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Abstract Morphological development, including fin and

labyrinth organ, body proportions and pigmentation, in

laboratory-reared larval and juvenile climbing perch

Anabas testudineus was described and behavioral features

under rearing condition were observed. Body lengths (BL)

of larvae and juveniles were 1.9 ± 0.1 (mean ± SD) mm

just after hatching (day-0), 8.7 ± 1.3 mm on day-19,

reaching 18.4 ± 2.1 mm on day-35 after hatching.

Aggregate fin ray numbers attained full complements in

juveniles larger than 8.3 mm BL. Preflexion larvae started

feeding on day-2 following formation of the upper and

lower jaws, the yolk being completely absorbed by day-7

after hatching. Teeth appeared in flexion larvae larger than

5 mm BL on day-6, with cannibalism starting shortly after

and continuing with further growth. Melanophores on the

body increased with growth, a large dark spot developing

on the lateral midline around caudal margin of the body in

the postflexion and juvenile stages. The labyrinth organ

differentiated in postflexion larvae larger than 7.2 mm BL

on day-16, with air-breathing starting at the same time.

Body proportions attained constant in postflexion larvae

larger than 7.0 mm BL, and habitat of fish shifted from

bottom to mid-layer. With the exception of fin ray num-

bers, the above morphological developments corresponded

to behavioral shifts that occurred in the postflexion stage

(ca. 7 mm BL), their subsequent continuity illustrating that

the species possessed most juvenile-equivalent functions

from ca. 7 mm BL.
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Introduction

The climbing perch, Anabas testudineus, a carnivorous air-

breathing species using a labyrinth organ (Munshi and

Hughes 1981; Olson et al. 1986; Trieu and Long 2001), is

one of the most common freshwater fish species in tropical

and subtropical Asia, often occurring in rice paddies, dit-

ches and streams with dense vegetation (Rainboth 1996;

Iwata et al. 2003). The species is widely distributed,

including India, the Indochina Peninsula, southern China,

Taiwan, the Philippines and Indonesia (Rainboth 1996;

Wang et al. 1999; Kottelat 2001; Tan and Lim 2004).

Although A. testudineus is an important food fish for local

inland communities, the species has recently come under

considerable pressure and is nearly extinct in some areas

due to environmental changes (including urbanization and

increasing land use for cropping) and over-fishing

(Sverdrup-Jensen 2002; Mijkherjee et al. 2003). In addi-

tion, because of the impact of invading alien species

(Welcomme and Vidthayanon 2003; De Silva et al. 2006)

and the aquacultural development of hybrid/alien fishes

(Na-Nakorn et al. 2004; Senanan et al. 2004), there is

increasing concern regarding the substantial risk of loss of

regional biodiversity (Nguyen and De Silva 2006). This

situation has led to the necessity for aquacultural devel-

opment, stock assessment and multiplication of indigenous

fish species in the Indochinese region during recent years
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(Phillips 2002; Welcomme and Vidthayanon 2003).

Anabas testudineus is one of the targeted species due to its

importance as a food resource and the current status of its

natural stocks.

Fundamental aquaculture trials for A. testudineus are

ongoing in several countries (e.g., India and Vietnam) on

the basis of recent studies on artificial breeding, seed

production and nursing technologies (Trieu and Long 2001;

Tuan et al. 2002; Mijkherjee et al. 2003; Sarkar et al.

2005). However, morphological and ecological features of

larval and juvenile stages, as key issues for improving seed

productivity as well as stock assessment, have scarcely

been investigated so far, not only for this species, but also

for other species of the entire genus Anabas. Furthermore,

early life stage information is also necessary for any con-

sideration of evolutionary ecology and phylogeny in the

Anabantoidei, to which A. testudineus belongs. Therefore,

this study aims to describe morphological development and

provide behavioral information as a part of ecology for

larval and juvenile A. testudineus using laboratory-reared

specimens.

