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Abstract Researchers have consistently demonstrated that multiple examples are better than
one example in facilitating learning because the comparison evoked by multiple examples
supports learning and transfer. However, research outcomes are unclear regarding the effects
of example variability and prior knowledge on learning from comparing multiple examples.
In this experimental study, the two critical aspects of problem type and solution method were
used to design comparison conditions to teach equation solving. Randomly selected groups
of 263 seventh-grade students learned to solve equations by comparing different example
pairs. Results showed that students who did not use a shortcut method at pretest benefited
least from comparing the two critical aspects first separately and then simultaneously.
Students who used a shortcut method at pretest learned equally within conditions.
Students may need to separately discern each critical aspect before they benefit from
comparing simultaneous variation of these aspects. Examples should be designed according
to aspects that are critical for specific students.
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Researchers have consistently demonstrated that studying multiple examples is more effec-
tive than studying one example to facilitate learning because the comparison evoked by
multiple examples facilitates schema construction and is thus beneficial for learning
(Catrambone and Holyoak 1989; Cooper and Sweller 1987; Gibson and Gibson 1955;
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Gick and Paterson 1992; Reed 1993; Rittle-Johnson and Star 2009; Schwartz and Bransford
1998; Silver et al. 2005; Sweller and Cooper 1985; Tennyson 1973). As Gentner (2005)
noted, “Comparison is a general learning process that can promote deep relational learning
and the development of theory-level explanations” (p. 251).

However, it remains unclear how similar or different examples should be in order to promote
learning (for a review, see Guo et al. 2012). For example, should we present students with high-
variability examples or low-variability examples? Is the effectiveness of multiple examples the
same for all students or moderated by students’ prior knowledge? In the current study, we
experimentally evaluated the effects of different comparisons on the learning of multistep linear
equation solving and their interaction effects with students’ prior knowledge.

In the introduction, we briefly review literature on learning from comparing multiple
examples and discuss limitations in existing research. Next, we elaborate the “critical
aspects/features” and “patterns of variation and invariance” from variation theory that
guided this investigation of unresolved issues in example comparison research. Finally, we
introduce the two critical aspects of problem type and solution method for learning equation
solving according to which the experimental conditions were designed.

Experimental research on learning from comparing multiple examples

Studies on learning comparing from multiple examples have shown that the impact of
comparison on learning depends on the variability of multiple examples being compared
and the prior knowledge of the students. However, still unclear is the role of example
variability and students’ prior knowledge in learning from comparing examples.

First, it is unclear how similar or different examples should be in order to promote learning
(Renkl et al. 1998; Rittle-Johnson and Star 2009). Examples are generally analyzed from
surface (irrelevant) features and structural (relevant) features (Gick and Holyoak 1980, 1983;
Holyoak and Koh 1987; Paas and Van Merrienboer 1994; Quilici and Mayer 1996; Reed 1989;
Ross 1989b, 1997; Ross and Kennedy 1990; VanderStoep and Seifert 1993). Example vari-
ability consists of differences in the surface and structural aspects among the examples.
Holyoak and Koh (1987) distinguished surface features, such as names, objects, numbers,
and story lines, as irrelevant to goal attainment and structural features, such as underlying
mathematical procedures, rules, solutions, and principles, as relevant to goal attainment.

Researchers have reported contradictory findings regarding how similar multiple exam-
ples should be in terms of surface and structural features (Renkl et al. 1998; Rittle-Johnson
and Star 2009). Considerable evidence on concept learning and procedural learning indicat-
ed that providing positive examples differing in surface features should help learners focus
on structural features rather than relying on surface features, which might facilitate structure-
based schema formation and develop a more accurate understanding of the concept
(Hammer et al. 2008; Merrill and Tennyson 1978; Ranzijn 1991; Tennyson 1973) or the
procedure (Paas and Van Merrienboer 1994; Quilici and Mayer 1996; Rittle-Johnson and
Star 2009). Given superficially similar examples, the learner might consider surface features
as relevant, which might interfere with schema construction and future problem solving
(Quilici and Mayer 1996; Reed 1989). The reverse, however, seems to be true as well.
Providing superficially similar examples might help the learner discern and align the
structural features and form the schema; highly variable examples might make the structural
features difficult to discern (e.g., Gentner and Namy 1999; Gick and Holyoak 1980, 1983;
Namy and Clepper 2010; Namy and Gentner 2002; Richland et al. 2004; Ross 1989a; Ross
and Kennedy 1990).
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Second, the literature is unclear with respect to the role of students’ prior knowledge in
learning from multiple examples (Rittle-Johnson et al. 2009). Some researchers found that
(a) students with low prior knowledge did not benefit from comparing multiple examples,
especially complex and unfamiliar examples (e.g., Holmqvist et al. 2007; Schwartz and
Bransford 1998); (b) students with high prior knowledge benefited from comparing any
example variability, whereas students with low prior knowledge benefited from comparing
only highly variable examples (e.g., Quilici and Mayer 1996); (c) students with higher prior
knowledge benefited more from comparing high-variability examples, whereas students
with lower prior knowledge benefited more from comparing low-variability examples
(e.g., Große and Renkl 2006, 2007); and (d) there was no interaction between students’
prior knowledge and example variability (e.g., Renkl et al. 1998). In short, as noted by Guo
and Pang (2011), it remains unclear what type of example variability should be provided to
students with different levels of prior knowledge.

Rittle-Johnson and colleagues (Rittle-Johnson and Star 2007, 2009; Rittle-Johnson et al.
2009; Star and Rittle-Johnson 2009) explored these issues in the context of mathematics
learning. Rittle-Johnson and Star (2007, 2009) found that students who compared the same
equations solved with different solution methods learned better than those who (a) compared
the same solution methods one at a time, (b) compared equivalent equations solved with the
same solution method, or (c) compared different equations solved with the same solution
method. Rittle-Johnson et al. (2009) carried these findings a step further to investigate whether
students’ prior knowledge of solution methods impacted the effectiveness of comparison for
supporting equation learning. Results showed that students with lower prior knowledge
benefited most from studying examples sequentially or comparing problem types, whereas
students with higher prior knowledge benefited more from comparing solution methods.

