
LONG PAPER

Stories and signs in an e-learning environment for deaf people

Paolo Bottoni • Fabrizio Borgia • Daniel Buccarella •

Daniele Capuano • Maria De Marsico •

Anna Labella

Published online: 5 September 2012

� Springer-Verlag 2012

Abstract An important field for model-driven develop-

ment of interfaces is the consideration of users with

disabilities. Interface design for deaf people presents spe-

cific problems, since it needs to be based on visual com-

munication, incorporating unusual forms of interaction,

in particular gesture-based ones. Standard solutions for

model-driven development of visual interfaces lack spe-

cific constructs for structuring these more sophisticated

forms of interaction. This paper discusses such issues in the

context of the development of a deaf-centered e-learning

environment. Sign Languages enter this context as a suit-

able alternative communication code, both in video form

and through one of their most successful written forms,

namely SignWriting.

Keywords Deaf-centered e-learning environment �
Storytelling � MOF � UIDL � UsiXML � Sign languages �
SignWriting

1 Introduction

Content accessibility for deaf users is a hidden problem

even in the Web era; especially in the past, it was often

thought that a written transcription of audio contents was

enough for deaf people to grasp information [7]. In 2006,

the World Health Organization testified the existence of

278 million people worldwide who were deaf or had

hearing difficulties of different severity. This is a crucial

issue since deaf people experience many difficulties in

communicating with hearing ones. Moreover, the use of

national sign languages (SLs), composed of codified

combinations of gestures and expressions involving the

upper part of the body, is becoming diffuse among relevant

segments of the deaf population, including subjects who

know a verbal language. The perceptual basis of such

languages allows the expression of one’s own thoughts in

ways that are dramatically different from written/spoken

languages related to a phonetic experience which deaf

people lack. It has been observed that deafness as a con-

dition hinders the acquisition of written language skills

[25], which raises important issues with respect to inter-

faces for e-learning [1]. This is a concrete deepening of the

digital divide often suffered by deaf people. However, the

sole inclusion of sign language (SL) videos in Web pages

to translate textual contents is not a complete solution,

since significant portions of the deaf community do not

learn their national SL and prefer to communicate through

verbal language, due to social constraints and prejudice.

Moreover, systematic inclusion of video clips may be a

huge task and is not adequate for a fluent fruition of con-

tents if a high-bandwidth connection is not available. On

the other hand, the lack of a universally accepted written

form for SLs still limits their use. Hence, in order for

e-learning to cover this literacy gap, creative ways of

P. Bottoni (&) � F. Borgia � D. Buccarella � D. Capuano �
M. De Marsico � A. Labella

Computer Science Department, ‘‘Sapienza’’ University of Rome,

Via Salaria 113, 00198 Rome, Italy

e-mail: bottoni@di.uniroma1.it

F. Borgia

e-mail: borgia@di.uniroma1.it

D. Buccarella

e-mail: danielbuccarella@yahoo.it

D. Capuano

e-mail: capuano@di.uniroma1.it

M. De Marsico

e-mail: demarsico@di.uniroma1.it

A. Labella

e-mail: labella@di.uniroma1.it

123

Univ Access Inf Soc (2013) 12:369–386

DOI 10.1007/s10209-012-0283-y

presenting and coordinating interactive visual materials are

needed, with novel supports for content comprehension.

The work reported in this paper has been conducted in

the context of a research effort aiming at the development

of a deaf-centered e-learning environment (DELE), tar-

geting users who are adult deaf people attending university.

One of the foundational principles of DELE is to avoid

text, whenever possible and not explicitly required by the

learning activity, and to opt for a visual presentation of

information. DELE design is based on conceptual meta-

phors, according to the embodied cognition paradigm ([18,

20]), as well as on storytelling ([5, 22]). The design process

has especially investigated how metaphors based on the

interaction between humans and their environment (e.g.,

container, path) can facilitate learning. The central meta-

phor exploited in DELE is the university campus. Users

can browse the campus environment via personal avatars,

exploiting intuitive body-based actions. Moreover, typical

concepts from Web sites and social networks (e.g., per-

sonal pages, forums) are mapped to domain-specific enti-

ties, and an exhaustive mapping links concepts typical of

the learning experience (and specifically of e-learning) to

these entities (e.g., the campus main square represents the

forum, personal houses stand for users’ personal pages).

All the learning processes supported by DELE are

implemented as (possibly interconnected) stories. Each

story is defined as a path from a starting place to a con-

clusion, through several steps and detours. The story pro-

gress is visually rendered by an avatar that moves along the

corresponding path, and textual information is omitted

unless it is part of the intended educational contents.

Creating educational material and processes according

to the DELE conceptual structure requires a suitable

authoring support. To this purpose, DELE integrates a

StoryEditor component allowing tutors with no specific

technical experience to design learning paths as stories, by

connecting several nodes of different types. The choice of a

node triggers the automatic generation of object code for

Web pages. The implementation of a learning process

relies on the mapping of stories onto navigation paths.

Navigational, graphical and activity structures in the

story pages are specified via the UsiXML User Interface

Description Language (UIDL) [21], which provides several

models for the expression of the different aspects of DELE

design, namely task coordination, flexible style of presen-

tation, as well as typical e-learning. In addition, a meta-

model for the domain-specific language of stories is

expressed in the form of a conceptual class diagram. The

types in the metamodel are associated with specific pat-

terns, relating the definition of stories as paths to the

concrete organization of the interface. The implementation

of the StoryEditor therefore corresponds to a reification of

these patterns into specific procedures for the construction

of specific instances of a story. In a similar way, different

types of stories are associated with specific forms in which

user interaction and content presentation can occur.

Specific actions have been defined to support the spec-

ification of gesture-based forms of interaction, which are

not currently supported by UsiXML. In particular, in order

to use sign languages (SLs) for content presentation in

DELE, writing facilities are introduced based on Sign-

Writing1 (SW), using a novel specification of an abstract

syntax for SW. This is at the basis of the design of the

SignWriting improved fast transcriber (SWift) graphical

editor. With SWift, a user composes SW sentences using

visual symbols (glyphs) to represent SL configurations,

movements and facial expressions.

This paper is organized as follows: After discussing

related work, the use of UsiXML for the formal description

of fully iconic interactive contents is briefly sketched.

Then, the paper illustrates the use of StoryEditor to pro-

duce Web pages from abstract models and maps such

models onto the suitable metamodels provided by Us-

iXML. Finally, the SW representation of signs and gestures

is summarized, proposing a corresponding metamodel.

2 Related work

Storytelling is the basic abstraction underlying the defini-

tion of storyboards in user interface development; the

integration of the latter with model-driven approaches is

discussed in [17]. However, interface development is often

treated as a minor issue within projects related to story-

telling and e-learning settings for deaf people. Moreover, it

is to notice that, as in many advanced educational experi-

mentations, children rather than adult learners are chosen

as target users.

