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Introduction

Freshwater organisms can adapt to changes in the ionic 
composition of water (Ern et al. 2014; Kwong et al. 2009; 
Nguyen et  al. 2014) and the specific mechanisms of fish 
osmoregulation at the genetic, molecular, morphologi-
cal, and behavioral levels have been previously described 
(Evans 2008; Hiroi et al. 2012; Seale et al. 2012). However, 
there is insufficient research on the excess of specific ions 
in water bodies. While this problem is not widespread in 
nature, it is relevant to isolated bodies of freshwater where 
the chemistry is largely determined by the composition of 
the underlying rock or where the water is exposed to indus-
trial effluents.

Since 1982, a natural lake has been used to dispose of 
tailings from the Kostomuksha iron mine and ore dress-
ing mill (64º61´N, 30º47´E, northwestern Russia). In the 
30 years after mining, the hydrochemistry of this lake, now 
a tailings pond (TP), has drastically changed when com-
pared to the natural background (Table  1). Dissolution of 
minerals from the tailings has resulted in a 20-fold increase 
in the concentration of major ions (from 30 to 600 mg/L) 
as well as a change in the water type, from a regional Ca-
HCO3 type to K-SO4-HCO3 (Lozovik et  al. 2007). Indus-
trial activity has caused a dramatic decline in biodiversity, 
as indicated by diminishing plankton, fish, and higher 
plant communities (Ilmast et  al. 2013; Kalinkina et  al. 
2003; Vlasova 1998). Altered fish growth and reproduction 
parameters, as well as marked biochemical and histological 
disorders, were described in fish from the TP and down-
stream lakes (Borvinskaya et al. 2011, 2012; Churova et al. 
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2014; Ilmast et al. 2013; Murzina et al. 2011; Nemova et al. 
2012; Tkatcheva et al. 2004).

Based on the literature, the high levels of K+ (4  mM) 
could be extremely challenging for aquatic organisms and 
a major cause of the TP water toxicity (Lozovik et al. 2007; 
Tkatcheva et  al. 2007). Experimental studies have shown 
that of the common ions found in freshwater, potassium is 
arguably the most dangerous. In aquaria experiments, the 
K > Mg > Ca > Na order of relative toxicity of cations has 
been established for most water organisms (Fischer et  al. 
1991; Mount et al. 1997; Trama 1954). Mount et al. (1997) 
found that the median lethal doses of potassium chloride, 
potassium sulfate, and potassium bicarbonate for fish and 
crustaceans were significantly lower than for sodium, mag-
nesium, and calcium salts. Similarly, potassium nitrate is 
more toxic to aquatic organisms than sodium nitrate (Dow-
den and Bennett 1965) indicating that potassium ions con-
tribute to toxicity more than the accompanying anions.

Potassium is an essential constituent of the body for 
intracellular osmotic pressure and buffering, cell perme-
ability, acid-base balance, muscle contraction, and nerve 
function. Shifting the chemical gradient of K+ between cell 
cytoplasm and blood plasma disrupts these processes. Its 
regulation is critical in all vertebrates because a constant 
K+ concentration is essential for protein and glycogen 
synthesis, enzyme activities, and cell division and growth 
(Weiner and Wingo 1998; Opoku-Okrah et al. 2015).

For fish, the physiological level of K+ in cells is 140 
to 150  mM in cells and 3.5–5  mM in plasma (Furukawa 
et al. 2015, 2014; Gardaire et al. 1991). Gills are the main 
organ of K+ regulation; freshwater fish absorb potassium 
through the gills and release it through branchial K+ canals 
(ROMKa) (Furukawa et  al. 2014, 2015). Potassium trans-
port is strongly coordinated with Na+, H+, and Cl− trans-
port through specific membrane channels and typically 
takes place when there are higher concentrations of sodium 
in both natural waters (Na:K molar = 20–50:1) and blood 
plasma (Na:K molar = 30–40:1). An imbalance can make 
normal osmotic regulation problematic. For freshwater cat-
fish Ictalurus punctatus, the LC50 dose is 10 mM of potas-
sium chloride; potassium sulfate and potassium bicarbonate 
are even more toxic (LC50 doses are 4mM and 5 mM for 
96  h, respectively) (Mount et  al. 1997). However, potas-
sium tolerance varies between fish species; Furukawa et al. 
(2014) report that euryhaline tilapia Oreochromis mossam-
bicus placed into freshwater containing 10 mM potassium 
chloride showed no mortality or changes of physiological 
levels of plasma potassium, thus demonstrating effective 
mechanisms to rapidly eliminate excess K+.