However, students in research conducted by Rittle-Johnson and colleagues either com-
pared the same equations solved with different solution methods or compared different
equations solved with the same solution method. In other words, only solution method or
problem type was varied for students to learn equation solving; they did not experience the
variation of both problem type and solution method in the intervention. Because both
problem type and solution method are crucial for learning equation solving, it is necessary
for researchers to examine how to introduce the variation of both problem type and solution
method to students and the effectiveness of different types of example variability.

The present study continues to investigate the role of example variability and students’
prior knowledge in mathematics learning. We chose the topic of equation solving that had
been examined by Rittle-Johnson and colleagues because only one critical aspect (problem
type or solution method) was manipulated in their studies. Our aim in the present study was
to explore the relative effectiveness of separately and simultaneously varying the two critical
aspects of problem type and solution method in equation solving. Our findings can thus
contribute to the effective use of comparison in the classroom.

Critical aspects/features and patterns of variation and invariance

Our research was based on the variation theory which holds variation to be epistemologi-
cally fundamental for all learning to happen (for details, see Marton and Booth 1997; Marton
and Tsui 2004). Different from cognitive theories that consider learning as the construction
of mental representations, the variation theory interprets learning as the creation of new
individual-world relations through our experiences and thus as a new way of seeing
something (Marton and Booth 1997). The new way of seeing amounts to discerning certain
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critical features and focusing on them simultaneously (Marton 1999). In particular, the
notions of “critical aspects/features” and “patterns of variation and invariance” from the
variation theory guided the present study to address unresolved issues in example variability
research.

Critical aspects/features of the object of learning

In the variation theory, aspects and features of a phenomenon and its examples are analyzed
as critical or uncritical to students’ understanding and learning, rather than as surface or
structural to the objective disciplinary knowledge. Critical aspects are aspects that cause
difficulty for students in the process of learning; they might be superficial or structural to the
objective knowledge. For example, if a child believes that fruit can only be round, then the
surface aspect (shape) and feature (round) become critical for the child to learn the concept
of fruit. In order to help the child realize that fruit could be in different shapes, we should
show him/her different examples (e.g., an apple, a banana, and a carambola) that have
different shapes. Here, the surface aspect of shape is the critical aspect for learning the
concept of fruit. As such, other surface aspects of fruit such as size and color also become
critical aspects for students who wrongly associate fruit to a specific size or color. As Marton
and Pang (2008) argued, both the disciplinary knowledge and the students’ understanding
should be taken into account when identifying the critical aspects of a learning object.

Patterns of variation and invariance

According to the variation theory, to learn a phenomenon means to simultaneously discern
the critical aspects/features of the phenomenon. To discern, a learner must experience
variation. When an aspect of a phenomenon varies while other aspects remain invariant,
the varied aspect will be discerned (Pang and Marton 2005). In particular, Marton and his
colleagues (e.g., Marton and Pang 2006; Marton and Tsui 2004) defined four patterns of
variation and invariance to facilitate the discernment of critical aspects: contrast, separation,
fusion, and generalization.

Contrast occurs when a learner experiences variation of different values or features in an
aspect of a phenomenon. To experience something, the learner must experience something
else in order to make a comparison. The pattern of contrast focuses on a particular value or
feature of an aspect. Separation happens when a learner focuses on an aspect of a phenom-
enon. To experience a certain aspect of something separately from other aspects, it must vary
while other aspects remain invariant. In this pattern, the varied aspect is discerned by the
learner. Contrast and separation occur when two or more objects have a varying aspect while
other aspects remain invariant. Fusion takes place when a learner wants to discern several
aspects of a phenomenon that vary simultaneously. To experience a phenomenon, the learner
must discern all critical aspects at the same time when different critical aspects vary
simultaneously. Students will grasp a concept if they can simultaneously discern all critical
aspects of the concept. Generalization occurs when a learner wants to apply his/her previous
discernment to various contexts. To fully understand an object of learning, the learner must
experience many other examples to generalize the meaning (for a more detailed discussion,
see Guo et al. 2012). Researchers have suggested that contrast and separation should be used
first to help students discern each critical aspect separately, followed by fusion that simul-
taneously varies all critical aspects (Ki 2007; Marton and Tsui 2004; Pang 2002).
Generalization can be used after students have simultaneously discerned all critical aspects
to generalize the discernment to other contexts.
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In the current study, we analyzed multistep linear equation solving and its worked
examples based on the two critical aspects for learning equation solving and investigated
the effectiveness of patterns of variation and invariance in helping students discern these
critical aspects. We expected that this way of analyzing equation solving and designing its
multiple examples would help to clarify ambiguous issues in research on example
comparison.

Two critical aspects for the learning of equation solving

Rittle-Johnson and colleagues (Rittle-Johnson and Star 2007, 2009; Rittle-Johnson et al.
2009) identified two critical aspects for the learning of equation solving: problem type and
solution method. As shown in Table 1, three types of multistep linear equations were
identified: divide composite, combine composite, and subtract composite; these three equa-
tion types were three values of the critical aspect of problem type. For each type of equation,
there were two types of solution methods. The first method was a conventional and
distribute-first method that could be used to solve most equations. This method first
distributed the parentheses, then combined like terms, subtracted constants and variables
from both sides, and finally divided both sides by the coefficient. The second method of
solving equations was a nonconventional and shortcut method that considered expressions
such as (χ+3) a composite variable. The nonconventional method was more efficient
because it involved fewer steps and fewer computations. These two methods were two
values of the critical aspect of solution method.

