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Abstract
Problem solving followed by explicit instruction, as suggested by productive failure and
several other instructional theories, indicates long-term learning benefits, whereas explicit
instruction followed by problem solving has been consistently demonstrated as superior
within the framework of cognitive load theory. However, the effectiveness of these
instructional approaches may be moderated by several factors such as levels of element
interactivity of learning materials, types of knowledge involved, and levels of learner
prior knowledge (expertise). This review systematically searched studies comparing these
alternative sequences, computed the observed effect sizes, and explored the effects of
element interactivity, types of knowledge, and levels of expertise on the effectiveness of
two instructional approaches.

Keywords Explicit instructionandproblemsolving.Cognitive load theory.Element interactivity
. Conceptual and procedural knowledge . Expertise

The explicit instruction followed by problem-solving sequence has been well documented to
be superior to problem solving followed by explicit instruction design within the framework of
cognitive load theory (Authors 2015, 2016a, b; Cooper and Sweller 1987; Sweller and Cooper
1985). By contrast, the opposite effect has been demonstrated on many occasions within the
frameworks of productive failure (Kapur 2008, 2012, 2014) or invention learning (Schwartz
and Bransford 1998; Schwartz et al. 2011; Schwartz and Martin 2004). Thus, the published
studies, comparing these two sequences, have generally indicated inconsistent results. This
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paper systematically reviews these studies in search for the patterns and conditions under
which each of the two sequences is superior.

In this review, problem solving is generally considered, from a cognitive point of view, as a
process involving (1) constructing the initial mental representation of the problem (including
the initial and goal states), (2) planning suitable procedures for solving the problem (i.e.,
moving from the initial to the goal state), and then (3) executing the procedures and checking
the results (e.g., Qin et al. 1995). The actual problem-solving process depends on the levels of
learner expertise. The above three stages of problem solving are usually followed meticulously
only by novice learners who do not have relevant and complete domain knowledge structures
(schemas) and need to search for solution moves. More knowledgeable (expert) problem
solvers usually retrieve their available relevant organized knowledge structures (schemas) to
rapidly categorize the problem situations and select the appropriate solution moves.

Problem-solving first sequence (PS-I)

Problem-solving first sequence (such as a problem-solving task followed by a worked example or
another form of direct instruction) combines a problem-solving phase and an explicit instruction
phase. The effectiveness of using this sequence has been investigated in a large number of studies
(e.g., Jacobson et al. 2017; Kapur 2012, 2014; Lai et al. 2017; Loibl and Rummel 2014a, 2014b;
Schalk et al. 2018). During the problem-solving phase, novices (i.e., learners who do not have
relevant schemas) are asked to solve problems related to novel concepts and procedures that they have
not yet been taught. The learners’ performance during the problem-solving phase is usually very poor,
frequently resulting in failures (Kapur 2010, 2012). During the following explicit instruction phase,
teachers start with comparing student-generated answers, then consolidate strategies used during the
problem-solving phase, and provide the canonical solution. This structure is common to all problem-
solving first approaches. This approach has been reported as especially effective for teaching
conceptual knowledge and enhancing the learner ability to transfer (Loibl et al. 2017).

From a cognitive perspective, several reasons have been suggested to explain the potential
effectiveness of PS-I approach (Loibl et al. 2017):

Activation of prior knowledge An agreed function of the problem-solving phase of PS-I is to
activate participants’ prior knowledge in order to invent/generate the solutions and strategies
for solving the new problems (Kapur and Bielaczyc 2012). The activated prior knowledge
makes it easier to integrate new information with the available knowledge base (Schmidt et al.
1989; Schwartz et al. 2007; Toh and Kapur 2017). As participants have not been formally
taught concepts for solving the new problems, the generated solutions and strategies may be
incorrect and naïve based on participants’ intuitive ideas; however, the generation process may
have provided more resources for the long-term successful learning (Kapur and Bielaczyc
2012). The function of activating learner prior knowledge has been supported by several PS-I
studies (Kapur 2014; Roll et al. 2011).

Awareness of knowledge gap Chi (2000) suggested that students’ initial mental models are
different from the normative ones, and they can only repair their mental model when they are aware
of the flaws. Similarly, the impasse-repair-reflect process (VanLehn 1999) suggests that when
students reach an impasse, they will apply solutions and strategies to repair the impasse. Therefore,
correct and professional solutions could be processed only when students are aware of the
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knowledge gaps and impasses (VanLehn et al. 2003). PS-I approaches could facilitate students’
awareness of their knowledge gaps in two ways: by providing some contrasting cases for students
making predictions (Roll et al. 2012) and by consolidating students’ common incorrect solutions
before proving correct and professional solutions (Loibl and Rummel 2014a, 2014b).