Materials and methods

Parental fishes and egg collection. Broodstocks of Anabas

testudineus were collected from fish markets in Vientiane

City, Laos, on 21 May 2007, and from small water bodies

in the Namxuang area, 60 km north of Vientiane City,

Laos, on 25 May 2007. The broodstocks were reared in the

Living Aquatic Resources Research Center, Vientiane

City, Laos. An LH-RH-analogue hormone (Suprefact:

HOECHST AG Inc., Germany) was injected in combina-

tion with a dopamine inhibitor (Motilium: OLIC Ltd.,

Thailand) at the rate of 2 mg/100 g FW (fish wet weight)

for the former and 1 mg/100 g FW for the latter, into two

males (25 and 22 g body weight) and one female (50 g) at

16:30–17:00 on 14 June 2007, prior to stocking them in a

tank containing 100 l water. Water temperature during the

induced breeding period was 27.6–28.2�C.

Rearing larvae and juveniles. Fertilized eggs were

obtained through the induced breeding process, the newly

hatched larvae being separated into two rectangular aquaria

(60 cm length 9 45 cm width 9 50 cm depth containing

120 l of water each) and reared under an ambient water

temperature ranging from 27.2 to 29.1�C. From day-2 after

hatching, fish were fed cultured zooplankton (Brachionus

spp.) at a density of 10 individuals/ml in the rearing tanks

three times a day until day-15. From days-8 to 15 inclu-

sive, Moina spp. and Artemia nauplii were also added at a

density of 2–3 individuals/ml three times a day. There-

after, Moina spp. and fish meal were fed from day-16 until

day-35.

Observations and measurements. Fertilized eggs were

collected ca. 3 h after spawning, and larvae and juveniles

on days-0–8, 10, 13, 16, 19, 26, 30 and 35 after hatching

were preserved in 5% formalin immediately after sampling.

All surviving fish were harvested and counted for survival

rate estimation (%) on day-35. Observations and measure-

ments were made in the Fisheries Division of Japan

International Research Center for Agricultural Sciences,

Tsukuba, Japan, and the fertilized eggs and some fish

samples were registered in the Museum, Tokyo University

of Marine Science and Technology (MTUF). Measure-

ments were made on ten eggs [MTUF-P(L)-22109] and

8–12 fish from each day of sampling, totaling 128 larvae

[1.7–8.3 mm in body length (BL)] and 39 juveniles (8.3–

22.1 mm BL). Of these, 12 were dissected for observation

of the labyrinth organ [MTUF-P(L)-16299–16310], the

remainder (n = 155) being used for observations on gen-

eral morphology, number of myomeres, pigmentation, fin

development and the following morphometric measure-

ments in mm: BL, head length (HL), pre-anal length

(PAL), maximum body depth (BD), eye diameter (ED) and

snout length (SnL), the PAL being measured from day-1

after anus opening and the others from day-0. Some

specimens were stained in alizarin red S and/or alcian blue

8GX for observations of fin ray formation and jaw develop-

ment. Fourteen specimens were sketched [MTUF-P(L)-

16283–16296]. Egg diameters after spawning and the yolk

volume (mm3) of larvae after hatching were measured. The

yolk volume was calculated using the formula Volume

(V) = 4/3 9 Length (L) 9 Height (H) 9 Width (W).

Developmental stages followed Kendall et al. (1984),

except for yolksac, preflexion and flexion larval stages,

since the yolk is still present at the flexion larval stage in

this species. Measurement methods followed Leis and

Trnski (1989).

Results

Spawning and hatching. Spawning took place approxi-

mately 12 h after hormone injection at 05:00 on 15 June

2007, ca. 14,000 fertilized eggs being obtained with a

fertilization rate of 100%. Eggs were isolated, epipelagic

and almost spherical in shape, the egg diameter ranging

from 0.86 to 0.92 (mean ± SD: 0.89 ± 0.02) mm

(n = 10). Hatching took place on the same day 10.5–

11.0 h after spawning, the hatching rate approaching

mostly 100%.

