|ξ |2 (4.1)

and 


N∑

i, j=1

(gi j (x, t) − gi j (y, s))2





1/2

≤ �(|x − y| + |t − s|). (4.2)

Let q0 be a given positive number and let L be the following parabolic operator

Lu = ∂i (g
i j (x, t)∂ j u) − q0∂t u. (4.3)

For any positive numbers r and t0 we set Qt0
r = Br × (−t0, t0),

Q̃t0
r = (Br\{0}) × (−t0, t0). When h is a C0,1(RN−1) function such that

h(0) = 0, we shall denote by h the set

h = {(x, t) ∈ R
N+1 : xN = h(x ′)},

we shall denote by 
t0
h,r the set h ∩ Qt0

r and we shall denote by Qt0
h,r the set

Qt0
h,r = {(x, t) ∈ Qt0

r : xN > h(x ′)}.
If x = (x ′, h(x ′)) we denote by ν(x), or simply by ν, the unit vector of R

N

ν(x) = (−∇x ′h(x ′), 1)
√

1 + |∇x ′h(x ′)|2 .

To simplify the notation, we shall use some of the standard notation in
Riemannian geometry, but we shall always drop the corresponding volume ele-
ment in the definition of the Laplace–Beltrami operator associated to a Rieman-
nian metric. We do this because it simplifies the formulae appearing in the proofs
of the following lemmas, especially when the metric is allowed to depend on the
time variable and we make use of partial integration with respect to this variable.

In particular, if g(x, t) = {gi j (x, t)}N
i, j=1 denotes the inverse matrix of the

matrix of coefficients of L , we have g−1(x, t) = {gi j (x, t)}N
i, j=1, and, for any

function f and any two variable vector fields ξ and η, we set

ξ · η =∑N
i, j=1 gi j (x, t)ξiη j , |ξ |2 = ξ · ξ,

∇ f = g−1∇x f, div(ξ) =∑N
i=1 ∂iξ

i , � f = div(∇ f ).
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When h is a C0,1(RN−1) function and x = (x ′, h(x ′)) we denote by n(x, t),
or simply by n, the vector

n(x, t) = g−1(x, t)ν(x).

With this notation we have

Lu = �u − q0∂t u.

For the sake of brevity, in the sequel we shall denote, respectively, by
∫

the
integral over Q1

1 with respect to the Lebesgue measure dX = dx dt and by
∫

1
h,1

the integral over 1
h,1 with respect to the N -dimensional surface measure. In

Theorem 4.1 we shall adopt the following notation. We denote

ρ(x, t) =



N∑

i, j=1

gi j (0, t)xi x j





1/2

. (4.4)

For positive numbers a and µ to be chosen later we set

σ(x, t) = ρ(x, t) − a(ρ(x, t))β




N∑

j=1

gN j (0, t)x j



 (4.5)

and

w(x, t) = ϕ(σ(x, t)), where ϕ(s) = s exp

(∫ s

0

e−µτβ − 1

τ
dτ

)

. (4.6)

Observe that ρ is the distance function from x = 0 associated to the metric
∑N

i, j=1 gi j (0, t) dxi dx j and σ is a perturbation of ρ satisfying

|σ(x, t) − ρ(x, t)| ≤ Ca(ρ(x, t))1+β, (4.7)

where C depends on λ only.

Theorem 4.1 Assume that the parabolic operator L satisfies the conditions
(4.2) and (4.3) and let us take h ∈ C1,β(B ′

1) such that h(0) = |∇x ′h(0)| = 0
and ‖h‖C1,β (B′

1)
≤ E, with 0 < β ≤ 1 and E > 0. Then, there are constants

0 < d < 1, µ0 > 0, a0 > 0 and C > 1 depending on λ, �, E and β only such
that, for any α ≥ C(q0 + 1) and any u ∈ C1(Q̄1

h,1) ∩ C∞(Q1
h,1) such that u = 0

on 1
h,1 and suppu ⊂ Q1

d , the following inequality holds

C
∫

w2−2α(Lu)2 ≥
∫

(αwβ−2α|∇u|2 + α3wβ−2−2αu2), (4.8)

where w is defined by (4.5) and (4.6) with a = a0 and µ = µ0.
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We begin the proof of the previous theorem by setting, for any func-
tion w ∈ C2,1(Q1

1) such that w, |∇w| > 0 in Q1
h,1, the operator

Lα( f ) = w−α L(wα f ). We have

Lα( f ) = � f + α2 |∇w|2
w2

f − αq0(∂t log w) f + 2α
|∇w|2

w2
A( f ) − q0∂t f, (4.9)

where

A( f ) = w
∇w · ∇ f

|∇w|2 + 1

2
Fg

w f, Fg
w = w�w − |∇w|2

|∇w|2 . (4.10)

We shall denote by Mg
w the symmetric N × N matrix

Mg
w = 1

2
{Mi j + M ji }N

i, j=1, (4.11)

where, using the summation notation of repeated indices,

Mi j = 1

2
div

(
w∇w

|∇w|2
)

δi j − ∂ j

(
wgik∂kw

|∇w|2
)

+ 1

2
g jh

wgkl∂lw

|∇w|2 ∂k ghi − 1

2
Fg

wδi j .

