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Abstract

Understanding long term water quality and ecological aspects of pit lakes is important in understanding the risks and
opportunities pit lakes present as mine closure legacies. Pit lake system (PLS) research can be conducted in experimental
systems ranging from the test-tube, to microcosms, mesocosms, macrocosms, pilot-scale, through to a full-scale PLS. The
use of pit lake studies over a range of scales provides a better understanding of environmental processes of interest and can
deliver research outcomes in a more timely and economic manner than full-scale PLS experimentation alone. However,
few scaled experiments have been realised and the reliable translation of experimental results to full-scale pit lakes has not
been documented. Collectively, data from a range of scales can contribute to a multiple-lines-of-evidence approach to better
understand and even predict PLS water chemistry and biota. Conceptual and numerical modelling can also help determine
system facets, such as whether parameters and rates determined at smaller spatial scales apply to successively larger scales.
However, modelling has significant limitations in water quality prediction. We recommend that studies on PLS management
and sustainability be considered at multiple scales, including at evolving and established pit lakes, with different aspects
considered at different scales in a complementary approach.
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Introduction

Pit lakes can form when open cut mining operations cease
dewatering and fill with net ground and/or surface water
inflows. These novel lakes are not well understood at the
ecosystem level, with site-specific characteristics peculiar
to their regional and local contexts of climate, biota, hydrol-
ogy/hydrogeology, and geology. Considerations of pit lake
water quality and ecology can evolve independently of man-
agement actions or through either incidental or deliberate
biological intervention and manipulation.

In some jurisdictions, regulators explicitly require experi-
mental demonstration of pit lake sustainability and risk man-
agement as part of mining approvals (CEMA 2012; DMP
and EPA 2015; Jones and McCullough 2011; Williams
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2009). Alternatively, corporate or industry standards may
promote principles of sustainability, such as maintaining
regional, or even reclaiming lost, local values (APEC 2018;
DIIS 2016; ICMM 2019; IRMA 2018). In parallel, water
quality guidelines are generally moving toward demonstra-
tion of environmental responses to toxicants across more
than one line of evidence, including scale (ANZG 2018).
Furthermore, leading practice advises a risk-based
approach to managing pit lake mine closure legacies
(DIIS 2016; Doupé and Lymbery 2005; McCullough and
Van Etten 2011; Vandenberg and McCullough 2017). For
example, closure objectives might stipulate that planned
pit lakes will achieve acceptable water quality for release,
for long-term presence in the regional environment, and
the establishment of a self-sustaining ecosystem that pro-
vides either general or specific end use values (de Lange
et al. 2018; McCullough et al. 2018, 2020; Vandenberg and
McCullough 2017). If strategically planned, experiments can
provide empirical data with which to validate predictions
generated from numerical models, and can refine models for
future full-scale validation. Finally, experiments may also
enable tangible demonstration of management interventions,
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including different adaptive management strategy options to
achieve sustainability (Nixdorf et al. 2010).

In addition to supporting full-scale design, numerical
models informed by different scales of study can reveal
knowledge gaps and experimental needs, and bridge findings
from experiments conducted at different spatial and temporal
scales. Using models to consolidate common understand-
ings of PLS research findings at different scales is useful for
understanding complex real-life systems. Numerical models
can especially provide a structure that allows researchers to
quantitatively represent physical, chemical, and biological
processes in a pit lake.

The use of studies at different scales provides a better
understanding of processes of interest and delivers research
outcomes in a more timely and economic manner than full-
scale pit lake experimentation alone. Critical to research
across all these scales, as spatial scale increases, is the rel-
evance to the region’s planned, large-scale pit lakes at clo-
sure, whereas the ability to robustly address knowledge gaps
across multiple design options decreases (Fig. 1). Addition-
ally, both cost and research timelines increase as the scale
of experimentation expands.

Consideration of scale is fundamental to a pit lake experi-
mental approach, given the large size of some pit lakes cou-
pled with their long presence in the environment, and often
the collective impact from the regional development of pit
lake districts (McCullough and Van Etten 2011). However,
pit lake planning and design is often undertaken based on
findings from much smaller scale and duration experiments.

Most smaller-scale experiments involve isolation
and manipulation of only a small part of the pit lake
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Fig. 1 Typical scales of study for pit lakes showing inverse relation-
ship between relevance and replicability
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environment, for example, in replicate test tubes, bottles,
columns, or other enclosures. This is not only a limitation
of small-scale systems, but a feature of all systems when
attempting to control for single variables. Experimental
manipulations would typically consist of the addition or
removal of expected aquatic organisms, addition of chemi-
cal amendments, or alterations of the fundamental physi-
cal environment, followed by incubation for various times.
Results are then extrapolated to whole systems from these
differently scaled studies. However, such extrapolation may
be questionable when important physico-chemical features
of the proposed systems and their communities are miss-
ing from the experiment (Schindler 1998) or when they are
present, but do not vary according to anticipated ambient
conditions. Therefore, smaller-scale experiments alone can
yield erroneous conclusions about community and ecosys-
tem processes (Carpenter 1996).

Conversely, whole-ecosystem experiments conducted at
larger scales cannot be exactly replicated and are expensive
and difficult to execute. As a result, many ecologists favour
smaller scales in order to obtain statistical confidence in
study results (Schindler 1998). The use of various scales
introduces the question of whether the balance between
realism and replication implicitly proposed by the chosen
experimental scale is adequate for the intended purpose. The
critical consideration is: what is the fundamental research
question, and how well does the chosen experimental scale
answer it (Hurlbert 1984; Hurst and Pacey 2004). Model-
ling may be used to combine results from different scales.
Additionally, constructing a pilot-scale pit lake will directly
integrate different research scales and yield empirical data.
While both of these methods have inherent limitations to
understanding the role of single or multiple interacting vari-
ables, a full-scale system that is constructed along with a
numerical model provide compelling lines of evidence when
developed in an integrated and iterative manner.

Most of the literature we have considered deals with spa-
tial scale. However, temporal scale must also be considered
when experimenting with and applying results from different
spatial scales. While some processes are time invariant (or
nearly so) across spatial scales, other processes will take
more time to establish in larger systems, particularly those
that will attain a state of equilibrium with ambient condi-
tions, because the larger systems will be subject to a larger
set of driving variables, as well as processes that require the
establishment of biological communities at multiple trophic
levels.