Larvae and juveniles. General morphology. The BL of

newly hatched larvae (day-0) ranged from 1.7 to 2.0

(mean ± SD: 1.9 ± 0.1) mm (n = 9), reaching 6.0 ±

0.2 mm (n = 11) on day-10, 8.7 ± 1.3 mm (n = 12)

on day-19, 11.4 ± 2.2 mm (n = 11) on day-26 and
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18.4 ± 2.1 mm (n = 12) on day-35 (Fig. 1). BLs of larvae

and juveniles at each developmental stage are shown in

Table 1: Newly hatched larvae (n = 9) with large oval

yolksac [vertical axis 0.66 ± 0.04 (mean ± SD) mm,

horizontal axis 0.62 ± 0.04 mm]; yolksac length covering

ca. 37% BL, its anterior margin bordering on ventral aspect

of bent head (Fig. 2a); yolk rapidly decreasing during days-

0–2 (Figs. 2a–c, 3), splitting into two portions in preflexion

larvae on day-2 (3.1 ± 0.1 mm BL, n = 10); yolk moving

dorsally to above abdominal cavity beside upper base of

the pectoral fin (Fig. 2c), completely absorbed in flexion

larvae by day-7 (5.1 ± 0.1 mm BL, n = 10; Figs. 2h, 3).

The relationship between hours after hatching and yolk

volume (mm3) was regressed by an exponential equation

(Fig. 3). The head was initially bent with the ventral aspect

bordering on the anterior margin of the yolksac in newly

hatched larvae (Fig. 2a), subsequently separating from the

anterior margin of the yolksac from day-2 (Fig. 2c). All

myomeres were observable in larvae larger than 3.5 mm

BL on day-3 (as 8–10 ? 19–21 = 28–31; Fig. 2d). The

ventral finfold was initially deeper than the dorsal one,

originating on the anterior 35–40% BL, and the posterior

half was deeper than the anterior half (Fig. 2a), divided

into anterior and posterior portions of the anus in day-1

larvae (Fig. 2b), with both disappearing in juveniles (days-

16–19; Fig. 2m); dorsal finfold initially originating on

anterior 22–26% BL (Fig. 2a), disappearing in juveniles

(days-16–19; Fig. 2m); caudal finfold initially round

fan-shaped (Fig. 2a), distinctive notch in upper half of

finfold near posterior tip of notochord appearing in flexion

larvae larger than 4.9 mm BL (day-6; Fig. 2g), caudal

finfold disappearing in juveniles (days-16–19; Fig. 2m).

Mouth and anus opened in day-1 larvae (Fig. 2b), mouth

reaching a vertical through anterior ca. 30% of ED in all

sizes from day-2 (Fig. 2c–n); upper and lower jaws formed

in day-2 larvae (Fig. 2c) (upper jaw length 6–8% BL on

day-2, 11–12% BL in flexion larvae larger than 5.4 mm BL

on day-8); a few sharp, oblong conical teeth appearing on

both jaws in flexion larvae larger than 5.0 mm BL (day-6),

increasing in number with growth. Nostril appearing

between tip of upper jaw and eye in day-2 larvae (Fig. 2c),

dividing into two in juveniles (Fig. 2m), anterior nostril

forming short tube and posterior one with a low rim in

juveniles larger than 9.2 mm BL (day-26; Fig. 2n). Lateral

line visible in day-1 larvae (Fig. 2b). Gas bladder appeared

between abdominal cavity and notochord covering from

upper base of pectoral fin to 5–6th myomere in day-3

larvae (3.7 ± 0.1 mm BL, n = 10; Fig. 2d), becoming

invisible in juveniles (Fig. 2m).