(4.12)
The following lemmas hold true [10].

Lemma 4.2 Let ρ be defined by (4.4), let ϕ be a positive nondecreasing function
on (0, +∞). Let w be a function of C2,1(Q1

1) class such that w, |∇w| > 0 in
Q1

h,1. Let
φ(s) = ϕ(s)/(sϕ′(s)).

Then the symmetric matrix Mg
w satisfies Mg

w∇w = 0 and the following facts hold

Fg
ϕ(w) = φ(w)Fg

w − wφ′(w),

Mg
ϕ(w) = φ(w)Mg

w + wφ′(w)

(

I − ∇w ⊗ ∇w

|∇w|2 g

)

,

Fg(0,t)
ρ = N − 2,Mg(0,t)

ρ = 0.

Lemma 4.3 Let w be a function of C2,1(Q1
1) class such that w, |∇w| > 0 in

Q1
h,1. Then, for any α ≥ 1 and any u ∈ C1(Q̄1

1) ∩ C∞(Q1
1) such that u = 0 on

1
h,1 and suppu ⊂ Q1

1, the following inequality holds

∫
w2

|∇w|2 (Lα f )2 − Bw( f )

≥ 4α

∫

Mg
w∇ f · ∇ f + α

∫

Fg
w�( f 2) − 2q0

∫

Fg
w f ∂t f

+ 2α

∫ |∇w|2
w2

A( f )2 + q2
0

α

∫
w2

|∇w|2 (∂t f )2 − q0

∫

|∇ f |2∂t
w2

|∇w|2

− q0

∫
w2

|∇w|2 ∂t g
i j∂i f ∂ j f − 2q0

∫
w2∇|∇w|2 · ∇ f

|∇w|4 ∂t f

− 4α2q0

∫

(∂t log w)A( f ) f + 2αq2
0

∫

(∂t log w)
w2

|∇w|2 f ∂t f, (4.13)
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where

Bw( f ) = 2α

∫

1
h,1

w∇w · n
|∇w|2|n|2 (∇ f · n)2. (4.14)

Proof of Theorem 4.1. Let w be defined by (4.6). First of all we choose a in such
a way that ∇w · n ≥ 0 in a neighbourhood of 0. Denoting by (·|·) the Euclidean
scalar product we have

∇w · n = ϕ′(σ )(((g−1(x, t) − g−1(0, t))∇σ |ν) + (g−1(0, t)∇σ |ν)) (4.15)

and

(g−1(0, t)∇σ |ν) = a
(ρ(x, t))β
√

1 + |∇x ′h|2 + (x ′∇x ′h − h(x ′))
ρ(x, t)

√
1 + |∇x ′h|2

− aβ(x ′∇x ′h − h(x ′))
√

1 + |∇x ′h|2




N∑

j=1

gN j (0, t)x j



 (ρ(x, t))β−2.

(4.16)

Let us now choose a = 2Eλ−(β+1)/2. By (4.16) we obtain

(g−1(0, t)∇σ |ν) ≥ C−1|x ′|β, for every x ′ ∈ B ′
1/C ,

where C > 1 depends on λ, E and β only. With this value of a we also have

|((g−1(x, t) − g−1(0, t))∇σ |ν)| ≤ C |x |, on 1
h,1,

where C depends on λ, �, E and β only.
By (4.15), (4.14) and the previous inequalities, we obtain

Bw( f ) ≥ 0, (4.17)

for all f ∈ C1(Q̄1
h,1) ∩ C∞(Q1

h,1) such that f = 0 on 1
h,1 and supp f ⊂ Q1

1/C ,
where C > 1 depends on λ, �, E and β only.

With the previous choice of a and for a fixed number µ ≥ 1, we have
φ(s) = eµsβ

, where φ is defined in Lemma 4.2. Moreover, the following
properties can be easily checked on Q1

1/C for some constant C > 1 depending on
λ, �, E , β and µ only

|x |/C ≤ σ ≤ C |x |, σ/C ≤ w ≤ Cσ, 1/C ≤ |∇w| ≤ C,

|∂t (w
2/|∇w|2)| ≤ Cw2, |∂tφ| ≤ Cwβ, |∇|∇w|2| ≤ Cwβ−1,

|�φ| ≤ Cwβ−2, |Fg
w| ≤ C, |∂t log w| ≤ C.