In this study, the effects of various K+:Na+ ratios on the 
whitefish Coregonus lavaretus, a species known to live and 
reproduce successfully in the Kostomuksha tailings pond, 
were studied as a simplified model of toxicity associated 

with mine waste. Levels of tissue oxidation, antioxidant 
system response, and growth performance were evaluated 
as stress markers. Other potentially threatening compounds 
found in the TP were not the focus of this study and will be 
addressed in later research.

Materials and Methods

Experiment Design

Experimental fish were obtained in April from a local 
fish farm (The Republic of Karelia, Russia). Juvenile C. 
lavaretus of uniform length were transferred to 300  L 
tanks (21 fish per tank) filled with tap water (supplemen-
tal Table  1) and maintained at 13 °C by a Hailea HC-
250A water chiller. Oxygen saturation was maintained 

Table 1   Chemistry of the Kostomuksha tailings pond water and the 
unpolluted Kamennoe Lake (64˚27´N, 30°15´E, northwestern Russia) 
(Lozovik et al. 2007; our data) and EC water quality standards

n.d. not determined
*European Communities (Quality of Salmonid Waters) Regulations, 
1988 (S.I. No 293 of 1988); **European Communities (Quality of 
Surface Water Intended for the Abstraction of Drinking Water) Regu-
lations, 1989 (S.I. No 294 of 1989. 5); ***European Union (Drinking 
Water) Regulations, 2014 (S.I. No. 122 of 2014)

Parameters Kostomuksha 
tailings pond 
(TP)

Kamennoe lake EC regulation

Dissolved O2 
(mg/L)

7.0–10.8 7.0–9.0 –

pH 7.6–8.0 6.3–7.0 –
Major ions (mg/L)
 Na+ 21 ± 6 1.30 ± 0.03 –
 K+ 134–178 0.61 ± 0.07 –
 Mg2+ 19 ± 5 0.62 ± 0.01 –
 Ca2+ 37 ± 9 3.92 ± 0.03 –
 Cl− 7 0.8 250**
 SO4

2− 172–298 2.2 200**
 HCO3

− 128–147 4.4 –
Major and trace elements (µg/L)
 P 42 ± 3 43 ± 2 –
 Fe 103 ± 31 189 ± 5 200**
 Li 82.84 ± 23.76 0.58 ± 0.02 –
 Zn 1.57 ± 0.31 10.78 ± 0.72 30*
 Pb 0.042 ± 0.001 0.303 ± 0.021 50**
 Ni 2.65 ± 0.69 0.65 ± 0.02 20***
 Cu 2.18 ± 0.05 1.85 ± 0.10 <5*
 Mn 13.36 ± 0.88 12.02 ± 0.25 50**
 Cr 0.83 ± 0.10 19.16 ± 0.41 50**
 Cd 0.063 ± 0.015 0.020 ± 0.001 5**
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through ceramic oxygen diffusers. A 12L: 12D light 
regime was provided by 58 W light bulbs (Philips TL-D 
58  W/54–765) with a photoperiod controller. The fish 
were automatically fed once every 24  h using commer-
cial feed (BioMar, 0.5 mm).

After a 2-week acclimation period, fish were randomly 
assigned into two groups (each of sample size 21); each 
group was subjected to a specific mineralization regime. 
Target mineralization values were produced by addition 
of concentrated solutions of NaCl and KCl and main-
tained by replacing approximately one-third of the water 
volume with freshwater with dissolved salts (Table  2) 
every 24 h.

The experimental fish group was exposed to water 
with 4.4 mM potassium, 0.8 mM sodium, and a K+:Na+ 
molar ratio of 5:1; these conditions mimic those recorded 
in the TP (К5Na1 group). The control fish group was sub-
jected to a solution with K+ and Na+ concentrations equal 
to that of natural potassium-rich waters (K1Na1 group). 
The total concentration of major ions in the water for 
both groups was approximately 400  mg/L, which corre-
sponds to the mineralization in the TP. Experiments were 
performed in duplicate.