Fin development. Dorsal fin ray anlagen appearing in

flexion larvae larger than 4.9 mm BL (day-6; Fig. 2g), soft

rays in flexion larvae larger than 5.9 mm BL (day-8;

Figs. 2j, 4a), spines in flexion larvae larger than 6.2 mm

BL (day-10), attaining full complement (XVI–XVII,

10–11) in postflexion larvae larger than 6.4 mm BL (day-13;

Figs. 2k, 4a); soft ray segmentation initiated in postflexion

larvae larger than 6.4 mm BL (day-13), completed (9–10

segmented rays) in juveniles larger than 14.0 mm BL (day-

26). Anal fin ray anlagen appearing in flexion larvae larger

than 4.9 mm BL (day-6; Fig. 2g), soft rays in flexion larvae

larger than 5.9 mm BL (day-8; Figs, 2j, 4b), spines in

flexion larvae larger than 6.2 mm BL (day-10), attaining

full complement (IX–X, 10–11) in postflexion larvae larger

than 6.4 mm BL (day-13; Figs. 2k, 4b); soft ray segmen-

tation initiated in postflexion larvae larger than 6.4 mm BL

(day-13), completed (9–10 segmented rays) in juveniles

larger than 10.7 mm BL (day-26). Caudal fin ray anlagen

appearing in flexion larvae larger than 4.1 mm BL (day-4;

Fig. 2e), soft rays in flexion larvae larger than 4.7 mm BL

(day-6; Figs. 2g, 4c), attaining full complement (9–

10 ? 9–10 = 19–20) in postflexion larvae larger than 6.8

mm BL (day-16; Figs. 2l, 4c); soft ray segmentation

initiated in flexion larvae larger than 5.7 mm BL (day-10),

completed (16 segmented rays) in postflexion larvae larger

than 7.2 mm BL (day-16). Pectoral fin buds appearing in

day-1 larvae (Fig. 2b), fin ray buds in flexion larvae larger

than 4.8 mm BL (day-7; Fig. 2h), soft rays in postflexion

larvae larger than 6.4 mm BL (day-13; Figs. 2k, 4d),

attaining full complement (13–15) in juveniles (days-16–

19; Figs. 2m, 4d); soft ray segmentation initiated in juve-

niles larger than 10.1 mm BL (day-19), completed (12–13

Fig. 1 Changes in body length (mm) of laboratory-reared larval and

juvenile climbing perch Anabas testudineus from days-0 to 35 after

hatching. Solid circles means, vertical bars standard deviations

Table 1 Body length (mm) and age in days at each developmental

stage

Stage BL (mm) Age in days n

Preflexion larva 1.7–4.7 0–5 50

Flexion larva 4.7–6.9 5–13 56

Postflexion larva 6.4–8.3 13–19 22

Juvenile [8.3 [16 39
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segmented rays) in juveniles larger than 11.3 mm BL (day-

26). Pelvic fin buds appearing in flexion larvae larger than

5.4 mm BL (day-8; Fig. 2i), fin ray buds in postflexion

larvae larger than 6.1 mm BL (day-13; Fig. 2k), soft rays in

postflexion larvae larger than 6.6 mm BL (days-13–16;

Figs. 2l, 4e), a spine in postflexion larvae larger than 7.5

mm BL (days-16–19; Fig. 2l), attaining full complement

(I, 5) in postflexion larvae larger than 7.9 mm BL (days-

16–19; Fig. 4e); all pelvic soft rays segmented and bran-

ched, former initiated in juveniles larger than 10.1 mm BL

(day-19) and completed in juveniles larger than 14.0 mm

BL (day-26), latter initiated in juveniles larger than 12.5

mm BL (day-26) and completed in juveniles larger than

16.5 mm BL (day-35). Branched rays except pelvic fin not

present.

Proportions. Head length 15–25% BL in preflexion

larval stage (Fig. 5a), proportion subsequently increasing

with growth, reaching 39–47% BL in postflexion larvae

larger than 7.0 mm BL (day-16; Fig. 5a). PAL initially 46–

51% BL on day-1 (Fig. 5b), proportion rapidly decreasing

to 38–47% BL with tail extension in preflexion larvae

smaller than 3.2 mm BL (day-2), subsequently increasing

to 68–74% BL in postflexion larvae larger than 7.0 mm BL

(day-16; Fig. 5b). Maximum BD initially 32–40% BL

(Fig. 5c), proportion rapidly decreasing with yolk absorp-

tion and body extension in preflexion larvae smaller than

Fig. 2 Laboratory-reared larval and juvenile climbing perch Anabas
testudineus. a Newly hatched larva [1.8 mm BL, MTUF-P(L)-16283];