Recognition of deep features Kapur and Bielaczyc (2012) suggested that the productive
failure design (one of PS-I designs) allows students to identify, explain, and organize the deep
features of targeted knowledge. It could be achieved by two suggested ways: using contrasting
cases (Roll et al. 2012) and comparing non-correct students’ solutions to each other or with
correct and professional solutions (Kapur 2012; Loibl and Rummel 2014a, b). Also, highlight-
ing the deep features of the targeted knowledge during instruction phase followed by problem
solving was found to be less effective than addressing the deep features during the problem-
solving phase followed by identical instruction (Loibl et al. 2017).

Besides the above cognitive considerations, other aspects may also potentially influence the
effectiveness of PS-I approach, such as learner motivation (Glogger-Frey et al. 2015; Belenky
& Nokes-Malach 2012) and collaborative or individual learning (Sears 2006; Westermann &
Rummel 2012). Students with higher levels of motivation may be more engaged in initial
problem-solving activities prior to instruction compared to students with lower levels of
motivation, which shows a clear direction in how motivation may influence the effectiveness
of PS-I approach. Even though some studies that demonstrated the advantages of this approach
used collaborative learning settings in the initial problem-solving phase (e.g., Kapur 2008;
Kapur and Bielaczyc 2012), it is not yet possible to definitely specify in what direction the
collaborative or individual learning can influence the effectiveness of PS-I approach, and more
studies are required.

The above features have not only been used to explain the effectiveness of PS-I approaches
in preparing learners to face complex tasks, but also set out some rules for designing the
learning materials/problems used in PS-I approaches. The most frequently investigated partic-
ular implementation of PS-I approach is the productive failure method.

Productive failure

Productive failure is regarded as an effective instructional method for problem-based learning
(Kapur 2008; Darabi et al. 2018). The general design includes (1) generation and exploration
phase: learners are required to self-solve the presented problems without any instruction, even
though they may feel frustrated, struggle, and then fail; (2) consolidation phase: teachers
respond to learners’ solutions/strategies and provide professional solutions (Kapur 2016).
Also, Kapur (2016) suggested some criteria for designing productive failure problems: firstly,
the problems must be understandable for learners who are novices; secondly, the problems
should allow learners to draw on their prior knowledge and apply multiple strategies; and
lastly, the problems should involve a kind of challenge.

The effectiveness of productive failure has been explained from both cognitive and
motivational perspectives. From the cognitive perspective, firstly, the generation and explora-
tion phase could activate students’ prior knowledge and help them to find out their knowledge
gaps, which reflects the findings of Loibl et al. (2017); secondly, as students have attempted to
generate the solutions themselves, the canonical solution presented at the following consoli-
dation phase could be compared with self-generated solutions, enabling students to pay
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attention to the critical features of the teacher-provided solution and recognize the deep
features of targeted knowledge (Loibl et al. 2017); from the motivational perspective, explo-
ration and generation phase may better engage students and motivate them to learn (Kapur
2016). Also, the explicit instruction first may interfere with implicit learning (Reber 1989),
which may make learners unaware of the situational structures that make the procedures
effective (Schwartz et al. 2009).

Explicit instruction first sequence (I-PS)

Explicit instruction first sequence (such as a worked example or another form of direct
instruction followed by a problem-solving task) provides comprehensive guidance before
problem solving. For example, participants study a worked example, including a full set of
procedural steps, of the targeted problem, followed by solving a similar problem. This
sequence is grounded under the framework of cognitive load theory.

Cognitive load theory Cognitive load theory, the theoretical base of I-PS, suggests that for
novice learners, explicit instruction first followed by problem solving is superior to the
reversed order suggested by alternative framework. Cognitive load theory is an instructional
theory, which is based on the human cognitive architecture (for a comprehensive overview, see
Authors 2011). Two major components of this architecture are working memory and long-term
memory. Working memory has very limited capacity (Cowan 2001; Miller 1956) and limited
duration (Peterson and Peterson 1959)—it cannot process more than a few units of information
at a time (3–5 is a realistic estimate) or hold them for longer than 10–20 s. Long-term memory,
on the other side, has unlimited capacity and duration in holding organized knowledge
structures (schemas). When relevant schemas stored in long-term memory are activated and
transferred to working memory, the effective working memory capacity can be substantially
increased by encapsulating many elements of information into a small number of chunks based
on those schemas (Ericsson and Kintsch 1995).

