
UAIS (2001) 1: 40–55 / Digital Object Identifier (DOI) 10.1007/s102090100008

UniversalAccess in the Information Society:
Methods,Tools, and InteractionTechnologies

Constantine Stephanidis1,2, Anthony Savidis1

1 Institute of Computer Science, Foundation for Research and Technology – Hellas, Science and Technology Park of Crete,
71110, Heraklion, Crete, Greece; E-mail: cs@ics.forth.gr
2Department of Computer Science, University of Crete, Greece

Published online: 23 May 2001 –  Springer-Verlag 2001

Abstract. Accessibility and high quality of interaction
with products, applications, and services by anyone, any-
where, and at any time are fundamental requirements
for universal access in the emerging Information Soci-
ety. This paper discusses these requirements, and their
relation to the concept of automated adaptation of user
interfaces. An example application is presented, showing
how adaptation can be used to accommodate the require-
ments of different user categories and contexts of use.
This application is then used as a vehicle for discussing
a new engineering paradigm appropriate for the devel-
opment of adaptation-based user interfaces. Finally, the
paper investigates issues concerning the interaction tech-
nologies required for universal access.

Key words: Universal Access – Universal Design – User
Interface for All – Unified User Interfaces – Adaption
– Adaptability – Adaptivity – Non-visual interaction –
Switch-based interaction

1 Introduction

The term “Universal Access” has several connotations.
Some consider it a new, politically correct term refer-
ring to the introduction of “special features” for “special
users” in the design of a product. For others, Univer-
sal Access elevates what designers call “good user-based
design” to a broader concept targeted towards address-
ing the needs of all potential users [42]. Moreover, some
believe that Universal Access has its historical roots in
the US Communications Act of 1934, covering telephone,

N.B. The authors wish to acknowledge Prof. Reinhard Opper-
mann (reinhard.oppermann@gmd.de) from the Institute for Ap-
plied Information Technology of GMD, the National Research Cen-
tre for Information Technology in Germany, for acting as Managing
Editor for this paper.

telegraph, and radio services, and aiming to ensure ad-
equate facilities at reasonable charges, especially in ru-
ral areas, and to prevent discrimination on the basis of
race, colour, religion, national origin, or sex [32]. For
many others, the term is associated with the effort to pro-
vide and facilitate access to the built environment (e.g.,
buildings and landscapes) for people with functional dis-
abilities [19]. In the early period, accessibility problems
were primarily considered to concern only the field of
Assistive Technology (AT), and consequently, accessibil-
ity entailed meeting prescribed requirements for the use
of a product by people with disabilities [42, 44, 47]. Due
to its perceived small size, the AT field exhibits a slow
assimilation of technological change. For example, the
transistor first became embedded into hearing aids many
decades after its invention. With the advent of the digital
computer, and its broad penetration in business activi-
ties, the accessibility issue re-appeared, as disabled and
elderly people faced serious problems in accessing com-
puting devices.

In the context of the emerging Information Society,
Universal Access resurfaces as a critical quality target.
This is due to the changing world view of disabled and
elderly people1, as well as to the pace of technological
change, which in many cases delivers products and ser-
vices requiring particular skills and abilities on the part
of the human user (e.g., experience in the use of advanced
technologies). In other words, as a result of recent tech-
nological developments (e.g., proliferation of diverse in-
teraction platforms, such as wireless computing, wearable
equipment, kiosks), the range of the population which
may gradually be confronted with accessibility problems
extends beyond the population of disabled and elderly
users to include all people. Thus, today, Universal Access

1 Such changes have been brought about as a result of demo-
graphic pressures, the human rights movement, and national and
international legislation.



C. Stephanidis, A. Savidis: Universal Access in the Information Society: Methods, Tools, and Interaction Technologies 41

refers to the global requirement of coping with diversity
in: (i) the characteristics of the target user population
(including people with disabilities); (ii) the scope and na-
ture of tasks; and (iii) the different contexts of use and
the effects of their proliferation into business and social
endeavours.

In the development lifecycle of software products and
services, the most demanding phase is probably the User
Interface engineering process. More than a decade ago,
software quality was mainly attributed to functional
characteristics such as operational reliability, efficiency,
and robustness. In the last decade, usability has become
a prominent target, establishing interaction quality as an-
other dimension of software quality. Today, software is
continuously evolving to support human tasks in various
new domains, and to facilitate operation from different
situations of use. This progressive computerisation of ev-
eryday activities gave birth to the notion of anyone, any
time, anywhere access [36]. In the context of HCI, Univer-
sal Access introduces a new perspective that recognises,
respects, values, and attempts to accommodate a very
wide range of human abilities, skills, requirements, and
preferences in the design of computer-based products
and operating environments. This eliminates the need for
“special features” while at the same time fostering indi-
vidualisation, and thus high quality of interaction and,
ultimately, end-user acceptability.

Such a commitment should not be interpreted as a call
for a single design solution suitable for all users, but in-
stead as an effort to design products and services that can
adapt themselves to suit the broadest possible end-user
population. In doing this, the implication is that different
solutions will be appropriate for different contexts of use,
and that the developed user interfaces will be capable of
automatically selecting and applying the most appropri-
ate solution for each individual case.

This paper will present a concrete example of the con-
tribution of adaptation-based techniques to the univer-
sal accessibility of software user interfaces. The paper is
structured as follows. It begins by briefly reviewing the
concept of adaptation, and the approaches to adapta-
tion developed in the recent past, following a path that
led from ‘a posteriori’ and ‘ad hoc’ adaptations to the
use of automated adaptation mechanisms in user inter-
faces designed to be universally accessible (Sect. 2). Sub-
sequently, it provides a concrete example of an applica-
tion, namely the AVANTI web browser, where the user
interface is capable of adapting to a variety of parameters,
such as different user abilities, requirements, and prefer-
ences, and different contexts of use (Sect. 3). Finally, it
discusses a design and engineering framework, namely the
Unified User Interface Development methodology, com-
prising HCI design techniques, methods, architectural ab-
stractions, and tools for the development of automatically
adapting interfaces, and explains how such a methodol-
ogy has been applied in the development of the AVANTI
browser (Sect. 4).

The paper derives its argumentation from recent ef-
forts in the context of European Commission funded col-
laborative research and development work (see the Ac-
knowledgements) aiming to provide and demonstrate the
feasibility of tools for building user- and usage-context-
adapted interfaces accessible by different user groups, in-
cluding disabled and elderly people [33, 35, 36, 38, 40, 43].

2 The need for automatic user interface
adaptation in Universal Access

Adaptation is a key element for coping with diversity in
the HCI field [8, 9, 15, 16, 22, 31, 34].

In this context, adaptation characterises software
products that automatically modify (adapt) their inter-
active behaviour according to the individual attributes of
users (e.g., mental/motor/sensory characteristics, prefer-
ences), and to the particular context of use (e.g., hard-
ware and software platform, environment of use). Adap-
tation is a multi-faceted process, which can be analysed
along three main axes, namely the source of adaptation
knowledge, the level of interaction at which it is applied,
and the type of information on which it is based [34]
(see Fig. 1).

As far as the source of adaptation knowledge is con-
cerned, one can identify two complementary classes:
knowledge available at start-up, i.e., prior to the initi-
ation of interaction (e.g., user profile, platform profile,
usage context), and knowledge derived at run-time (e.g.,
through interaction monitoring, inspection of the com-
puting environment). Adaptation behaviour based on
the former type of knowledge is termed adaptability and
reflects the ability of the interface to automatically tai-
lor itself to the initial interaction requirements, as these
are shaped by the information available to the interface.
Adaptation behaviour based on the latter type of know-

Fig. 1. Adaption dimensions in self-adapting interfaces



42 C. Stephanidis, A. Savidis: Universal Access in the Information Society: Methods, Tools, and Interaction Technologies

ledge is termed adaptivity and refers to the ability of the
interface to dynamically derive further knowledge about
the user, the usage context, etc., and to use that know-
ledge to further modify itself to better suit the revised
interaction requirements.

The second axis of analysis of adaptation concerns the
level of interaction at which adaptations are applied. In
particular, it is possible to design and effect adaptations
at all three levels of interaction:

(i) at the semantic level of interaction (e.g., by employ-
ing different metaphors to convey the functionality
and facilities of the underlying system);

(ii) at the syntactic level of interaction (e.g., by de/acti-
vating alternative dialogue patterns, such as “object-
function” versus “function-object” interaction se-
quencing); and

(iii) at the lexical level of interaction (e.g., grouping
and spatial arrangement of interactive elements,
modification of presentation attributes, alternative
input/output devices).

The third main axis of analysis concerns the type of
information being considered when deciding upon adap-
tations. Exemplary categories of information that can be
employed include: design constraints, as these are defined
by user characteristics (e.g., abilities, skills, requirements,
preferences, expertise, cultural background), platform
characteristics (e.g., terminal capabilities, input/output
devices), task requirements (e.g., urgency, criticality,
error-proneness, sequencing), etc. Furthermore, informa-
tion that can be acquired only during interaction can
equally participate in the decision process (e.g., identi-
fying the user’s inability to successfully complete a task,
inferring the user’s goal/intention, detecting modifica-
tions to the run-time environment).