b preflexion larva, day-1 [2.7 mm BL, MTUF-P(L)-16284]; c
preflexion larva, day-2 [3.1 mm BL, MTUF-P(L)-16285]; d preflex-

ion larva, day-3 [3.7 mm BL, MTUF-P(L)-16286]; e preflexion larva,

day-4 [4.4 mm BL, MTUF-P(L)-16287]; f preflexion larva, day-5 [4.7

mm BL, MTUF-P(L)-16288]; g flexion larva, day-6 [4.9 mm BL,

MTUF-P(L)-16289]; h flexion larva, day-7 [5.0 mm BL, MTUF-P(L)-

16290]; i flexion larva, day-8 [5.5 mm BL, MTUF-P(L)-16291]; j
flexion larva, day-10 [5.9 mm BL, MTUF-P(L)-16292]; k postflexion

larva, day-13 [6.4 mm BL, MTUF-P(L)-16293]; l postflexion larva,

day-16 [7.5 mm BL, MTUF-P(L)-16294]; m juvenile, day-19 [8.3

mm BL, MTUF-P(L)-16295]; n juvenile, day-26 [12.7 mm BL,

MTUF-P(L)-16296]. YS Yolksac, GB gas bladder. 1 Lateral view,

2 dorsal view, 3 ventral view
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3.7 mm BL (day-3), subsequently increasing to 38–43%

BL in postflexion larvae larger than 7.0 mm BL (day-16;

Fig. 5c). ED initially 10–15% BL (Fig. 5d), proportion

rapidly decreasing to 8–9% with body extension in pre-

flexion larvae smaller than 3.7 mm BL (day-3), proportion

subsequently increasing to 11–14% BL in postflexion lar-

vae larger than 6.4 mm BL (day-13; Fig. 5d). SnL 2–3%

BL on day-2 (Fig. 5e), increasing to 6–8% BL in post-

flexion larvae larger than 7.0 mm BL (day-16; Fig. 5e).

Pigmentation. Melanophores absent on eyes in newly

hatched larvae (Fig. 2a), deposition observed from day-1

(Fig. 2b). Dozens of stellate melanophores initially present

on yolksac surface, particularly dense on ventral surface,

decreasing in number with yolk absorption (Fig. 2a–g);

small punctate melanophores covering dorsal surface of

yolksac in day-1 larvae (Fig. 2b), disappearing in day-2

larvae (Fig. 2c). Small punctate melanophores initially

scattered on snout (Fig. 2a), increasing in number and size

with growth; several stellate or punctate melanophores

appearing on upper jaw in preflexion larvae at 4.4 mm BL

(day-4; Fig. 2e), on lower jaw in flexion larvae at 4.9 mm

BL (day-6; Fig. 2g), increasing in number with growth.

Several small stellate melanophores initially scattered on

head and small punctate ones densely scattered on dorsal

region of anterior body just behind head (Fig. 2a), former

becoming punctate in day-1 larvae (Fig. 2b), increasing in

number and size with growth. Several punctate or stellate

melanophores appearing on throat in day-2 larvae

(Fig. 2c), decreasing and completely lost in flexion larvae

at 5.9 mm BL (day-10; Fig. 2j). Two or three stellate

melanophores appearing on upper region of operculum in

day-2 larvae (Fig. 2c), increasing and becoming punctate

in postflexion larvae at 6.4 mm BL (day-13; Fig. 2k);