Rittle-Johnson et al. (2009) indicated that only 20 % of seventh-grade and eighth-grade
students could correctly use the distribute-first method, 4 % attempted to use shortcut
methods, and 41 % of students never used an algebraic approach to solve an equation at
pretest. Even after instruction, only about 20 % of items were solved via the shortcut

Table 1 Alternative solution methods for the three types of equations

Critical aspect of problem typea Critical aspect of solution method

Conventional, distribute-first method Composite-variable shortcut method

a(x+b)=c 3(x+8)=30 3(x+8)=30

Divide composite 3x+24=30 x+8=10

3x=6 x=2

x=2

a(x+b)+d(x+b)=c 2(x+6)+3(x+6)=40 2(x+6)+3(x+6)=40

Combine composite 2x+12+3x+18=40 5(x+6)=40

2x+3x=40−12−18 x+6=8

5x=10 x=2

x=2

a(x+b)=d(x+b)+c 10(x+3)=6(x+3)+16 10(x+3)=6(x+3)+16

Subtract composite 10x+30=6x+18+16 10(x+3)−6(x+3)=16
10x−6x=18+16−30 4(x+3)=16

4x=4 x+3=4

x=1 x=1

a x stands for a variable and other letters were replaced with numbers
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method. To completely master multistep linear equation solving, students need to simulta-
neously discern the two critical aspects of problem type and solution method. In other words,
they should understand that there are three types of equations and that each equation can be
solved by two methods.

Present study

We evaluated four types of comparison for supporting seventh-grade students’ learning
about equation solving. The four conditions differed in how the problem type and solution
method varied within an example pair (see Fig. 1 and Table 3). Students were randomly

Fig. 1 Three types of comparison
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assigned to first compare separate variation of problem types and solution methods and then
compare simultaneous variation of these two aspects (compare types, compare methods,
compare types+methods; abbreviated as T_M_T+M), to first compare separate variation of
solution methods and then compare simultaneous variation of problem types and solution
methods (compare methods, compare methods, compare types+methods; abbreviated as
M_M_T+M), to first compare separate variation of problem types and then compare
simultaneous variation of problem types and solution methods (compare types, compare
types, compare types+methods; abbreviated as T_T_T+M), or to compare separation vari-
ation of problem types and solution methods but not compare simultaneous variation of
these two aspects (compare types, compare methods, compare types or methods; abbreviated
as T_M_T/M).

Comparison of T_M_T+M with M_M_T+M permitted the assessment of the effects of
separate variation of problem type, comparison of T_M_T+M with T_T_T+M permitted the
assessment of the effects of separate variation of solution method, and comparison of
T_M_T+M with T_M_T/M permitted the assessment of the effects of simultaneous variation
of problem type and solution method.

Students in this study were expected to vary in their prior knowledge of equation solving.
According to the curriculum, students had previously learned about solving a multistep
linear equation using the conventional method. However, they had not been taught the
composite-variable shortcut method in the classroom, although some teachers might have
mentioned the shortcut method to some extent. Students thus varied in their knowledge of
solving equations. As a result, the present study investigated the possible interaction effect
between students’ prior knowledge and condition to examine the role of students’ prior
knowledge in learning from examples. We hypothesized that the effect of condition would
interact with students’ prior knowledge of equation solving.

Method

Participants

Participants were 274 seventh-grade students from an urban public high school in Xiamen,
China that was considered at above average level. The students were drawn from six classes
and their mean age was 14.2 years (range, 12.1 to 16.2). Of these students, seven were absent
for the pretest and four were absent for the posttest and were dropped from the analysis. In
previous lessons, students had learned about distributive property, simplifying expressions,
and solving multistep equations by a conventional method. However, they had not been
taught how to solve equations by a shortcut method.

Design

We employed a pretest–intervention–posttest design. A pretest and a posttest were used to
evaluate students’ procedural knowledge, flexibility knowledge, and conceptual knowledge of
equation solving. Students were randomly assigned to T_M_T+M (n=66), M_M_T+M (n=64),
T_T_T+M (n=65), or T_M_T/M (n=68). The intervention occurred during three consecutive
mathematics classes. During the 3-day intervention, students studied a corresponding intervention
packet of worked-example pairs, answered explanation prompts, and solved practice problems.

To explore the possible interaction effect of prior equation solving knowledge and
intervention condition, we assessed students’ prior knowledge based on whether they used
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or did not use a shortcut method to solve equations at pretest. We did not categorize students
as using algebra or not using algebra as in Rittle-Johnson and colleagues’ studies because
most students in the present study showed mastery of algebraic methods at pretest.

Materials

Intervention

Packets of worked examples were created for each condition as follows: compare types,
compare methods, compare types+methods, and compare types or methods. The primary
difference between the packets was how the worked examples were paired, as shown in
Fig. 1 and Table 2. In the compare types packets, each worked-example pair contained two
different types of equations, each solved with the same method; the critical aspect of
problem type was separately varied while the critical aspect of solution method was kept
invariant. In the compare methods packets, each worked-example pair contained the same
equation solved with the conventional and the shortcut methods; the critical aspect of
solution method was separately varied while the critical aspect of problem type was kept
invariant. In the compare types+methods packets, each worked-example pair contained two
different types of equations solved with the conventional and the shortcut methods; the two
critical aspects of problem type and solution method were simultaneously varied. In the
compare types or methods packets, worked-example pairs were similar to those from
compare types packets or compare methods packets; the two critical aspects were varied
separately rather than simultaneously.

Except for the difference in how the worked examples were paired, the packets were as
similar as possible. Both the compare types packets and the compare methods packets
contained 4 instances of each of the 3 equation types for a total of 12 worked examples.
Both the compare types+methods packets and the compare types or methods packets
contained six worked examples. Half of the worked examples illustrated the conventional
solution method and half illustrated the composite-variable shortcut method.