Adaptable and adaptive software systems have been
considered in a wide range of recent research efforts
(e.g., [7, 12]). The relevant literature offers numerous
examples illustrating tools for constructing adaptive in-
teraction (e.g., [10, 11, 16, 18, 45]), and case studies in
which adaptive interface technology has improved, or has
the potential to improve, the usability of an interactive
system (e.g. [3, 4, 12]). Until recently, however, adaptive
techniques have had limited impact on the issue of Uni-
versal Access. In fact, in many cases, adaptive techniques
and assistive technologies have shared terminological ref-
erences (the most prominent being the concept of “adap-
tation” itself), sometimes with fundamental differences in
the interpretations of these terms.

Early attempts to employ adaptation techniques to fa-
cilitate the accessibility of interactive software were moti-
vated by the intention to serve specific user communities,
such as disabled and elderly people2. Blind or visually

2 Indicative projects addressing this research direction are the
Mercator project in the USA [20], and a number of collaborative
R&D projects funded by the European Commission [37].

impaired users attracted most of the attention in these
early attempts. This was due to the particular challenges
faced by this user community, resulting from the emer-
gence of Graphical User Interfaces, which had severely
limited their opportunities to access computers in com-
parison to the previous command-based interfaces that
could more easily be rendered in a non-visual form. Adap-
tations in these early efforts were reactive in nature, in
the sense that they sought to remedy the problem of
inaccessibility once it had been introduced, rather than
prevent it from occurring in the first place. The differ-
ent approaches that emerged under this perspective can
be broadly classified into two categories: product-level
and environment-level adaptations. Product-level adap-
tations occur either as ad hoc modifications in already
developed, inaccessible interactive products, or as dedi-
cated product (re-)developments for particular categories
of disabled people.

Irrespective of their intended purpose, these adapta-
tions share a common characteristic: they are hard-coded
into the application, and are static, in the sense that
they are implemented as one-off accessibility solutions.
Updating or modifying them to accommodate the slight-
est user variation or preference entails re-engineering the
user interface. Although an in-depth discussion of these
shortcomings is beyond the scope of this paper (inter-
ested readers can refer, for example, to [24, 25, 38]), it is
important to note the following considerations. First of
all, product-level adaptations introduce a programming-
intensive approach towards accessibility, which increases
the cost of implementing and maintaining accessible soft-
ware. Secondly, technological progress may render such
adaptations harder to implement; there may be restric-
tions imposed either by the target application or by the
operating system. Thirdly, for practical and economic
reasons, product-level adaptations always appear on the
market with a considerable time lag behind the products
they adapt.

Environment-level adaptations, on the other hand,
moved away from the single-product level and addressed
the “translation” of the visual, direct-manipulation di-
alogue realised by interactive software running within
a software environment, to alternative modalities and
media, accessible to disabled users. Several proposals
emerged concerning the different types of tools that could
be used to facilitate such adaptations. For example, in
the case of blind users, the notions of “filtering” and “off-
screen” models [21] were proposed as basic adaptation
techniques facilitating access3. In a similar fashion, other
types of software adaptation were developed for different
categories of disabled users (e.g., motor impaired users,
users with learning difficulties, etc.). Indicative exam-
ples include interface scanning, “sticky keys”, and word

3 Progressively, these techniques have found their way into com-
mercial products, which are today available in the market (e.g.,
screen readers).



C. Stephanidis, A. Savidis: Universal Access in the Information Society: Methods, Tools, and Interaction Technologies 43

prediction4. The major drawback of environment-level
adaptations is rooted in the fact that they attempt to ren-
der accessible software that was designed for (and thus
is inherently only appropriate for) “average” able-bodied
users. No matter how advanced the adopted methods and
techniques are, these types of adaptation are bound to
far lower levels of interaction quality, when compared to
interactive software specifically designed to cater for the
particular needs and preferences of different categories
of disabled users. These limitations become critically im-
portant when viewed in the context of the emerging In-
formation Society, where accessibility can no longer be
considered as a mere adaptation-based translation of in-
terface manifestations to alternative modalities and me-
dia; it is instead a quality requirement demanding a more
generic solution [42].

In the light of the above, it became evident that the
challenge of accessibility needs to be addressed through
more proactive and generic approaches, which account for
all dimensions and sources of variation. These dimensions
range from the characteristics and abilities of users, to the
characteristics of technological platforms, to the relevant
aspects of the context of use [42].

The concept of Dual User Interfaces5 [24, 25] con-
stituted a first step in this direction, since it defined
a basis for “integrating” blind and sighted users in the
same working environment. Dual User Interfaces signi-
fied a radical departure from previous approaches to
user interface accessibility, by proposing that accessibil-
ity be treated from the early design phases of interactive
software development, and that the accessibility require-
ments of more than one user category be taken into ac-
count. Thus the concept of Dual User Interfaces served as
a catalyst towards proactive and more generic solutions
to user interface accessibility, contributing new insights
to the engineering of accessible user interface software.
The basic premise of Dual User Interfaces, namely that
accessibility can be tackled in a generic manner, was sub-
sequently extended and further generalised through the
concept of User Interfaces for All [33], and led to the de-
velopment of a technical framework for supporting such
an approach, as well as to the application of such a frame-
work for the realisation of accessible and usable interac-
tive applications.

The concept of User Interfaces for All is rooted in the
idea of applying Design for All (or Universal Design, the
terms are used synonymously) in the field of HCI [33, 36].
The underlying principle is to ensure accessibility at de-
sign time, and to meet the individual requirements of the

4 Examples of Assistive Technology products for motor or cogni-
tive impaired users can be found at the following URL addresses:
http://www.olivetreesoftware.com/itmidx9.htm,
http://www.donjohnston.com/, http://www.intellitools.com/,
http://www.medizin.li/mt_index_az/_a/a_40034.htm,
http://www.prentrom.com/speech/axs.html.
5 The concept of Dual User Interface and the HOMER User In-
terface Management System have been developed in the context of
GUIB and GUIB II projects (see Acknowledgements).

user population at large, including disabled and elderly
people. To this end, it is important that the needs of the
broadest possible end-user population be taken into ac-
count from the early design phases of new products and
services. Such an approach, therefore, eliminates the need
for “a posteriori” adaptations and delivers interactive
products that can be tailored, through automatic adapt-
ability and adaptivity, to the individual requirements of
all users. In the next section this approach is illustrated
in practice, by showing how adaptation-based techniques
are employed in the user interface of a web browser in
order to achieve accessibility and high quality of interac-
tion for a variety of target user groups in different con-
texts of use.

3 An adaptable and adaptive application:
the AVANTI web browser

Having identified in the previous section automatic adap-
tation as a fundamental mechanism for universal access,
this section reports on the main characteristics of a prac-
tical application, namely the AVANTI system6, which
was, to the authors’ knowledge, the first to employ adap-
tive techniques in order to ensure accessibility and high-
quality of interaction for all potential users7. AVANTI
advocated a new approach to the development of web-
based information systems [5, 6]. In particular, it put for-
ward a conceptual framework for the construction of sys-
tems that support adaptability and adaptivity at both
the content8 and the user interface levels.

The user interface component of the AVANTI sys-
tem is functionally equivalent to a web browser. In the
AVANTI browser, user interface adaptability and adap-
tivity are applied to tailor the browser to the end-user
abilities, requirements, and preferences, both during the
initiation of a new session and throughout interaction
with the system. The distinctive characteristic of the
AVANTI browser is its ability to dynamically tailor it-
self to the abilities, skills, requirements, and preferences
of the end-users, to the different contexts of use, and to
the changing characteristics of users as they interact with
the system [39, 40].

3.1 Adaptation requirements in the AVANTI web browser

The primary goal of adaptability in the AVANTI web
browser is to ensure that each of the system’s potential
users is presented with an instance of the user interface
that has been tailored to offer the highest possible degree

6 The AVANTI information system has been developed in the
framework of the AVANTI project (see Acknowledgments).
7 The developed demonstrator addressed concurrently the re-
quirements of able-bodied, blind, and motor-impaired users.
8 For an extensive discussion of content-level adaptation in the
AVANTI information system, see [14].



44 C. Stephanidis, A. Savidis: Universal Access in the Information Society: Methods, Tools, and Interaction Technologies

of accessibility (limited, of course, by the system’s know-
ledge of the user). Adaptivity is subsequently employed
to further tailor the system to the inferred needs or pref-
erences of the user, so as to achieve the desired levels of
interaction quality.

The AVANTI browser was designed to provide an ac-
cessible and usable interface to a range of user categories,
irrespective of physical abilities or technology expertise.
Moreover it was expected to support differing situations
of use. The end-user groups targeted in AVANTI, in terms
of physical abilities, include: (i) “able-bodied” people, as-
sumed to have full use of all their sensory and motor com-
munication “channels”; (ii) blind people; and (iii) motor-
impaired people, with different forms of impairments in
their upper limbs, causing different degrees of difficulty
in employing traditional computer input devices. In par-
ticular, in the case of motor-impaired people, two coarse
levels of impairment were taken into account: “light” mo-
tor impairments (i.e., users have limited use of their upper
limbs but can operate traditional input devices or equiva-
lents with adequate support) and “severe” motor impair-
ments (i.e., users cannot operate traditional input devices
at all).

Furthermore, since the AVANTI system was intended
to be used both by professionals (e.g., travel agents) and
by the general public (e.g., citizens, tourists), the users’
experience in the use of, and interaction with, technology
was another major parameter that was taken into account
in the design of the user interface. Thus, in addition to the
conventional requirement of supporting novice and expe-
rienced users of the system, two new requirements were
put forward: (a) supporting users with any level of com-
puter expertise; and (b) supporting users with or without
previous experience in the use of web-based software.