(4.18)

In order to estimate from below the first integral on the right-hand side of
(4.13), we observe that if we denote

∇̃ f = ∇ f − (∇σ · ∇ f )

|∇σ |2 ∇σ = ∇ f − (∇w · ∇ f )

|∇w|2 ∇w,
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then from Lemma 4.2 we have

Mg
w∇ f · ∇ f = σφ′|∇̃ f |2 + φMg

σ ∇̃ f · ∇̃ f. (4.19)

Now, from Lemma 4.2, Mg(0,t)
ρ = 0, and by straightforward calculations we have

|Mg
σ | = |Mg

σ − Mg(0,t)
σ | + |Mg(0,t)

σ − Mg(0,t)
ρ | ≤ C0σ

β,

for any σ ≤ 1/C0, (4.20)

where C0 > 1 depends on λ, �, E and β only (note that C0 does not depend on µ).
By (4.19) and (4.20) we have, when supp f ⊂ Q1

1/C0
,

∫

Mg
w∇ f · ∇ f ≥

∫

(σφ′ − C0σ
βφ)|∇̃ f |2. (4.21)

Now we estimate from below the second and third integrals on the right-hand
side of (4.13). From Lemma 4.2 we have

Fg
w = (N − 2)φ + (Bφ − σφ′), (4.22)

where B = Fg
σ − (N − 2).

From Lemma 4.2, Fg(0,t)
ρ = N − 2, hence

|B(x, t)| ≤ |Fg
σ − Fg(0,t)

σ | + |Fg(0,t)
σ − Fg(0,t)

ρ | ≤ C0σ
β, for any σ ≤ 1/C0,

(4.23)
where C0 > 1 depends on λ, �, E and β only.

The identity

|∇ f |2 = |∇̃ f |2 + (∇w · ∇ f )2

|∇w|2 , (4.24)

(4.22) and the divergence theorem imply that
∫

Fg
w�( f 2) = (N − 2)

∫

f 2�(φ) + 2
∫

(Bφ − σφ′) f � f

+ 2
∫

(Bφ − σφ′)|∇̃ f |2

+ 2
∫

(Bφ − σφ′) (∇w · ∇ f )2

|∇w|2 , (4.25)

and
∫

Fg
w f ∂t f = − (N − 2)

2

∫

f 2∂tφ +
∫

(Bφ − σφ′) f ∂t f. (4.26)

By the identity (4.9), we obtain the following formula for the second integral on
the right-hand side of (4.25)

2
∫

(Bφ − σφ′) f � f

= 2
∫

(Bφ − σφ′)w−α f Lα f + 2α2
∫

(σφ′ − Bφ)
|∇w|2

w2
f 2

+2
∫

(σφ′ − Bφ) f

(

2α
|∇w|2

w2
A( f ) − q0∂t f − q0α(∂t log w) f

)

. (4.27)
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By (4.21), and (4.25)–(4.27) we obtain, for any α ≥ 1,

4α

∫

Mg
w∇ f · ∇ f + α

∫

Fg
w�( f 2) − 2q0

∫

Fg
w f ∂t f

≥ 2α

∫

(σφ′ − 2C0σ
βφ + Bφ)|∇̃ f |2 + 2α3

∫

(σφ′ − Bφ)
|∇w|2

w2
f 2 − R1,

(4.28)

where

R1 = 2α

∫

(Bφ − σφ′)w−α f Lα f + (N − 2)α

∫

f 2�(φ)

+ 2α

∫

(σφ′ − Bφ) f

(

2α
|∇w|2

w2
A( f ) − q0∂t f − q0α(∂t log w) f

)

+ (N − 2)q0

∫

f 2∂tφ − 2q0

∫

(Bφ − σφ′) f ∂t f.

By (4.18) and Young inequality we obtain

R1 ≤ 1

2

∫
w2

|∇w|2 (Lα f )2 + C
∫

(α3w−2+3β/2 + αw−2+β+α2(w−2+2β + q0)) f 2

+ Cα

∫

w−2+β/2(A( f ))2 + Cα

∫

wβ (∇w · ∇ f )2

|∇w|2 + q2
0

2α

∫
w2

|∇w|2 (∂t f )2,

(4.29)

where C depends on λ, �, E , β and µ only.
Now, let us choose µ = 4C0. With this choice of µ and by (4.18) we obtain the

following estimate from below for the first term on the right-hand side of (4.28)

2α

∫

(σφ′−2C0σ
βφ+Bφ)|∇̃ f |2 ≥ C0α

∫

wβ |∇̃ f |2, for any α ≥ 1, (4.30)

where C0 depends on λ, �, E and β only.
On the other hand, by (4.10) we obtain

∫

wβ (∇w · ∇ f )2

|∇w|2 =
∫ |∇w|2

w2−β
(A( f ) − Fg

w f )2

≤ 2
∫ |∇w|2

w2−β
(A( f ))2 + 1

2

∫ |∇w|2
w2−β

(Fg
w)2 f 2.