The work was carried out in accordance with the EU 
Directive 2010/63/EU for animal experiments. Seven 
individuals from each group were sampled before initiat-
ing the experiment (day 0) and on the 5th and 20th day 
following the exposure onset. At each time point tested, 
whole fish individuals were weighed and liver and white 
muscle were then excised and frozen in liquid nitrogen 
for further analysis.

Hydrochemistry

Measurements of pH, oxygen saturation, and temperature 
were performed on the fish tank water using a CCO-505 
oxygen meter and CPI-505 pH/ion meter (Elmetron). 
Phosphorus and metal concentrations were determined by 
quadrupole inductively coupled plasma mass spectrom-
etry (Q-ICP-MS, Thermo Scientific). The certified refer-
ence material (CRM) ICP-MS Calibration Standard 21 
- IV-STOCK-21-125ML (Inorganic Ventures) was ana-
lyzed simultaneously. Chloride and sulfate anion concen-
trations were determined spectrophotometrically (Utsumi 
et al. 1978; Kirsten and Lindholm-Franzén 1980). Hydro-
chemistry analyses were performed daily throughout the 
experiment period. No significant variations in tempera-
tures, pH, or oxygen saturation were observed between 
the two tanks (one-way ANOVA) during experimenta-
tion. The coefficient of variation in registered ion con-
centration in each tank did not exceed 25 % during the 
experiment.

Growth Performance

The specific growth rate (SGR) was calculated according to 
the following equation:

In this equation, W refers to the mass of the sampled fish 
in grams, and W0 and W1 are the initial and the final mean 
mass values in grams, respectively.

Biochemical Assay

All chemicals and reagents for biochemical assay were 
purchased from Sigma–Aldrich. For glutathione S-trans-
ferase activity (GST) measurements, fish tissues were 
individually homogenized in 50 mM Tris–HCl buffer (pH 
7.5) containing 5 mM EDTA, followed by 1 h centrifuga-
tion at 100,000  g, 4 °C. Supernatant obtained was added 
to the reaction mixture, which was a 0.125  M phosphate 
buffer (pH 6.5) with 1  mM 1-chloro-2,4-dinitrobenzene 
and 1mM GSH (Habig et  al. 1974). Enzyme activity was 
measured by recording any increase in the optical density 
at 340 nm (ε = 9.6 mM− 1cm− 1). Specific enzymatic activity 
was defined as the amount of substrate metabolized by the 
enzyme (in mM/min/mg).

Reduced glutathione (GSH) concentration was deter-
mined using a procedure modified from that of Сohn and 
Lyle (1966) and Hissin and Hilf (1976). Soluble proteins 
were precipitated from the homogenate by 5 % trichloro-
acetic acid and removed by centrifugation at 2500  g for 
15  min. The supernatant was adjusted to pH 8.5 by 6  M 
NaOH and diluted by 0.4 M Tris–HCl buffer (pH 8.5) with 
5  mM EDTA. Fluorescence of the reaction product was 
measured after 15  min of incubation with 0.01 % ortho-
phthalaldehyde in methanol at room temperature (Em at 
420  nm; Ex at 350  nm). Final GSH concentrations were 

(1)SGR = 100 × (lnW1 −W0) × (days)−1

Table 2   Physicochemical characteristics of water for control 
(К1Na1) and experimental (К5Na1) fish tanks

Parameters К1Na1 К5Na1

Water temperature (°C) 13.6 ± 0.3 13.4 ± 0.2
Dissolved oxygen (mg/L) 7.0 ± 0.5 6.9 ± 0.4
pH 7.5 ± 0.0 7.5 ± 0.1
K+:Na+molar ratio 1:1 5:1
Major ions (mM)
 Na+ 3.34 ± 0.04 0.81 ± 0.02
 K+ 3.01 ± 0.04 4.39 ± 0.06
 Mg2+ 0.09 ± 0.01 0.08 ± 0.001
 Ca2+ 0.17 ± 0.01 0.16 ± 0.006
 Cl− 5.51 ± 0.03 4.99 ± 0.03
 SO4

− 0.04 ± 0.002 0.04 ± 0.001
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determined in accordance with the standard calibration 
curve of reduced glutathione in 0.01 % ortho-phthalalde-
hyde; relative GSH concentration is expressed in micro-
grams of GSH per milligrams of soluble protein (µg/mg).