In terms of usage context, the system was intended
to be used both by individuals in their personal set-
tings (e.g., home, office), and by the population at large
through public information terminals (e.g., information
kiosks at a railway station, airport). Furthermore, in the
case of private use, the front end of AVANTI should be
appropriate for general web browsing, allowing users to
make use of the accessibility facilities beyond the context
of a particular information system.

Additionally, users were to be continuously supported
as their communication and interaction requirements
changed over time, due to personal or environmental rea-
sons (e.g., stress, tiredness, system configuration). This
entailed the ability of the system to detect dynamic
changes in the characteristics of the user and the context
of use (of either a temporary or a permanent nature) and
cater for these changes by appropriately modifying itself.

3.2 Adaptation scenarios from the AVANTI browser

In the AVANTI browser, adaptation is based on a number
of ‘static’ and ‘dynamic’ user characteristics. ‘Static’ user
characteristics are those that are unlikely to change in the

course of a single interaction session (although they can
change over longer periods of time). These characteristics
are assumed to be known prior to the initiation of inter-
action (i.e., retrieved from the user profile). Static charac-
teristics taken into account in the design of the AVANTI
browser include: (a) physical abilities; (b) the language
of the user (the demonstration system supports English,
Finnish, Greek, and Italian); (c) familiarity of the user
with: computing, networking, hypermedia applications,
the web, and the AVANTI system itself; (d) the overall
usage targets: speed, ease of use, accuracy, error toler-
ance; and (e) user preferences regarding specific aspects
of the application and the interaction. The second set of
characteristics is termed ‘dynamic’ to denote that the ev-
idence they hold is usually derived at run-time, through
interaction monitoring. The dynamic user characteristics
(changing during interaction) and interaction states that
are taken into account in AVANTI include: (a) familiarity
with specific tasks (i.e., the user’s ability to successfully
initiate and complete certain tasks); (b) ability to navi-
gate using the documents’ navigation elements; (c) error
rate; (d) disorientation; (e) user idle time; and (f) repeti-
tion of interaction patterns [40].

To illustrate some of the categories of adaptation
available in the AVANTI browser, some instances of the
browser’s user interface will be briefly reviewed below.

Figure 2 contains two instances of the interface that
demonstrate adaptation based on the characteristics
of the user and the usage context. Specifically, Fig. 2a
presents a simplified instance intended for use by a user
unfamiliar with web browsing. Note the “minimalist”
user interface with which the user is presented, as well
as the fact that links are presented as buttons, arguably
increasing their affordance (at least in terms of function-
ality) for users familiar with windowing applications in
general. In the second instance, Fig. 2b, the interface has

Fig. 2. Adapting to the user and the context of use



C. Stephanidis, A. Savidis: Universal Access in the Information Society: Methods, Tools, and Interaction Technologies 45

been adapted for an experienced user. Note the additional
functionality that is available to the user (e.g., a pane
where the user can access an overview of the document it-
self, or of the links contained therein, and an edit field for
entering the URLs of local or remote HTML documents).

Figure 3 contains some sample instances demonstrat-
ing disability-oriented adaptations in the browser’s inter-
face. The instance in Fig. 3a presents the interface when
a special interaction technique for motor-impaired users
is activated, namely hierarchical interface scanning (ei-
ther manually or automatically activated). Scanning is
a mechanism allowing the user to “isolate” each interac-
tive object in the interface and to interact with it through
binary switches (see Sect. 4.3.2). Note the scanning high-
lighter over an image-link in the HTML document and
the additional toolbar that was automatically added in
the user interface. The latter is a “window manipula-
tion” toolbar, containing three sets of controls enabling
the user to perform typical actions on the browser’s win-
dow (e.g., resizing and moving). Figure 3b illustrates the
three sets of controls in the toolbar, as well as the “ro-
tation” sequence between the sets (the three sets occupy
the same space on the toolbar, to better utilise screen real
estate, and to speed up interaction; the user can switch
between them by selecting the first of the controls). Fig-
ure 3c presents an instance of the same interface with
an on-screen “virtual” keyboard activated for text input.
Interaction with the on-screen keyboard is also scanning-
based.

The single interface instance in Fig. 4 illustrates a case
of adaptive prompting [40]. Specifically, this particular
instance is displayed in those cases in which there ex-
ists a high probability that the user is unable to initiate
the “open location” task (this would be the case if there

Fig. 3. Instances for motor-impaired users

Fig. 4. Awareness prompting

were adequate evidence that the user was attempting to
load an external document with unsupported means, e.g.,
using ‘drag and drop’). In this case, adaptive prompting
is achieved through the activation of a “tip” dialogue, i.e.,
a dialogue notifying the user about the existence of the
“open location” functionality and offering some prelimi-
nary indications of the steps involved in completing the
task.

3.3 Key issues in developing user interface adaptation

The experience gained in the development of the AVANTI
browser has demonstrated the effectiveness of adaptation-
based techniques (both adaptability and adaptivity)
when designing user interfaces which must be accessible
and usable by a wide range of user categories, irrespec-
tive of physical abilities or technological expertise, and in
a variety of contexts of use. The brief analysis presented
in the previous section has demonstrated that the design
space for the user interface of the AVANTI web browser
was rather large, covering a range of diverse user require-
ments, different contexts of use, and dynamically chang-
ing interaction situations. The accessibility requirements
posed by the target user groups addressed in the AVANTI
development could not be met by existing browsers. Al-
though today’s commercially available browsers support
customisability (e.g., through “add-on” components), the
level of adaptation supported in the AVANTI browser
can not be supported by customisation techniques (e.g.,
integrating guidance in system dialogues, dynamically
modifying the interaction dialogue).

On the other hand, such requirements could not be
met by traditional user interface development methods,
since they lack design and implementation methods for
providing adaptation mechanisms. Such methods should
be capable of capturing the adaptation behaviour in the
user interface design, and encapsulating it accordingly
in the implementation, and should be supported by ap-
propriate tools [37]. Since adaptation implies providing
dialogue according to user- and context-related factors,
suitable methods and tools should provide a means of
capturing user and context characteristics and their in-
terrelationships with alternative interactive behaviours,



46 C. Stephanidis, A. Savidis: Universal Access in the Information Society: Methods, Tools, and Interaction Technologies

as well as appropriate mechanisms for deciding adapta-
tions on the basis of the those parameters and relation-
ships. Additionally, suitable methods and tools should
provide appropriate techniques for managing alternative
implemented interactive behaviours and applying adap-
tation decisions at run-time. This is not the case in cur-
rently available interface development tools, which are
mainly targeted to the provision of advanced support for
implementing physical aspects of the interface via dif-
ferent techniques (e.g., visual construction, task-based,
demonstration-based) [28].

Furthermore, commercial development toolkits do not
provide support for interaction techniques which are al-
ternatives to mouse / keyboard based graphical inter-
action. Clearly, the development of an application such
as the AVANTI browser requires the availability of de-
velopment toolkits capable of providing the high-quality
interaction functionality required for both able-bodied
and disabled users (e.g., in the case of AVANTI, motor-
impaired and blind users). This is not the case in com-
mercially available graphical environments, such as the
widely available MSWindows.

The following section elaborates on these important
aspects of adaptation by outlining the design and en-
gineering methodology, as well as the interaction toolk-
its, employed in the development of the AVANTI web
browser, focusing on those aspects that differentiate them
from traditional HCI methods and make them a suitable
framework for the development of universally accessible
user interfaces.

4 An engineering paradigm for user interface
adaptation: Unified User Interfaces

The Unified User Interface development methodology [2,
23, 26–28, 37] is a new methodology seeking to convey
a new perspective on the development of user interfaces,
and to provide a principled and systematic approach to-
wards coping with diversity in the target user groups,
tasks, and environments of use, through the use of auto-
matic user interface adaptation9.

Unified User Interface development entails an engin-
eering perspective on interactive software, and can be
performed through a collection of dedicated tools that
allow the specification of a user interface as a composi-
tion of abstractions. A Unified User Interface comprises
a single (unified) interface specification, targeted to po-
tentially all user categories. A Unified User Interface is
defined by the following key engineering properties: (a) it
encompasses user- and context-specific information; (b) it
contains alternative dialogue artifacts in an implemented
form, each appropriate for different user- and context-
specific parameters; and (c) it applies adaptation deci-

9 The Unified User Interface Development methodology has
been developed in the framework of the ACCESS project (see
Acknowledgments).

sions, activates dialogue artifacts, and is capable of inter-
action monitoring.

The Unified User Interface development method com-
prises design-oriented techniques (Unified User Interface
design) [23] aimed at the development of rationalised
design spaces, and implementation-oriented techniques
(Unified User Interface implementation) that provide
a specifications-based framework for automatic user in-
terface adaptation [2, 26, 28]. The rest of this section aims
to briefly introduce the key characteristics of the Uni-
fied User Interface engineering paradigm, and outline how
such a paradigm has been applied in the development
of the AVANTI browser to support the adaptability and
adaptivity behaviours described in Sect. 3.