Worked example effect

The most common implementation of the I-PS approach is associated with the worked
example effect and the use of worked example-problem-solving pairs. Cognitive load theory
provides compelling reasons for the superiority of the worked examples over unguided
problem solving for novice learners. During the explicit instruction (worked example phase),
learners borrow the knowledge from worked examples rather than self-generate solutions by
themselves. The self-generation of problem solutions in the absence of relevant schemas is
very effortful process for novice learners, as it requires significant working memory resources
leading to a potential cognitive overload. Providing the required schemas explicitly first in
worked examples significantly reduces this irrelevant to learning (extraneous) cognitive load
(worked example effect: Sweller et al. 2011, 1998). After learning a worked example, a similar
problem is presented for solving (the problem-solving phase). In order to learn from the
worked example meaningfully, novices may also need conceptual knowledge relevant to the
task domain to aid the learning of the required procedural knowledge. A great number of
empirical studies over many years have provided strong evidence to support this example-first
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approach (starting from Cooper and Sweller 1987 and Sweller and Cooper 1985 up to the
recent studies by Chen et al. (2015, 2016a, b).

Several reported experiments compared worked example-problem solving with problem-
solving-worked examples sequences, that varied only the order of instructions (Authors 2015;
Leppink et al. 2014; Van Gog et al. 2011). Although the studies of Leppink et al. (2014) and
Van Gog et al. (2011) were designed for other reasons than specifically comparing these
alternative approaches, all the above studies consistently supported the advantage of explicit
instruction first. There were also a number of other studies with no productive failure effect or
with a reversed effect supporting the explicit instruction first sequence (Fyfe et al. 2014; Rittle-
Johnson et al. 2016).

However, the superiority of the explicit instruction first approach, as implied by the worked
example effect in cognitive load theory, may be moderated by the levels of element interac-
tivity of learning materials and the levels of learner expertise (Chen et al. 2019).

Element interactivity and expertise

Element interactivity is the central concept of cognitive load theory, which is used to
differentiate the levels of difficulty of learning materials. It refers to the number of intercon-
nected elements in a learning task that must be processed simultaneously in working memory
for meaningful learning. For example, the task of memorizing two English words, such as cat
and dog, belongs to materials low in element interactivity, as these two words could be
memorized individually, and they are not interconnected elements. This task is easy as it does
not demand much of the limited working memory capacity, whereas, when solving an
equation, such as 5x + 6 = 11, the elements (5, x, +, 6, =, 11) must be processed simultaneously
rather than individually in working memory; otherwise, learners would not be able to
understand the relations among those elements and successfully search for the solution.
Therefore, the task of solving an equation belongs to materials high in element interactivity
compared to the task of memorizing separate English words. This task could be difficult to
learners, as it might demand more cognitive resources that the available limited working
memory capacity (which is in the range of 3–5, as mentioned above).

Evidence has shown that explicit instruction first may only be effective when learning
relatively difficult materials that are high in element interactivity rather than materials low in
element interactivity. For example, Chen et al. (2015, 2016a, b) designed a series of experi-
ments to test this hypothesis in the domain of mathematics. Secondary school students were
randomly assigned to generation and presentation conditions. Students in the generation
condition generated geometric formulas by themselves, whereas students in the presentation
condition were presented the formulas to read. Memorizing a formula belongs to materials low
in element interactivity (students could memorize each symbol of this formula separately), and
the results demonstrated the superiority of the generation condition. However, for the follow-
ing task of applying those memorized formulas to solving relevant math problems (materials
high in element interactivity), the superiority of explicit instruction (presenting worked
examples first) was found over problem solving (generation) first. Therefore, explicit instruc-
tion first followed by problem solving may be an effective instructional sequence only for
materials high in element interactivity (Sweller et al. 2011).

A learning task that involves many interactive elements for novice learners (a high element
interactivity task) could present just a few elements for more knowledgeable (expert) learners
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due to available schemas in their long-term memory that would allow them to incapsulate
many elements in a single unit. For example, the above equation 5x + 6 = 11 could involve one
or two elements for these learners allowing them to almost immediately come up with a
solution. Therefore, the levels of element interactivity are not fixed and absolute values but are
always relative to expertise of the learners. As levels of element interactivity and the levels of
learner expertise are closely associated, the change in the levels of expertise may affect the
levels of element interactivity resulting in an expertise reversal effect (Authors 2017).

According to the expertise reversal effect, instructional methods that are effective for
novices might be harmful for more knowledgeable learners (Authors 2007). When this
principle is applied to the explicit instruction vs. problem-solving instructional approaches,
presenting worked examples first followed by problem solving should result in better out-
comes for novices than the problem solving first followed by worked examples (worked
example effect). However, the reversed results were found for more knowledgeable learners
(Authors 2001). When novices learn new materials, the levels of element interactivity are high
for them; therefore, the most effective way of learning such materials is to use explicit
instruction first followed by problem solving. However, when the levels of learner expertise
in the task domain are increased, the materials become low in element interactivity, rendering
the reversed effect with the problem-solving first sequence as more effective (Chen et al. 2015,
2016a, b).