This inequality and the second formula in (4.24) yield to

∫

wβ |∇̃ f |2 ≥ C−1
∫

wβ |∇ f |2 − C
∫ |∇w|2

w2−β
(A( f ))2 − C

∫ |∇w|2
w2−β

(Fg
w)2 f 2,

where C > 1 depends on λ, �, E and β only.
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The previous inequality, (4.13), (4.17), (4.28) and (4.30) yield to
∫

w2

|∇w|2 (Lα f )2 ≥ C−1α

∫

wβ |∇ f |2 + α3
∫

(C−1 − C/α2)
|∇w|2
w2−β

f 2

+ α

∫

(2 − Cwβ)
|∇w|2

w2
(A( f ))2

+ q2
0

α

∫
w2

|∇w|2 (∂t f )2 − R2 (4.31)

where

R2 = R1 − q0

∫
w2

|∇w|2 ∂t g
i j∂i f ∂ j f − 2q0

∫
w2∇|∇w|2 · ∇ f

|∇w|4 ∂t f

− 4α2q0

∫

(∂t log w)A( f ) f + 2αq2
0

∫

(∂t log w)
w2

|∇w|2 f ∂t f.

Using (4.29) and Young inequality to estimate R2 from above, by (4.18) and
(4.31) we obtain, for any α ≥ C and supp f ⊂ Q1

1/C ,

1

2

∫
w2

|∇w|2 (Lα f )2 ≥ C−1α

∫

wβ |∇ f |2 + C−1α3
∫

w−2+β f 2

+ C−1α

∫

w2(A( f ))2 + q2
0

2α

∫
w2

|∇w|2 (∂t f )2,

where C > 1 depends on λ, �, E and β only.
Finally, recalling that f = w−αu and (4.9), we easily obtain (4.8). �
By the Carleman estimates, we can obtain the following three cylinder inequal-

ities. In Theorem 4.4 we state the three cylinder inequality in the interior, proved
in [10], in Theorem 4.5 we state the three cylinder inequality at the boundary. We
shall omit its proof because it is analogous to the one of Theorem 15 in [22].

Theorem 4.4 (Three cylinder inequality in the interior) Let T1 and R be
positive numbers such that T1 ∈ (0, T ], R ∈ (0, R0]. Let κ be a symmetric N × N
real matrix satisfying (2.14) and (2.15). Let u ∈ H2,1(DT1

R ) satisfy

∂t u − div(κ(x, t)∇u) = 0 in DT1
R , u(x, 0) = 0.

Then, there exist constants s1 ∈ (0, 1) and C > 1 depending on λ and � only
such that, for any ρ1, ρ2 and τ satisfying 0 < ρ1 < ρ2 < s2

1 R, τ ∈ (0, T1), the
following inequality holds

‖u‖
L2(D

T1−τ
ρ2 )

≤ γ

(
C R

ρ2

)γ

‖u‖ϑ

L2(D
T1
ρ1 )

‖u‖1−ϑ

L2(D
T1
R )

, (4.32)

where

ϑ = log s1 R
ρ2

C log C R
ρ1

and γ = C

(
R2

T1
+ T1

τ

)C

. (4.33)
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Theorem 4.5 (Three cylinder inequality at the boundary) Let T1 and R be
positive numbers such that T1 ∈ (0, T ], R ∈ (0, R0]. Let κ be a symmetric N × N
real matrix satisfying (2.14) and (2.15) and ψ be a function of C1,β class with
constants E, R0 such that ψ(0) = 0. Let u ∈ H1,1(DT1

ψ,R) ∩ H2,1
loc (DT1

ψ,R) be a
solution to

∂t u − div(κ(x, t)∇u) = 0 in DT1
ψ,R, u = 0 on ψ ∩ DT1

R , u(x, 0) = 0.

Then, there exist constants s1 ∈ (0, 1) and C > 1 depending on λ, �, E and
β only such that, for any ρ1, ρ2 and τ satisfying 0 < ρ1 < ρ2 < s2

1 R, τ ∈ (0, T1),
the following inequality holds

‖u‖
L2(D

T1−τ

ψ,ρ2
)
≤ γ

(
C R

ρ2

)γ

‖u‖ϑ

L2(D
T1
ψ,ρ1

)
‖u‖1−ϑ

L2(D
T1
ψ,R)

, (4.34)

where ϑ and γ are as in (4.33).

We now turn our attention to the stability estimates for Cauchy problems and
to smallness propagation estimates, whose proofs are postponed to the appendix.