4.1 Unified User Interface design

Unified User Interface design [23] aims to: (i) initially
identify and enumerate possible design alternatives suit-
able for different users and contexts of use; (ii) identify
abstractions and fuse alternatives into abstract design
patterns; and (iii) rationalise the design space.

Enumeration of design alternatives is attained through
techniques for analytical design (such as design scenarios,
envisioning, ethnographic methods) which facilitate the
identification of plausible design options for different user
groups, computational platforms, environments and situ-
ations of use, etc.; the collection of all alternatives, at all
levels of interaction, constitutes the design space of the
interface.

Abstraction entails the identification of abstract in-
terface components that are de-coupled from platform-,
modality-, or metaphor-specific attributes. Abstractions
are developed by developing a polymorphic task hierar-
chy [23]. The polymorphic task hierarchy is a construc-
tion in which the nodes represent abstract design elem-
ents, de-coupled from the specifics of the target user
groups and the underlying interaction platforms, while
the leaves depict concrete physical instances of the ab-
stract design element suitable for specific contexts of
use. In polymorphic task hierarchies, a task may be de-
composed into an arbitrary number of alternative sub-
hierarchies, thus depicting requirements or preferences of
different user groups. Correspondingly, the leaf nodes rep-
resent specific physical instances of a design space gener-
ated through exploratory design efforts. Navigation down
to the leaf nodes is guided by the association of design
criteria that justify the differentiated artifacts with the
specific requirements posed by individual users and con-
texts of use.

Finally, rationalisation of the design space implies the
explicit encoding of the rationale for mapping an abstract
design element to a concrete artifact. This is typically
achieved by assigning criteria to design alternatives and
providing a method for selecting the maximally preferred
option, either at design- or at run-time.



C. Stephanidis, A. Savidis: Universal Access in the Information Society: Methods, Tools, and Interaction Technologies 47

The result of the design process is a unified user in-
terface specification. Such a specification can be realised
using a dedicated, high-level programming language, and
results in a single implemented artifact which can in-
stantiate alternative patterns of behaviour, either at the
physical, syntactic, or semantic level of interaction. Fol-
lowing the Unified User Interface Design method, in the
design of the AVANTI browser, after defining the design
space as well as the primary user tasks to be supported in
the user interface, alternative dialogue patterns (referred
to as styles in Unified Design) were defined/designed for
each task to cater for the addressed user parameters. Con-
sider, for example, the design of a web-browsing user task,
namely that of specifying the URL of a web document
to be retrieved and presented (this will be referred to as
the “open location” task in the rest of this paper). This is
a typical task in which user expertise is of paramount im-
portance. For instance, an experienced user would prob-
ably prefer a “command-based” approach for the accom-
plishment of the task (which is the approach followed by
most modern browsers), while a novice user might bene-
fit from a simplified approach, such as choosing from a list
of pre-selected destinations. When the physical abilities
of the user are also considered, the “open location” task
may need to be differentiated even further, in order to be
accessible by a blind person, or a person with motor im-
pairment. Moreover, there are cases in which the “open
location” task should not be available at all, such as when
the interface is used at a public information point.

During the unified design of the AVANTI user in-
terface, the definition/design of alternative interaction
styles was performed in parallel with the definition of the
task hierarchy for each particular task. This reflected the
iterative execution of the polymorphic task decompos-
ition phase of the unified design method: the existence
of alternative styles drives the decomposition process in
sub-task hierarchies, and the task decomposition itself
imposes new requirements for the definition of alternative
styles for each defined sub-task. In practice, we identified
those specific nodes within the task hierarchy for which
polymorphic decomposition was required (due to the user
and/or usage parameters), and produced alternative de-
sign artifacts to accommodate these requirements. In
Fig. 5, the result of the polymorphic task decomposition
process for the “open location” task is depicted.

The key factor which drives the polymorphic decom-
position process is the user- and usage-context charac-
teristics that impose certain requirements in the defin-
ition/selection of alternative styles and style components,
and provide information and constraints on the physi-
cal appearance and interactive behaviour of the employed
interaction objects. In the Unified Design method, two
sets of user-oriented characteristics form the basis of
the decision parameters driving the polymorphic decom-
position process. These parameters concern static and
dynamic user characteristics. Static characteristics typ-
ically comprise: sensory/motor/mental abilities, native

Fig. 5. An example of polymorphic hierarchical task
decomposition

language, cultural characteristics, age, familiarity with
computing/web/the particular interactive application
system itself, and particular user preferences regarding
aspects of the application and the interaction. Dynamic
characteristics may concern, for example, user familiar-
ity with specific tasks (i.e., evidence of the user’s ability
to successfully initiate and complete certain tasks), error
rate, and user idle time.

During the polymorphic task decomposition process,
a set of user- and usage-context characteristics is as-
sociated with each polymorphic alternative during the
decomposition process, providing the mechanism for de-
ciding upon the need for, and selecting, different styles
or style components. This set of characteristics consti-
tutes the adaptation rationale, which is depicted explic-
itly on the hierarchical task structure in the form of de-
sign parameters associated with specific “values”, which
were then used as “transition attributes”, qualifying each
branch leading away from a polymorphic node. These at-
tributes are later used to derive the run-time adaptation
decision logic of the final interface.

4.2 Unified User Interface architecture

The Unified User Interface development process is com-
plemented with an appropriate architectural frame-
work [26], which promotes an insight into user interface
software, based on structuring the implementation of in-
teractive applications by means of independent intercom-
municating components with well-defined roles and be-
haviours. In this architecture, the notion of encapsulation
plays a key role: in order to realise system-driven adapta-
tions, all the various parameters, decision-making logic,
and alternative interface artefacts are explicitly repre-
sented in a computable form, constituting integral parts
of the run-time environment of an interactive system.

A Unified User Interface performs run-time adap-
tation to provide different interface instances for dif-
ferent end-users and usage-contexts. Figure 6 depicts



48 C. Stephanidis, A. Savidis: Universal Access in the Information Society: Methods, Tools, and Interaction Technologies

Fig. 6. The architecture of a Unified User Interface

the basic components of the Unified User Interface
architecture [26].

These are:

(a) The Dialogue Patterns Component (DPC). This
module implements all the alternative dialogue pat-
terns identified during the design process, on the
basis of various user and context attribute values.
The DPC may employ pre-developed interactive
software, in combination with additional interactive
components. The latter case is normally expected
if the directly deployed interactive software does
not provide all the required implemented patterns
addressing the target user- and usage-context at-
tribute values. The DPC should be able to apply
pattern activation/cancellation decisions originating
from the Decision Making Component. Additionally,
interaction-monitoring components may be attached
to various implemented dialogue patterns, provid-
ing monitoring information to the User Information
Server for further processing (e.g., key-strokes, no-
tifications for use of interaction objects, task-level
monitoring).

(b) The User Information Server (UIS). This module
maintains the individual profiles of end-users, which,
together with usage-context information (provided
by the Context Parameters Server), constitute the
primary input source for the adaptation decision-
making process (delegated to the Decision Making
Component). From a knowledge representation point
of view, static or pre-existing user knowledge may be
encoded in any appropriate form, depending on the
type of information the UIS should propagate into
the decision making process. Moreover, additional
knowledge-based components may be employed for

processing retrieved user profiles, drawing assump-
tions about the user, or even updating the original
user profiles. Apart from such initial (i.e., prior to ini-
tiation of interaction) manipulation of user profiles,
the UIS may also collect and process run-time inter-
action events, in order to draw (additional) inferences
about the end-user. Such inferences may result in
the identification of dynamic user preferences, loss of
orientation in performing certain tasks, fatigue, in-
ability to complete a task, etc.

(c) The Context Parameters Server (CPS). This com-
ponent encompasses information regarding the usage
environment and interaction-relevant machine pa-
rameters. During the interface design process, the
identification of those important parameters rele-
vant to the context(s) of use, will need to be car-
ried out. This module is intended to provide device
awareness, thus enabling the Decision Making Com-
ponent to select those interaction patterns which,
apart from fitting the particular end-user attributes,
are also appropriate for the type of equipment avail-
able on the end-user machine. The usage-context
attribute values are communicated to the Decision
Making Component before the initiation of interac-
tion; additionally, during interaction, some dynami-
cally changing usage-context parameters may also be
communicated to the Decision Making Component
for decisions regarding adaptive behaviour.

(d) The Decision Making Component (DMC). This mod-
ule encompasses the logic for deciding the necessary
adaptation actions, on the basis of the user and con-
text attribute values, received from the UIS and CPS
respectively. Such attribute values will be supplied to
the DMC prior to the initiation of interaction (i.e.,
initial values, resulting in initial interface adaptation,
referred to as adaptability) as well as during inter-
action (i.e., changes in particular values, resulting in
dynamic interface adaptations, referred to as adap-
tivity). The DMC is responsible only for deciding the
necessary adaptation actions, which are then directly
communicated to, and subsequently performed by,
the DPC. The run-time adaptation process in Uni-
fied User Interfaces is practically a context-sensitive
selection of those components which have been de-
signed to address that particular situation. In order
to perform such a context sensitive selection, the
DMC encompasses information regarding all the var-
ious dialogue patterns present within the DPC, and
their specific design roles. There are two categories of
adaptation actions which are decided on and commu-
nicated to the DPC: (i) activation of specific dialogue
components; and (ii) cancellation of previously acti-
vated dialogue components.