Conceptual knowledge vs. procedural knowledge

In a domain, such as mathematics, two major types of knowledge are traditionally
discussed: conceptual knowledge (knowledge of classifications and categories, princi-
ples and generalizations, theories, models, and structures) and procedural knowledge
(knowledge of subject-specific skills and algorithms, techniques, and methods) (e.g.,
Anderson and Krathwohl 2001). The procedural knowledge is usually considered as
implicit, automated action sequences for problem solving (Rittle-Johnson and Alibali
1999), such as sequential steps of solving a math equation, whereas the definition of
conceptual knowledge lacks consistency (Crooks and Alibali 2014). It is mostly
considered as general principle knowledge (understanding the principles that govern
a domain), such as knowing a math category or theorem, or knowledge of principles
underlying procedures (knowing why a procedure works), such as understanding the
formula of NaCl for sodium chloride, which involves understanding the procedures for
combining Na+ and Cl−. Also, when we consider conceptual vs. procedural distinction
solely within the dimension of declarative knowledge, they both are explicit types of
knowledge, i.e., declarative knowledge about concepts and declarative knowledge
about procedures (sequences of steps). While problem-solving models do not vary
based on this distinction, it is important that learning different types of knowledge
may involve different cognitive processes.

Most of research studies of problem-solving first approach (PS-I) indicated its superiority
for learning conceptual knowledge (Loibl and Rummel 2014a, 2014b; DeCaro and Rittle-
Johnson 2012; Kapur 2014; Loibl et al. 2017), whereas most of studies of explicit instruction
first approach (I-PS) suggested its superiority for learning procedural knowledge (Sweller and
Cooper 1985; Cooper and Sweller 1987; Chen et al. 2015; Van Gog et al. 2011).
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Present study and research questions

The present study aims to explore the effect of three factors, element interactivity, expertise
and types of knowledge, on PS-I vs. I-PS sequences. For the element interactivity factor, it is
necessary to estimate the levels of element interactivity of each specific learning task used in
the reviewed experiments by evaluating the number of interactive elements that need to be
processed simultaneously in working memory at a given time. The existing research studies of
I-PS approach in cognitive load theory have usually assessed the levels of element interactivity
of experimental materials, however, most of the studies of PS-I approach have not assessed
element interactivity (and hardly even mentioned this concept itself). According to Chen et al.
(2015, 2016a, b), the factor of element interactivity may be critical for clarifying the conditions
under which PS-I or I-PS approaches may be effective. Therefore, it may be necessary to also
assess the levels of element interactivity of tasks used by PS-I studies. As a part of the review
process, this study evaluated the levels of element interactivity of all the materials used in both
PS-I and I-PS studies that had been included in the analysis.

For the expertise factor, in cognitive load theory, I-PS is regarded to be effective for
novices, but this effect may be reversed when expertise is increased, indicating the expertise
reversal effect (Authors 2007), whereas research in productive failure framework has indicated
that expertise might not influence its effectiveness (Toh and Kapur 2017). However, no general
conclusions are found about how expertise may affect PS-I designs. Therefore, this study also
aims to explore if there is a stable general pattern of relation between expertise and the
effectiveness of PS-I approach.

For types of knowledge, Loibl et al. (2017) concluded that PS-I approach was consistently
found to be effective in facilitating learning conceptual knowledge, while I-PS approach was
more likely to be effective for learning procedural knowledge (Sweller and Cooper 1985;
Cooper and Sweller 1987; Chen et al. 2015; Van Gog et al. 2011). However, there are different
types of conceptual knowledge, such as general principle knowledge and knowledge of
principles underlying procedures (Crooks and Alibali 2014). Therefore, another aim of this
study is to categorize PS-I studies based on specific types of conceptual knowledge involved
rather than on its general definition.

Method

In order to explore for possible patterns of effects of the above factors (element interactivity,
expertise, and types of knowledge), the available research studies comparing I-PS and PS-I
approaches were systematically searched and the relevant studies categorized based on the
three selected factors (see Table 1 for a summary).