Attempts to address general accessibility issues have

been made by the World Wide Web Consortium (W3C),

with the Web Content Accessibility Guidelines (WCAG)

document. However, there is scarce comprehension of

problems encountered by deaf people, and the most

addressed disability is blindness, while a written tran-

scription of audio content is considered enough to support

deaf users. WCAG1.0 guidelines (1999) deal mostly with

problems related to labeling and transcription of audio

content, leaving out alternatives related to SLs. WCAG2.0

(2008) better addresses such issues. For instance, the suc-

cess criterion 1.2.6, which is a prerequisite to get the

highest level of compliance (AAA), states that ‘‘Sign lan-

guage interpretation is provided for all prerecorded audio

content in the form of synchronous media types.’’

1 http://www.signwriting.org/.

370 Univ Access Inf Soc (2013) 12:369–386

123

http://www.signwriting.org/

The Signed Stories project2 is addressed to primary

school. The objective is to make children’s stories acces-

sible in British Sign Language (BSL) and also use ani-

mations, pictures, text and sound (mostly intended as

vibrations, of course) to improve the literacy of deaf chil-

dren. The MOODLE Course Management System3 has

been adapted at the University of Bristol Centre for Deaf

Studies4 (CDS) to deliver in BSL e-learning contents

otherwise available in written English. The Digital Story-

telling Program at Ohio State University5 proposes show-

cases, presentations, publications and workshops where

deaf and hearing participants learn to use digital tools and

interactive story circles to craft narratives.

Little has been done as to model-driven development of

interfaces for deaf people. Present approaches to such

design activity mostly focus on assistive interfaces to

support blind people, with extensive use of the alternative

audio channel ([16, 33]). On the other hand, gesture-based

interaction has been prominently seen as an integration of

speech (e.g., see [27]). Work on the Model-based lAnguage

foR Interactive Applications (MARIA) project is currently

aimed at integrating support for gesture-based interaction,

but its model of gestures is typically related to typical

movements and movement sensors as included in games or

multitouch interfaces ([24, 29]).

Efforts to provide specifications of SLs are currently

mostly focused on the generation of movements of avatars

[8]. The Hamburg Notation System is the basis for Signing

Gesture Mark-up Language (SiGML) [12]. However, this

follows the now outdated notion of gestures as mainly

defined by hand and arm motions. On the contrary, it is

nowadays accepted that information is conveyed in a more

structured multilinear way, through gaze, hands, facial

expression, head and shoulders. This is also the reason why

it is unfeasible to directly transcribe signs from the written

form of a verbal language. On the other hand, the whole set

of elements which characterize SLs can be found in the

definition of SignWriting by the former choreographer

Valerie Sutton [31].

As a remark about modalities of general-purpose infor-

mation communication for deaf users on the Web, it is

interesting to consider some reflections from Fajardo et al.

[13]. At present, regional as well as national variations of

sign language form a group of under-represented language

minorities in the digital world. Thus, members of the deaf

community are usually confronted with Web sites where

both information and navigation compasses are expressed

in non-native language and that do not include their

preferred tongue. This may, and very often does, cause

severe accessibility barriers. The way to ensure the social

integration of the deaf community is to properly incorpo-

rate sign languages into the information and communica-

tion technology (ICT). Along these lines, a solution that is

often exploited on the Web, and that is proposed for

e-learning as well, is to integrate verbal language infor-

mation with videos where a person using SL expresses it in

an alternative form. This strategy is often included in more

sophisticated approaches that are designed specifically for

the Web, to create whole sites by exclusively using SL for

both content and navigation paths, the latter being the

trickiest to render. With the hypervideo technology, links

are inserted in a video so that the user can retrieve further

information about the concepts conveyed in some cut-

scenes (for a review see [10]). The links are represented by

text or by static images, but these cannot properly convey

concepts as they were expressed in SL.

Based on this technology, Fels et al. [14] developed the

Signlinking system. Each Signlink is an author-defined

time slice within the video clip. When the video reaches a

Signlink, a link indicator is displayed. The user can choose

whether to follow the link or continue playing the content.

Though esthetically and technically attractive, such solu-

tions present two main drawbacks. First, it is often unfea-

sible to set up the recording of a high number of clips to

transmit the complete information. Second, video fruition

on the Web is often hindered by bandwidth limitations,

which waste developers’ work and frustrate users. In

addition, lack of standardization makes things even more

complex. A recent structured effort toward deaf inclusion

in distance education is the Dicta-Sign project. Dicta-Sign6

is a 3-year consortium research project. It aims at allowing

the use of sign language in various human–computer

interaction scenarios [11]. Among the addressed research

and design topics, recognition and synthesis engines for

signed languages are worth mentioning. In this context,

Dicta-Sign aims at combining work from the fields of sign

language recognition, sign language animation via avatars,

sign language linguistics and machine translation, with the

goal of allowing deaf users to make, edit and review ava-

tar-based sign language contributions online, similar to the

way people nowadays make text-based contributions on the

Web. The use of avatars animated by a knowledge-based

sign synthesis engine is one of the main features in the

approach [15]. However, according to the deaf researchers

involved in the VISEL project, the quality of avatar ani-

mation is still too far from being fully satisfying. This

opinion, which was one of the recurring topics of our joint

work, is confirmed by the work of other researchers [19],

where there is strong evidence for involving deaf

2 http://www.signedstories.com.
3 http://moodle.org.
4 http://www.bris.ac.uk/deaf.
5 http://digitalstory.osu.edu. 6 http://www.dictasign.eu.

Univ Access Inf Soc (2013) 12:369–386 371

123

http://www.signedstories.com
http://moodle.org
http://www.bris.ac.uk/deaf
http://digitalstory.osu.edu
http://www.dictasign.eu

stakeholders in all steps of design and implementation of

deaf-oriented tools. An appropriate structuring of contents

as well as a way of transcribing text in a SL-like form

seems to be at present the most convincing strategy.

Among the technologies on which StoryEditor is based,

it is important to mention the WiringEditor component of

WireIt,7 an open-source JavaScript library to create Web

interfaces for dataflow applications, visual programming

languages, graphical modeling or graph editors. In turn,

WiringEditor exploits JavaScript Object Notation (JSON),8

a lightweight data-interchange format, which is becoming a

de facto standard for data exchange in AJAX applications.

Via the JSON Language Definition one defines a visual

language in terms of modules and WiringEditor options.

WireIt is based on the Yahoo! User Interface (YUI)

library,9 a set of CSS and JavaScript utilities and controls

for building interactive Web applications, and on inputEx,

an open-source JavaScript framework to build fields and

forms for Web applications.10

3 Telling iconic stories

The adopted approach to the development of an e-learning

environment designed in a fully visual fashion relies on

storytelling. Indeed, the visual modality is often a central

part of storytelling, especially when children are involved

[32]. It has been observed that stories activate visual

thinking,11 and from this point of view, they are a tool of

paramount importance to address learners who mainly

adopt such cognitive strategies. This does not hold only for

deaf people. On the contrary, stories represent one of the

main tools by which people mentally make up a synthesis

of experienced life, especially before a symbolic level of

understanding is fully acquired [5]. Although this mecha-

nism is partially overcome by symbolization in adults, deaf

people maintain a deep connection between symbolic and

iconic levels of meaning, due to their visual approach to

knowledge. In other words, deaf people are essentially

visual [1]. In the development of storytelling environments,

two (non hierarchical) description levels must be

considered:

1. A diachronic level, representing the action flow along

a story-path from the starting to the end place.