The four conditions consisted of different packets as shown in Table 3. The T_M_T+M
condition contained one compare types packet, one compare methods packet, and one
compare types+methods packet; the M_M_T+M condition contained two compare methods
packets and one compare types+method packet; the T_T_T+M condition contained two
compare types packets and one compare types+method packet; and the T_M_T/M condition
contained one compare types packet, one compare methods packet, and one compare types
or method packet.

The packets were distributed to students over three intervention sessions. As a result,
students in the T_M_T+M condition first compared equations that had different problem
types and the same solution method, then compared the same equations that had different

Table 2 Difference among four packets of worked examples

Packets Problem types Solution methods

Compare types Different Same

Compare methods Same Different

Compare types+methods Different Different

Compare types or methods Example pairs were similar to those from compare types or compare
methods packets
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solution methods, and finally compared equations that had different problem types and
solution methods. Those students first separately compared each of the two critical aspects
(i.e., problem type and solution method) and then experienced simultaneous variation of
these two critical aspects. Students in the M_M_T+M condition compared the same equa-
tions that had different solution methods in the first two intervention sessions and then
compared equations that had different problem types and solution methods. Those students
separately compared the critical aspect of solution method and then experienced simulta-
neous variation of these two critical aspects; they did not separately compare the critical
aspect of problem type. Students in the T_T_T+M condition compared equations that had
different problem types and the same solution method in the first two intervention sessions.
Then, they compared equations that had different problem types and solution methods.
Those students separately compared the critical aspect of problem type and then experienced
simultaneous variation of these two critical aspects; they did not separately compare the
critical aspect of the solution method. Students in the T_M_T/M condition separately
compared each of the two critical aspects in the first two sessions. In the third session, they
did not simultaneously compare variation of these two aspects but compare equations similar
to those in the first two sessions (compare types or compare methods).

Therefore, the four conditions were different with respect to whether critical aspects of
equation solving were compared first separately and then simultaneously. Except for the
difference of how examples were paired, other components of the four conditions were as
similar as possible. At the end of the third session, students were asked to solve four practice
problems each in two different ways. Answers for these practice problems were provided on
the next page of the packet for students to self-evaluate their understanding.

Assessment

A test of 19 items was developed to measure the students’ procedural knowledge, flexibility
knowledge, and conceptual knowledge at pretest and posttest, as suggested by Rittle-
Johnson et al. (2009). The pretest and posttest were paper-and-pencil assessments. Sample
items are included in Table 4.

To make our results comparable to those from studies by Rittle-Johnson and colleagues
(Rittle-Johnson and Star 2007, 2009; Rittle-Johnson et al. 2009), we replicated their
assessment of students’ performance. Procedural knowledge was measured by seven items
assessing students’ ability to solve familiar, near transfer, and far transfer problems. The
familiar problems were the same types of problems as those used in the intervention packets.
The near transfer problems included additional terms inside the parentheses and new
operators. The far transfer problems required using the equation knowledge to solve
practical problems. Flexibility knowledge was independently measured in three ways: (a)
recognize appropriate first solution steps for a particular problem (two items); (b) generate

Table 3 Comparison among four conditions

Conditions First session Second session Third session Number of worked
examples contained

T_M_T+M Compare types Compare methods Compare types+methods 30

M_M_T+M Compare types Compare methods Compare types+methods 30

T_T_T+M Compare types Compare types Compare types+methods 30

T_M_T/M Compare types Compare methods Compare types+methods 30
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Table 4 Sample items and coding scheme for assessing procedural, flexibility, and conceptual knowledge at
the pretest and the posttest

Measures Sample items Scoring and scale α

Procedural knowledge
(n=7)

α=0.77

a. Familiar (n=3) 1/3(y+2)=6 1 pt for each correct answer

2(x−3)+3(x−3)=l5
b. Near transfer (n=2) 2(3m+2m−5)+5(3m+2m−5)=28 1 pt for each correct answer

3(y+2)+5(y+2)=4(y+2)

c. Far transfer (n=2) To calculate the centigrade (C) from
a known Fahrenheit (F), solve the
equation for C : F ¼ 9

5C þ 32

1 pt for each correct answer

Flexibility knowledge
(n=6)

α=0.81

a. Generate multiple
methods (n=2)

a. Solve this equation in two different
ways: 0.5(x−4)=8

Part a: 1 pt for using
conventional
and shortcut methods

b. Which of your ways do you think
is easiest and fastest?

Part b: 1 pt for choosing shortcut
method

b. Recognize multiple
methods (n=2)

For the equation 3(y−2)+6=12, identify
all possible steps that could be done
next (4 choices).

1 pt for each correct choice

c. Evaluate
nonconventional
methods (n=2)

4 t þ 3 t � 2ð Þ½ � ¼ 16
t þ 3 t � 2ð Þ ¼ 4

Part a: 1 pt for correctly
identifying stept+3(t−2)=4

a. What step did the student use to get
from the first line to the second line?

b. Do you think that this is a good way to
start this problem? Circle one: (a) a very
good way; (b) OK to do, but not a very
good way: (e) not OK to do

Part b: 2 pt for choosing (a), 1 pt
for choosing (b), 0 pt for
choosing (c)

c. Explain your reasoning. Part c: 2 pt if accurately
evaluates
efficiency or justifies why OK
to do, 1 pt if simply mentions
that step is OK or easier to do

Conceptual
knowledge
(n=6)

α=0.76

1. Which of the following equals to
(h−1)+(h−1)+(h−1)+(h−1)? Circle
one: (a) h−4; (b) 4h−l; (c) h4−4;
(d) 4(h−1); (e) none of the above

1. 1 pt for choosing (d)

2. Here are two equations:
79� 14m; 79þ 5 mþ 1ð Þ�
14mþ 5 mþ 1ð Þ

(a) Look at this pair of equations. 2a. 1 pt for choosing “YES
(same answer)”Without solving the equations, decide if

these equations are equivalent
(have the same answer).