Participants

Overall, there were over 3000 participants involved in the reviewed studies. According to
Table 1, majority of the participants were novices or had low level of prior knowledge in
specific domains of the studies. Also, participants represented various levels of education
(primary school, secondary school, and university), different races, and ages.
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Table 1 Summary of performance variate analyses included in this review study

Study d Study
type

Type of
knowledge

Element
interactivity

Prior
knowledge

Dubovi (2018) − 0.44 Journal
Article

Procedural High Low

Glogger-Frey et al. (2015) − 0.72
(Exp. 1)
− 0.71
(Exp. 2)

Journal
Article

Procedural
Procedural

High
High

Low
Not Measured

Loibl and Rummel
(2014b)

1.33
−0.65
(Exp. 1)
0.66
0.88
(Exp. 2)

Journal
Article

Conceptual
Procedural
Conceptual
Conceptual

High Low

Loibl and Rummel
(2014a)

1.67
−0.47
(Exp. 1)
1.35
(Exp. 2)

Journal
Article

Conceptual
Procedural
Conceptual

High Low

Glogger-Frey et al. (2017) 0.61 Journal
Article

Conceptual Low High

Chase and Klahr (2017) −0.38 Journal
Article

Procedural High Low

Van Gog et al. (2011) −0.89 Journal Article Procedural High Low
Cook (2017) −0.71 Dissertation Procedural High Low
DeCaro and

Rittle-Johnson (2012)
0.35 Journal Article Conceptual High Low

Fyfe et al. (2014) −0.40
−0.39

Journal Article Procedural Conceptual High Low

Hsu etc. (2015) −0.69 Journal Article Procedural High Low
Jacobson et al. (2017) 0.88

0.39
Journal Article Conceptual

Conceptual
High Low

Lai et al. (2017) 1.45 Journal Article Conceptual Low High
Kapur (2014) 2.00

1.52
Journal Article Conceptual

Conceptual
High Low

Schwartz et al. (2011) 0.66
(Exp. 1)
0.60
(Exp. 2)

Journal Article Conceptual
Conceptual

High Not Measured

Weaver et al. (2018) 0.27
(Exp. 1)
0.31
(Exp. 2)

Journal
Article

Conceptual
Conceptual

High Not Measured

DeCaro et al. (2015) 0.44 Journal
Article

Conceptual High Low

Loehr et al. (2014) −1.10
(Exp. 1)
0.69
(Exp. 2)

Journal
Article

Conceptual
Procedural

High Low

Kapur (2012) 1.22 Journal
Article

Conceptual High Low

Kapur (2010) 0.52
0.70

Journal
Article

Conceptual
Conceptual

High Low

Kapur (2011) 0.56
0.55

Journal
Article

Conceptual
Conceptual

High Low

0.97 Journal Conceptual High Low
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Inclusions and exclusions of study

To systematically search for relevant studies, two major databases were used, Web of Science
and EBSCOhost. In each database, the keywords Productive Failure AND Prior Knowledge
were used for the first round of search, then the keywords Invention Learning AND Prior
Knowledge were used for the second round of search, followed by the keywords Problem
Solving Prior to Instruction AND Prior Knowledge for the third round of search. For Web of
Science, there were 20 studies found in the first round of search, 31 studies for the second
round of search and 186 studies found in the last round of search, whereas for EBSCOhost,
there were 20, 25, and 28 studies found for the first, second, and third rounds of search,
respectively. There were five studies added manually (these studies had not been detected by
searching the two databases with the selected keywords, but they were found by going through
the references of the detected studies).

The following three principles were used to select studies for inclusion: (1) the study must
be empirical/experimental study comparing explicit instruction first (I-PS) with problem-
solving first (PS-I) instructional sequences; (2) the report should provide enough statistics,
such as F value, for computing effect size (Cohen’s d was used as the indicator of effect size
for all included studies); (3) the study must include formal assessments of performance using
post-tests (studies that involved only measures of learner performance during learning phases
were not included). The comparisons of PS-I vs. I-PS sequences were all based on post-test
performance measures. Based on these selection principles and after deleting duplicated
studies from the three-round search, there were 23 studies finally included in the analysis.
The excluded studies were either not empirical/experimental studies or measured motivation
rather than performance; some studies did not compare the two alternative sequences (PS-I vs.
I-PS), but rather compared worked examples only with problem-solving tasks only, or made
comparisons among various types of problem-solving approaches.

Descriptions of included studies

For the included studies, the following seven indicators were used to analyze each study (see
Table 1): (1) authors’ information and publication year of the study; (2) effect size for
compared instructional sequences; (3) study type (e.g., journal article or dissertation); (4) type
of knowledge (conceptual or procedural); (5) levels of element interactivity of learning
materials (low or high); and (6) levels of prior knowledge (low, high, or not measured).