2. An iconic level, determining appearance and influenc-

ing the ‘‘felt quality’’ [17] of the user experience.

Modeling tools able to describe both levels are needed

to allow tutors to design and run iconic stories from

scratch. This is the basis for designing the StoryEditor for

DELE.

4 UIDLs and UsiXML

UIDLs allow the description of UIs in an implementation-

independent way. Through them, it is possible to specify

the UI features at several levels of abstraction. These levels

are described in the Cameleon reference framework [6]:

• Tasks and Concepts: describes user tasks that have to

be realized, in a way independent from interaction

modalities and concrete UI elements.

• Abstract UI (AUI): provides a modality-independent

description and represents a UI as a collection of

abstract containers and components.

• Concrete UI (CUI): includes modality-specific ele-

ments, but without reference to specific platforms or

implementations.

• Final UI (FUI): describes the UI as perceived by users

in specific hardware/software platforms.

UsiXML implements the Cameleon framework via dif-

ferent models for different levels of abstraction (with the

exception of the final UI, which needs to be described

directly in the target platform and is not specified in

UsiXML). Model-to-model transformations allow design-

ers to consistently move from the Task Model to the CUI

Model, through the AUI Model. These are defined in a

homogeneous formalism based on transformation rules,

typically in the form of graph transformations.

In UsiXML Task Model, relationships between tasks are

specified via the ConcurTaskTree [23] and LOTOS [3]

formalisms. In the AUI Model, a UI is represented using

Abstract Individual Components (AICs) and Abstract

Containers (ACs), together with their relationships. The

CUI Model describes graphical and vocal modalities of

interaction with interface elements and the associated

behaviors.

The abstract models—together with abstract-to-concrete

transformation rules—represent the information needed by

the environment to determine the input parameters for an

object code generation process. However, lacking a model

for the final UI, a more direct implementation strategy has

been adopted, though remaining bound to the Cameleon

framework and leveraging UsiXML to provide specifica-

tions for model-based generation activities within Story-

Editor. Patterns, rather than transformations, are used to

specify the relations between tasks, abstract UI and con-

crete UI, while specific constructs define transformations

from concrete UI to final UI.

7 http://neyric.github.com/wireit.
8 http://www.json.org.
9 http://developer.yahoo.com/yui.
10 http://neyric.github.com/inputex.
11 http://www.learningandteaching.info/learning/dalebruner.

372 Univ Access Inf Soc (2013) 12:369–386

123

http://neyric.github.com/wireit
http://www.json.org
http://developer.yahoo.com/yui
http://neyric.github.com/inputex
http://www.learningandteaching.info/learning/dalebruner

5 The StoryEditor

The discussion in this section starts from the diachronic

description level. From a computational point of view,

stories can be seen as workflows: (learning) processes

within an organization (e.g., university), in which tasks are

assigned to actors (e.g., students and tutors). The types of

processes and activities devised for the specification of

stories are described in the metamodel of Fig. 1, using

MOF12 (OMG’s Meta Object Facility) syntax, where each

class is an instance of the Class metaclass. The abstract

class Node defines the basic elements that can be connected

to build a path, represented by the Story class. A story

contains a Start node, a Stop node and a set of InternalNodes,

with arbitrary links among them. A Story can have

sub-stories since an InternalNode can be a Story in turn. A

Transition represents a connection between two nodes

within the same sub-story. Every node can have any

number of ingoing and outgoing transitions.

In order to manage the types of workflow derivable from

the DELE metamodel, the YAWL13 (Yet Another Work-

flow Language) workflow management system was first

tested, which provides an editor for workflow description

and a workflow engine for story-paths execution. While

initially this seemed sufficient to provide the story

authoring environment for DELE, it finally emerged that it

could not comply with the major requirement for DELE to

have a full and easy integration of the story editor as a

browser-based application. In particular, it is not possible

to easily customize and represent iconically those pages

which represent ‘‘crossroads’’, that is, pages where the

student chooses the next node to visit among several

equivalent possibilities. As a matter of fact, YAWL allows

easy customization only of the pages to view/edit the

contents of the task. A further limit is the inability to dis-

play the complete map of a path, which is a core pre-

requisite for the execution environment, as this allows

students to know where they stand with respect to the

overall learning task and to move arbitrarily between active

nodes. Other issues were the inability to jump within a path

and the impossibility, in a linear topology, of going back

rather than forward. Finally, preservation of context across

different stories required particular solutions. As a result, it

was decided to develop a specialized visual editor for the

domain-specific language of stories according to the met-

aphor adopted in DELE. In particular, for each class of the

metamodel, specific procedures were defined for their

instantiation and for the construction of the Web pages

offered to the interaction of the DELE users.

The implementation of StoryEditor was therefore based

on WireIt, extending its WiringEditor component to sup-

port the story-paths visual language, while inheriting from

it some of the common features of most visual editors. The

following subsections give a detailed explanation of the

three steps in the definition of interfaces for stories.

Fig. 1 The formal metamodel for story-paths

12 http://www.omg.org/mof.
13 http://www.yawlfoundation.org.

Univ Access Inf Soc (2013) 12:369–386 373

123

http://www.omg.org/mof
http://www.yawlfoundation.org

5.1 First step: visual language definition

5.1.1 Story structure definition

While arbitrary topological structures must be designable

by educational tutors, it is also necessary to avoid sources

of ambiguity in the final result, as well as to make auto-

mated syntax check possible. For this reason, the formal

metamodel of Fig. 1 provided the basis for the definition of

admissible learning paths.

In particular, according to the metamodel, a node along a

path can be either a Task (where to perform a proper learning

activity is performed) or a story in turn (i.e., a sub-story).

There is no theoretical limit to the nesting of stories. As shown

in Fig. 2, from a task node, a student can also access in-depth

sub-stories. The latter may not belong to the normal path of the

main story, but may create entirely alternative paths, which

can be followed by the student within the navigation.

An important extension of the internal nodes class is the

Laboratory node. Tasks can be further divided into Per-

sonalTasks and CooperativeTasks. In particular, in a Lab-

oratory, students perform activities articulated in a number

of PersonalTasks and a single CooperativeTask. Each

student has assigned a personal task to be performed

asynchronously in isolation, while cooperative tasks can be

performed in different ways (e.g., through shared docu-

ments) and require the (synchronous) presence of all par-

ticipants. Active nodes are defined as those that can be

immediately affected by a transition, for example, the next

one in a sequential path. Transitions within sub-stories are

constrained by a number of patterns associated with the

metamodel. When accessing a sub-story, and as far as

unvisited nodes are available, the student can choose to

visit one of those active. For example, when entering a

linear sub-story, the only active node is its starting one.

When a sub-story terminates, that is, all of its nodes have

been visited, the student returns to the parent story (if it

exists) and the context of the latter is restored.

5.1.2 Managing content

While navigating across stories, a notion of context

emerges, through which a student maintains conceptual

orientation, through reference to a parent story from within

a sub-story. A designer can specify different ways in which

to represent the current context of an activity, via context-

sensitive properties, for example, background color, font

style or page layout or more specific content-related ones.