(b) Explain your reasoning. 2b. 1 pt for mentioning
equivalence of equations

Cronbach’s α is reported based on posttest scores

pt point
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different solutions to an equation (two items); and (c) evaluate novel solution steps for accuracy
and efficiency (two items). Conceptual knowledge was assessed by six items measuring
students’ verbal and nonverbal knowledge of equivalence, like terms, and composite variables.
Items measuring flexibility knowledge and conceptual knowledge were designed to mainly
evaluate students’ discernment of solution methods, i.e., whether they were able to consider
expressions such as (χ+1) a composite variable. It should be noted that, although the critical
aspect of problem type might also affect how students solved the problems, we did not design
items to evaluate students’ familiarity with different types of equations.

Procedure

All data collection occurred over five class sessions. On day 1, all of the students were asked to
take a 45-min pretest to determine their prior knowledge of equation solving. One week after the
pretest, students were assigned to T_M_T+M,M_M_T+M, T_T_T+M, or T_M_T/M conditions
and were given a corresponding intervention packet to study for 45 min. An instructor gave a
brief (10 min) scripted introduction to students before the intervention. All instructors were our
research assistants and followed a script. The instructor reminded students when 10 min
remained in a session. The packets were collected after the intervention was completed for that
session. The next 2 days of instruction followed the same format. At the end of day 4, the
instructor provided an 8-min wrap-up lesson to explain that (a) there is more than one way to
solve an equation, (b) any way is OK if the two sides of the equation are kept equal, and (c)
some ways of solving equations are better or easier than others.

On day 5, students were given 45 min to complete the posttest, which was equivalent to
the pretest. Before the pretest and posttest, the instructor also gave a brief scripted intro-
duction of the tests, explaining the task to the students. They were told to justify their
answers and to feel free to elaborate on their ideas as much as possible. The students were
told that their answer sheets would not be rated or reviewed by their teachers. They were also
reminded when 10 min remained. To ensure fidelity of condition, the authors did not
administer any test or intervention, but gave direction and provided assistance to instructors
when necessary, as well as observed classrooms.

Coding

As shown in Table 4, the seven equations on the procedural knowledge assessment were
scored for response accuracy. In addition, students’ solution methods for the seven proce-
dural knowledge items and two generate methods items were coded, based on whether the
first step was or was not a shortcut step. Different from Rittle-Johnson and colleagues who
considered students’ use of algebraic methods at pretest as an index of prior knowledge of
algebraic methods, we considered students’ use of shortcut method at pretest to differentiate
students’ prior knowledge. This is because most students in the present study demonstrated
their mastery of algebraic methods at pretest. The flexibility and conceptual knowledge
assessment were scored according to the guidelines in Table 4. The tests were coded by two
independent raters. The agreement was 93 % for coding the solution methods and 95 % for
coding the explanations; disagreements were resolved through consensus.

Data analysis

Seven students did not complete the pretest and four did not complete the posttest. These
missing values were deleted in the following data analyses. We used two-way analyses of
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covariance (ANCOVA) models to examine the effects of different conditions and students’
prior knowledge on learning equation solving. The posttest scores were compared among the
conditions and shortcut use at pretest using the pretest scores on each measure and mathe-
matics ability scores as covariates.

Results

In this section, we first overview students’ knowledge at pretest. We then report the effects of
intervention condition and students’ use of a shortcut method at pretest on students’ learning
performance. We first compared the conditions of T_M_T+M and M_M_T+M, then com-
pared T_M_T+M and T_T_T+M, and finally compared T_M_T+M and T_M_T/M.

Pretest knowledge

At pretest, students had some prior procedural, flexibility, and conceptual knowledge of
equation solving. Some students even received full credits on some questions, perhaps
because the interventions occurred after students had completed relevant classroom lessons.
Most students, however, had only a partial understanding of the topic. Less than 1 % of
procedural knowledge items at pretest were solved by shortcut methods. Fifty-nine percent
of the students used a shortcut method at least once at pretest and were categorized as Use
Shortcut, while other students who never used a shortcut method were categorized as No
Shortcut. Students in the No Shortcut group scored 8.1 of 24 points on flexibility knowledge
and 3.3 of 7 points on conceptual knowledge. This indicated that those students were unable
to consider expressions such as (χ+1) a composite variable and mainly used the conven-
tional and distribute-first method to solve equations. In other words, they did not discern the
critical aspect of solution method at pretest. Even for students in the Use Shortcut group who
attempted composite-variable shortcut methods to solve equations, they certainly were not
proficient equation solvers; they scored 13.2 points on flexibility knowledge and 5.2 points
on conceptual knowledge.

Procedural knowledge correlated with both flexibility knowledge, r(263)=0.549, p<
0.001, and conceptual knowledge, r(263)=0.584, p<0.001. Flexibility knowledge correlated
with conceptual knowledge, r(263)=0.585, p<0.001. Students significantly improved from
the pretest to the posttest on all outcome measures (ps<0.01). No significant differences
between conditions in procedural, flexibility, and conceptual knowledge were found (ps>
0.05). Boys and girls did not differ in performance on the pretest measures.

Effect of condition (T_M_T+M and M_M_T+M) and prior knowledge on students’
performance

Students’ posttest performance on all measures was summarized in Table 5. To determine
the possible interaction effect between condition and prior knowledge, we conducted
separate two-way ANCOVAs for each outcome, with students’ shortcut use at pretest and
condition as between-subjects factors. Students’ pretest scores on each measure and
mathematics ability (based on students’ midterm and final mathematics exam scores in
the previous semester) were included as covariates to control for prior knowledge
differences. When there was an interaction effect for condition and shortcut use at pretest,
tests of simple effect were carried out to further investigate the effects of conditions. We
also explored the possible interaction effect between students’ mathematics ability and
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condition, but no interaction effect was found. Therefore, we did not include the
interaction term in the final models.