Although various enclosure experiments are conducted
across a range of mine water issues, we constrained our
review to enclosure experiments that particularly sought to
better understand aspects of pit lake systems (PLS). Simi-
larly, although many case studies are contained in consulting
or industry-funded reports, we constrained our review to
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peer-reviewed and published literature. We reviewed pit lake
literature from peer-reviewed conference and journal papers
and theses, first determining what typically scaled PLS
enclosures had been used for. We particularly sought case
studies where scaled experiments had led to full-scale reali-
sations of a full-scale pit lake. Together with the pit lake and
broader aquatic experimental literature, we describe what
limitations and opportunities might be unique to that par-
ticular scale for future pit lake research. Finally, we advise
a multi-scale consideration of pit lake research questions,
contributing collectively to a multiple-lines-of-evidence
(MLE) or a similar approach to understanding research find-
ings from full-scale enclosure experiments.

Overview of Typical Experimental Scales

Pit lake research can be conducted in experimental systems
over many orders of magnitude: from mL in a test-tube to
millions of litres in large enclosure experiments, and billions
of litres in field-scale experimental lake systems, through to
full-scale pit lakes either deliberately constructed for experi-
mentation or resulting from mining activities. A range of
terms are used in the literature to describe the various scales
that pit lake experimentation has been undertaken at, with
little consistency. Following our review findings, we define
four main scales of enclosure that have been used for pub-
lished pit lake research.

e microcosms (up to tens of litres);

o mesocosms (hundreds to thousands of litres);

e macrocosms (experimental ponds, tens of thousands of
litres); and,

e pilot scale (millions of litres).

Microcosms

Microcosms are miniature constructed ecosystems in which
environmental constraints are imposed primarily for the
controlled study of ecological and geochemical processes
(Drake and Kramer 2012). The two main types of micro-
cosms are biological and geochemical microcosms. These
types may overlap where an understanding of biological
responses to chemistry are sought (Stierle and Stierle 2014).
In particular, small laboratory-based containers may be used
to determine dose—response relationships in toxicological
studies e.g. pit lakes affected by acid and metalliferous drain-
age (Neil 2008; Neil et al. 2009; Stierle et al. 2006) or by
other mine waters, such as tailings (Dompierre et al. 2016).

Geochemistry microcosms are used in both static and
kinetic testing programs (ASTM 2013). Tests can be per-
formed in the laboratory or in the field. Laboratory tests
are designed to standardise reaction rates relative to field

conditions e.g. remediation experiments, whereas field-
scale tests are performed to confirm that the results of the
laboratory tests are representative of reaction rates in site
conditions.

Sometimes called ‘bottle’ experiments, biological micro-
cosms are small volume containers of lake water suitable
for replicating a statistically more powerful number of
samples for each treatment factor. Microcosm experiments
investigating ecological processes may operate with artifi-
cial communities assembled from cultures, such as single-
species experiments in batch and continuous cultures (Neil
2008). Biological microcosms may also include lake sedi-
ments, tailings, natural microbial assemblages, and chemical
amendments. Conditions such as oxygen and redox may be
artificially controlled to replicate one component of a pit
lake, such as the tailings-water interface. Examples of bio-
logical microcosms are shown in Fig. 2.

In the water treatment industry, bench-scale tests are an
essential step toward developing a pilot and then full-scale
treatment system (Tchobanoglous and Burton 1991). Vari-
ables such as dosing rates and reaction times are determined
from theoretically derived rates that are varied over a range
of expected values. Owing to the limitations of small-scale
tests mentioned above, the rates from bench-scale tests are
considered approximate, but provide reasonable starting
points for setting the pilot system, which can undergo further
testing and optimization. Bench-scale tests are often carried
out on sample size of a litre to a few litres.

Because of their small size, microcosms are typically
maintained in a laboratory facility to control ambient con-
ditions. This controlled environment can reduce the need
for replication. Microcosms may even be deployed within
a pit lake from floating structures or from jetties to more

Fig.2 Microcosm experiment studying pit lake biogeochemistry and
the effect of two different substrates at two different loadings, includ-
ing interaction effects and with a control (left) (McCullough and
Lund 2011)
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accurately provide realistic ambient conditions (Larratt et al.
2007). Microcosms provide for greater statistical power with
which to experimentally test the effect of independent vari-
ables on pit lake waters and substrates. Large numbers of
microcosms can be incorporated into experimental designs.
Time scales for the maximum duration of an experiment are
generally in the order of hours to months, with the lower
limit for chemical reactions, intermediate times for biotic
reactions, and the upper limit for biogeochemical reactions.

Microcosms in Pit Lake Research

Microcosms can focus on fundamental pit lake processes
primarily influenced by geochemical and microbiological
processes. Physical mixing in the natural environment will
be either accounted for, with accompanying assumptions
and limitations clearly recognised, or excluded from these
smaller scale tests e.g. the unexpectedly high performance
of AMD remediation of the Berkeley pit lake (Gammons
and Icopini 2019; Tucci and Gammons 2015). Similarly,
ecological community processes other than short-term pri-
mary production experiments should be restricted to larger
experimentation scales.

Microcosm-Scale Opportunities

Research using microcosms persist, despite their limitations,
because their smaller size confers advantages that often
take precedence over their shortcomings (Gamble 1990).
For example, the highest numbers of replicates and con-
trols can be achieved in the smallest enclosures, affording
strong statistical power (Stewart-Oaten 1995). An important
opportunity afforded by smaller-scale tests is the ability to
design tests that can differentiate biotic from abiotic pro-
cesses (Chen et al. 2013), which is useful in designing adap-
tive management strategies (e.g., in-pit subaqueous waste
disposal Lapakko et al. 2013).

Microcosms enable reasonable exploration of fundamen-
tal pit lake biogeochemical and microbiological processes
(Drake and Kramer 2012); even those involving more com-
plex interactions with climate such as water chemistry and
sunlight exposure (Friese et al. 2002). Laboratory-based
microcosms can be used to assess the dynamics of algal
and other microbial populations and simple food webs over
multiple generations of their communities (Fyson et al.
1998a; Read et al. 2009). In particular, numerous micro-
cosm studies have been successfully used to interpret the
influence of chemotrophic bacterial communities on pit lake
metalliferous geochemistry and water quality (Bozau et al.
2007; Frommichen et al. 2004; Fyson et al. 2006; Geller
et al. 2009; Koschorreck 2011; Kumar et al. 2011a, ¢, 2013;
McCullough and Lund 2011; McCullough et al. 2006; Read
et al. 2009; Wendt-Potthoff et al. 2010) and algal (Corzo
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et al. 2018; Fyson et al. 2003; Kumar et al. 2011b, 2016) as
well as anaerobic biodegradation of recalcitrant hydrocar-
bons in oil sands pit lakes (Chen et al. 2013; Chi Fru et al.
2013; Siddique et al. 2011, 2014a, b, 2015).