The Unified User Interface architecture has been in-
tentionally developed to be easily embedded in existing
interactive software frameworks, by requiring only some



C. Stephanidis, A. Savidis: Universal Access in the Information Society: Methods, Tools, and Interaction Technologies 49

additional implemented modules, mainly serving co-
ordination, control, and communication purposes. This
capability facilitates the vertical growth of existing inter-
active applications, following the Unified User Interface
architectural paradigm, so that automatically adapted
interaction can be accomplished.

The development of the AVANTI browser has been
based on the Unified User Interface architectural frame-
work. The rest of this section briefly elaborates on the
mapping of the various implementation components of
the AVANTI browser (Fig. 7) to the Unified User Inter-
face architectural components (Fig. 6).

Firstly, the adaptable and adaptive interface com-
ponents, the interaction monitoring component, and
the page presentation and interaction component in the
AVANTI browser architecture are the functional equiva-
lent of the Dialogue Patterns Component (DPC) in the
Unified User Interface architecture. They encapsulate
the implementation of the various alternative dialogue
patterns (interaction/instantiation styles) identified dur-
ing the design process, and are responsible for their
activation/de-activation, applying the adaptation deci-
sions made by the respective module. Moreover, each
style implementation has integrated functionality for
monitoring user interaction and reporting the interaction
sequence back to the user modelling component of the
AVANTI system.

Secondly, the adaptation mechanism directly corres-
ponds to the Decision Making Component (DMC) in the
Unified User Interface architecture. It encompasses the
logic for deciding on and triggering adaptations, on the
basis of information stored in its knowledge space (this
information is, in turn, retrieved from user profiles and in-
ferences based on interaction monitoring). Furthermore,

Fig. 7. The AVANTI web browser architecture as an instance of
the Unified User Interface architecture

adaptations can be triggered both during the initiation of
interaction and at run-time.

The role of the User Information Server (UIS) in the
Unified User Interface architecture is played by the UMS
of the AVANTI system [18]. The UMS is implemented as
a server, usually remotely located on the network, since
it offers central, multi-user modelling functionality. The
communication between the user interface and the UMS
is bilateral: the interface sends messages regarding user
actions at the physical and task levels (e.g., “the user
pressed reload”, or “the user successfully completed the
loading of a new document”, respectively). The UMS em-
ploys a set of stereotypes that store categorised know-
ledge about the users and their interactions and environ-
ment, and a set of rules to draw inferences on the current
state of the user, based on the monitoring information.

Finally, the Context Parameters Server (CPS) in the
Unified User Interface architecture does not have an
equivalent component in the AVANTI implementation,
since context-specific adaptation was not addressed by
the AVANTI project.

4.3 Unified User Interface tools

The implementation of Unified User Interfaces is sup-
ported by a development environment that includes the
USE-IT Design Support Tool [1, 2] and the I-GET User
Interface Management System [28].

The USE-ITDesign Support Tool provides the design-
time support for achieving adaptability. Specifically,
USE-IT decides upon the lexical aspects of the interac-
tion dialogue based on knowledge of user characteristics,
abilities, and preferences, as well as knowledge of the
structure of lexical level characteristics of the interface
with respect to the various target user groups.

I-GET is a User Interface Management System [46]
providing all the necessary mechanisms for implementing
Unified User Interfaces. It supports the high-level specifi-
cation of Unified User Interfaces, as well as the automatic
generation of user interface implementation from such
specifications.

The I-GET language for interface implementation ex-
hibits a number of powerful new features, when compared
to existing development tools, including:

• Toolkit integration: I-GET is capable of importing
virtually any toolkit, relying upon a Generic Toolkit
Metamodel, the Toolkit Interface Specification lan-
guage kernel, and the specifically designed Generic
Toolkit Interfacing Protocol for communication.
• Toolkit abstraction: I-GET takes a step beyond the
desktop metaphor and provides openness and extensi-
bility of virtual objects, by supporting the definition of
arbitrary virtual objects, and the specification of the
physical instantiation logic, through which alternative
ways of mapping abstract objects to physical objects
can be defined.



50 C. Stephanidis, A. Savidis: Universal Access in the Information Society: Methods, Tools, and Interaction Technologies

• Toolkit augmentation: I-GET supports the enhance-
ment (augmentation) of an existing toolkit defined
as the process of implementing additional interaction
techniques, as part of the particular metaphor realisa-
tion originally implemented by the toolkit, in order to
enable interaction for particular user categories. Newly
introduced interaction techniques become part of the
augmented toolkit software library, while all interactive
applications built with the augmented toolkit automat-
ically support the new features of enhanced interaction.
• Toolkit expansion: I-GET supports a process through
which users of a toolkit (i.e., user interface developers)
can introduce new interaction objects not originally
supported by that toolkit
• Facilities for manipulating diverse dialogue patterns:
I-GET offers a syntax-loose dialogue control method
based on component classes called “agents” (exhibiting
hierarchical organisation and precondition- or call-
based instantiation), combined with powerful con-
structs such as monitors, preconditions, and con-
straints for arbitrary variables.

Furthermore, the I-GET UIMS integrates toolkits
supporting the implementation of interaction techniques
which are alternatives to direct manipulation, such as
the HAWK toolkit for non-visual interaction [29] and the
SCANLIB toolkit for switch-based interaction [30].

Since extensive accounts of the I-GET and USE-IT
tools are provided elsewhere [1, 2, 28], the rest of this
section concentrates on the interaction technologies in-
tegrated in the Unified User Interface development plat-
form, and exploited in the development of the AVANTI
browser to provide viable alternatives to direct manipula-
tion for certain target user groups and contexts.

4.3.1 Support for non-visual interaction

The HAWK toolkit [29] provides a set of standard non-
visual interaction objects and interaction techniques that
have been specifically designed to support high quality
non-visual interaction. Such a toolkit is not only appro-
priate for interfaces targeted to blind users, but also for
a variety of situations in which dialogues not relying on
visual communication and standard input devices are re-
quired (e.g., driving, telephone-based applications, home
control auditory interaction). This is achieved through
the provision of interaction primitives that do not impose
a specific metaphor, but enable alternative metaphoric
representations to be built. In this respect, HAWK differs
from windowing toolkits that provide real-world analo-
gies of physical objects (such as menus, buttons, switches,
potentiometers).

A key notion in this context is that of “container in-
teraction object”. In the HAWK toolkit there is a single
generic container class that does not provide any pre-
designed interaction metaphor, but supplies appropriate
presentation attributes through which alternative repre-
sentations can be created.

The container class has four attributes that enables
each distinct container instance to be given a metaphoric
substance by appropriately combining messages and
sound-feedback (both names and sound effects can have
a metaphoric meaning, see Fig. 8).

In addition to generic containers, HAWK provides
a comprehensive collection of conventional interaction
objects directly supporting non-visual dialogue, namely
menus (exclusive choice selector object), lists (multiple
choice selector object), buttons (push button analogy for
direct command execution), toggles (radio button anal-
ogy for on/off state control, edit fields (single line text
input) and text reviewers (multi-line read-only text edi-
tor, with mark-up facilities).

HAWK also supports a variety of interaction tech-
niques, namely synthesised speech, Braille (2-cell transi-
tory Braille, 40-cell Braille), and digitised audio for out-
put; and standard keyboard, joystick used for gestures
independently of visual interaction, touch-tablet (for pro-
grammable commands via associated regions), and voice
recognition for input.

The HAWK toolkit provides all the programming fea-
tures found in currently available toolkits, such as hier-
archical object composition, dynamic instantiation, call-
back registration, and event handling. The navigation
dialogue enables the blind user to move within the in-
terface structure composed of organisations of containers
and contained objects in a simple way, through the pro-
vision of multi-modal control facilities. For instance, vis-
iting contained objects is possible through joystick-based
gestures, voice commands, keyboard short cuts, or via
pressing specific regions of the touch-tablet. Container
objects may contain other container objects realising dif-
ferent metaphoric representations, thus supporting fusion
of different metaphors in the context of non-visual inter-
active applications.

The efficiency and effectiveness of the navigation dia-
logue within the object hierarchies of the developed User
Interfaces is an important factor for the acceptance of an

Fig. 8. Supporting different metaphoric representations for
container instances



C. Stephanidis, A. Savidis: Universal Access in the Information Society: Methods, Tools, and Interaction Technologies 51

interface toolkit. In visual windowing environments, the
direct perception of the physical realisation of interaction
object hierarchies is enabled, thus sighted users may di-
rectly review various interface components. In non-visual
interaction the provision of powerful navigation facilities
is muchmore critical, as it is muchmore difficult to enable
the direct perception of the overall interface structure.
The HAWK toolkit provides a flexible architecture for
implementing navigation dialogues configurable accord-
ing to target user needs. Navigation dialogues are split
into two parts: (i) input channel and input commands
(see left part of Fig. 9); and (ii) navigation commands (see
middle-right part of Fig. 9). Binding input commands to
navigation commands defines the navigation dialogue (for
instance, defining that the up-left joystick gesture maps
to the “Previous object” navigation command), andmap-
ping schemes can be freely defined by end-users.

The specific input commands of the input channels
supported by the HAWK toolkit can also be repro-
grammed (with the exception of joystick gestures, which
are fixed). For instance, keyboard shortcuts, speech key-
words, and touch-tablet regions can be redefined accord-
ing to user and application requirements.