StoryEditor currently manages three types of ‘‘context’’,

intended as a set of characterizing elements, for example, a

specific font or a tag to index the content. These elements

can be defined according to the type of a node:

1. Each text node allows connecting insights to the

learning material (text/images), via the insertion of a

set of tags (simple text strings) for each content

element chosen by the designer.

2. Each network node of type ‘‘Insight’’ defines its own

set of tags.

3. Each node of type Network or Laboratory defines its

own set of variables that can be boolean, integer or

string.

For types 1 and 2, during code generation, each time that

a text node defines a set of insights (hence, a set of tags

associated with each insight), the system proceeds as fol-

lows: for each piece of text/image related to an insight, all

the tags defined for it are read; afterward, all Insight net-

works that define one or more of these tags are searched in

the DB. These networks are retrieved from the DB if they

already exist or are generated on the fly if new collections

of tags are defined. Finally, a link to each such network is

connected to the initial text/image. Moreover, the networks

are generated as ‘‘BOXES’’, each further characterized by

its own type. The type of the box defines a fixed look and

feel as a ‘‘frame’’ for its contents. Within a text node,

clicking on a portion of text/image a page opens showing

all the boxes for all the insights associated with it, if any

exists. Clicking on a box, the user can navigate the related

network, whose graphic will be displayed within the frame

of the box.

As for the third type of context, the ‘‘variables’’ of nodes

of type Network or Laboratory can be used to transfer

information between network nodes, to define conditions

that would allow the implementation of XOR splits type, or

handling of additional help materials provided for each

node in the generated path-history generated.

5.1.3 Task content abstract description

Task node internals are described by UsiXML models, to

consistently define the iconic level of story description. A

few main categories have been identified for DELE story

pages (e.g., ‘‘story container’’ or ‘‘star story access’’),

devising a uniform structure for each of them in the form of

abstract descriptions, specified in terms of page patterns.

These patterns rely on instances of the above-mentioned

Fig. 2 Task Model for StoryContainer

374 Univ Access Inf Soc (2013) 12:369–386

123

UsiXML’s Abstract Interaction Objects (AIOs)—either

AIC or AC—and describe the structure of all pages in a

category. To develop the models needed for a category, a

Task Model is first provided. Then, the abstract page pat-

tern is shown, and a first transformation is provided

between tasks and appropriate AIOs. Task Models are

specified in the IdealXML14 editing environment using the

LOTOS syntax for temporal operators. A main common

structure for all pages within DELE is defined, called

StoryContainer. In a container, the designer can define the

main actions that can be performed by users within a story,

while the reification process outputs adequate graphical

structures for such actions. The Task Model for Story-

Container is shown in Fig. 2, where the two main task

patterns are presented:

1. InteractWithAnotherStory: the user can enter a story

by leaving the current story.

2. InteractWithAStoryNode: the user can enter a node

from within the current story.

In Fig. 4, both ‘‘abstract’’ (StoryInteractionTasks) and

‘‘concrete’’ interaction tasks (e.g., InteractWithAStoryN-

ode) are shown via IdealXML standard icons. The alter-

nate choice operator ‘‘[]’’ expresses the relationship

between interaction tasks as the possibility to choose only

one of them at each time.

The page pattern for StoryContainer is given in Fig. 3 in

terms of instances of AIC and AC classes from the

UsiXML AUI model and of relationships between them.

A main PresentationContainer (an AC) and several AIC

instances form the pattern. The AC is composed of several

different ‘‘page contents’’ related by MutualEmphasis (i.e.,

they cannot be shown together). The AUI Model derives

from the Task Model, where either an AC or an AIC is

associated with each task. The StoryContainer AUI Model

is defined in terms of specific patterns leading to suitable

organizations of the AICs, to be then reified into concrete

components in order to present the content of a learning

task and steer the associated interaction.

Figure 4 shows a pattern which specifies how to express

the InteractWithAnotherStory task. As in [30], InterMod-

elRelationship instances are represented as associations

between model components. In particular, a task is exe-

cuted within an AIC, which is contained in an AC and is

composed of two facets: a control allows the AIC to acti-

vate a visualization into another component in the concrete

UI, and an output allows reification of the AIC as an iconic

image component. In a similar way, the CUI Model is

obtained from the AUI Model. Each AIC in StoryContainer

is implemented as an ImageComponent. Page dynamics is

defined by specifying the activities to be associated with

interesting events. For example, in Fig. 5, a click event

causes a graphicalTransition to start on the connected

graphicalContainer. Similarly, a mouseOver event pro-

duces a graphical transformation in the AIC itself.

As another example, the StarStoryAccess structure rep-

resents the access door to ‘‘star’’ stories, where multiple

paths can be entered by the user without an imposed order.

The Task Model of such structures defines only two pos-

sible task patterns: users can interact with a story-path or

find information about a path (Fig. 6).

The page pattern of StarStoryAccess extends the dia-

gram of Fig. 3, detailing the StarStoryAccess tree (Fig. 7).

The structure of StarStoryAccess simply states that a star

story must have at least two paths, which can be inde-

pendently explored. In fact, if only one path can be fol-

lowed, a ‘‘linear’’ path would result.

Both task patterns described for this UI have to be

executed in a single AIC instance; thus, the AUI model has

to provide a multifaceted graphical interaction component.

Each task is associated with one of the two facets of the

GIC: in Fig. 8, it is shown that the InteractWithAStoryPath

task is responsible for the navigation facet since the AIC

Fig. 3 The page pattern for StoryContainer

Fig. 4 A pattern relating a type of story with its AUI Model

14 http://www.usixml.org/index.php?mod=pages&id=15.

Univ Access Inf Soc (2013) 12:369–386 375

123

http://www.usixml.org/index.php?mod=pages&id=15

itself will work as a navigation target when it is activated.

On the other hand, the InteractWithStoryPathInfo task

requires an output facet for the AIC since a textual label

will be shown to the user as a mouseOver event is per-

formed. Again, associated behaviors can be specified, for

example, when a click event is triggered, the GIC has to

display the page contents, expanding to full page size

through an animation. In a similar fashion, the mouseOver

event causes the GIC to react by visualizing information

about the path it represents (i.e., a graphical output text is

put near the image component).

The set of models and patterns provide the input to

StoryEditor to calculate the generation parameters: for

example, as the page pattern shown in Fig. 5 states that

multiple AICs instances could be put in a StoryContainer,

StoryEditor should ask the story designer to indicate the

exact number of these elements; similarly, since the

AUI-to-CUI relationship patterns specify that AICs are to

be reified as ImageComponent elements, the designer will

be asked to provide these images, etc. After all the needed

models have been provided, StoryEditor is ready to run.

Once launched, StoryEditor reads the story content defi-

nition and structure from a JSON Language Definition

module.

5.2 Second step: story-paths editing

In the next step, the UsiXML descriptions are translated

into JSON as well. Visual language editing only requires

editing the resulting definition files. All the changes that

are made to the structure or content metamodels are

immediately reflected in the visual editor. The view

resulting from the above specifications is shown in Fig. 9.