Microcosm-Scale Limitations

Reasonably realistic microcosms can often simulate
many fundamental responses of entire natural ecosystems
(Buikema and Voshell 1993). The applicability of results
from microcosm studies to nature depends on realistic imi-
tation, particularly the interaction of species and environ-
mental variables. Unless they can be adequately designed to
mimic major ecosystem processes and community composi-
tions, smaller-scale experiments can give highly replicable
and statistically powerful, but spurious, answers (Schindler
1998). Therefore, if the relevant and intrinsic limitations of
their scale as an experimental tool are not carefully consid-
ered, conclusions drawn from microcosm studies can be lik-
ened to the “right answer to the wrong question”—namely,
when the scale or other complications make it unable to test
the hypothesis to the level of rigour required.

Within microcosms, a lack of habitat variation, the high
ratio of surface area to volume, and the microcosm con-
tainer (i.e. “wall effects”) can lead to challenges in scaling
up microcosm results to the full-scale environment. In par-
ticular, the interaction between habitat size and food abun-
dance is consequential to aquatic animals and choice of scale
in experiments may affect results (Wynn and Paradise 2001).

Other limitations of microcosms are:

e the small volumes can limit the number of samples that
can be analysed during the incubation time;

e the limited ability to prepare true replicates of small vol-
umes if the sample itself is inherently heterogeneous (e.g.
a stratified material used as backfill, such as tailings);
and,

e they cannot directly answer research questions relating
to larger organisms or larger physical processes.

Mesocosms

A variety of experimental systems are described under the
umbrella term “mesocosm” (Stewart et al. 2013). Meso-
cosms are medium-sized experimental enclosures of larger
volume than microcosms (Odum 1984). They are generally
stored either indoors in cooler latitudes, or outdoors in more
temperate and tropical environments (Fig. 3). Mesocosms
operate with natural species assemblages, allow a degree of
replication and control of experimental manipulations, but
are limited in temporal scale. Because of their smaller size
relative to pilot or demonstration systems, they can often
be constructed in higher numbers, above ground and near
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Fig.3 Manipulative experimental mesocosms: 12 fibreglass 2000 L
enclosures (Lund and McCullough 2009)

the laboratory facilities, allowing for both good replication
of experimental treatments as well as regular and intense
sampling activities. A typical experimental design would
include up to a dozen mesocosms with time scales of weeks
to months.

Mesocosm systems are often run in close proximity to
a full-scale system of interest to provide similar source
materials and relevant field conditions. Mesocosms often
achieve this comparison by including shallow sediments that
incorporate some basic pit lake sedimentary geochemical
processes and interaction with overlying waters, and also
some benthic ecosystem diversity and function (Lund and
McCullough 2009).

The use of mesocosms to study both the marine and fresh
water planktonic environment has been a major trend of the
last decade. These have usually been employed to exam-
ine the effect of a controlled change to the environment,
such as pH, light, temperature, zooplankton invertebrates
or, most commonly, nutrients (Watts and Bigg 2001). The
use of mesocosms, essentially larger microcosms exposed
to more environmental variation, often has the goal of con-
sidering many such parameters simultaneously (Drake and
Kramer 2012). Environment Canada provided major reviews
of mesocosm research and concluded that, in most cases,
laboratory toxicity tests were good predictors of effects in
natural habitats (DOE 2010).

Mesocosms are often large enough to enable simple
ecosystems to develop that can then be experimented on.
Mesocosms have been used extensively in aquatic ecology/
ecotoxicology studies of pit lake studies to understand the
effects of addition or generation of acidic and metallifer-
ous drainage (Kuznetsov et al. 2014), nutrients and organic
matter on water quality and biological communities (Lund
and McCullough 2009; McCullough and Horwitz 2010).

Additionally, the larger size allows for more samples, or
larger samples, to be withdrawn for replicate analysis over
time relative to microcosms.

Mesocosms in Pit Lake Research

Mesocosms typically do not provide adequate volume or
environmental realism for physical limnological processes,
such as water column stratification, or higher-level ecologi-
cal processes, such as direct effects on higher trophic lev-
els or large-bodied species. Instead, mesocosms should be
used to expand microcosm-scale experiments. This can be
achieved temporally by allowing experiments to run longer
with less confounding imposed by the enclosure than in
their microcosm counterparts. Mesocosm experiments can
also be used to extend and validate microcosm experiments
undertaken under controlled conditions in more field-real-
istic environments (Caquet et al. 1996). Mesocosms should
also be used to include primary and even smaller secondary
consumers in food-web studies, such as in biomagnifica-
tion assessments. Geochemical experiments probably do not
require this level of scale for fundamental processes that are
less scale-sensitive; but collecting geochemical data from
mesocosm scale experimentation should be regularly under-
taken both to validate these processes at this higher scale and
to better inform biological and physical processes. Similarly,
sediment—water interface experiments may be less variable
and confounded at this scale.

Mesocosm-Scale Opportunities

The purpose of scaling results from mesocosm experiments
to ecosystems is usually to address larger-scale ecological
problems and management strategies. This may be par-
ticularly true for fundamental geochemical processes and
ecological functions that can identify trends, threshold lev-
els, and interrelationships that might be manipulated in the
course of a particular treatment (Gamble 1990). Mesocosms
more closely mimic the full-scale environment than micro-
cosms and as such, have been successfully used to test the
validity of microcosm findings. Mesocosms can achieve this
by accommodating both water and lake sediment (Neil et al.
2009), including in-pit waste disposal (Han et al. 2009).
Whilst it is often the case that pit lakes have depauperate
littoral and catchment zones (Vandenberg and McCullough
2017), this is by no means absolute. Both certain commodity
types (sand and, to a lesser extent, coal mines, for example)
have less steep slopes and more extensive littorals (Schultze
et al. 2010), shorelines can be modified during closure to
increase littoral zone extent (McCullough et al. 2019).
Drainage basin size (catchment area) can also be markedly
increased e.g. through flow-through closure design connect-
ing pit lakes to significant regional waterways (McCullough
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and Schultze 2018; Schultze et al. 2011). All lakes have sedi-
ment, even if this constitutes mixed cobbles and talus overly-
ing a hard rock benthos. However, some pit lakes may also
develop an extensive soft sediment through organic decom-
position processes and accrual of fine sediments from catch-
ment inflows (Blodau et al. 2000; Oldham et al. 2009; Pal
et al. 2014; Read et al. 2009).