Procedural knowledge

As shown in Table 6 and Fig. 2a, there was a significant interaction effect between the
experimental condition (T_M_T+M and M_M_T+M) and shortcut use at pretest (p=0.01).
There was not an overall main effect for condition (p=0.503) but a main effect for shortcut
use at pretest (p<0.05). The significant interactions suggested that the most effective
condition depended on whether students used a shortcut at pretest.

After the significant interactions had been determined, tests of the simple effects were
carried out. A significant effect was found for students who did not use a shortcut at pretest,
F(1, 122)=4.406, MSE=1.704, p<0.05; students in the M_M_T+M condition performed
significantly better than those in the T_M_T+M condition. For students who used a shortcut

Table 5 Students’ posttest performance on outcome measures by condition and pretest use of shortcut

Outcome Condition No shortcut Use shortcut

M SD M SD

Procedural knowledge T_M_T+M 3.67 1.96 6.26 1.45

M_M_T+M 4.26 2.05 5.95 1.45

T_T_T+M 4.38 1.68 6.33 1.45

T_M_T/M 4.54 2.13 6.28 1.26

Flexibility knowledge T_M_T+M 10.00 4.87 16.23 4.67

M_M_T+M 12.43 3.40 16.05 3.43

T_T_T+M 12.19 3.43 16.48 3.63

T_M_T/M 12.18 4.49 16.53 4.04

Conceptual knowledge T_M_T+M 3.44 2.19 5.77 1.61

M_M_T+M 3.78 1.83 5.66 1.56

T_T_T+M 3.59 1.64 5.67 1.78

T_M_T/M 3.96 1.84 5.78 1.48

Table 6 Analysis of covariance results for learning outcomes (T_M_T+M and M_M_T+M)

Factor Procedural knowledge Flexibility knowledge Conceptual knowledge

Fa p ηp
2 Fa p ηp

2 Fa p ηp
2

Condition 0.452 0.503 0.004 2.496 0.117 0.020 0.044 0.834 0.001

Shortcut use 4.308 0.040 0.034 2.207 0.140 0.018 3.122 0.080 0.025

Condition×shortcut use 6.836 0.010 0.053 7.072 0.009 0.055 1.601 0.208 0.013

Pretest procedural 13.201 <0.001 0.098 1.658 0.200 0.013 0.133 0.716 0.001

Pretest flexibility 0.039 0.843 0.001 11.743 0.001 0.088 2.097 0.150 0.017

Pretest conceptual 0.160 0.690 0.001 8.374 0.005 0.064 9.927 0.002 0.075

Mathematics ability 20.770 <0.001 0.145 8.557 0.004 0.066 9.931 0.002 0.075

a Degrees of freedom are (1, 122)
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at pretest, no significant differences were found among conditions, F(1, 122)=2.483, MSE=
1.704, p=0.118. Students’ prior procedural knowledge and mathematics ability also had
significant influences on procedural knowledge at posttest (ps<0.001).

Flexibility knowledge

As shown in Table 6 and Fig. 2b, there was a significant interaction effect between condition
and shortcut use at pretest (p<0.01). There were no overall main effects for shortcut use at
pretest and condition (ps>0.05). Tests of simple effects showed a significant effect for
students who did not use a shortcut at pretest, F(1, 122)=7.312, MSE=11.207, p<0.01;
students in the T_M_T+M condition scored significantly lower than those in theM_M_T+M
condition. For students who used a shortcut at pretest, condition had minimal influence on
flexibility knowledge (p>0.05). Students’ prior flexibility knowledge, conceptual knowl-
edge, and mathematics ability also had significant influences on flexibility knowledge at
posttest (ps<0.01).

Conceptual knowledge

Finally, we considered students’ conceptual knowledge. As shown in Table 6 and Fig. 2c,
there was no significant interaction effect between condition and shortcut use at pretest (p=
0.208). There were no main effects for condition and shortcut use at pretest (ps>0.05).
Students’ conceptual knowledge at posttest was also predicted by their prior conceptual
knowledge and mathematics ability (ps<0.01).

Fig. 2 Interaction between condition and pretest use of shortcut on a procedural knowledge, b flexibility
knowledge, and c conceptual knowledge. Covariates of pretest procedural, flexibility, conceptual knowledge,
and mathematics ability appear in the models
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Effect of condition (T_M_T+M and T_T_T+M) and prior knowledge on students’ performance

Procedural knowledge

As shown in Table 7 and Fig. 3a, there was a significant interaction effect between the
experimental condition (T_M_T+M and T_T_T+M) and shortcut use at pretest (p<0.05).
There was no overall main effect for condition (p=0.088), but there was a main effect for
shortcut use at pretest (p<0.05).

After the significant interactions had been determined, tests of the simple effects were
carried out. A significant effect was found for students who did not use a shortcut at pretest,
F(1, 123)=6.147, MSE=1.789, p<0.05; students in the T_T_T+M condition performed
significantly better than those in the T_M_T+M condition. For students who used a shortcut
at pretest, no significant differences were found among conditions, F(1, 123)=0.050, MSE=
1.789, p=0.823. Students’ mathematics ability also had significant influences on procedural
knowledge at posttest (ps<0.001).