The editing window provides a list of available modules

and tools on the left side of its GUI layout. A node of a

given type is created within the story by inserting it into the

diagram in the main drawing area, in the center of the

window, via drag and drop of the appropriate module. A

number of communication modules have been developed

to allow the active participation of students in activities

Fig. 5 A pattern for the AUI-to-CUI reification of StoryContainer

Fig. 6 Task Model for StarStoryAccess

Fig. 7 The page pattern for StarStoryAccess

Fig. 8 The pattern for InteractWithAStoryPath

376 Univ Access Inf Soc (2013) 12:369–386

123

supported by the platform, through forums, private mes-

sages, chat and annotations within text. For each of these

modules, functions for the insertion of the content have

been implemented: these contents can be produced by the

student by composing contributions expressed in different

codes: currently, only written and/or video are supported,

but the inclusion of an editor for SignWriting is under way.

A video recorder and player have been directly integrated

within DELE, so that students do not have to use external

applications. To this end, DELE has been interfaced with

the Flash streaming server ‘‘Red5’’, which allows real-time

acquisition of video streams and their recording on the

server.

As for the educational content of DELE, a library has

been implemented to create and enact contextual insights,

which are made accessible by clicking on particular por-

tions of text/image selected during the design phase of the

learning path. These insights (called ‘‘boxes’’) are catego-

rized on the basis of a list of predefined types, each of

which defines a main content and a particular graphic

aspect. Clicking on a box, the student accesses sub-stories

for better insight, within the same graphic frame as that of

the box, and which can be displayed next to the text or full

screen.

By establishing a precise set of characteristics for each

node type, StoryEditor asks the designer to provide all the

information required for the effective generation of the

designed teaching stories. In particular, input forms are

generated by the StoryEditor to ask the designer to insert

the predefined features of each node in the model (which

are instances of types in the metamodel). These forms

follow a schematization of the transformations from

abstract UI to concrete UI: the output JSON description of

each node provided by the editor is just a ‘‘translation’’ in

JSON of the concrete UI in UsiXML. The engine for the

code generation of the stories is implemented starting from

the JSON description provided as output by the StoryEdi-

tor. In this way, when a new story defined through the

StoryEditor is published, it invokes a script that, given

the description of this input story, parses it and generates

the necessary modules in DELE and, finally, returns the

URL of the story generated. At this point, the editor opens

that URL to run the story. The generation is currently

available for all types of nodes, including activities and

workshops. Finally, the runtime environment of the stories

generated has been implemented so as to define generic

libraries for the execution of each story and to view and

manage the reference map for navigation.

All the types of nodes that can be inserted into a model

of history have been associated with the definition of

possible content that can be handled through the Story-

Editor. The properties of the ‘‘Home of a story’’ have been

implemented as the properties of a network; therefore,

there is no specific real node to define them. The node

‘‘Presentation page’’ has taken the name of ‘‘Video’’,

because its content is a video featuring LIS and can be

Fig. 9 A screenshot of StoryEditor

Univ Access Inf Soc (2013) 12:369–386 377

123

entered multiple times within a network of a model and not

necessarily at the beginning. The node ‘‘Job’’ was divided

into its two possible instantiation types: ‘‘Text’’ and ‘‘Web

page’’. It was decided to define a different node for each

type of content in order to enable the designer to imme-

diately identify, thanks to the icon of the node, the type of

the contents of the latter. The ‘‘Activity Nodes’’, through

which a student can carry out a practical activity, are

classified as follows: ‘‘Pairing’’, ‘‘Drag’’, ‘‘Highlight’’,

‘‘Concept Map’’, ‘‘Completion’’, ‘‘Laboratory’’ and ‘‘ILS

Questionnaire.’’

Through StoryEditor, it is now possible to define the

contents of all the Activity Nodes, the structure of these

nodes being completely generated by the script for the code

generation of the stories, managing all the auxiliary

information needed to execute them as well. For example,

since the Laboratory activities implementation is based on

the OpenMeetings open-source package,15 all the Open-

Meetings-specific data are instantiated in the code gener-

ation phase for such kind of nodes. Moreover, for each new

generated node, a new node-specific forum is created in

order to host all the discussions related to such node. Both

textual portions and images included into texts can be

connected to insights through the mechanism of tags: the

designer assigns a set of tags to the selected resource

(portion of text or image) and a set of tags to a network of

insights; the script for code generation later realizes the

connections between resources and insights that declare the

same tags. It is planned to have links to networks of

insights defined in different models without having to know

their names or their internal structures. The topologies that

are provided by DELE are linear and ‘‘star’’. The ability to

provide branches of type AND and OR was therefore

maintained only on the nodes ‘‘Start’’, while the ramifica-

tion of XOR has been maintained available on any type of

node.

In order to facilitate the tutor in the process of designing

a story-path, each time a new sub-story is created, the

editor automatically inserts start and stop pseudo-nodes in

the diagram. Visualization and navigation within sub-sto-

ries are made easier by creating a different window tab for

each of them. An in-depth sub-story can be attached to a

task node by linking it, for example, to some words of the

text contained in the node. Different types of in-depth sub-

stories have been defined, according to their educational

role. The first type is Recommended Further Reading. This

includes in-depth contents that are statically created and

linked by the course designer in the modeling phase of a

story, or even dynamically added by the tutors, for exam-

ple, to address a specific students’ difficulty in a particular

activity. A second type is Past Correlated activities. They

refer to past activities already performed by the student and

allow repetition and reworking of the concepts learned.

Finally, Personal Insights are defined. These insights are

added by the students themselves on the basis of their

personal interests [4]. A syntax check verifies the story

correctness and completeness based on the metamodel

descriptions, which are associated with sets of constraints

that a story must comply with to be published. Finally,

StoryEditor uses a JavaScript adapter to provide loading

and saving functions. It connects to a MySQL database

through AJAX calls to a PHP backend to both store the

wirings and retrieve them.

5.3 Third step: story-paths translation

Once the editing phase is concluded and the syntax check

has been passed, the new story can be published. The

StoryEditor saves the story description in JSON, which will

be interpreted in the runtime environment. Modules from

the story-path visual language are translated in JSON

according to their metamodel description.

A ‘‘Correction and support’’ atomic task is automati-

cally inserted after each activity. The choice of the

content for this task is left to the tutors, so they can

verify how learning activities have been performed. A

cycle is eventually generated, in which tutors can support

students by inserting links toward in-depth sub-stories

relating to their possible errors. Verification is performed

differently for laboratories and for simple tasks. As for

collaborative activities, tutor verification starts only after

all the personal and cooperative tasks have been com-

pleted by students.

6 Story engine

For each type in the metamodel, there is a transformation

pattern from JSON description to HTML pages (PHP),

which exploits CSS specifications. Going in further detail,

each type corresponds to a triple \JSON, CLI-

ENT_STRUCT, SERVER_STRUCT[, where the first

element is the JSON output description provided by the

StoryEditor, and the other two elements are defined in the

following way.