Navigation commands are handled by container ob-
jects, while the input channels register user input in the
case of non-container objects, which receive input com-
mands in the form of typical toolkit input events (pro-
grammers will implement event handlers). If the require-
ments of the navigation dialogue cannot be met through
the utilisation of the configuration facilities, alternative
approaches can be taken. For example, the navigation
dialogue can be disabled (disabling can be specialised
even at the object instance level for containers), and as
a result, the HAWK toolkit will provide conventional in-
put event notification for input commands to those con-
tainer objects which have the navigation dialogue dis-
abled. Alternatively, the HAWK toolkit library for navi-
gation commands, which makes all navigation commands
available as software functions, can be used to implement

Fig. 9. The four concurrent input channels for navigation
dialogue and conventional user input in the HAWK toolkit

the desired dialogue in the form of event handlers for
those input commands needed. For instance, the built-
in joystick gestures can be substituted by implementing
event handlers that recognise new gestures.

The main advantage of the HAWK toolkit is its inde-
pendence of specific metaphors. This feature enables in-
terface designers to structure interaction in a way reflect-
ing the non-visual mental representation of blind users.
In this respect, the HAWK toolkit builds upon and gen-
eralises the COMONKIT toolkit [24, 25], based on a non-
visual version of the Rooms metaphor.

In the development of the AVANTI browser, the
HAWK toolkit was used to provide a set of appropri-
ate input and output devices, along with appropriate
interaction techniques, to visually impaired users. Non-
visual input and output in AVANTI can involve any of the
following devices/systems: keyboard (or any keyboard
emulation device); mouse/trackball (or any mouse emu-
lation device); touch screen; Braille display; touch tablet;
binary switches; joystick; speech synthesis (output) and
speech/command recognition (input); non-speech audio
output. Touch tablets can be used by blind users through
demarcated areas (raised edges, Braille labels, etc.), each
of which corresponds to specific functionality. Speech syn-
thesis is used to present textual information to blind
users, and to signify attributes related to the possible hy-
permedia nature of the presented documents (e.g. links),
while speech recognition can be used to allow blind users
to issue vocal commands to the system, through a spe-
cial set of control and navigation commands. Gesture
recognition permits the use of a joystick by blind users,
by coupling specific gestures to command sequences. Fi-
nally, tactile presentation of hypertext in Braille is aug-
mented with special symbolic annotations that facilitate
the user’s comprehension of the exact type of item being
presented.

4.3.2 Support for switch-based interaction

In existing graphical environments, such as the widely
available WINDOWS 98/2000/NT, the ability to sup-
port switch-based interaction is rather limited. Previ-
ous approaches, suitable for WINDOWS 3.1, relied on
the support of windows-based operations via key bind-
ings [48, 49]. Users had to explicitly program such key
bindings, on the basis of scripting methods, to create an
extra interface on top of WINDOWS (accessible via scan-
ning techniques) for artificial generation of WINDOWS
3.1 key shortcuts. Moreover, it was impossible to differ-
entiate behavioural attributes of the scanning interaction
technique for different user tasks (e.g. to have various
scanning highlighters depending on the interaction con-
text). These approaches present considerable operational
limitations under recent WINDOWS versions, due to the
significant architectural changes. As a consequence, it
is necessary that the full range of graphical interaction



52 C. Stephanidis, A. Savidis: Universal Access in the Information Society: Methods, Tools, and Interaction Technologies

techniques in a visual windowing environment be ap-
propriately augmented to support interaction via such
special-purpose peripherals. The main advantage of aug-
mented toolkits is maximum control of extra interaction
facilities by application developers, while the main dis-
advantage is that old applications cannot benefit from
the extensions, unless they are rebuilt and appropriately
extended on the basis of the new toolkit library.

In the SCANLIB interface development toolkit [30],
the basic WINDOWS 95 object library has been aug-
mented with scanning interaction techniques. Interfaces
implemented through this augmented software library
directly support motor-impaired user access, as well as
access in other situations in which the keyboard and
mouse input devices can not be used. Apart from enabling
intra-application interaction control (e.g., having access
via switches to all interface elements of any interactive
application), SCANLIB also supports inter-application
interaction control (e.g., enabling users to move across
different applications). This requires low-level shared
memory facilities, so that the augmented library can al-
ways be aware of the number of augmented applications
currently running. In SCANLIB, basic object classes are
classified into five categories, each requiring a different
dialogue policy to be designed:
• Top-level windows: these are the objects directly pro-
viding window management operations. Since in WIN-
DOWS 95 it is impossible to “access” (in a pro-
grammable manner) the built-in controls (icons) for
window management, all top-level windows in SCAN-
LIB have been augmented with an additional toolbar
accessible via scanning.
• Container objects: these are object classes with in-
stances present as intermediate nodes in object hierar-
chies, able to encompass an arbitrary number of con-
tained object instances. Container objects enable se-
quential scanning of all contained objects.
• Text-entry objects: objects requiring text to be sup-
plied impose the need for keyboard emulation. When
the user focuses (via scanning) on a particular text-
field object, a special on-screen keyboard automatically
appears, through which text input is enabled (Fig. 4).
Such an augmented dialogue is realised transparently
to programmers, to whom the augmented text-field ob-
ject at the programming level appears as a conventional
WINDOWS text-field object.
• Composite objects: typical examples of composite ob-
jects are the scroll-bar class (composed of two arrow
buttons and a slider) and the combo-box class (com-
posed of a drop-down button, a label, and a menu ob-
ject). Composite objects enable sequential scanning of
all component-objects.
• Button categories: these are simple interaction objects
supporting direct user actions for executing associated
operations or changing the state of boolean parame-
ters. Typical examples from this category are: push
buttons, check boxes, and radio buttons.

The scanning interaction techniques are based on two
fundamental actions: SELECT and NEXT. Upon enter-
ing a container object, such as a group-box that may
enclose an arbitrary number of objects (e.g., other group-
boxes, list-boxes, radio-buttons), the dialogue starts in
“exit mode”. This is indicated to the user via a special
highlighting. If the user initiates the “select” action (i.e.,
presses the “select” switch) when in exit mode, the dia-
logue will move to the next object in the hierarchy, thus
skipping the group-box and all enclosed objects. If the
user initiates the “next” action, the dialogue shifts to
the “entry” mode, and feedback is provided by changing
highlighting style. By initiating a “select” at this state,
the user will start a dialogue with the (hierarchically)
first object of the group-box, while by initiating a “next”
action, the dialogue state again changes to “exit” mode
(thus, successive “next” actions will cycle between “exit”
and “entry” modes).

Depending on the type of switch equipment required,
four scanning modes are supported:

• 1-switch (for SELECT action), time scanning (auto-
matic NEXT action, after a specific time interval).
• 2-switches (one for SELECT action, one for changing
scanning direction), time scanning (as before for auto-
matic NEXT action).
• 2-switches (SELECT action, NEXT action), no time
scanning.
• 5-switches (SELECT action, NEXT action, change di-
rection, directly exit container, restart with container).

Programming control is provided for the extra at-
tributes introduced by the augmented version of WIN-
DOWS 95 objects, thus enabling objects to differentiate
scanning style depending on scanning mode (one of the
five alternatives), time interval (when time scanning is
supported), and highlighter presentation parameters. By
default, contained objects directly inherit all the scanning
attributes from the direct container parent object, unless
explicit values are supplied.

SCANLIB, as a development toolkit, can be used to
create new applications completely accessible through
switch-based interaction, although it can not be used to
add scanning facilities to existing applications. One of its
main advantages is the provision of window management
facilities providing full-control to motor-impaired users.

In the development of the AVANTI browser, the
SCANLIB toolkit has been used to support switch-based
interaction for motor-impaired users through automatic
or user-controlled scanning and on-screen keyboards (see
Fig. 3c).

5 Discussion and Conclusions

In this paper the Unified User Interface concept has
been introduced, showing that user- and usage-context
self-adapting interfaces are a promising technical vehicle
for achieving Universal Access. The paper elaborated on



C. Stephanidis, A. Savidis: Universal Access in the Information Society: Methods, Tools, and Interaction Technologies 53

the Unified User Interface design method and the Uni-
fied User Interface engineering paradigm, putting forward
a profile of a new technology for developing universally
accessible interactions. Additionally, the paper described
special purpose toolkits for building interactions beyond
the traditional desktop interaction style (typically based
on keyboard andmouse), and discussed their employment
in the context of a Unified development process for build-
ing a specific application, notably the AVANTI adaptable
and adaptive web browser.

There are a number of issues that emerge from this
paper. Recent R&D activities have revealed valuable in-
sights into the study of Universal Access in HCI, in par-
ticular concerning the contribution of automatic adap-
tation [34, 38]. As accessibility and interaction quality
have become global requirements in the Information So-
ciety, adaptation needs to be “designed into” the system
rather than decided upon and implemented “a posteri-
ori”. Therefore, at the level of design methods and tech-
niques, Universal Access requires an understanding of the
global execution context of a task. This entails design
techniques that can capture alternative design options
and design representations that can be incrementally ex-
tended (i.e., design pluralism) to encapsulate evolving or
new artifacts. Another important issue concerning de-
sign, which has been learned through practice and ex-
perience, is that Universal Access means breaking away
from the traditional perspective of “typical” users in-
teracting with a desktop machine in a business environ-
ment and moving towards interactive systems accessi-
ble at any time, anywhere and by anyone. This means
that future systems should embody the capability for
context-sensitive processing so as to present their users
with a suitable computational embodiment or metaphor
depending on user, situational, and context-specific at-
tributes.