Theorem 4.6 (Stability estimate for Cauchy problems) Let δ, T1 and R be pos-
itive numbers such that T1 ∈ (0, T ], R ∈ (0, R0]. Let κ be a symmetric N × N real
matrix satisfying (2.14) and (2.15) and ψ be a function of C0,1 class with constants
E, R0 such that ψ(0) = 0. Let u ∈ H1,1(DT1

ψ,R) ∩ H2,1
loc (DT1

ψ,R) be a solution to

∂t u − div(κ(x, t)∇u) = 0 in DT1
ψ,R, u = 0 on ψ ∩ DT1

R , u(x, 0) = 0

and satisfy
1

RN−1
0 T

∫

ψ∩D
T1
R

(κ∇u|ν)2 ≤ δ2. (4.35)

Then, there exists a constant C > 1 depending on λ, � and E only such that,
for any ρ1, ρ2 and τ satisfying 0 < ρ2 ≤ C−1 R, 0 < ρ1 < C−1ρ2, τ ∈ (0, T1),
the following inequality holds

‖u‖
L2(D

T1−τ

ψ,ρ1
)
≤ K δϑ1‖u‖1−ϑ1

L2(D
T1
ψ,ρ2

)
, (4.36)

where

ϑ1 = log ρ2
ρ1

C log Cρ2
ρ1

, K = γ1

(
Cρ2

ρ1

)γ1

, γ1 = C

(
R2

T1
+ T1

τ

)C

.

In Proposition 4.7 we shall use the following notation. Let α and R be positive
numbers such that α < π and let s1 ∈ (0, 1) be defined as in Theorem 4.4. Given
x0, ζ ∈ R

N , with |ζ | = 1, we denote

λ1 = R

1 + sin α
, w1 = x0 + λ1ζ, ρ1 = (1/4)λ1s2

1 sin α. (4.37)
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Furthermore, given a bounded domain D in R
N+1, a number β, 0 < β ≤ 1, and

a function u defined on D, we shall denote

|u|β,β/2,D = sup
(x,t),(y,s)∈D
(x,t) �=(y,s)

|u(x, t) − u(y, s)|
(|x − y|2 + |t − s|)β/2

.

Proposition 4.7 (Smallness propagation estimate) Let us take positive numbers
α, β, H, T1 and R such that α < π , T1 ∈ (0, T ], R ∈ (0, R0]. Let κ be a symmet-
ric N × N matrix such that (2.14) and (2.15) are satisfied. Let u∈H2,1

loc (CT1 (x0,ζ,α,R))

be a solution to

∂t u − div(κ(x, t)∇u) = 0 in CT1(x0, ζ, α, R), u(x, 0) = 0 in C(x0, ζ, α, R),

such that
‖u‖L2(CT1 (x0,ζ,α,R)) + Rβ |u|β,β/2,CT1 (x0,ζ,α,R) ≤ H. (4.38)

Then, for every t ∈ (0, T1/2),

|u(x0, t)| ≤ C H | log((eH)−1‖u‖
L2(D

T1
ρ1 (w1))

)|−B, (4.39)

where C depends on α, β, λ, � and R2/T1 only and B depends on α, β, λ and �
only.

Given these results of unique continuation, the proof of Theorem 2.5 can
be concluded with a procedure which is analogous to the one used to prove the
main theorems of [4, 5]. However, for the convenience of the reader, we point
out here the most important steps of the proof. We begin by stating the following
propositions. We shall denote by G the connected component of �1 ∩ �2 such
that � ⊂ Ḡ.

Proposition 4.8 Let the hypotheses of Theorem 2.5 be satisfied. We have

max
(�̄i \G)×[0,T/2]

|ui | ≤ ‖ f ‖ω(ε/‖ f ‖), (4.40)

where ω is an increasing continuous function on [0, ∞) satisfying

ω(t) ≤ C(log | log t |)−1/N , f or any 0 < t < e−1, (4.41)

and C depends on the a priori data only.
Furthermore, if in addition we assume that there exist L > 0 and r0 ∈ (0, R0]

such that ∂G is of Lipschitz class with constants r0, L, then (4.40) holds true with
ω satisfying

ω(t) ≤ C1| log t |−C2, f or any 0 < t < 1, (4.42)

where C1, C2 depend on R0/r0 and the a priori data only.

Proposition 4.9 Let � be a bounded domain in R
N satisfying (2.8) and (2.9). Let

u ∈ W (�×(0, T )) be the solution to (1.1), where f satisfies (2.13) and κ satisfies
(2.14), (2.15). For every ρ > 0 and every x0 ∈ �ρ = {x ∈ � : dist(x, ∂�) > ρ},
we have

‖u‖
L2(DT/4

ρ (x0))
≥ C‖ f ‖, (4.43)

where C depends on R0/ρ and the a priori data only.
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Up to obvious changes, Proposition 4.8 can be proved following the lines
of the proof of Proposition 5.2 in [5] and using standard regularity estimate for
parabolic equations, see for instance [16, Chapter VI, Sect. 11], whereas the proof
of Proposition 4.9 is similar to that of Proposition 5.5 in [4]. Here we recall the
definition of modified distance introduced in [1].

Definition 4.10 We call modified distance between �1 and �2 the number

dm(�1, �2) = max
{

sup
x∈∂�1

dist(x, �̄2), sup
x∈∂�2

dist(x, �̄1)
}
. (4.44)

Note that
dm(�1, �2) ≤ dH(�̄1, �̄2), (4.45)

but, in general, the reverse inequality does not hold. However, the following
proposition holds true [1].