Lipid peroxidation product malondialdehyde (MDA) 
was measured by the TBARS method (Bird and Draper 
1984; Okhawa et al. 1979) by adding of 0.2 mL of tissue 
homogenate to 1.5  mL 20 % orthophosphoric acid (pH 
3.5) and 1.5 mL of 0.8 % thiobarbituric acid. Samples were 
then heated in a 95 °C water bath for 1  h. After cooling, 
1.0 mL of chilled water and 5.0 mL butanol-pyridine mix-
ture (15:1, v/v) were added and samples were vortexed for 
15  s; the flocculent precipitate was then removed by cen-
trifugation at 3000 g for 10 min. Homogenate absorbance 
was measured at 532 nm using1,1,3,3-tetra-ethoxy-propane 
as a reference. The MDA level was expressed in nM/g of 
wet tissue. Protein content in the supernatant was measured 
spectrophotometrically by recording absorption at 205 nm, 
using bovine serum albumin as a standard (Noble and Bai-
ley 2009; Sukhovskaya et al. 2010).

Data Analyses

Statistical analyses were performed with Past 3.10 Soft-
ware. A two-way ANOVA was performed to examine 
effects of time and treatment; a post-hoc pairwise Tukey 
HSD test was used to determine significant differences 
between the datasets. Parameters relations were analyzed 
using Spearman’s correlation coefficients. Data are pre-
sented as the mean ± standard deviation with p ≤ 0.05 in all 
analyses.

Results

Growth Performance

Growth rates of fish exposed to different modes of miner-
alization are significantly different. In the К1Na1 group, a 
linear increase of the body mass was observed during the 
entire experimental period. However, in the К5Na1 group, 
the fish did not grow; by the 5th and 20th days, their final 
weight was similar to the starting condition and signifi-
cantly lower than in the control group (Table 3).

Biochemical Parameters

Studied biochemical parameters demonstrated differ-
ent responses to the exposure conditions. The MDA level 
variations appear to be tissue-specific (Fig.  1). The effect 
of potassium on the liver appears to depend on concentra-
tion and duration. MDA levels in liver from the К5Na1 
group significantly increased by the end of the experiment. 

Liver MDA in the К1Na1 group also increased over 20 
days; however, this elevation was not statistically sig-
nificant. ANOVA results show that treatment and dura-
tion had no effect on the MDA response in muscle tissue; 
however, interaction between these factors was significant 
(F2.78=5.0). MDA levels in fish muscles from the К5Na1 
group declined over the course of the experiment.

The GSH level in both liver and muscle tissue was 
not affected by different K+:Na+ ratios (Fig.  1). How-
ever, GSH concentration in muscle tissue was found to be 
dependent on the duration of the experiment (F2.78 = 4.3). 
It decreased in both groups after 20 days compared to the 
beginning of experiment, and in the K5Na1 group, it was 
significantly lower from that at day 5.

No significant difference in glutathione S-transferase 
activity in liver and muscle tissue was detected between 
the two sample groups and time points through two-way 
ANOVA and post-hoc testing (Fig. 1).

Discussion

Natural freshwater contains ionic constituents, which are 
vital for aquatic life. However, many natural and anthro-
pogenic sources can increase ion concentrations to lev-
els toxic to hydrobionts (Mount et al. 1997; Talling et al. 
2010). Although potassium is abundant in nature and 
its common salts are highly soluble, it is seldom found 
in freshwater at high concentrations (Hem 1985). In 
relatively fresh water (up to 15  g/L of dissolved salts), 
potassium has been recorded to range between 0.001 and 
2.0 mM; sodium is commonly found at much higher con-
centrations, approximately 0.1–50 mM (Hem 1985; Mey-
beck 2003; Talling 1992, 2010). Salt water K+ concentra-
tions can be as high as 10 mM, but K+: Na+ molar ratios 
are generally less than 0.02 (Hem 1985). In K-rich waters 
associated with volcanic areas and alkaline lakes, up to 
20 % of total cations can be potassium, and sodium con-
centrations can be equivalent (Mccarraher 1971; Talling 
1992). In 1982, Kilham (according to Talling 1992) 
reported that specific hippo pools accumulated very high 
concentrations of potassium (2.6 mM K+, with a K+: Na+ 
ratio of 4.0) as a result of megafaunal activity.