Mesocosms can be considered a valid tool for pit lake
ecological and geochemical studies in that they are more
realistic than small-scale laboratory microcosms (Gamble
1990), but retain experimental utility and may be the only
way to investigate effects on a multi-trophic scale (Neil et al.
2009). In particular, mesocosm toxicological experiments
can incorporate multi-species interactions such as competi-
tion and predation, enabling comparison and contrast with
simpler single-species mine water toxicity tests of smaller
scale (McCullough 2006; Van Dam et al. 2014).

Some ecological trophic and competitive interactions are
also insensitive to spatial scales (Warwick et al. 1988) such
as simple manipulations of direct interactions in pelagic sys-
tems at timescales relevant to phytoplankton growth. For
example, algal response to nutrient enrichment varies little
across spatial scales at a given depth or light intensity (Spi-
vak et al. 2010), and results from small-scale experiments
that examine the direct response of lake algae to nutrient
enrichment or metal toxicity can be scaled up and applied
to larger, more natural aquatic systems.

Mesocosms have successfully been deployed in situ in
mine pit lakes as floating structures and ex situ containers,
either nearby or at more distant laboratory facilities. In situ
mesocosms have been referred to as ‘limnocorrals’ (Martin
et al. 2003; Whittle 2004). PLS studies have been primar-
ily for biological remediation studies of AMD (acid and
metalliferous drainage) contamination (McCullough 2008).
Mesocosm studies have evaluated chemical responses of
biological processes, such as phytoplanktonic algae (Des-
souki et al. 2005), microbial sediment processes (Bozau
et al. 2007; Koschorreck et al. 2002a, b, 2003, 2007), and
a combination of both (Lund and McCullough 2009; Neil
et al. 2009; Sackmann 2006).

Mesocosm-Scale Limitations

Mesocosm dimensions, including volume, depth, radius,
and wall area, can affect abiotic processes, including light
availability, gas exchange, and surface area. Artificial mixing
regimes may lead to the creation of water column stratifica-
tion and increased sedimentation (Watts and Bigg 2001).
These can then have run-on effects which, in turn, influ-
ence geochemical and biological processes (Striebel et al.
2013). Loss of inorganic and organic material and nutrients
to growth on container walls can also be a problem (Wil-
liams and Egge 1998). Mesocosms tend to be more sensitive
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to environmental influences than open pit lakes because con-
tainers are small and easily influenced by differences such
as biotic colonisation by organisms and environmental vari-
ables such as temperature (Watts and Bigg 2001) and self-
shading from the walls.

Comparisons across experiments, and extrapolations to
larger scales, are further complicated by the use of meso-
cosms with varying dimensions, or by studies that do not cite
experimental dimensions. Consequently, the scale of meso-
cosm experiments have been criticised as being unrealistic
simplifications with limited relevance to natural ecosystems
(Schindler 1998). Additionally, results of even fundamental
ecological process experiments, such as toxicant or nutri-
ent limitation, from mesocosm systems may have limited
relevance to natural ecosystems by failing to account for
long-term changes in biological community dynamics and
biogeochemical processes (Carpenter 1996). Mesocosm
experiments are generally conducted over a longer duration
than microcosms, in which time founder effects from differ-
ing assemblages of pioneer species and interactions between
trophic levels can occur. These effects can lead populations
within replicate mesocosms to diverge from one another,
even though the physico-chemical conditions are practically
identical (Gamble 1990).

Macrocosms (Experimental Ponds)

Experimental ponds, technically known as macrocosms,
have generally been considered as the final scale in lake
research prior to field scale (Odum 1984). Macrocosms can
be either sectioned-off portions of an existing pit lake or con-
structed ponds that are often sunk into the excavated ground
to accommodate their size (Fig. 4).

Experimental ponds can be useful for examining higher-
scale components of ecosystem responses such as micro- and
macro-invertebrate and plant communities as well as basic

Fig.4 Manipulative experimental macrocosms formed by sectioning
of a pit lake arm by watertight curtains (Lund et al. 2006)
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ecosystem interactions. Indirect effects of stressors can be
observed in macrocosms through changes in abundance or
biomass of plants and animals, such as fish, amphibians,
and macroinvertebrates, in response to changes in food,
substrate, or habitat (deNoyelles et al. 1994). Although the
definition of scale differs by discipline (Watts and Bigg
2001), the scientific lake research and mine pit lake litera-
ture include studies ranging in scale from simple plastic film
or mesh bags of less than 5 m? to pond systems of several
thousand m?>. Historically, some enclosures isolated the
water column from the benthos, but there is now a growing
emphasis on benthic enclosures that include both aquatic
ecosystem components (Kovalenko et al. 2013). Pond sizes
of 100—1000 m? surface area and 6 m depth should be suf-
ficient for most experimental purposes, with the exception
being physical processes such as hydrodynamics that require
larger systems (Caquet et al. 1996). These ponds provide
the opportunity for scale-up from microcosm and mesocosm
experiments to incorporate more realism by encompass-
ing more environmental variables and ecological response
scales. They also allow for multi-year trials of adaptive man-
agement and ecosystem experiments using a wide range of
mine waters, wastes such as tailings or over/inter burdens,
and other potential backfill materials.

Macrocosms in Pit Lake Research

Experimental ponds can be used for the great majority
of manipulative experimentation, whether replication is
required or not. Their large physical scale means that eco-
logical experiments involving higher trophic levels species,
such as fish and amphibians or larger organisms, including
aquatic macrophytes, is one goal of these structures. Simi-
larly, phytoplankton/zooplankton community interactions
will also be more valid at this scale. However, as a result of
the greatly increased cost and loss of replication penalties of
this scale, macrocosm ponds should be restricted to experi-
ments that require this scale in their design to minimize the
effects of confounding factors or to experiments validating
findings from smaller-scale studies. For example, geochemi-
cal data should be collected from macrocosm pond studies,
although geochemical processes should already have been
studied and refined in smaller-scale studies. This duplica-
tion allows for testing of scaling assumptions and pseudo-
replicate sampling of replicate ponds (Hurlbert 1984).