Proposition 4.11 Let �1 and �2 be bounded domains satisfying (2.8) and (2.9).
For any i = 1, 2, let Ai , Ii satisfy (2.10). Let us also assume that A1 = A2 = A
and that �1 and �2 lie on the same side of A. There exist numbers d0 > 0, r0 ∈
(0, R0], such that d0

R0
and r0

R0
depend on E only and the following facts hold true. If

dH(�̄1, �̄2) ≤ d0, (4.46)

then there exists an absolute constant C > 0 such that

dH(�̄1, �̄2) ≤ Cdm(�1, �2), (4.47)

and any connected component of �1 ∩ �2 has boundary of Lipschitz class with
constants r0, L where r0 is as defined previously and L > 0 depends on E only.

Proof of Theorem 2.5 For the sake of simplicity we denote d = dH(�̄1, �̄2) and
dm = dm(�1, �2). Let us prove that if σ > 0 is such that

‖ui‖L2((�i \G)×(0,T/2)) ≤ σ, i = 1, 2, (4.48)

then
d, dm ≤ C1 R0(σ/‖ f ‖)C2, (4.49)

where C1, C2 depend on the a priori data only.
We begin by proving (4.49) for dm . We may assume, without loss of generality,

that there exists x0 ∈ I1 ⊂ ∂�1 such that dist(x0, �2) = dm . By (4.48) we have

‖u1‖L2((�i ∩Bdm (x0))×(0,T/2)) ≤ σ. (4.50)

Let s1 be defined as in Theorem 4.5. We distinguish two cases. If dm≥s2
1 R0/2, let

d̄= s2
1 R0

2(1+
√

1+E2)
, x̄=x0−νd̄

√
1+E2, where ν denotes the outer unit normal to �1 at x0.

We have
Bd̄(x̄) ⊂ �1 ∩ B(s2

1 R0/2)(x0).

By Proposition 4.9, (4.50) and the previous inclusion we have

σ ≥ ‖u1‖L2((�i ∩B
s2
1 R0/2

(x0))×(0,T/2)) ≥ C‖ f ‖, (4.51)
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where C depends on the a priori data only. Since it is evident that dm ≤ C R0,
where C depends on E and M only, and dm ≥ s2

1 R0/2, by (4.51) we have that,
in this case, dm satisfies (4.49) with C1 depending on the a priori data only and
C2 = 1.

Otherwise, if dm < s2
1 R0/2, let us apply Theorem 4.5 with ρ1 = dm ,

ρ2 = s2
1 R0/2, R = R0, T1 = T/2, τ = T/4 and, by (4.50), we obtain

‖u1‖L2((�1∩B
s2
1 R0/2

(x0))×(0,T/4)) ≤ C‖ f ‖(σ/‖ f ‖)
1

C log
C R0
dm ,

where C depends on the a priori data only. Then, by Proposition 4.9 and the
previous inequality, we can conclude that dm satisfies (4.49) also in this case.

We have proved that (4.49) holds for dm and, now, we use this result to show
that (4.49) holds for d , too. Without loss of generality, we may assume that there
exists y0 ∈ �̄1 such that dist(y0, �̄2) = d . Let us denote δ = dist(y0, ∂�1) and
let us distinguish three cases, depending on the value of δ with respect to d and
d0, d0 as in Proposition 4.11.

First, if δ ≤ d/2, we take z0 ∈ ∂�1 such that |y0 − z0| = δ and we have

dm ≥ dist(z0, �̄2) ≥ d − δ ≥ δ/2,

hence δ ≤ 2dm and, since (4.49) holds for dm , we have that it also holds for d .
Second, if d/2 < δ ≤ d0/2, then d < d0 and Proposition 4.11 applies, hence

by (4.47) d can be controlled by dm and therefore d satisfies (4.49) as well.
Third, if δ > max{d/2, d0/2}, let us set d1 = min{d/2, s2

1d0/4} where
s1 ∈ (0, 1) has been introduced in Theorem 4.4. We have

Bd1(y0) ⊂ �1\�2, Bs2
1 d0/2(y0) ⊂ �1. (4.52)

Now, let us apply Theorem 4.4 with ρ1 = d1, ρ2 = s2
1d0/2, R = d0, T1 = T/2,

τ = T/4 and, by (4.48) and (4.52), we have

‖u1‖L2((�1∩B
s2
1 d0/2

(y0))×(0,T/4)) ≤ C‖ f ‖(σ/‖ f ‖)
1

C log
C R0
dm ,

where C depends on the a priori data only. Then, by Proposition 4.9, we obtain that

d1 ≤ C1 R0(σ/‖ f ‖)C2, (4.53)

with C1 and C2 depending on the a priori data only.