The Unified User Interface development methodology
is the first systematic effort in this direction that has
been thoroughly developed and applied in practice. The
results of such an effort and the experience gained jus-
tify the argument that developing universally accessible
and usable user interfaces is more of a challenge than
a utopia [38]. However, Unified User Interfaces should
not be considered as the only possible approach for ad-
dressing Universal Access in the Information Society. Al-
though Unified User Interface development assumes pow-
erful tools and advanced user interface software technol-
ogy, such a realisation is not the only possible, or superior
to any alternative that may be developed in the future.
Nevertheless it is argued that, in the long run, the avail-
ability of such tools is likely to be a critical factor for
the potential adoption and diffusion of the proposed con-
cept. The Unified User Interface development framework
augments and enhances traditional approaches to devel-
oping user interfaces in the following dimensions: (i) it
is oriented towards iteratively capturing and satisfying
multiple user- and context-oriented requirements; (ii) it

employs adaptation-based techniques in order to facili-
tate and enhance personalised interaction. Furthermore,
Unified User Interface development is characterised by
the need to identify appropriate evaluation methods and
processes to assess the effectiveness of the self-adapting
behaviour of the interface.

The development of the AVANTI browser has consti-
tuted an instantiation of the Unified User Interface devel-
opment process. The AVANTI unified interface is capable
of adapting itself to suit the requirements of able-bodied,
blind, andmotor-impaired users in a variety of contexts of
use. Adaptability and adaptivity are used extensively to
tailor and enhance the interface respectively, in order to
effectively and efficiently meet the target of interface in-
dividualisation for end users. Since the design of the user
interface has followed the Unified User Interface design
method, and the implementation is based on the Unified
User Interface architecture, inclusion of additional target
user groups and contexts of use has been effectively fa-
cilitated [26]. The experience acquired has demonstrated
the applicability of the methodologies, techniques, and
tools comprising the Unified User Interface development
paradigm in the construction of a large-scale “real-world”
self-adapting interactive application.

The Unified User Interface development process is
a resource-demanding design and engineering process.
It requires the systematic classification and organisation
of both design and engineering artifacts, according to
unified design and engineering practices, thus exhibiting
a relatively high entry barrier for development. Multi-
disciplinary expertise is required, especially within the
implementation phase. For instance, decision-making will
typically require logic-programmingmethods, while man-
agement of user information may combine database man-
agement (for user profiles) with user model representa-
tion methods (e.g., declarative programming and know-
ledge bases). The experience gained so far has clearly
indicated the considerable development overhead of craft-
ing Unified User Interfaces, an overhead that is propor-
tional to the targeted degree of diversity in users and
usage-contexts. Additionally, it has been observed that
an initial “start-up” investment is required to set up
a unified user interface architecture, starting from the
preliminary stages prior to the actual embedding of com-
ponents in a running system, e.g., implemented dialogues,
decision-making logic, or user information models. Fi-
nally, an additional need has emerged for an automated
integration process for expanding the system’s adapta-
tion behaviour to address additional user or context pa-
rameter values, and subsequently to inject implemented
decision-making logic and dialogue patterns. In this con-
text, future work is targeted towards the production of
reusable implemented architectural patterns [17], in the
form of configurable application frameworks [13], which
will accompany the Unified User Interface engineering
paradigm, and will help to quickly instantiate and easily
expand a Unified User Interface implementation.



54 C. Stephanidis, A. Savidis: Universal Access in the Information Society: Methods, Tools, and Interaction Technologies

Concerning development, an important observation
is that prevailing graphical user interface toolkits do not
suffice to facilitate the broad range of alternative inter-
active embodiments needed to empower and facilitate
Universal Access. In this respect, traditional user inter-
face architectural models may need to be revised and
extended to inform and guide developments in this di-
rection, and appropriate tools are needed to facilitate
the development of universally accessible and usable sys-
tems. In particular, the suitability of such tools depends
on their independence of specific development platforms.
Tools considered appropriate are those that instead of
directly calling a platform can link to it and make use
of the available interaction resources. As a derivative of
the previous argument, it follows that user interface de-
velopment should progressively be supported through
specification-based rather than programming-oriented
techniques.

Despite the recent rise of interest in the topic of
Universal Access, and the successful and indisputable
progress in R&D, many challenges still lie ahead. Firstly,
an effective use of adaptation in user interfaces implies
a deep and thorough knowledge of the user requirements.
This implies identifying diversity in the user population,
mapping diversity-related requirements to concrete de-
signs, and evaluating the related adaptation behaviour.
The same holds for the study of context which, as pointed
out in previous sections, is critical for the quality of a sys-
tem’s adaptable and adaptive behaviour [41].

The above remark introduces another challenge to be
addressed, namely the compelling need to assess the im-
plications of Universal Access for digital contents, func-
tionality, and interaction. This entails, amongst other
things, a renewed account of the properties of adaptation
and how they can be embodied by digital contents, func-
tionality, and the user interface. Clearly, the traditional
view that adaptable and adaptive behaviour is a charac-
teristic property of the interactive software may no longer
suffice given the trends towards ubiquitous access, mobile
computing, and Internet appliances.

Finally, theoretical work has to be supported by large-
scale case studies, which can provide the instruments for
experimentation, thus ultimately improving the empir-
ical basis of the field. Such case studies should aim not
only to demonstrate technical feasibility of R&D propo-
sitions, but also to assess the economic efficiency and
efficacy of competing technological options in the longer
term.

Acknowledgements.

• The GUIB TP103 (Textual and Graphical User Interfaces for
Blind People) project was partially funded by the TIDE Pro-
gramme of the European Commission, and lasted 18 months
(December 1, 1991 to May 31, 1993). The partners of the
GUIB consortium are: IROE-CNR, Italy (Prime Contractor);
F H Papenmeier GmbH & Co KG (Germany); IFI-University
of Stuttgart (Germany); Institute of Computer Science-FORTH
(Greece); RNIB (England); Institute of Telecommunications-

TUB (Germany); Department of Computer Science-FUB (Ger-
many); Vrije Universiteit Brussels (Belgium); VTT (Finland).

• The GUIB-II TP215 (Textual and Graphical User Interfaces for
Blind People) project was partially funded by the TIDE Pro-
gramme of the European Commission, and lasted 18 months
(June 1, 1993 to November 30, 1994). The partners of the
GUIB-II consortium are: IROE-CNR (Italy); Institute of Com-
puter Science-FORTH (Greece); Vrije Universiteit Brussels (Bel-
gium); Department of Computer Science-FUB (Germany); In-
stitute of Telecommunications-TUB (Germany); IFI, Univer-
sity of Stuttgart (Germany); VTT (Finland); RNIB (England);
F.H. Papenmeier Gmb & Co KG (Germany).

• The ACCESS TP1001 (Development platform for unified AC-
CESS to enabling environments) project was partially funded by
the TIDE Programme of the European Commission, and lasted
36 months (January 1, 1994 to December 31, 1996). The part-
ners of the ACCESS consortium are: CNR-IROE, Italy (Prime
Contractor); ICS-FORTH (Greece); University of Hertfordshire
(United Kingdom); University of Athens (Greece); NAWH (Fin-
land); VTT (Finland); Hereward College (United Kingdom);
RNIB (United Kingdom); Seleco (Italy); MA Systems & Control
(United Kingdom); PIKOMED (Finland).

• The AVANTI AC042 (Adaptable and Adaptive Interaction in
Multimedia Telecommunications Applications) project was par-
tially funded by the ACTS Program of the European Com-
mission, and lasted 36 months (September 1, 1995 to August
31, 1998). The partners of the AVANTI consortium are: AL-
CATEL Italia, Siette division, Italy (Prime Contractor); IROE-
CNR (Italy); ICS-FORTH (Greece); GMD (Germany); VTT
(Finland); University of Siena (Italy); MA Systems and Con-
trol (UK); ECG (Italy); MATHEMA (Italy); University of Linz
(Austria); EUROGICIEL (France); TELECOM (Italy); TECO
(Italy); ADR Study (Italy).

• The authors wish to thank the anonymous reviewers for their
valuable comments.