CLIENT_STRUCT:

• HTML: page structure

• CSS: visualization features of page elements

• JS_INTERACTION: script defining the behaviors for

interacting with page elements

• JS_AJAX: script implementing module-related behav-

iors for data exchange between client and server15 http://code.google.com/p/openmeetings/.

378 Univ Access Inf Soc (2013) 12:369–386

123

http://code.google.com/p/openmeetings/

SERVER_STRUCT:

• MODULE: PHP object associated with the module on

the server

• CONTENT_MANAGER: PHP object allowing the

definition, generation and retrieval of module contents.

It takes the content of files in CLIENT_STRUCT,

adapts it to the current navigation instance (e.g., user,

session) and returns it.

Each type in DELE metamodel is concretely generated,

starting from its JSON description, as a DELE module, that

is, as a set of 6 files composing the type SERVER_

STRUCT and the CLIENT_STRUCT. In the generated

DELE runtime environment, students follow paths com-

posed of learning activities and stories within stories. When

all nodes within a sub-story have been visited, the latter is

marked as completed and the global context of the parent

sub-story (if present) is recreated. When navigating along

sub-stories, each time a sub-story is entered, and until there

are nodes to be accessed, students can choose the next

learning unit among ‘‘allowed’’ nodes. In a linear path, for

example, the only allowed node is the first node at the

beginning of the story. Inside a laboratory, students can

freely move between personal and cooperative tasks. The

set of students attending the laboratory has to be known to

allow synchronization: when one student tries to join the

cooperative task, a message is sent to all students not

currently attending this task, requesting them to enter it. If

all students accept the request, synchronization is reached

and the shared work can be done. Otherwise, students are

redirected to their personal tasks. According to the order of

visit, or to the alternative paths a student must—or choose

to—follow as in-depth sub-stories during execution of a

story-path, the student ‘‘lives’’ a personal story. Hence,

different sets of Past Correlated Story-Paths and Personal

Insight Story-Paths, one for each student, are maintained

and shown in a laboratory. The latter is considered con-

cluded when all its tasks (both personal and cooperative)

are done, and the final tutor verification is passed.

Other specific custom services are provided in order to

execute each DELE node. At runtime, the data within each

node instance are selected for viewing and/or updating.

When a task is scheduled, the engine will notify each

custom service associated with the task that there is an

activity ready to be delegated to it. Hence, the custom

service performs a checkout of the task data and generates

an appropriate editing form based on the CUI description

provided for that node by the StoryEditor. Two examples

of generated final UI are shown in Figs. 10 and 11, pre-

senting two initial pages of ‘‘star’’ story-paths. In particu-

lar, the screenshot in Fig. 11 shows the presentation page

of a star story-path encountered as a sub-story of the star-

path in Fig. 10, with a button to return to the parent node.

Figure 12 shows how a piece of text is linked to a box

with a network of insights. The box is displayed on demand

when the user clicks on the highlighted text. Figure 13

Fig. 10 Initial page of a ‘‘star’’ story-path

Univ Access Inf Soc (2013) 12:369–386 379

123

shows one of the insights opened (in this case, a video in

SL is being played). Since both text highlights and insight

boxes can be too intrusive, an icon with a special pair of

glasses allows choosing the visualization of possibly

present elements of this kind. After finishing, taking the

glasses off will return the ‘‘clean’’ page.

Finally, Fig. 14 shows how a student can link a personal

comment to a piece of text. The presence of comments is

indicated by balloons on a specific icon.

7 SignWriting in DELE

SignWriting16 (SW) is a system for writing expressions of

sign languages. It exploits an alphabet of glyphs, used to

produce a transcription of any SL in the world. At present, it

is one of the most well-accepted ‘‘written’’ representations of

SL within the deaf community. Compared with other nota-

tions, SW can express a signed sequence by itself, without

any accessory description and/or annotation written in a

different language (typically the written form of a verbal

language). SW glyphs are all gathered and organized in the

International SignWriting Alphabet (ISWA). ISWA is con-

tinuously updated and is available as an archive with tens of

thousands of images (.png), each representing an SW glyph.

Glyphs are used to represent configurations of the body parts

involved in performing a sign, as well as contact points

among such parts and sign dynamics. Figure 15 shows

examples of families. In the context of the work reported

here, a transcriber named SWift (SignWriting improved fast

transcriber) was developed to allow users to compose

‘‘written’’ signs using SignWriting glyphs (Fig. 16). The

final goal is to fully integrate it in DELE, to allow both an

alternative code for contents and to support personal com-

munication. It will be both a tool provided through an

appropriate module to be combined with the others during

story design, within chat, forum, etc., as both an authoring

tool and a communication tool for learners.

In the metamodel for SW of Fig. 17, an Utterance is

defined as an instance of a Concept, where a same concept

can be expressed using many different expressions. Utter-

ances are formed by smaller entities namely Sign elements,

as represented by the association between these two clas-

ses. It is worth noticing that Sign elements do not neces-

sarily correspond to words in a verbal language. As a

matter of fact, they can, and often do, express an overall

articulated thought (sentence) [9]. In other words, a single

sign may express a whole short sentence or structured

concept. A sign is produced by one or more Occurrence of

some Glyph, representing the specification of a physical

manifestation of an individual traceable element. While the

term glyph is more typical of the definition of SW, it is also

used to describe atomic elements common to both SW and

SL specifications.

Fig. 11 Initial page of a ‘‘star’’ sub-story, with a button to return to the parent node

16 http://www.movementwriting.org/symbolbank/.

380 Univ Access Inf Soc (2013) 12:369–386

123

http://www.movementwriting.org/symbolbank/

The metamodel sets an important difference between the

specification of a glyph and its occurrences. This is moti-

vated by two facts: first, the ISWA is composed by tens of

thousands of glyphs, so there might be glyphs not occurring

in any sign, but which are worth being stored and coded,

because they might be useful in the future; second, a

Fig. 12 Text highlighting indicates the presence of a network of insights

Fig. 13 One of the insights is shown, in this case a SL video

Univ Access Inf Soc (2013) 12:369–386 381

123

specification also encompasses the admissible variations

which can be applied to each individual occurrence. In

particular, a Category is an aggregate of glyphs subject to

some constraint on each possible occurrence and the body

parts and movements that can be used to generate their

occurrences. Depending on the adopted concrete specifi-

cation of the lexicon of signs, a category can be organized

into sub-categories. Figure 17 lists the collection of cate-

gories associated with the ISWA definition, for example,

Configuration, ForearmMovement, HandMovements.

An example of sub-categorization in the ISWA definition

(not shown in the metamodel, but which has been used in

SWift) is the specialization of the HandMovement category

as StraightHandMovement and CircularHandMovement.

In Sutton’s original proposal for a concrete presentation

of SW [31], of which the proposed metamodel is a

refinement, glyphs were organized according to the fol-

lowing hierarchy. It is presented below to give an idea of

the complexity of the dimensions involved.

Category: it distinguishes anatomical areas and other

elements such as punctuation and contacts: configurations,

movements, head and face, body, dynamics and rhythm,

punctuation and advanced annotation.

Group: each category is divided into groups at most 10,

distinguishing different areas. Groups in a category can be

heterogeneous, for example, a single category gathers

contacts and all movements (of hands, forearms, wrists and

fingers).