Flexibility knowledge

As shown in Table 7 and Fig. 3b, there was a significant interaction effect between condition
and shortcut use at pretest (p<0.01). There was no overall main effect for shortcut use at
pretest (p=0.270), but there was a main effect for condition (p<0.05). Tests of simple effects
showed a significant effect for students who did not use a shortcut at pretest, F(1, 123)=
7.310, MSE=11.092, p<0.01; students in the T_M_T+M condition scored significantly
lower than those in the T_T_T+M condition. For students who used a shortcut at pretest,
condition had minimal influence on flexibility knowledge (p>0.05). Students’ prior flexi-
bility knowledge, conceptual knowledge, and mathematics ability also had significant in-
fluences on flexibility knowledge at posttest (ps<0.01).

Conceptual knowledge

As shown in Table 7 and Fig. 3c, there was no significant interaction effect between
condition and shortcut use at pretest (p>0.05). There were no overall main effects for
shortcut use at pretest and condition (ps>0.05). Students’ conceptual knowledge at posttest
was predicted by their prior conceptual knowledge and mathematics ability (ps<0.01).

Table 7 Analysis of covariance results for learning outcomes (T_M_T+M and M_M_T+M)

Factor Procedural knowledge Flexibility knowledge Conceptual knowledge

Fa p ηp
2 Fa p ηp

2 Fa p ηp
2

Condition 2.967 0.088 0.024 4.008 0.047 0.032 0.035 0.852 0.001

Shortcut use 4.501 0.036 0.035 1.230 0.270 0.010 1.910 0.170 0.015

Condition × shortcut use 4.017 0.047 0.032 4.255 0.041 0.033 0.368 0.545 0.003

Pretest procedural 1.731 0.191 0.014 0.012 0.915 0.001 0.165 0.685 0.001

Pretest flexibility 3.197 0.076 0.025 13.599 <0.001 0.100 2.112 0.149 0.017

Pretest conceptual 3.406 0.067 0.027 11.549 0.001 0.086 25.263 <0.001 0.170

Mathematics ability 16.836 <0.001 0.120 8.794 0.004 0.067 7.529 0.007 0.058

a Degrees of freedom are (1, 123)
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Effect of condition (T_M_T+M and T_M_T/M) and prior knowledge on students’
performance

Procedural knowledge

As shown in Table 8 and Fig. 4a, there was a significant interaction effect between the
experimental condition (T_M_T+M and T_M_T/M) and shortcut use at pretest (p<0.05).

Fig. 3 Interaction between condition and pretest use of shortcut on a procedural knowledge, b flexibility
knowledge, and c conceptual knowledge. Covariates of pretest procedural, flexibility, conceptual knowledge,
and mathematics ability appear in the models

Table 8 Analysis covariance results for learning outcomes (T_M_T+M and T_M_T/M)

Factor Procedural knowledge Flexibility knowledge Conceptual knowledge

Fa p ηp
2 Fa p ηp

2 Fa p ηp
2

Condition 1.460 0.229 0.011 5.424 0.021 0.041 2.911 0.090 0.023

Shortcut use 4.604 0.034 0.035 2.199 0.141 0.017 6.689 0.011 0.050

Condition×shortcut use 6.317 0.013 0.048 3.540 0.062 0.027 0.736 0.392 0.006

Pretest procedural 9.638 0.002 0.071 1.026 0.313 0.008 1.100 0.296 0.009

Pretest flexibility 0.580 0.448 0.005 11.230 0.001 0.082 0.230 0.632 0.002

Pretest conceptual 0.326 0.569 0.003 16.216 <0.001 0.114 33.996 <0.001 0.212

Mathematics ability 26.269 <0.001 0.173 15.910 <0.001 0.112 10.510 0.002 0.077

a Degrees of freedom are (1, 126)
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There was no overall main effect for condition (p=0.229), but there was a main effect for
shortcut use at pretest (p<0.05). Tests of simple effects showed a significant effect for students
who did not use a shortcut at pretest, F(1, 126)=6.046, MSE=1.590, p<0.05; students in the
T_M_T/M condition had greater procedural knowledge than those in the T_M_T+M condition.
For students who used shortcuts at pretest, T_M_T+M and T_M_T/M did not have significant
difference (p>0.05). Students’ prior procedural knowledge and mathematics ability also had
significant influences on procedural knowledge at posttest (ps<0.005).

Flexibility knowledge

As shown in Table 8 and Fig. 4b, there was a marginal condition×shortcut use interaction
effect (p=0.062). There was no main effect for shortcut use at pretest (p=0.141), but there
was a main effect for condition (p<0.05). Tests of simple effects showed a significant effect
for students who did not use a shortcut at pretest, F(1, 126)=7.738, MSE=10.770, p<0.01;
students in the T_M_T/M condition scored significantly higher than those in the T_M_T+M
condition. For students who used a shortcut at pretest, no significant differences were
found among conditions (p=0.733). Students’ flexibility knowledge at posttest was also
predicted by their prior flexibility knowledge, conceptual knowledge, and mathematics
ability (ps≤0.001).

Fig. 4 Interaction between condition and pretest use of shortcut on a procedural knowledge, b flexibility
knowledge, and c conceptual knowledge. Covariates of pretest procedural, flexibility, conceptual knowledge,
and mathematics ability appear in the models
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Conceptual knowledge

As shown in Table 8 and Fig. 4c, there was no significant interaction effect between condition
and shortcut use at pretest (p=0.392). There was no main effect for condition (p=0.09), but
there was a main effect for shortcut use at pretest (p<0.05). Students’ conceptual knowledge
at posttest was also predicted by their prior conceptual knowledge and mathematics ability
(ps<0.005).

Discussion

As predicted, students’ prior knowledge of equation solving impacted the effectiveness of
example design in the intervention conditions. In particular, students who did not use a
shortcut method at pretest benefited least if they first separately compared the two critical
aspects of problem type and solution method and then simultaneously compared the two
aspects. In this section, we first summarize the major research findings. Next, we discuss the
current findings in relation to what, how, and when comparison is effective. Finally, we
consider the instructional implications of the study.