Now, let σ̃=‖ f ‖( s2
1 d0

4C1 R0
)C2 . If σ<σ̃ , then d1 < (s2

1d0)/4, hence d = 2d1 and

(4.49) follows by (4.53). If σ≥σ̃ then (4.49) immediately follows.
By Proposition 4.8 and (4.49) we have

d ≤ C1 R0
∣
∣ log | log(ε/‖ f ‖)|∣∣−C2,

where C1, C2 depend on the a priori data only. Then, there exists ε0 > 0,
depending on the a priori data only, such that if ε ≤ ε0 then d ≤ d0. Thus, by
Proposition 4.11, G satisfies the hypotheses of Proposition 4.9. Hence in (4.49)
we may replace σ with ‖ f ‖ω(ε/‖ f ‖) where ω(t) ≤ C1| log t |−C2 , C1, C2
depending on the a priori data only, and thus (2.17) follows. �
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Appendix

Proof of Theorem 4.6 We present here only the most remarkable steps of the proof.
First of all, we extend the function u to the cylinder QT1

ψ,R by setting it equal to zero outside

DT1
ψ,R and we continue to denote by u such an extension. Then, let us introduce the change of

variables y = R−1x , s = T −1
1 t . Denoting by v(y, s) = u(Ry, T1s) and h(y′) = ψ(Ry′), we

have that v ∈ H1,1(Q1
h,1) ∩ H2,1

loc (Q1
h,1) is a solution to

Lv = ∂i (g
i j (y, s)∂ jv) − q0∂sv = 0 in Q1

h,1, v = 0 on 1
h,1, (A.1)

where g−1(y, s) = κ(Ry, T1s) and q0 = R2T −1
1 , and v satisfies also

∫

1
h,1

(g−1∇v|ν)2 ≤ δ2. (A.2)

Moreover, the matrix g−1 satisfies (4.1) and (4.2) and h is a function of Lipschitz class with
constants E , 1 and such that h(0) = 0.

Let ε be a positive number to be chosen later. Let us denote

w(y, s) = ϕ(ρε(y, s)), where ϕ(η) = η exp

(∫ η

0

e−µτ − 1

τ
dτ

)

(A.3)

and

ρε(y, s) =



N∑

i, j=1

gi j (0, t)(y + εeN )i (y + εeN ) j





1/2

. (A.4)

Proceeding in the same manner as in the proof of Theorem 4.5, see [22], it is not difficult
to show that there exist constants C > 1, d ∈ (0, 1), depending on λ, � and E only, such that,
putting µ = C in (A.3), for any α ≥ C(q0 + 1) and any ṽ ∈ H1,1(Q1

h,1) ∩ H2,1
loc (Q1

h,1) such

that ṽ = 0 on 1
h,1 and suppṽ ⊂ Q1,ρε

d , the following inequality holds

C
∫

w2−2α(L ṽ)2 − 2α

∫

1
h,1

w1−2α(∇w · n)

|∇w|2|n|2 (∇ṽ · n)2

≥
∫

(αw1−2α |∇ṽ|2 + α3w−1−2αṽ2). (A.5)

Let us apply the previously stated inequality to the function ṽ = vζ , where v satisfies (A.1) and
(A.2) and ζ is a function of class C2

0 (Q1
d ) which is defined as follows. Let us fix d1 ∈ (0, λd),

r ∈ (ε, d1/2) and s0 ∈ (0, 1). Let us denote t1 = 1 − s0/2, t2 = 1 − s0. Let ψ be the even
function such that ψ ∈ C2

0 (−1, 1), ψ is equal to 1 in [−t2, t2], it is equal to 0 in [−1, −t1] and

ψ(s) = exp

(

−
( |t2 + s|

t1 + s

)3
)

, for any s ∈ (−t1, −t2].

Let f be a function in C2([0, d1]) that is equal to 1 in [0, d1/2] and is equal to 0 in [3d1/4, d1].
Moreover, assume that | f ′| ≤ c/d1, | f ′′| ≤ c/d2

1 in [d1/2, 3d1/4], where c is an absolute
constant.

Then, ζ is defined by
ζ(y, s) = f (ρε(y, s))ψ(s),

and we denote Q
t2,ρε
h,r = {(y, s) ∈ R

N+1 : ρε(y, s) < r, yN > h(y′), s ∈ (−t2, t2)}. Let us
choose ε = r

√
λ/2 in (A.3), (A.4). By (A.2) and (A.5) we have that there exists a constant C > 1
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depending on λ, � and E only such that for all α ≥ C(q0s−1
0 + 1)12 the following inequality

holds

‖v‖
L2(Q

t1
h,r )

≤ C(d−2
1 + q0s−1

0 )

((
ϕ(r)

ϕ(d1/2)

)α

‖u‖L2(Q1
h,d1

) +
(

ϕ(r)

ϕ(r0)

)α

δ

)

(A.6)

where r0 = r
√

λ

2
√

1+E2
. Now, set

α1 =
log(‖u‖L2(Q1

h,d1
)/δ)

log(ϕ(d1/2)/ϕ(r0))
.