several stellate melanophores appearing on circum-orbital

section just behind eye in flexion larvae at 4.9 mm BL

(day-6; Fig. 2g), increasing and extending below eye, and

becoming punctate in postflexion larvae at 6.4 mm BL

(day-13; Fig. 2k). Small dense punctate melanophores

initially present on dorsal and ventral margins of body

along finfold except posterior tip, particularly dense pos-

teriorly notochord (Fig. 2a), ones on dorsal margin

decreasing in number but increasing in size in day-1 larvae

(Fig. 2b), becoming stellate in day-2 larvae (Fig. 2c),

subsequently increasing in number with growth, becoming

punctate in flexion larvae at 4.9 mm BL (day-6; Fig. 2g),

covering entire dorsal region of body in postflexion larvae

at 6.4 mm BL (day-13; Fig. 2k). Melanophores on ventral

margin posterior to anus decreasing in number, increasing

in size in day-1 larvae (Fig. 2b), stellate melanophores in

addition to punctate ones appearing in day-2 larvae

(Fig. 2c), both covering ventral margin along fin by juve-

nile stage (Fig. 2m). Melanophores on lateral body initially

few (Fig. 2a), several stellate ones appearing in day-1

larvae (Fig. 2b), increasing and covering most of lateral

body in flexion larvae at 5.9 mm BL (day-10; Fig. 2j),

forming 7–8 horizontal bars in postflexion larvae at 6.4 mm

BL (day-13; Fig. 2k), bars increasing to more than 10 and a

large dark spot formed around caudal margin of body in

late postflexion larvae larger than 6.9 mm BL (day-16;

Fig. 2l), horizontal bars thereafter gradually fading

(Fig. 2n). Small punctate melanophores on ventral region

of gut just before anus appearing in day-1 larvae (Fig. 2b),

becoming stellate in day-2 larvae (Fig. 2c), disappearing in

flexion larvae at 5.0 mm BL (day-7; Fig. 2h), subsequently,

several punctate melanophores re-appearing on the same

region in postflexion larvae at 6.4 mm BL (day-13;

Fig. 2k), increasing as ones on lateral body in juveniles at

8.3 mm BL (Fig. 2m), disappearing thereafter (Fig. 2n);

many stellate melanophores appearing on ventral region of

central trunk in day-2 larvae (Fig. 2c), fading with growth,

disappearing in juveniles at 12.7 mm BL (day-26; Fig. 2n).

Small dense melanophores present on dorsal surface of gas

bladder in day-3 larvae (Fig. 2d), extending to ventral

surface in flexion larvae at 5.0 mm BL (day-7; Fig. 2h).

Several punctate melanophores appearing on caudal fin in

flexion larvae at 4.9 mm BL (day-6; Fig. 2g), increasing in

number with growth; dozens of punctate melanophores

appearing on dorsal and anal fins in flexion larvae at 5.9

mm BL (day-10; Fig. 2j), increasing in number with

growth, becoming more dense on lower half of dorsal fin in

juveniles (days-19–26; Fig. 2m, n).

Labyrinth organ development. Labyrinth organ appear-

ing in postflexion larvae larger than 7.2 mm BL (day-16) as

primordial hypertrophy of upper portion of first gill arch

(Fig. 6b), subsequently forming a spherical structure on

that portion of gill arch in juveniles at 9.6 mm BL (day-19;

Fig. 6c), and a fan-shaped membranous structure in

juveniles at 12.6 mm BL (day-26; Fig. 6e) with further

Fig. 3 Relationship between hours after hatching and yolk volume

(mm3) in laboratory-reared larval and juvenile climbing perch Anabas
testudineus. V and T in regression, yolksac volume and hours after

hatching, respectively. Solid circles means, vertical bars standard

deviations
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enlargement and structural complexity (triple-layered

membranes) in juveniles larger than 21.9 mm BL (day-35;

Fig. 6f, g).

Notes on behavioral aspects. Newly hatched larvae

remained motionless, floating in the surface layer. On

day-1 (mean ± SD: 2.6 ± 0.1 mm BL, n = 9), the

majority still remained motionless in the surface layer,

although some demonstrated jerking action. On day-2,

larvae starting feeding, and a greater number demonstrated

a jerking action for prey capture as well as escape, although

still passively carried by water movements. On day-3

(3.7 ± 0.1 mm BL, n = 10), some larvae began sponta-

neously settling on the bottom of the aquarium,

approximately 30% of larvae having settled by day-4.