Base symbol: identifies a specific glyph in a group.

Variation: distinguishes different manifestations of

some symbols; as an example, for the symbol representing

the bended forefinger at knuckle, the two possible varia-

tions code the difference in angle of the knuckle.

Filling: they identify modifications of the same base

symbol; for example, fillings in configurations distinguish

the visible side of the hand and the plane where the sign is

performed: there are 6 different fillings, corresponding to

Fig. 14 Addition of a personal comment

Glyph examples Family description

Hand configurations

Contacts: where, how and how
many times a hand comes into
contact with a body part
Movements (of hands, wrists,
forearms, etc.)

Head (expressions, movements,
etc.)
Shoulders, arms, bust
Dynamics and movement
coordination
Punctuation

Fig. 15 Some examples of families of glyphs

382 Univ Access Inf Soc (2013) 12:369–386

123

whether the palm, the edge or the back of the hand are

seen, and whether the hand rests on the vertical or hori-

zontal plane.

Rotation: as for fillings, they identify modifications of

a same base symbol; as an example, in some configu-

rations rotation allows users to distinguish hand orien-

tations, that is, how it is turned and the used hand (left

or right).

The main difficulty in defining a concrete syntax for

representations of SLs is their four-dimensional quality

(one temporal and three spatial dimensions), allowing a

high degree of freedom in arranging the base structures that

express signs in two dimensions. As a consequence, the

SWift interface allows great freedom in the composition

and characteristics of aggregated glyphs. The proposal of

an abstract syntax through the metamodel drafted in

Fig. 16 A screenshot of swift

Fig. 17 Metaclasses and

classes in a metamodel for Sign

Languages and SignWriting

Univ Access Inf Soc (2013) 12:369–386 383

123

Fig. 17 is at the basis of Swift and can serve as a guide to

build a software framework where signs might be synthe-

sized as well as analyzed.

A first prototype of SWift has been implemented in a

contextual design process [2] with a group of deaf users.

This method requires that a cross-functional team com-

posed by designers, usability professionals, developers and

also customers, interact within the real users’ setting during

all design phases, in order to reach a common under-

standing and to agree on users’ needs and on how to design

a system for them. Regarding SWift design, the resulting

interaction pattern reflects the absence of particular limi-

tations on the sign composition. The user can select a

specific body part and is introduced to the set of variations

and rotations provided for the glyphs in that group. Dif-

ferent aspects are represented by different Choose Boxes.

A specific element can be chosen from each of them, so

that the set of glyphs to choose is reduced accordingly.

Once a glyph has been chosen, it can be dragged and

dropped in the board space.

Despite having designed and developed SWift in tight

collaboration with deaf researchers, it was decided to also

run a first phase of systematic usability testing of SWift.

This was considered necessary for a further extensive

validation of the application. A usability test was con-

ducted by adapting the ‘‘Think Aloud Protocol’’ to the

needs of deaf people. This ‘‘adaptation’’ was in fact a major

upheaval in the structure of the test, starting from spatial

configuration of the test, the mode of interaction with the

participant, the decision to make available any content

necessary for the test (typically a list of tasks and the

welcome message) in SL, besides spoken language. Deaf

users cannot actually ‘‘think aloud’’. They rather commu-

nicate through SL and often demonstrate a higher vari-

ability in their face expression than other users. Roberts

and Fels [26] suggest the setting shown in Fig. 18.

CAM1 records a rear view of the participant, the com-

puter screen and the interpreter. CAM2 records the front

view of the participant and the investigator. The two

recordings must be analyzed and synchronized. Further-

more, when dealing with two separate videos, it is difficult

to maintain a synoptic view of what is happening during

the test. A system using a single camera was adopted,

introducing the use of a projector. The computer screen is

projected on the wall, and a single camera records anything

that is worth of attention. The test was structured in three

phases.

• The welcome time—the participant is greeted and

briefed by a screen containing a signed video and its

transcription.

• The sign-aloud test—this is the most important part of

the procedure: the participant is asked to perform a list

of tasks on SWift; during this phase, the participant will

be asked to sign anything that comes to her/his mind.

• The final usability questionnaire—adapted from QUIS

questionnaire [28].

Of course, the second phase deserved special attention.

Users need reminders for which task is being performed,

what needs to be done, etc. The task list should be available

in both Verbal Language (VL) and SL. It was chosen to

involve an interpreter because the possibility of interaction

between the participants and the interpreter increases cor-

rect understanding of the tasks. In particular, the interpreter

always provided a task translation in SL at the beginning of

each task. Required tasks included both basic actions, such

as inserting a random glyph, or looking for a particular one,

and complex ones, such as composing an assigned sign. In

the third phase, the participant was asked to answer a

usability questionnaire both in SL and in VL. The ques-

tionnaire was designed adapting the QUIS usability ques-

tionnaire [28] to the specific application and to the needs of

deaf users, to stimulate participants to express their opin-

ions. In particular, each (simplified) written question was

accompanied by the corresponding SL clip. A preliminary

test session was conducted with ten deaf users. The

obtained results were very encouraging and will be used to

improve some interface aspects. Details are given in the

following. It is worth considering that the typical problems

of user recruitment for tests are amplified by the pecu-

liarities of the deaf condition, especially since knowledge

of SignWriting is still limited, and by the need of a SL

interpreter. The possibility of running a modified version of

the tests online is also currently being investigated, and it is

planned to perform a more extensive evaluation in the next

future.

The low number of errors made by participants in the

use of interface buttons confirmed the quality of most of

the design choices. Some doubts persist on the suitability of

the wastebasket icon since it was seldom used. As for the

Fig. 18 Experimental setting by Roberts and Fels [26]

384 Univ Access Inf Soc (2013) 12:369–386

123

navigation, the lack of any glyph in the home screen was

misleading for most participants since they expected to find

them. Moreover, the use of graphics different from glyphs

as icon for some button or as label for some choice boxes

raised some problems since users tended to interpret them

in a way different from glyphs or to ignore them. When

arriving at a specific set of Choose Boxes, used to identify

groups of glyphs related to a specific trait, many deaf users

preferred to make only one choice, instead of one for each

Box as allowed by the interface. This may be due to the

fact that the possibility of choosing one option from each

box should be better signaled. It is planned to devise a way

to make this possibility clearer. At the end of the test

session, most users expressed appreciation for the modal-

ities chosen for the test, in particular for the final ques-

tionnaire. The overall results were very satisfying. They

underlined precise trends for specific aspects of the appli-

cation, confirming the reliability of the obtained responses.

8 Conclusions

In this paper, a model-driven approach to developing UIs

for deaf people has been presented. A fully iconic page

structure is proposed to enhance deaf people’s motivation

while navigating in virtual environments. In fact, the iconic

modality aims at leveraging the deaf-peculiar visual way of

grasping information.

This iconic structure is applied to the pages of story-

based learning paths, and the StoryEditor visual editor has

been presented as a powerful tool for manipulating the two

levels of stories description, that is, iconic and diachronic.