If α1 ≥ C(q0s−1
0 + 1)12 then we choose α = α1 in (A.6) and we obtain

‖v‖
L2(Q

t1
h,r )

≤ C(d−2
1 + q0s−1

0 )δϑ0‖u‖1−ϑ0

L2(Q1
h,d1

)
, (A.7)

where

ϑ0 = log(ϕ(d1/2)/ϕ(r))

log(ϕ(d1/2)/ϕ(r0))
.

If α1 ≤ C(q0s−1
0 + 1)12 then, by an easy estimate from the previous equation of the left-hand

side of (A.6), we obtain

‖v‖
L2(Q

t1
h,r )

≤ C(d−2
1 + q0s−1

0 + (Cd1/r)α1 )δϑ0‖u‖1−ϑ0

L2(Q1
h,d1

)
. (A.8)

By (A.7) and (A.8), returning to the original variables, it is easy to obtain the inequality (4.36).�

Proof of Proposition 4.7 For the sake of simplicity we assume that x0 = 0, ζ = eN . Let

a = 1 − (1/4)s2
1 sin α

1 + (1/4)s2
1 sin α

and, for every k ≥ 2,

λk = ak−1λ1, wk = λkeN , ρk = ak−1ρ1.

It is simple to check that, for every k ≥ 1, the following inclusions hold true

Bρk+1 (wk+1) ⊂ B3ρk (wk) ⊂ B4s−2
1 ρk

(wk) ⊂ C(0, eN , α, R). (A.9)

Denote by
dk = λk − ρk = ak−1λ1(1 − (1/4)s2

1 sin α), k ≥ 1.

For a number r belonging to (0, d1], to be chosen later, let us set k̄ = min{k ∈ N : dk ≤ r}. We
have | log(r/d1)|

| log a| ≤ k̄ − 1 ≤ | log(r/d1)|
| log a| + 1. (A.10)

Moreover, for j = 0, 1, . . . , k̄, we set t j = T1(1 − j
2k̄

) and σ j = ‖u‖
L2(D

t j
ρ j

(w j ))
.

By Theorem 4.4 and (A.9), and since obviously σ j+1 ≤ ‖u‖
L2(D

t j +1
3ρ j+1

(w j+1))
, we obtain

σ j+1 ≤ K̄σ
θ∗
j (‖u‖L2(CT1 (0,eN ,α,R)))

1−θ∗ , for j = 0, 1, . . . , k̄, (A.11)

where

θ∗ = log(4/3s1)

C1 log(4C1/s2
1 )

, K̄ = eC2(1+k̄)C1
,
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and here C1 depends on λ and � only and C2 depends on λ, � and R2/T1 only.
By iterating (A.11), we obtain that

σk̄ ≤ K̄ 1/(1−θ∗)σ
θ k̄∗
1 (‖u‖L2(CT1 (0,eN ,α,R)))

1−θ k̄∗ . (A.12)

Let us recall the following interpolation inequality

‖v‖
L∞(D

T0
ρ )

≤ C

(

ρ
−(N+2)
0

∫

D
T0
ρ

v2

) β
N+2+2β

(|v|
β,β/2,D

T0
ρ

)
N+2

N+2+2β

+ C

(

ρ
−(N+2)
0

∫

D
T0
ρ

v2

)1/2

, (A.13)

where ρ0 = min{ρ,
√

T0} and C is an absolute constant.
By (4.38), (A.12) and (A.13), we obtain

‖u‖
L∞(D

tk̄
ρk̄

(wk̄ ))
≤ C(a1−k̄)(N+2)/2 H

N+2
N+2+2β

(σk̄)
2β

N+2+2β , (A.14)

where C depends on λ, � and R2/T1 only. Let us consider the point xr = reN . We have that
(xr , t) ∈ D

tk̄
ρk̄

(wk̄) for every t ∈ (0, T1/2). By (4.38) and (A.14), we have

|u(0, t)| ≤ |u(xr , t) − u(0, t)| + |u(xr , t)|

≤ C H

((
r

d1

)β

+
(

a1−k̄
)(N+2)/2 (σk̄

H

) 2β
N+2+2β

)

,

where C depends on λ, � and R2/T1 only.
From this last inequality and (A.12) we obtain

|u(0, t)| ≤ C H





(
r

d1

)β

+
(

a1−k̄
)(N+2)/2

eC(1+k̄)C1
(σ1

H

) 2βθ k̄∗
N+2+2β



 , (A.15)

where C depends on α, β, λ, � and R2/T1 only and C1 depends on λ and � only. Let us choose

r = d1

∣
∣
∣
∣
∣
log

(
1

e

(σ1

H

) 2β
N+2+2β

)∣
∣
∣
∣
∣

− | log a|
2| log θ∗|

.

From (A.15), taking into account (A.10), we obtain

|u(0, t)| ≤ C H
∣
∣
∣log
( σ1

eH

)∣
∣
∣
− | log a|

2β| log θ∗|

and (4.39) follows. �
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