Table 3   Fish weight and specific growth rate alteration

a Differences are significant compared to the К1Na1 group

Sample Weight, g SGR, %/20 days

0 day 5 days 20 days

К1Na1 6.5 ± 1.6 7.1 ± 1.0 8.1 ± 1.1 1.1
К5Na1 6.4 ± 1.0 6.2 ± 0.6a 6.2 ± 0.8a −0.2
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Based on these prior reports, the dissolved potassium 
concentrations, up to 4  mM and equivalent to 40–53 % 
of all cations, in the tailing pond of the Kostomuksha 
mine is unusually high for freshwater environments. It 
has previously been shown that some freshwater bivalves 
and unionid mussels are sensitive to potassium and can 
demonstrate adverse effects at potassium concentrations 
as low as 0.25 mM (Dietz and Byrne 1990; Fischer et al. 
1991; Imlay 1973; Wilcox and Dietz 1995). Freshwater 
fish are reported to be more tolerant to potassium; median 
lethal doses range from 10 to 27 mM after exposure times 
of 96  h (Fischer et  al. 1991; Mount et  al. 1997). It has 
also been shown that the toxic effects of potassium are 
reduced in the presence of high concentrations of other 
cations including sodium, calcium, and magnesium; this 
suggests a competitive relationship between these cations 
(Mount et al. 1997).

High potassium levels and disproportionate concentra-
tions of major ions are potential causes of the ecologi-
cal disturbance observed in the TP (Lozovik et al. 2007; 
Tkatcheva et  al. 2007). Comparison with downstream 
water bodies shows that TP fish communities show much 
lower species diversity; there are only three species that 

can now be found regularly (C. lavaretus, roach Rutilus 
rutilus, and pike Esox lucius) and two periodically (bur-
bot Lota lota and bleak Alburnus alburnus).

Previous studies have demonstrated biochemical and 
histological disorders in fish from the TP and the river 
system downstream of the mining waste reservoir; oxida-
tive stress and reduced aerobic metabolism can be indi-
cated by lipid dystrophy (consisting of either infiltration 
or decomposition in the liver), declined protein synthesis 
in muscles, energy deficiency, and increased proliferation 
of the mucus, respiratory, and specific osmoregulatory 
chloride cells in gills (Churova et  al. 2014; Tkatcheva 
et al. 2004). Specifically, the roach and whitefish from the 
TP were characterized by a retarded growth rate and ear-
lier maturation (Ilmast et al. 2013; Nemova et al. 2012).

The model experiment herein estimates C. lavaretus 
response to potassium and sodium concentrations rel-
evant to those in the mining waste reservoir TP and nat-
ural K+-rich waters. No fish mortalities occurred in this 
experiment, confirming exposure tolerance of C. lavare-
tus. However, evidence of altered fish physiological and 
biochemical parameters was observed in fish exposed to 
the higher levels of potassium in the water.

Fig. 1   Malondialdehyde 
(MDA) content, reduced 
glutathione (GSH) level, and 
glutathione S-transferase (GST) 
activity in liver and muscle 
tissue of C. lavaretus exposed to 
different mineralization regimes 
over 20 days. aDifferences were 
significant compared to the 
К1Na1 group; *differences were 
significant compared to the 
0 day; #differences are signifi-
cant compared to the 5th day
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Growth Response

Although C. lavaretus showed consistent feeding activity 
(as evidenced by sampling procedure and gastrointestinal 
dissection, data not shown), there was no observed weight 
gain within the К5Na1 group (Table  3), while fish in the 
К1Na1 group demonstrated a linear body mass increase 
over a period of 20 days. Results indicate that adverse 
effects on fish physiology can occur at the TP water min-
eralization level (approximately 400 mg/L of major ions); 
however, increasing the proportion of sodium ions while 
maintaining the mineralization level eliminates this inhibi-
tory effect on fish weight gain.

Previous field studies in the Kostomuksha TP indicated 
low mean values of fish growth parameters compared to 
that of fish populations in other lakes in this region. Results 
obtained in the present work suggest that the growth retar-
dation may be to some extent attributed to the prevalence of 
potassium in the water.

Oxidative Stress

One method for early detection of harm, such as osmotic 
stress or anoxia, is the identification of oxidative stress 
by-products. Oxidation agents attack membrane lipids and 
generate decomposition products of peroxidized polyunsat-
urated fatty acids (e.g. malondialdehyde), which are known 
to be reliable indicators of oxidative stress (Abele et  al. 
2011; Del Rio et al. 2005; Rahman 2007).