Table 1 (continued)

Study d Study
type

Type of
knowledge

Element
interactivity

Prior
knowledge

Kapur and Bielczyz
(2011)

Article

Kapur and Bielaczyc
(2012)

0.68 Journal
Article

Conceptual High Low

The negative value shows the superiority of explicit instruction first
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Computing effect size

In this study, all the final effect sizes for analysis were Cohens’ d. For studies using eta-squared
values, these values were converted to the Cohen’s d by using an online computing tool
(https://www.psychometrica.de/effect_size.html). Positive effect sizes showed effects
supporting problem-solving first instructional sequences (PS-I), while negative effect sizes
showed effects supporting explicit instruction first instructional sequences (I-PS). The cut-out
points for small, medium, and large effects were 0.2, 0.5, and 0.8, respectively. Once Cohen’s
d of each selected study had been calculated, the mean effect size (negative value) of studies
supporting explicit instruction first (I-PS) and the mean effect size (positive value) of studies
supporting problem-solving first (PS-I) were calculated separately.

Assessing the levels of element interactivity

The levels of element interactivity were evaluated by estimating the number of interactive
elements that need to be potentially processed simultaneously in learner working memory at a
given time when learning the given material.

Materials with high levels of element interactivity DeCaro and Rittle-Johnson (2012) used
math problems of gradually increased difficulty, such as 10 = 3 + □ (the easiest level), to teach
children the concept of equivalence. The estimated number of interactive elements would be 5,
as learners need to process five elements (10, =, 3, + and □) simultaneously when solving for
the number in the box. The similar learning tasks were used in the studies of DeCaro et al.
(2015), Fyfe et al. (2014) and Loehr et al. (2014).

Schwartz et al. (2011) required students to invent a general index for crowdedness
representing the concept of density. This task required learners to simultaneously consider
the value of an index (as a goal), the suggested narrative for finding a crowdedness index
(around five estimated elements), and the rule for the crowdedness index as concept of density
(estimated three elements). Similar materials were used in the studies of Glogger-Frey et al.
(2015) and Weaver et al. (2018).

Kapur (2012, 2014) required students to invent as many solutions as possible to mathe-
matically determine the most consistent player, by comparing the scores of the top two players,
as a way of learning the concept of variance. As there were 20 scores for each player, in order
to evaluate the consistency, students had to consider all 20 scores of a player simultaneously,
rendering at least 20 interactive elements. The similar materials were used in the studies of
Loibl and Rummel (2014a, 2014b), Cook (2017), Kapur (2010), Kapur and Bielczyz (2011).

Dubovi (2018) used a simulated clinic scenario (real-life cases). For example, participants
were given a complex scenario of a pregnant woman with mood disorder and required to make
decisions about her physical and mental condition, as well as the health of her baby. The
presented scenario required participants to generate knowledge within and across multiple
domains, without explicitly defining them. Jacobson et al. (2017) used challenging problems
on climate models and complex system models involving multiple factors affecting climate
(such as greenhouse effect or wind), rendering the learning materials with high levels of
element interactivity.

Kapur (2011) and Kapur and Bielaczyc (2012) designed complex mathematical problems
involving the concepts of average speed and the lowest common multiples. Chen et al. (2015)
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required students to apply conservation of energy and momentum principles to solve complex
physical problems involving colliding physical objects, and multiple parameters such as time,
speed, and distance. These tasks involved multiple steps with many interactive elements,
generating high levels of element interactivity. Van Gog et al. (2011) used learning tasks on
troubleshooting electrical circuits that required participants to diagnose the fault by performing
multiple steps, such as calculating the current, and comparing the actual measures with
calculated ones—the tasks with high levels of element interactivity.

Materials with low levels of element interactivity The materials used by Glogger-Frey et al.
(2017) turned out to be low in element interactivity due to additional practice that increased the
levels of learner expertise. Lai, Portolese and Jacobson et al. (2017) recruited knowledgeable
learners with high levels of expertise, making the levels of interactivity for learning materials
low.

Results and discussion

Ten out of 23 studies indicated the superiority of explicit instruction first sequence on the post-
test. The mean effect size was d = − 0.63 (medium to large), indicating that the advantage of
explicit instruction first approach was robust across analyzed studies.

Fifteen out of 23 studies indicated the superiority of problem-solving first sequence on the
post-test. The mean effect size was d = 0.96 (large), indicating that the superiority of the
problem-solving first sequence was robust across analyzed studies. There is an overlap in the
above number of studies, as two included research studies indicated superiority of both
sequences (in different experiments).

Conceptual knowledge According to Table 1, there were 17 studies investigating the con-
ceptual knowledge. Fifteen out of 17 research studies tapping on conceptual knowledge
demonstrated the superiority of the problem-solving first sequence (PS-I) compared to the
explicit instruction first sequence (I-PS). Only Fyfe et al. (2014) and Loehr et al. (2014) found
the superiority of the explicit instruction first sequence (I-PS) for learning conceptual knowl-
edge in the domain of mathematics. Therefore, problem-solving first instructional sequence
(PS-I) was in most cases more effective for learning conceptual knowledge.