During days-5–7, larvae settling on the bottom increased in

number, ca. 70% having settled by day-10 (6.0 ± 0.2 mm

BL, n = 11). Cannibalism also started at this period, larger

individuals biting the caudal portion of smaller larvae.

Most prey individuals were observed dying with ragged

tails. Subsequently, larvae moved to the mid-water layer

from day-13 (6.4 ± 0.4 mm BL, n = 12), all having made

this transition with continuing cannibalism by day-16

(7.2 ± 1.0 mm BL, n = 12). Air-breathing also started on

day-16. The number of harvested fish on day-35 was 2,343,

the survival rate being estimated as 16.7%. The behavioral

transitions and associated morphological developments are

illustrated in Fig. 7.

Discussion

Anabas testudineus has attained the juvenile stage by 8.3

mm SL (based on completion of aggregate fin ray number)

(Table 1, Figs. 2m, 4). However, several morphological

and associated behavioral events, the former including

constancy in body proportions and differentiation of the

labyrinth organ, and the latter, the beginning of air-

breathing and habitat shift from bottom to mid-layer, were

observed at ca. 7 mm BL, such phenomena continuing

thereafter until day-35 (Figs. 5, 6, 7). These features sug-

gested that this species possessed most juvenile-equivalent

functions at ca. 7 mm BL, despite being much smaller than

juvenile size.

According to Sarkar et al. (2005), Anabas testudineus

collected from Punarbhaba River, West Bengal, India,

spawned on average more than 100,000 eggs per female

Fig. 4 Relationships between body length (mm) and number of fin

rays in laboratory-reared larval and juvenile climbing perch Anabas
testudineus. a Dorsal fin, b anal fin, c caudal fin, d pectoral fin,

e pelvic fin

b
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(average weight 67 g), very much more than the quantity

obtained either in this study (ca. 14,000 eggs) from one

female weighing 50 g or in another artificial breeding trial

(ca. 42,500 eggs from five females of total weight 198 g)

(S. Morioka, unpublished data). The egg diameter of 0.86–

0.92 mm observed in the present study was greater than

that reported by Sarkar et al. (2005) (0.60–0.84 mm). In

addition, whereas Sarkar et al. (2005) reported larval length

larger than 7 mm on day-5 and 22.4 mm a month after

hatching, the BL (mean ± SD) observed in this study on

days-5 and 30 were 4.8 ± 0.2 mm and 16.9 ± 2.3 mm,

respectively (Fig. 1), despite similar water temperatures in

both cases [average 28.4�C (in the present study) vs.

28.5�C]. These differing numbers and sizes of eggs, and

growth rates may be attributable to inter-populational dif-

ferences in two remote populations (Mekong River system

in Laos vs. Punarbhaba River system in India) in repro-

ductive features of this widely distributed species (Wang

et al. 1999; Kottelat 2001; Tan and Lim 2004), although

further investigations are to be made.

Yolk absorption was completed by day-7 in the present

study, although it was more rapid during the initial 2 days

after hatching (Fig. 3). This indicated that A. testudineus

has a ca. 5-day preparatory period from days-2 (start of

feeding) to 6 (just before complete yolk absorption)

inclusive for the shift from endogenous to exogenous

energy dependent periods (under the experimental tem-

perature regime during this study). The shift from

endogenous to exogenous energy-dependent periods has

been examined in several species of marine fishes, covering

aspects of development and survival during the larval

stages (Kohno 1998; Moteki et al. 2001). However, similar

investigations of freshwater fishes, including A. testudin-

eus, are very few, despite being necessary for any

improvement in seed productivity. In addition, the period

between spawning to hatching and the duration of yolk

absorption were considered the essential features in order

to examine phylogenetical aspects in the Anabantoidei

group since this fish group has long been under discussion

concerning phylogenetics and evolutionary species diver-

sification (Rüber et al. 2006).