Marked alterations of MDA levels were detected in the 
liver and muscle tissue of C. lavaretus from the К5Na1 
group, indicating the effect of chronic exposure to high 
potassium concentrations. An intensification of lipid perox-
idation in the liver was shown, which is consistent with pre-
vious field studies where hepatic MDA levels were much 
higher in whitefish from the Kostomuksha TP compared to 
whitefish from an undisturbed lake (Vasilyeva et al. 2012). 
Thus, enhanced lipid peroxidation in fish liver may indicate 
a compensatory response to the stress caused by dispropor-
tionate cation concentrations. In contrast, muscular MDA 
levels observed in the present study were much lower in the 
К5Na1 group; however, field study results showed no sig-
nificant difference in muscle MDA concentrations of fish 
from a polluted and a reference site. We can speculate that 
the observed MDA content decline is likely due to activa-
tion of an antioxidant defense system. Induction of antioxi-
dant enzymes, such as catalase and superoxide dismutase, 
can compensate for lipid peroxidation enhancement, as 
supported by studies on the influence of polycyclic aro-
matic hydrocarbons (Ji et al. 2010) and trace metals (Her-
menean et al. 2015; Kong et al. 2012). Research performed 
by Ahmad et al. (2000) also suggests that low lipid peroxi-
dation reflects the protective effects of oxidative enzymes.

Glutathione S-transferase activity and reduced glu-
tathione levels, which can also be used as antioxidant 
defense system parameters, were shown in the present 
study to be similar in both К5Na1 and К1Na1 groups. 
This demonstrates a weak dependence on the proportion 
of potassium and sodium in the water. In addition, the lack 
of correlation between studied biomarkers (Spearman rank 
correlation test, data not shown) was also established, indi-
cating the elimination of peroxidation products not by the 
glutathione system but by overlapping biochemical path-
ways. Previous field studies in the Kostomuksha mine area 
suggest that the GST enzyme is involved in the C. lavare-
tus adaptation to osmotic conditions in the TP. Activity of 
hepatic GST in tissues of whitefish from the TP was ele-
vated; however, GST activity in muscles was unaffected 
(Borvinskaya et al. 2011).

Herein, in the present work, we did not get the same 
GST induction as in field studies, perhaps due to oversim-
plification of field conditions in the experiment. In the field 
studies, an unpolluted lake with low mineralization concen-
trations (≈18 mg/L major ions) was used as a reference, so 
the contribution of osmotic stress to the biological response 
could not be considered. Additionally, the TP contains a 
complex combination of cations and anions, which could 
be acting as an antagonist or could be having a synergetic 
effect on the biological response that should be taken into 
account. An analogous laboratory experiment where rain-
bow trout was subjected to potassium with significant 
amounts of lithium, calcium, and manganese confirmed 
some of the effects obseved in the field studies as gills cho-
lesterol decrease; however, other effects, such as changes 
in the gill epithelium microstructure, were not repeated 
(Tkatcheva et al. 2007).

Conclusion

The proposed model for study of the Kostomuksha tail-
ing pond was very simple because it did not account for 
the complex composition of the TP water. Mount et  al. 
(1997) revealed a two or four fold increase of tolerance by 
water organisms to potassium chloride after adding equal 
amounts of magnesium and calcium to the water, while a 
drastic decrease of tolerance was shown when sulfate and 
bicarbonate salts of potassium were used. Since the TP is 
rich in both common cations and anions, the actual effect of 
mine water should reflect the sum of these opposing effects. 
Since bicarbonate is the dominant anion in the TP, further 
study of its effect is planned in evaluating TP water toxicity.

Nevertheless, this study showed that applied concen-
trations of potassium are potentially dangerous to water 
organisms. The whitefish under study showed altered lev-
els of lipid oxidation by-products in addition to unexpected 
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cessation of growth in the К5Na1 group. The last can be 
regarded as a severe pathological disorder. The mechanism 
of the observed reactions remains unclear, as these are non-
specific biological responses to stress. These effects appear 
to occur when potassium ions are at greater concentrations 
than other cations, suggesting that disproportionate ion 
concentrations may be toxic to water organisms. Results 
are consistent with previous studies showing that potassium 
toxicity is determined by the amount relative to other ions 
present in the medium as opposed to the absolute concen-
tration of potassium.
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