Macrocosm Opportunities

Experimental ponds retain a strong element of environmental
realism and applicability, whilst permitting laboratory-like
manipulations and replication (McCullough 2009). A greater
diversity and complexity of biological assemblages can be
incorporated, including aquatic macrophytes, amphibians,

and fish. Depending on the depth and width, some physical
processes such as water column mixing may also be able to
be incorporated. Macrocosms can also accommodate experi-
ments running over longer durations than smaller-scale tests,
e.g. months to years.

Large lake enclosures extending from the surface to a few
meters deep, up to hundreds of thousands of litres in volume,
have been used successfully for microbial studies in acidic
lakes (Koschorreck et al. 2002a, b, 2007).

Experimental ponds offer the smallest scale for field-
testing adaptive management strategies. Testing adaptive
management at this scale allows for optimization prior to
full-scale implementation, which may in turn lead to cost
savings. These systems can be readily pumped out and
restarted to allow for new experiments over time. Addition-
ally, the experimental pond is the smallest scale that is likely
to gain acceptance of adaptive management strategies by
regulators and stakeholders.

Macrocosm Limitations

Because of their larger size (relative to microcosms or
mesocosms), space and cost typically limit macrocosm use.
Even if simple in-ground constructions are used, macro-
cosms require sufficient hydrogeological integrity to pre-
vent groundwater and other hydraulic connectivity including
inter-pond and local groundwater seepage and contamina-
tion (Lund et al. 2006). Their large size can also complicate
sampling, including greater occupational health and safety
(OH&S) regulations. Macrocosm-scale experiments can still
omit important pit lake full-scale variables, such as wind
mixing and currents.

Pilot-Scale Pit Lakes

Due to their relatively small size and duration compared to
full-scale pit lakes, small enclosures and short-term experi-
ments particularly limit the scale of physical processes and
ecological complexity (e.g. number of trophic levels able
to be studied) (Petersen et al. 2009). As a result, many sci-
entists now consider that accurate management decisions
cannot be made with confidence without ecosystem-scaled
studies (Schindler 1998). This view is increasingly common
regarding ecological studies, which has increased the focus
on extrapolating findings from small-scale experiments to
natural ecosystems at more realistic scales.

Large-scale, unreplicated natural experiments (LUNE:s),
such as pilot-scale pit lakes, have been found to be useful
in testing hypotheses at ecologically realistic scales. How-
ever, this scale of experimentation is relatively rare in the
field of ecology in particular, due to their lack of replication.
Nevertheless, pilot-scale pit lakes can be a crucial next step
in the understanding of ecological processes, extrapolating
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from small-scale experiments to relevant scales (Barley and
Meeuwig 2017).

Pilot-scale pit lakes should be constructed at an appro-
priate scale, depth, and shape to reasonably demonstrate
conditions analogous to the expected pit lakes. In metallif-
erous mines, this may mean relatively deep and steep-sided
bathymetry. In coal, sand, and oil sands mining areas, they
instead would have large surface areas.

One of the few examples of a pilot-scale is the Base Mine
Lake (BML) project (Dompierre and Barbour 2016, 2017,
Dompierre et al. 2016; Hurley 2017; Morandi et al. 2015,
2016, 2017). The principal goal of the BML project is to
demonstrate the “water-capped tailings” closure strategy
pioneered by Syncrude. Most of the studies to date have
focused on microbial (Richardson et al. 2020) and geochemi-
cal interactions at the tailings-water interface (Dompierre
and Barbour 2016; Dompierre et al. 2016, 2017; Rudder-
ham 2019; Samadi 2019), resuspension (or lack thereof)
of tailings into the water column (Hurley 2017; Lawrence
et al. 2016; Tedford et al. 2019), and detoxification of the
overlying water column (Morandi et al. 2015, 2016, 2017;
Mori et al. 2019; White and Liber 2018). BML is a density-
stratified aquatic system, with an initial 5 m water column
comprising mainly OSPW placed over a 40 m fine fluid tail-
ing (FFT) zone. Over time, the water column will deepen
as the tailings densify. While BML will provide a pilot-
scale demonstration case for the oil sands industry and will
answer many important questions regarding oil sands mine
closures, it represents a pit lake with unique properties that
make transfer of operational conditions to general pit lake
design of other closure scenarios challenging. For example,
BML will employ a closure strategy that has the following
unique aspects:

e ahigh volume of tailings is added to the pit prior to lake
filling (=~ 80% of the total lake volume);

e shallow water column (5 m, initially);

e rapid lake filling (< 1 year); and,

e lake filling occurs during mine operations, so water can
be flushed through the cap with the outflow used in oper-
ations until acceptable discharge criteria are achieved.

The monitoring and research associated with these objec-
tives will demonstrate the overall pit lake concept for the
industry, although other operators will need to demonstrate
their closure plans as well. To that end, other operators such
as Suncor are constructing similar facilities on their leases
(Suncor 2018).

Another pilot-scale study was the bioremediation of an
acid pit lake in northern Queensland, Australia (Fig. 5). Lab-
oratory (Kumar et al. 2011c; McCullough and Lund 2011;
McCullough et al. 2006), macrocosm (McCullough et al.
2008a), and finally pilot scale (McCullough et al. 2008b)
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Fig.5 Demonstration pit lake scale experiment formed by sectioning
of a pit lake by a waste rock causeway for a control lake (far side) and
manipulated lake (near side) (McCullough et al. 2008b)

studies were all used in concert to demonstrate its potential
and then to demonstrate that:

¢ microbial sulfate reduction would remediate high AMD
waters;

e bulk and readily available wastes could be used as
sources of organic materials;

e that products formed through alkalinity generation would
be stored in the lake sediment.