The appearance and development of teeth and advanced

swimming ability, indicated by notochord flexion and caudal

fin development, were considered the essential factors in the

manifestation of cannibalism in this species, such occurring

after or during the processes of these morphological changes

(Fig. 7). Although cannibalism-induced mortality was not

monitored in this study, the survival rate obtained on day-35

(16.7%) was possibly lowered by cannibalism, considering

the cannibalism-related survival losses recorded for other

species, such as Clarias gariepinus of Clariidae (Hecht and

Fig. 5 Proportions of a head length (HL), b preanal length (PAL),

c maximum body depth (BD), d eye diameter (ED) and e snout length

(SnL) to body length (BL) in laboratory-reared larval and juvenile

climbing perch Anabas testudineus

b
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Applebaum 1988) and Scomberomorus niphonius of

Scombridae (Obata 2006). Previous studies have reported

factors leading to cannibalism, including the high stocking

densities and large size variations, as well as refuge

availability and lighting conditions (Giles et al. 1986; Hecht

and Applebaum 1988; Smith and Reay 1991; Hseu et al.

2003). Therefore, these factors need to be examined for

A. testudineus so as to reduce the incidence of cannibalism

and thus improve seed productivity.

Although the function and morphology of the labyrinth

organ, and associated ecological aspects (Munshi et al.

1986; Olson et al. 1986) have been considered in adult

A. testudineus as well as in other species of Anabantidae,

e.g., Ctenopoma muriei (see Randle and Chapman 2004,

Fig. 7 Schematic illustrations of morphological development and associated behavioral events observed in laboratory-reared larval and juvenile

climbing perch Anabas testudineus

Fig. 6 Development of labyrinth organ in laboratory-reared larval

and juvenile climbing perch Anabas testudineus. a Flexion larva,

day-10 [5.8 mm BL, MTUF-P(L)-16299]; b postflexion larvae,

day-16 [7.2 mm BL, MTUF-P(L)-16302]; c juvenile, day-19

[9.6 mm BL, MTUF-P(L)-16304]; d juvenile, day-26 [10.2 mm BL,

MTUF-P(L)-16306]; e juvenile, day-26 [12.6 mm BL, MTUF-P(L)-

16307]; f juvenile, day-30 [14.9 mm BL, MTUF-P(L)-16308];

g juvenile, day-35 [21.9 mm BL, MTUF-P(L)-16309]. LO Labyrinth

organ, MS membranous structure(s), GR gill rakers. Bar 1 mm
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2005), ontogeny and developmental morphology in larval

and juvenile stages have been limited to date. The differ-

entiation of the labyrinth organ observed in this study

coincided with the onset of air-breathing (Figs. 6, 7), a

finding mostly concurring with that of Hughes et al. (1986),

who reported that the labyrinth organ started functioning

from the juvenile stage in this species. Additionally, in the

air-breathing species Macropodus opercularis of Osphro-

nemidae, a description of the developmental morphology

of the labyrinth organ showed similarly that the occurrence

of air-breathing followed the onset of primordial hyper-

trophy of the first gill arch and continued with the

subsequent enlargement of the organ (Matayoshi and

Shokita 1982). Because A. testudineus is an obligate air-

breather (Sayer 2005), it is highly resistant to low levels of

dissolved oxygen in the surrounding water. This charac-

teristic suggests a considerable aptitude of the species for

seed production and aquaculture under high stocking den-

sities, although some treatments for reducing the

cannibalism incidence are to be applied. In addition,

organogenesis of the labyrinth organ in all species included

in Anabantoidei should be necessarily studied in future

investigations on phylogeny and evolutionary ecology, the

latter being somewhat contentious issues in this group

(Randle and Chapman 2004; Sayer 2005; Rüber et al.

2006).

Apart from the acquacultural viewpoint, the information

on morphology and ecology during the early life stages is

indispensable, particularly for investigating mechanisms of

survival and recruitment of the species. Additionally,

sympatric anabantoid species exhibiting similar larval and

juvenile morphology should be similarly studied to enable

more effective species identifications and stock assessment.
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