Procedural knowledge Concerning the results for procedural knowledge, the explicit instruc-
tion first sequence (I-PS) was consistently more effective. There was only one study by Loehr
et al. (2014) that found the superiority of the problem-solving first sequence (PS-I) on learning
procedural knowledge. However, the validity of this result could be questioned as over 50% of
participants could correctly solve all the items, indicating that the data could be skewed (Loehr
et al. 2014).

Element interactivity Based on our estimates of levels of element interactivity of learning
materials for the included studies, all materials used for teaching procedural knowledge were
classified as high in element interactivity. Most of the materials used for teaching conceptual
knowledge appeared to be also relatively high in element interactivity, with only a few
exceptions in which low levels of element interactivity were due to high levels of learner
expertise.
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According to Table 1, for low element interactivity materials, all the available (although
very limited) evidence supported the superiority of problem-solving first instruction (PS-I),
whereas for higher element interactivity tasks, I-PS approach was found more effective for
learning procedural knowledge, while PS-I approach was found more effective mostly for
learning conceptual knowledge. These results partially contradict some traditional assumptions
of cognitive load theory and warrant further discussion.

According to Crooks and Alibali (2014), it is possible to distinguish different types of
conceptual knowledge. The conceptual knowledge of low element interactivity could be
potentially associated with what they call general principle knowledge—the knowledge that
is not closely tied to any specific procedures, such as when students are required to memorize
some general rules or definitions (e.g., the equal sign means “the same as”). For many
common concepts (such as the concepts of area, length, height, weight, etc.), this general
principle knowledge may have good intuitive sense that may be related to biologically primary
knowledge in evolutionary educational psychology (Geary 2002)—the type of evolutionary-
predisposed knowledge we usually learn implicitly. However, the conceptual learning mate-
rials with relatively higher levels of element interactivity, which had been involved in the
experiments used for comparing the PS-I with the I-PS sequences in this review, required
students to generate significant amounts of procedure-related information. This type of
conceptual knowledge is referred to as knowledge of principles underlying procedures by
Crooks and Alibali (2014), which is closely associated with specific procedures. The demon-
strated superiority of problem first sequences (PS-I) for learning this relatively high-
interactivity conceptual knowledge may contradict traditional views of the worked example
effect in cognitive load theory which assumes explicit instruction first sequence (I-PS) to be
superior for all high element interactivity tasks.

There are two possible ways to resolve this contradiction. Staying within the traditional
framework of cognitive load theory, it is possible to contemplate that when learning conceptual
knowledge of high element interactivity, a problem-solving attempt prior to explicit instruction
(even if the learners fail to solve the problem) may familiarize them with some important
elements of the task, although in isolated form without seeing all the essential and meaningful
connections or interactions with other elements. Such preliminary elementary learning might
reduce the potentially heavy working memory load that could otherwise be experienced during
the comprehensive explicit instruction in complex concepts. In the framework of cognitive
load theory, this method is known as the isolated-interactive element effect (Sweller et al.
2011). It is based on an artificial reduction or simplification of complex relations between
essential elements of information during the initial phase of learning, which may help learners
to acquire some relevant partial schemas in an isolated form, followed by the comprehensive
instruction in the next phase, which aims at the acquisition of the complete and correct
schemas (similar to the consolidation phase in the productive failure approach).

As to why the problem-first approach would work with conceptual but not procedural
knowledge of high element interactivity, a possible answer could be that worked examples of a
procedure significantly reduce working memory load by focusing learner attention on one
problem state at a time and showing the appropriate solution step for this state. Whereas
explicit instruction in complex conceptual knowledge may not be able to achieve a significant
reduction of cognitive load in this manner and thus, may benefit from a preliminary exposure
of learners to only some of the essential conceptual elements (in the isolated format) during
their initial problem-solving attempts.

O. Chen, S. Kalyuga618



For delineating another possible way of resolving the above contradiction, it should be
noted that, in accordance with traditional framework of cognitive load theory, the implicitly
assumed goal of instruction is learning domain-specific solution schemas for various catego-
ries of problem situations. However, in a recent addition to this theory (Authors 2016), it was
suggested that other types of specific instructional goals might need to be considered for some
learner activities within complex learning tasks, for example, activating learners’ prior knowl-
edge, motivating and engaging them, or setting appropriate emotional states (Authors 2019a,
b). This suggestion allows to explain the observed in some situations effectiveness of problem-
solving first approaches (such as productive failure method) for novice learners by associating
the first (problem-solving, exploratory or generation) phase of learning with such alternative
goals.