References

1. Akoumianakis D, Stephanidis C (1997) Supporting user-
adapted interface design: the USE-IT System. Interact with
Comput 9(1):73–104

2. Akoumianakis D, Stephanidis C (2001) USE-IT: a tool for lex-
ical design assistance. In [35], pp 469–487

3. Benyon DR (1993) Adaptive systems: a solution to usability
problems. User Modelling User-adapted Interact 3(1):1–22

4. Benyon DR (1997) Intelligent interface technology to improve
human-computer interaction. Tutorial in HCI International
’97. San Francisco, USA

5. Bini A, Emiliani PL (1997) Information about mobility is-
sues: the ACTS AVANTI project. In Proceedings of 4th Euro-
pean Conference for the Advancement of Assistive Technology
(AAATE ’97), Porto Carras, Greece. IOS Press, Amsterdam,
pp 85–88

6. Bini A, Ravaglia R, Rella L (1997) Adapted interactions for
multimedia based telecommunications applications. In Con-
ference Neties 1997, University of Ancona, Ancona, Italy

7. Browne D (1993) Experiences from the AID project. In [31],
pp 69–78

8. Browne D, Totterdell P, Norman M (eds) (1990) Adaptive
user interfaces. Academic Press, UK

9. Brusilovsky P (1996) Methods and techniques of adaptive hy-
permedia. User Modelling User-Adapted Interact 6(2–3):87–
129

10. Brusilovsky P, Kobsa A, Vassileva J (eds) (1998) Adaptive
hypertext and hypermedia systems. Kluwer Academic Pub-
lishers, Dordrecht, Netherlands

11. Cote-Munoz AH (1993) AIDA: an adaptive system for interac-
tive drafting and CAD applications. In [31], pp 225–240

12. Dieterich H, Malinowski U, Kühme T, Schneider-Hufschmidt
M (1993) State of the art in adaptive user interfaces. In [31],
pp 13–48



C. Stephanidis, A. Savidis: Universal Access in the Information Society: Methods, Tools, and Interaction Technologies 55

13. Fayad M, Cline M (1996) Aspects of software adaptability.
Commun ACM 39(10):58-59

14. Fink J, Kobsa A, Nill A (1998) Adaptable and adaptive infor-
mation provision for all users, including disabled and elderly
people. New Rev Hypermedia Multimedia 4:163–188

15. Hayes-Roth B, Pfleger K, Lalanda P, Morignot P, Balabanovic
M (1995) A domain-specific software architecture for adap-
tive intelligent systems. IEEE Trans Software Eng 21(4):
288–301

16. Horvitz E, Breese J, Heckerman D, Hovel D, Rommelse K
(1998) The lumiere project: bayesian user modeling for infer-
ring the goals and needs of software users. In Proceedings of
the Fourteenth Conference on Uncertainty in Artificial Intelli-
gence, Morgan Kaufmann, San Francisco, pp 256–265

17. Jacobson I, Griss M, Johnson P (1997) Making the reuse busi-
ness work. IEEE Comput 30(10):36–42

18. Kobsa A, Pohl W (1995) The user modelling shell system
BGP-MS. User Modelling User-adapted Interact 4(2):59–106

19. Mace RL, Hardie GJ, Plaice JP (1991) Accessible environ-
ments: toward universal design. In Preiser W, Vischer J,
White E (eds) Design Interventions: Toward a more Human
Architecture. Van Nostrand Reinhold, New York

20. Mynatt ED, Edwards WK (1992) The mercator environment:
a nonvisual interface to the X window system. Graphics Visu-
alization and Usability Center, Technical Report GIT-GVU-
92-05

21. Mynatt ED, Weber G (1994) Nonvisual presentation of graph-
ical user interfaces: contrasting two approaches. In Proceed-
ings of the ACM Conference on Human Factors in Computing
Systems (CHI ’94). ACM Press, New York, pp 166–172

22. Oppermann R (ed) (1994) Adaptive user support: ergonomic
design of manually and automatically adaptable software.
Lawrence Erlbaum Associates, Hillsdale, NJ

23. Savidis A, Akoumianakis D, Stephanidis C (2001) The Unified
User Interface design method. In [35], pp 417–440

24. Savidis A, Stephanidis C (1995) Developing dual user inter-
faces for integrating blind and sighted users: the HOMER
UIMS. In Proceedings of the ACM Conference on Human Fac-
tors in Computing Systems (CHI ’95). ACM Press, New York,
pp 106–113

25. Savidis A, Stephanidis C (1998) The HOMER UIMS for dual
user interface development: fusing visual and non-visual inter-
actions. Int J Interact Comput 11(2):173–209

26. Savidis A, Stephanidis C (2001a) The Unified User Interface
software architecture. In [35], pp 389–415

27. Savidis A, Stephanidis C (2001b) Development requirements
for implementing Unified User Interfaces. In [35], pp 441–468

28. Savidis A, Stephanidis C (2001c) The I-GET UIMS for Unified
User Interface implementation. In [35], pp 489–523

29. Savidis A, Stergiou A, Stephanidis C (1997) Generic contain-
ers for metaphor fusion in non-visual interaction: the HAWK
interface toolkit. In Proceedings of the Interfaces ’97 Confer-
ence, Montpellier, France, 28–30 May. Montpellier District &
EC2 Development, pp 194–196

30. Savidis A, Vernardos G, Stephanidis C (1997) Embedding
scanning techniques accessible to motor-impaired users in
the WINDOWS Object Library. In Salvendy G, Smith MJ,
Koubek RJ (eds) Design of Computing Systems: Cognitive
Considerations [Proceedings of the 7th International Con-
ference on Human-Computer Interaction (HCI International
’97), San Francisco, USA], vol 1. Elsevier, Elsevier Science,
Amsterdam, pp 429–432

31. Schneider-Hufschmidt M, Kühme T, Malinowski U (eds)
(1993) Adaptive user interfaces: principles and practice.
North-Holland, Elsevier Science, Amsterdam

32. Shneiderman B (2000) Universal usability: pushing human-
computer interaction research to empower every citizen. CS-
TR-4043. Commun ACM 43(5):84–91

33. Stephanidis C (1995) Towards user interfaces for all: some crit-
ical issues. Panel session “User Interfaces for All – Everybody,

Everywhere, and Anytime” In Anzai Y, Ogawa K, Mori H
(eds) Symbiosis of human and artifact – future computing and
design for human-computer interaction [Proceedings of the
6th International Conference on Human-Computer Interac-
tion (HCI International ’95), Tokyo, Japan]. Elsevier, Elsevier
Science, Amsterdam, pp 137–142

34. Stephanidis C (2001) Adaptive techniques for Universal Ac-
cess. User Modelling User Adapted Interact Int J, 10th An-
niversary Issue, 11(1–2):159–179

35. Stephanidis C (ed) (2001a) User interfaces for all – concepts,
methods and tools. Lawrence Erlbaum Associates, Mahwah,
NJ. ISBN 0-8058-2967-9

36. Stephanidis C (2001b) User interfaces for all: new perspectives
into HCI. In [35], pp 3–17

37. Stephanidis C (2001c) The concept of Unified User Interfaces.
In [35], pp 371–388

38. Stephanidis C, Emiliani PL (1999) Connecting to the Informa-
tion Society: a European perspective. Technol Disability J 10
(1):21–44 [On-line]. Available at:
http://www.ics.forth.gr/proj/at-hci/files/TDJ_paper.PDF

39. Stephanidis C, Paramythis A, Sfyrakis M, Savidis A (2001)
A case study in Unified User Interface development: the
AVANTI web browser. In [35], pp 525–568

40. Stephanidis C, Paramythis A, Sfyrakis M, Stergiou A, Maou
N, Leventis A, Paparoulis G, Karagiannidis C (1998a) Adapt-
able and adaptive user interfaces for disabled users in the
AVANTI Project. In Trigila S, Mullery A, Campolargo M,
Vanderstraeten H, Mampaey M (eds) Proceedings of the 5th
International Conference on Intelligence in Services and Net-
works (IS&N ’98), Technology for Ubiquitous Telecommunica-
tion Services. Lecture Notes in Computer Science, Vol. 1430.
Springer, Heidelberg, Germany, pp 153–166

41. Stephanidis C, Salvendy G, Akoumianakis D, Arnold A, Be-
van N, Dardailler D, Emiliani PL, Iakovidis I, Jenkins P,
Karshmer A, Korn P, Marcus A, Murphy H, Oppermann C,
Stary C, Tamura H, Tscheligi M, Ueda H, Weber G, Ziegler
J (1999) Toward an information society for all: HCI chal-
lenges and R&D recommendations. Int J Hum Comput Inter-
act 11(1):1–28

42. Stephanidis C, Salvendy G, Akoumianakis D, Bevan N,
Brewer J, Emiliani PL, Galetsas A, Haataja S, Iakovidis
I, Jacko J, Jenkins P, Karshmer A, Korn P, Marcus A,
Murphy H, Stary C, Vanderheiden G, Weber G, Ziegler J
(1998b) Toward an information society for all: an interna-
tional R&D agenda. Int J Hum Comput Interact 10(2):107–
134 [On-line]. Available at: http://www.ics.forth.gr/proj/at-
hci/files/white_paper_1998.pdf

43. Stephanidis C, Savidis A, Akoumianakis D (1997) Unified
interface development: tools for constructing accessible and
usable user interfaces. Tutorial no. 13 in the 7th International
Conference on Human-Computer Interaction (HCI Interna-
tional ’97), San Francisco, USA, 23–29 August 1997. [On-line].
Available at:
http://www.ics.forth.gr/proj/at-hci/html/tutorials.html

44. Story MF (1998) Maximising usability: the principles of uni-
versal design. Assistive Technol 10:4–12

45. Sukaviriya P, Foley J (1993) Supporting adaptive interfaces in
a knowledge-based user interface environment. In Gray WD,
Hefley WW, Murray D (eds) Proceedings of the International
Workshop on Intelligent User Interfaces. ACM Press, New
York, pp 107–114

46. UIMS Developers Workshop (1992) A meta-model for the run-
time architecture of an interactive system. SIGCHI Bulletin
24(1):32–37

47. Vanderheiden G (1998) Universal design and assistive technol-
ogy in communication and information technologies: alterna-
tives or compliments? Assistive Technol 10(1):29–36

48. WinSCAN (1997) WinSCAN Version 2.0.
http://www.acsw.com/ws1.html

49. WiVik (1997) http://www.prentrom.com/access/wivik.html.