Pilot Systems in Pit Lake Research

Pilot scale often represents the final scale of study in pit lake
research, with volumes reaching millions of litres (Bozau
et al. 2007). This scale of study is therefore often geared
toward demonstrating that pit lake closure plans can meet
regulatory commitments, achieve acceptable water qual-
ity, and develop sustainable aquatic ecosystems (i.e. what
might be considered regulatory knowledge gaps). The
anticipated maximum experimental duration for these lakes
is % 20 years, depending on how challenging the substrate,
climate, and other factors will render chemical and biotic
effects, such as ecological succession.

Studies have compared predicted geochemical models of
pit lakes prior to pit lake formation with actual pit lake water
quality and generally show that the geochemical models fre-
quently fail to predict actual pit lake water quality (Eary
1998; Kuipers et al. 2006). Using pilot-scale PLS is a useful
tool for validating and calibrating such water quality models.

Pilot-Scale Opportunities

Many researchers believe that qualified decisions for ecosys-
tem management cannot be made with confidence unless the
limitations of mesocosm studies are understood and full eco-
system scales are studied (Ahn and Mitsch 2000). Until this
full-scale is realised, many environmental processes may
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still be omitted from study and left to best judgement and
estimates. Pilot scale is the only scale of study that allows
interactions with the broader catchment to be incorporated
into the pit lake. These may include the local broader catch-
ment, including waste materials such as overburden dumps,
tailings storage facilities, and other mining landforms, as
well as the broader watershed where flow-through or other
local or even regional interaction is occurring. Complex
questions of the specific responses of entire ecosystems may
only be able to be answered by full-scale experimentation
(McCullough 2015; McCullough and Schultze 2018).

Whilst small-scale studies can suffer from significant
variability between replicates, pilot-scale studies may detect
more subtle changes due to lower variability and sensitivity
to noise at this scale (Eberhardt and Thomas 1991). Con-
sequently, pilot-scale water bodies are primarily intended
to verify that pit lake closure plans can achieve acceptable
water quality and develop sustainable aquatic ecosystems.
There are currently few studies of aquatic macrophytes of
full-scale pit lakes (Kamberovi¢ and Arudanovié 2012;
Otahelov4 and Ofahel 2006; Pal et al. 2014), with most
studies only undertaken at smaller scale.

Pilot-Scale Limitations

While experiments conducted at the ecosystem scale are
considered the most realistic, such experiments suffer from
limitations including low replication and reduced experi-
mental control (Hurlbert 1984; Stewart-Oaten et al. 1992).
For instance, there is likely to be only one or very few pilot-
scale tests to demonstrate chosen strategies prior to proceed-
ing to full-scale; either observational (McCullough et al.
2008a) or even manipulative (McCullough et al. 2008b)
pilot-scale PLS experiments may have only one treatment
(often a single large enclosure within a pit lake) and one
control (often the surrounding pit lake) (Bozau et al. 2007),
which greatly limits their interpretation as to the effects of
the treatment of interest.

The large size of pilot-scale pit lakes can also complicate
sampling, including greater OH&S considerations such as
the need for boats and possibly underwater sampling tech-
niques (Ross and McCullough 2011). Recent advances in
drone sampling technology (Castendyk et al. 2019) may
reduce these limitations. However, these technologies cur-
rently do not permit biotic sampling.

Importantly, construction and modification costs may be
very high. Therefore, it is critical to plan field-scale develop-
ments early in the research program by selecting the right
filling materials to achieve the objectives of the project.
Similarly, it is important to engage with stakeholders and
regulators prior to construction to confirm that the pilot-
scale system will achieve the desired outcomes in terms of
providing a credible demonstration.

Integrating Multiple Scales of Study

Scale is fundamental to both experimentation and theory,
particularly in the biological sciences (Petersen et al. 2009).
A lack of realism is inherent to all experimental science
(Drake and Kramer 2012), where scale is an implicit com-
ponent of all study designs that sample a subset of a given
population. However, small-scale experiments using ‘model
organisms’ in small scale studies using microcosms or meso-
cosms have been shown to be a useful approach to begin
addressing complex ecosystems (Benton et al. 2007). The
main experimental approaches in pit lake studies can there-
fore be presented along a gradient of scale: microcosms with
an artificial mixture of species in batch culture, mesocosms
and macrocosms with more natural mixes of species, and
unenclosed field experiments (Fig. 6). For instance, meso-
cosms are a powerful tool to link large field studies close
to natural conditions with controlled small-scale laboratory
experiments (Striebel et al. 2013). Selecting an appropriate
scale of experimentation is not only a question of technical
and financial feasibility but a consideration of the inevitable
trade-offs between realism and control.

Equally, full-scale modelling of pit lake attributes is
often undertaken with assumptions of smaller-scale char-
acteristics. Typical examples include predictive modelling
of long-term geochemical conditions, such as water quality,
and more recently, other conditions, even shoreline erosion
(Fig. 7), where assumptions must be made with regard to
small-scale attributes (McCullough et al. 2019). In particu-
lar, the geochemical evolution of pit lakes, and how that
can substantially affect biological evolution, may change at
different scales of biological complexity and biota. Simple
factors such as pH and TDS can determine what organ-
isms will survive in a specific pit lake. Modelling studies at
larger scale can benefit from smaller-scale studies directed
toward the pit lake environment, supporting their use of
equation constants e.g. for geochemical dissolution (Cas-
tendyk et al. 2015a, b; Nixdorf et al. 2010; Watson et al.
2016), water balance (McCullough et al. 2013; McJannet
et al. 2017, 2019), hydrodynamics (Hurley 2017; Lawrence
et al. 2016; McCullough et al. 2011; Nguyen 2004), cohesiv-
ity (McCullough et al. 2019), and other physico-chemical
assumptions.