Summary of major findings

The results of the present study indicated that comparing the two critical aspects of problem
type and solution method first separately and then simultaneously (T_M_T+M) led to less
procedural knowledge and flexibility knowledge than separately comparing only one of the
two critical aspects (M_M_T+M and T_T_T+M) or comparing the two critical aspects
separately but not simultaneously (T_M_T/M) for students who did not use shortcuts at
pretest. The different effectiveness of conditions, however, was absent for students who used
shortcuts at pretest; those students did not show any preference for either condition.

A plausible explanation may lie in the different prior knowledge that students possessed.
Students who did not use shortcuts at pretest benefited either from separately comparing one
of the two critical aspects or from separately comparing two critical aspects without the
simultaneous variation of the two; they likely became overwhelmed when first separately
comparing the two critical aspects and then simultaneously comparing them. According to
the variation theory, separately discerning each critical aspect is necessary for the later
simultaneous discernment of all critical aspects. Although the T_M_T+M condition first
separately varied the two critical aspects followed by the simultaneous variation of the two
aspects, it seemed that students could not separately discern each of the two critical aspects
within a single intervention session. Therefore, they encountered difficulty when comparing
examples that simultaneously varied both problem type and solution method. Separately
varying one of the two critical aspects or separately varying the two critical aspects without
the simultaneous variation of the two was more beneficial for those students.

In contrast, students who used shortcuts at pretest learned equally from the conditions.
This may be because those students had discerned the critical aspect of solution method and
thus were not overwhelmed by T_M_T+M as students who did not use shortcuts were.
Students who used shortcuts at pretest might have learned so much that example pairings did
not matter; they learned regardless. This explains the insignificant differences among
conditions in promoting those students’ learning.

It should be noted that, with respect to conceptual knowledge, we did not find an
interaction effect between condition and shortcut use, nor did we find a main effect for
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condition. This may be because participants in the present study had been taught how to
solve multistep equations by a conventional method and, therefore, had acquired consider-
able conceptual knowledge before the intervention. As a result, all types of comparison were
sufficient and equally effective for learning conceptual knowledge of equivalence, like
terms, and composite variables.

The what, when, and how of comparison

First, our findings suggested that what aspects to be focused on in example design depended
on students’ prior knowledge or what aspects they had discerned. The aspect of solution
method was important for students who did not use shortcuts at pretest. Thus, comparing
solution methods (M_M_T+M) that helped students to discern the critical aspect of the
solution method led to greater knowledge. However, for students who used shortcuts at
pretest, the aspect of solution method had been discerned and was thus not important for
their learning. This explains the reason why the advantage of comparing solution methods
disappeared for students who used shortcuts at pretest.

Students with different levels of prior knowledge might discern and perceive different
aspects as critical for their learning and thus benefited differently from the same instruction;
novices should have more critical aspects than more experienced learners. The present study
differentiated the prior knowledge of students based on their shortcut use at pretest. Those
who used shortcuts at pretest had discerned the critical aspect of solution method, whereas
those who did not use shortcuts at pretest had not discerned this aspect. It should be noted
that our measure focused on knowledge of solution methods rather than familiarity with
different types of equations. Measures that capture students’ familiarity with different
problem types may be used in future study to identify the discernment of problem types.

Next, the results of the present study suggested the necessity of the stage of separate
discernment. It is important to make sure students have separately discerned each critical
aspect before simultaneously varying all critical aspects. In the present study, simultaneous
variation of problem type and solution method was found to be harmful for learning if
students had not separately discerned the two critical aspects (T_M_T+M). When provided
with equations simultaneously varying in problem type and solution method, they were
likely overwhelmed by too much variation. Future research should investigate the effect of
simultaneous variation on learning after confirming that each critical aspect has been
separately discerned. Also, other effective ways of determining the variability of examples
besides those used in our study warrant further investigation.

Consequently, we conclude that comparing examples is effective when students’ critical
aspects are focused on and varied in a suitable way. Instruction or examples are ineffective
and inefficient if students do not have an opportunity to compare their critical aspects or if
they are asked to compare aspects that have already been mastered.

Future directions and conclusion

The present study indicated that comparing the two critical aspects of problem type and
solution method first separately and then simultaneously was harmful for students who did
not use shortcuts at pretest. A possible interpretation might be the fact that these students did
not have sufficient time to separately discern the two aspects in such a short intervention
period, which made the T_M_T+M condition ineffective. Future research should be
conducted to extend the intervention time to ensure that problem type and solution method
are separately discerned. This would help to identify a more effective instructional approach.
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We expect that teacher-led whole-class verbal instructional studies will further illuminate
this issue.

Future studies should also be conducted to examine the effectiveness of different patterns
of variation and invariance in promoting learning from examples with a variety of topics and
with a wider range of ages and disciplinary prior knowledge. For example, most students in
the present study had mastered the algebraic method of solving an equation; they had ample
prior knowledge about equation solving before the intervention. It is important to examine
the effects of comparison with students with lower prior topic knowledge. For those who are
not familiar with the algebraic method, what are their critical aspects for learning and which
condition would be most beneficial? In addition, results of the present study showed that
conditions were not particularly beneficial for students who used shortcuts at pretest. There
may be other critical aspects for learning equation solving that need to be discerned.
Additional research could investigate ways of facilitating more experienced students’ learn-
ing. Finally, more research should be conducted to generalize these findings to different
domains and to more typical classroom contexts.

In conclusion, comparison of examples should focus on students’ critical aspects for
learning. For those who do not discern the critical aspect of solution method, examples
should be provided to help them separately discern this aspect. Without having separately
discerned each critical aspect, students cannot benefit from simultaneous variation of all
critical aspects. The what, when, and how of comparison should be taken into consideration
when designing multiple examples for learning.
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