Finally, the written representation of Sign Languages

has been taken into account, proposing a metamodel for the

SignWriting code extendible to Sign Languages in general

and which can be the basis for incorporating specifications

for this form of interaction into UsiXML.

References

1. Antinoro Pizzuto, E. et al.: Language resources and visual com-

munication in a deaf centered multimodal E-learning environ-

ment: issues to be addressed. In: Proceedings of the LREC 2010,

pp. 18–23 (2010)

2. Beyer, H., Holtzblatt, K.: Contextual design. Interactions 6(1),

32–42 (1999)

3. Bolognesi, T., Brinksma, E.: Introduction to the ISO Specifica-

tion Language LOTOS. Comput. Netw. ISDN Syst. 14(1), 25–59

(1987)

4. Bottoni, P., et al.: DELE: a deaf-centered E-learning environ-

ment. Chiang Mai J. Sci. 38, 31–57 (2011)

5. Bruner, J.S.: The narrative construction of reality. Critical Inquiry

18(1), 1–21 (1991)

6. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L.,

Vanderdonckt, J.: A unifying reference framework for multi-

target user interfaces. Interact. Comput. 15(3), 289–308 (2003)

7. Capuano, D., et al.: A deaf-centred e-learning environment

(DELE): challenges and considerations. J. Assist. Technol. 5(4),

257–263 (2011)

8. Cox, S. et al.: TESSA, a system to aid communication with deaf

people. In: Proceedings of the 5th SIGCAPH. pp. 205–212.

ACM, New York (2002)

9. Cuxac, C.: French sign language: proposition of a structural

explanation by iconicity. In: Braffort, A., Gherbi, R., Gibet, S.,

Teil, D., Richardson, J. (eds.) Gesture-Based Communication in

Human-Computer Interaction. Lecture Notes in Computer Sci-

ence vol. 1739/1999, pp. 165–184 (1999)

10. Debevc, M., Safaric, R., Golob, M.: Hypervideo application on an

experimental control system as an approach to education. Com-

put. Appl. Eng. Education 16(1), 31–44 (2008)

11. Efthimiou, E., Fotinea, S.-E., Vogler, C., Hanke, T., Glauert, J.,

Bowden, R., Braffort, A., Collet, C., Maragos, P., Jérémie Se-

gouat, J.: Sign language recognition, generation, and modelling: a

research effort with applications in deaf communication. Uni-

versal Access in Human-Computer Interaction. Addressing

Diversity. Lecture Notes in Computer Science, vol. 5614/2009,

pp. 21–30 (2009)

12. Elliott, R., et al.: An overview of the SiGML notation and SiG-

MLSigning software system. Proc. LREC 2004, 98–104 (2004)

13. Fajardo, I., Vigo, M., Salmeron, L.: Technology for supporting

web information search and learning in sign language. Interact.

Comp. 21(4), 243–256 (2009)

14. Fels, D.I., Richards, J., Hardman, J., Lee, D.G.: Sign language

web pages. Am. Ann. Deaf. 151(4), 423–433 (2006)

15. Fotinea, S.-E., Efthimiou, E., Caridakis, G., Karpouzis, K.: A

knowledge-based sign synthesis architecture. UAIS 6(4),

405–418 (2008)

16. Göhner, P. et al.: Integrated accessibility models of user inter-

faces for IT and automation systems. In: Proceedings of CAINE

2008, pp. 280–285 (2008)

17. Haesen, M. et al.: Using storyboards to integrate models and

informal design knowledge. In: Hussmann, H., Meixner, G.,

Zuehlke, D. (eds.), Model-Driven Development of Advanced

User Interfaces. Springer, New York pp. 87–106 (2011)

18. Johnson, M.: The Meaning of the Body. University of Chicago

Press, Chicago (2007)

19. Kipp, M., Nguyen, Q., Heloir, A., Matthes, S.: Assessing the deaf

user perspective on sign language avatars. In’’ Proceedings of the

13th International ACM SIGACCESS Conference on Computers

and Accessibility (ASSETS ‘11), pp 107–114. ACM, New York,

NY, USA

20. Lakoff, G., Johnson, M.: Metaphor We Live By. University of

Chicago Press, Chicago (1980)

21. Limbourg, Q., Vanderdonckt, J.: UsiXML: a user interface

description language supporting multiple levels of independence.

In: Matera, M., Comai, S. (eds.) Engineering Advanced Web

Applications, pp. 325–338. Rinton Press, Paramus (2004)

22. McDrury, J., Alterio, M.: Learning Through Storytelling in

Higher Education: Using Reflection and Experience to Improve

Learning. Dunmore Press, Palmerston North (2002)

23. Paternò, F.: Model-Based Design and Evaluation of Interactive

Applications. Springer, New York (1999)

24. Paternò, F., Santoro, C., Spano, L.D.: MARIA: a universal,

declarative, multiple abstraction-level language for service-ori-

ented applications in ubiquitous environments. ACM TOCHI.

16(4) (2009)

25. Perfetti, C. A., Sandak, R.: Reading optimally builds on spoken

language: Implications for deaf readers. J. Deaf Stud. Deaf

Education 5, 32–50 (2000)

Univ Access Inf Soc (2013) 12:369–386 385

123

26. Roberts, V.L., Fels, D.I.: Methods for inclusion: employing

think aloud protocols in software usability studies with indi-

viduals who are deaf. Int. J. Human-Comput. Stud. 64(6),

489–501 (2006)

27. Sharma, R. et al.: Speech-gesture driven multimodal interfaces

for crisis management. In: Proceedings of the IEEE,

pp. 1327–1354 (2003)

28. Slaughter, L., Norman, K.L., Shneiderman, B.: Assessing users’

subjective satisfaction with the information system for youth

services (isys). In: VA Tech Proceedings of Third Annual Mid-

Atlantic Human Factors Conference, pp. 164–170 (1995)

29. Spano, L.D.: A model-based approach for gesture interfaces. In:

Proceedings of EICS 2011, pp. 327–330. ACM, New York (2011)

30. Stanciulescu, A.: A Methodology for Developing Multimodal

User Interfaces of Information System. Ph.D. thesis, Université

Catholique de Louvain, Louvain-la-Neuve, Belgium (2008)

31. Sutton, V.: A way to analyze American Sign Language and any

other Sign Language without translation into any spoken lan-

guage. In: National Symposium on Sign Language Research and

Teaching (1980)

32. Szechter, L.E., Liben, L.S.: Parental guidance in preschoolers’

understanding of spatial-graphic representations. Child Dev.

75(3), 869–885 (2004)

33. Van Hees, K., Engelen, J.: Non-visual access to GUIs: leveraging

abstract user interfaces. In: Proceedings of ICCHP’2006, LNCS

4061, pp.1063–1070. Springer, New York (2006)

386 Univ Access Inf Soc (2013) 12:369–386

123

	Stories and signs in an e-learning environment for deaf people
	Abstract
	Introduction
	Related work
	Telling iconic stories
	UIDLs and UsiXML
	The StoryEditor
	First step: visual language definition
	Story structure definition
	Managing content
	Task content abstract description

	Second step: story-paths editing
	Third step: story-paths translation

	Story engine
	SignWriting in DELE
	Conclusions
	References