The comparison of different scales to each other and to
modelling results help indicate which processes or com-
binations of processes can be scaled (that is, are general
processes) and which cannot. Modelling can then further
inform the different study scales through sensitivity analyses
highlighting primary drivers of water quality and ecologi-
cal processes and areas of knowledge considered important
(Castendyk and Webster-Brown 2007a, b). These drivers
and areas of knowledge should then receive greater research
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Experimental Ponds
(100s cubic meters to megalitres)

Demonstration Lakes

(megalitre to gigalitre)

Base Mine Lake
(approx. 40 gigalitres)

Fig. 6 Different scales of study contribute different types of knowl-
edge about pit lake physical, chemical and biotic ecosystems. As
experimental physical scale increases, validity of study results to full
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Fig.7 Bed shear change predictions carrying assumptions of nature and strength of field-scale sediment cohesiveness (McCullough et al. 2019)

attention to advance their understanding. Conversely, the
comparison of different scales to each other and to model-
ling results will indicate which processes can be scaled (that
is, are general processes) and which cannot. For example,
modelling pit lake water quality has been criticised for the
inaccuracies inherent in scaling geochemical reactions from
typical scales of laboratory static and kinetic test-work to
field scale (Eary 1999; Pilkey and Pilkey-Jarvis 2012).
Problems with appropriate scaling of pit lake studies can
be difficult to deduce without direct comparisons with much
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larger scale or even whole-pit lake experiments. Depending
on the research question being explored, potential problems
arising from studies undertaken at singular scales include:

e Too small spatial scales that do not include whole eco-
logical communities or incorporate physical processes.
For example, elimination of fundamental littoral-pelagic
and catchment-lake interactions, such as organic mat-
ter diagenesis and nutrient incorporation into foodwebs
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(Schindler 1998) or water column mixing frequency, tim-
ing, and duration (Boehrer and Schultze 2006).

e Too small spatial scales that do not capture the heteroge-
neity or stochasticity of the system of study.

e Temporal scales too short to assess slow-responding
organisms and complex pit lake biogeochemical pro-
cesses. For example, ecological succession in a new
lake is expected to take many years with longer durations
required for higher trophic levels as the food-chain below
them becomes established (Lund and McCullough 2011).

Many experiments (ecological and physical, in particu-
lar) are sensitive to scale, as the size and duration of the
experimental scale will likely exclude or distort important
features of the ecosystems (Carpenter 1996). Both larger
scale macrocosm and mesocosm manipulations have limita-
tions, particularly for ecological research questions, due to
limited generality and applicability of results to even larger
and more complex pit lake systems with different physical
parameters. Assemblage compositions and responses involv-
ing indirect food web interactions and processes usually
occur over longer temporal scales (e.g. numerical responses
of consumers) and may be more sensitive to variations in
spatial scale (i.e. environmental connectivity to other eco-
logical communities within or outside of the pit lake). Physi-
cal studies will be influenced by regional climatic conditions
and local wind patterns, including the effects of nearby waste
and other mining landforms (Huber et al. 2008).

Microcosm studies of ecological processes, in particular,
have been criticized for being unrealistic. Scaling rules have
been developed for some processes to help translate experi-
mental results from these small enclosures to entire ecosys-
tems (Petersen and Hastings 2001). Even identical studies
of limnological processes across wide ranges of lake sizes
reveal that scaling correction is necessary when extrapolat-
ing from small lakes to large ones (Schindler 1998). As a
result, mesocosms and macrocosms are often better suited
for testing large numbers of single variables with replication
that provides reasonable statistical power for pit lake eco-
logical questions. These small-to-medium scale experiments
have become increasingly popular because they provide an
important bridge between very tightly controlled microcosm
experiments (which can suffer from limited realism) and the
greater biological complexity of natural systems (Stewart
et al. 2013).

Because of their more realistic geometries, mesocosm and
macrocosm experiments may realise similar results for algal
and invertebrate studies (de Szalay et al. 1996). Some organ-
isms are too large and some processes too slow, to include
in smaller-scale experiments. For instance, lake mixing pro-
cesses and contaminant bioaccumulation and biomagnifica-
tion effects at high trophic levels, such as fish and birds,
require larger-scale systems.

Although pit lakes are expected to yield relatively simpler
ecosystems than their natural analogue counterparts (Lund
et al. 2013; Van Etten et al. 2014), the basic dimensions of
spatial and temporal scale and complexity with commensu-
rate levels of replication are still needed to answer research
questions (Hurlbert 1984). The choice of the appropriate
experimental scale is therefore a trade-off between realism
and control. Unenclosed field manipulations have the highest
degree of realism, but the least degree of control. Small-
scale ecological experiments with single or a few species
rely on a ‘model organism’ concept, and are biased against
the detection of slow and space-requiring processes (Som-
mer 2012). As a result of these trade-offs, there is no one
single scale for a pit lake study that is suitable for examining
ecological processes and outcomes. Instead, different enclo-
sure scales and field scales form just one part of a study-
scale jigsaw, with conclusions more widely accepted if they
are supported by experiments at a variety of scales (Fig. 8).

The results and conclusions of each study scale can then
be compared with related studies at different scales by link-
ing their findings as general principles that would then go
on to provide input variables e.g. constants to empirical
models of key pit lake processes. Enclosures can also be
linked together; either simultaneously such as flow-through,
or in time, such as being undertaken sequentially (Petersen
and Englund 2005). In this manner, different enclosures can
represent different components of a pit lake, such as benthic
and pelagic zone, littoral, or even riparian.

Different enclosure and field scales therefore form just
one part of a framework of studies that often need to come
together to answer fundamental process questions in the

Fig. 8 Integration of studies of different scales together
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complex systems of pit lakes. Physical process studies will
rarely be reliable at small scale and will require larger scales
(macrocosm and upward) with modelling to extrapolate tem-
porally. Geochemical processes can be reasonably demon-
strated at very small scales with fundamental processes, but
benefit from inclusion of other parameters, such as sediment
interaction (mesocosm scale and upward) and physical pro-
cesses (macrocosm and upward). Once parameterized, mod-
elling is also often able to be scaled for well-established abi-
otic geochemical processes (Parkhurst and Appelo 1999) and
even biogeochemical processes, although in the latter case,
the findings may be limited to the encountered experimental
conditions (Bozau et al. 2007). Biological processes can be
demonstrated by microbiological (bacterial and phytoplank-
tonic) communities at only microcosm scale with micro-and
macroinvertebrates becoming reasonably demonstrated at
mesocosm scale, and vertebrates, such as fish, only at mac-
rocosm scale. Riparian and other catchment biological pro-
cesses require full-demonstration pit lake (DPL) scale study.

Integration of different research scales to achieve a multi-
scale understanding of pit lake closure issues will neces-
sitate incorporation of different research studies and indeed
research programs. As a result, a pit lake research program
must maintain a degree of flexibility that allows different
researchers to answer research questions in (equally) valid
and complementary ways. It is also important that the
approach taken by a single research discipline does not com-
promise or preclude other types of research at the facility.