In fact, the existing theories of productive failure and other problem-first approaches (as
reviewed at the beginning of this paper) are in agreement with this interpretation of learning
goals. Within this goal-based framework, the effectiveness of particular sequences of explicit
instruction and problem solving in complex learning tasks would essentially be determined by
the appropriateness of the sequences of specific instructional goals of comprised learning
activities. The discussed pattern of superior effectiveness of the problem-solving first sequence
over the explicit instruction first sequence for learning conceptual knowledge may indicate the
need to apply this goal-based approach and consider other types of goals that are different from
the goal of learning domain-specific solution schemas (knowledge about procedures) associ-
ated with the traditional framework of cognitive load theory.

Levels of expertise Considering the information in Table 1, and the closed (essentially,
inverted) relation between the levels of element interactivity and levels of expertise, for
novices (for whom the tasks were of higher level of element interactivity), the explicit
instruction first sequences (I-PS) showed superiority for teaching procedural knowledge,
whereas the problem-solving first sequences (PS-I) showed superiority for teaching conceptual
knowledge. For learners with higher levels of prior knowledge (for whom the tasks were of
low levels of element interactivity), there were only two studies available for analyses,
Glogger-Frey et al. (2017) and Lai et al. (2017), and they both indicated that the problem-
solving first sequences (PS-I) were more effective.

Conclusion

This paper systematically searched for and reviewed studies comparing the order of explicit
instruction and problem solving to explore for possible stable patterns of relationships between
their effectiveness and a number of candidate factors. The analysis showed that both instruc-
tional sequences, explicit instruction first (I-PS) and problem-solving first (PS-I), were effec-
tive. When specific factors, such as types of knowledge, levels of element interactivity and
levels of learners’ expertise, were taken into account, some conditions of effectiveness could
be articulated for each of the above sequences.

For types of knowledge, the problem-solving first sequence (PS-I) was found to be an
effective instructional procedure for learning conceptual knowledge, specifically, knowledge
of principles underlying procedures, whereas learning knowledge about procedures was more
effective using the explicit instruction first (I-PS) approach. The type of conceptual knowledge
about general principle knowledge was not used in the reviewed studies. Further research
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studies are required to compare PS-I and I-PS sequences for conceptual knowledge of different
types.

Concerning the effect of levels of element interactivity of materials, the results depended on
the types of knowledge. For procedural knowledge, the classical assumption of cognitive load
theory was supported: I-PS approach was superior for high element interactivity tasks. For
conceptual knowledge, the two types of this knowledge may need to be considered—general
principle knowledge and knowledge of principles underlying procedures. The reviewed studies
used only the second type of conceptual knowledge (knowledge of principles underlying
procedures which is high in element interactivity), and for both high and low (due to higher
expertise of learners) levels of element interactivity, the problem first (PS-I) sequence was
superior to the reverse sequence.

The importance and niche of this study This review summarized how the three major
relevant factors, types of knowledge, levels of learner expertise, and levels of element
interactivity affected the effectiveness and relations between PS-I and I-PS approaches, which
could open new avenues of research in comparing these instructional approaches using
multifactorial methods. Also, this study integrated the traditional worked example-problem
solving and problem-solving-worked example sequences into the corresponding broader
classes of I-PS and PS-I approaches.

Educational implications An important educational implication of this study is that when
designing or selecting the learning tasks using PS-I or I-PS approach for classroom teaching, it
is necessary to consider levels of learner expertise, the nature of learning materials, and the
types of knowledge to be learned. In addition, the learners and learning materials should be
approached dynamically, as with increases in levels of learner expertise, the difficulty (levels
of element interactivity) of learning materials will be decreased, and the optimal approaches
used in instructional design would need to be revised accordingly.

Limitations of this study Due to a very limited number of available studies that have
investigated the influence of expertise on the effectiveness of PS-I and I-PS approaches, we
still have no conclusive idea on whether the levels of learner expertise would moderate the
effectiveness of the problem-solving first (PS-I) approach with conceptual knowledge, and
further investigation into this issue is needed as well.

The best possible form of instructional design always depends on the specific learning tasks
and their goals, and uncovering the factors influencing the selection of optimal designs is the
ultimate aim of the review studies such as this. The conclusions of this review are based on a
limited number of the detected published empirical studies that have investigated the alterna-
tive sequences involving problem solving and explicit instruction learning tasks. As far as we
understand the pattern emerging within this limit, PS-I approach works well for conceptual
knowledge, while I-PS approach works better for procedural knowledge. However, we cannot
conclude with certainty that these designs are optimal (or even possible) for any conceptual or
procedural element of knowledge, as no reviews have sorted out or empirical studies
experimented with all types of conceptual or procedural knowledge. More research comparing
these two approaches with different type of knowledge is required.
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