One way that study findings from different scales can be
integrated is through the MLE approach. This formal meth-
odology provides support for a conceptual model by under-
taking different but complementary investigations represent-
ing entirely separate fields of science. If conclusions from
each study converge, this indicates the conceptual model
is correct and we can have assurance in the model, and be
able to confidently communicate it with stakeholders. We
recommend that an MLE approach be applied, beginning at
smaller scales and moving progressively larger, to maximize
their demonstrable validity at the full-pit-lake scale. The
MLE approach does not need to be formal or rigid; rather,
it can be an holistic approach applied to each experimental
question being studied at smaller scales.

Conclusions

Our review was limited by the lack of many studies not
being published in the primary peer-reviewed literature,
which we restricted our review to. Many studies have been
undertaken either as internal organisational, or including the
authors’ own) consulting commercial-in-confidence reports.
As a result, it is likely that our review has omitted some,
especially smaller-scale studies that preceded larger scale
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studies e.g. some of the full-scale pit lake remediation stud-
ies described in Geller et al. (1998, 2013). However, we
found that different scales of study present different opportu-
nities and limitations for understanding PLS (Table 1). Most
of these studies were directed toward in situ remediation
of acid mine drainage (Klapper 2003; Klapper et al. 1996).
Very few ecological studies have been undertaken, and these
have been directed primarily toward oil sands pit lakes (Qua-
graine et al. 2005). Although still low in replication, pub-
lished smaller-scale studies present greater replication and
thus statistical power than larger-scale studies. However,
there are few small-scale studies that have been concomi-
tantly matched with larger-scale studies, and this remains a
significant knowledge gap. Equally, there are some full-scale
pit lake studies that were never undertaken at smaller scales
e.g. Harrington (2002) and Lu (2004).

Our review found that smaller scale microcosms and
mesocosms are ideal for testing single PLS variables, under
well-defined conditions, with replication providing reason-
able statistical power. Variables and processes can be iso-
lated, controlled and tested to answer a number of questions
such as;

e  What are the toxicological thresholds for constituents of
concern in pit lake waters for aquatic species; including
synergistic or competitive toxicological effects of COPC
mixtures?

e What are biogeochemical generation and fate processes
for water quality?

e What is the role of nutrient limitation and stimulation on
trophic status?

In contrast, experimental ponds are more suited to
answering higher level questions, such as:

e What adaptive management strategies can be applied to
improve sustainability and thus success of pit lakes?

e How will water quality change over time with interac-
tions with sediments?

e What is the toxicity of this water to the site-specific eco-
logical communities and the effects of more complex
ecological interactions e.g. of competition, predation?
That is, what macrophyte, phytoplankton, macroinver-
tebrate, zooplankton, and fish assemblages can success-
fully be established in water composition representative
of pit lakes?

e Are there risks of bioaccumulation or biomagnification
in pit lake food chains?

e What water quality variables drive successful ecological
rehabilitation of pit lakes?

e What is the optimal residence time for pit lakes that
require bioremediation for water quality improvement
prior to discharge?
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e What different types of mine wastes can be safely stored
under the water column?

Ideally, an overall PLS research programme will be sys-
tematically planned from conception to completion, with
at least an anticipation of which types of questions will
be answered by each scale of study. In an integrated PLS
research programme, the types of experimental systems best
employed need to be carefully examined in the context of
the specific knowledge gaps to be addressed. In most cases,
the information gathered at each stage of experimentation
can be integrated into a conceptual and often even a numeri-
cal model that can reveal remaining knowledge gaps. An
important decision should be the desirability of sacrificing
spatial and temporal scales so as to obtain replication against
a view that appropriate scale must always have priority over
replication (Oksanen 2001). Some processes simply will not
scale well, such as more complex physical and biological
studies. This has especially been the case where small-scale
e.g. microcosm studies have overestimated larger scale e.g.
macrocosm/pilot scale study outcomes (Geller et al. 2009;
Geller and Schultze 2013). The PLS programme can then
adapt to findings over time, moving to progressively larger
scales to maintain economic efficiency. In this way, knowl-
edge gaps can be addressed using an appropriate scale of
study that reduces time, effort, and cost, while maximizing
flexibility and options for the largest investments of the pilot
and full-scale systems.

However, models can be more reliable when validated by
bench-top column experiments (i.e. microcosm) and field-
based tank experiments (i.e. mesocosm) experiments of the
“pit lake in a bucket” approach (Castendyk et al. 2015b).

Finally, this review showed how few pit lake experiments
at smaller scale have resulted in outcomes at larger scale
and the need for future research at this scale. However, few
scaled experiments have been realised as full-scale pit lake
outcomes, making the reliable translation of experimental
results to real life examples unknown. Instead, our review
found that there are very few studies of either smaller or full
scale pit lakes, and that there are none that we are aware of
where the thesis of the smaller scale experiment was vali-
dated at the full scale. For example, manipulative bioreme-
diation or toxicity experimental tests at smaller scales have
often not been validated by pilot-scale treatment or exposure
experiments. Equally, we do not find either observational or
manipulative experiments of full scale pit lakes that have
had robust manipulative experiments of any smaller scale
undertaken prior to their formation.

There are now a large number of pit lakes forming, some
of which are in early stages of biological and chemical evo-
lution. Some of these lakes will not move beyond very sim-
ple systems, constrained by poor water quality and salinising
and/or acidophilic reactions (Lund and McCullough 2011).

Monitoring and investigating geochemical, biological and
ecological aspects of these some of these pit lakes could, if
intensively studied, serve as real examples for which model
ecosystem scales could be compared for validation of those
experimental models. If small-scale models are not useful
for predicting actual pit lake ecosystems, perhaps they will
help to better define what type of experiments are helpful.
Several pit lakes are now forming around the world, from
relinquished and abandoned mine voids and from pit voids
at operations that have ceased dewatering activities. An
appropriately matched scale of study to understand pit lake
ecosystem evolution would therefore examine these pit lakes
that are now forming.

Finally, when faced with complex questions and deci-
sion making, environmental management often requires a
diversity of evidence rather than single studies (Cook et al.
2012). This MLE approach achieves robust understanding of
poorly understood systems with multiple studies occurring
at different, but complementary, temporal and spatial scales
(Hall and Giddings 2000). It is more effective and reliable to
have multiple, independent lines of evidence converging on
a single conclusion to develop an understanding of pit lake
issues and processes impacting PLS management and have
demonstrable and sustainable conclusions for stakeholders.
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