
LONG PAPER

Accessible design and testing in the application development
process: considerations for an integrated approach

Gottfried Zimmermann Æ Gregg Vanderheiden

Published online: 9 November 2007

� Springer-Verlag 2007

Abstract Accessible design principles should permeate

virtually all phases of the application development cycle,

using existing ‘‘best practices of software engineering’’ for

accessibility purposes. This paper proposes a methodology

for accessible design and testing that includes proven tools

of software engineering, namely use cases and scenarios, to

capture functional requirements. Guidelines developed

through user testing and heuristics are made real using

personas to exemplify accessibility requirements, reflecting

a diversity of user capabilities and use contexts. For

implementation and testing, test cases containing accessi-

bility checkpoints are generated, based on the guidelines.

Complementary to this methodology, expert reviews and

user testing should be conducted for evaluation of the

developed products and further refinement of the devel-

opment process.

Keywords Accessible design � Personas � Testing �
Universal design � Use cases

1 Introduction

It is commonly recognized that mainstream products

should be developed so that they are accessible to people

with disabilities and older users by following universal

design principles.

Lawmakers are also pushing for making hardware and

software products and websites accessible to people with

disabilities. In the United States, section 508 of the Reha-

bilitation Act mandates all federal agencies to purchase

only accessible products, and to provide information on the

Web in a barrier-free manner. Similar regulations are under

consideration, or have been enacted, in other countries,

including Australia and many European countries.

In general, accessibility regulations rely on a common

and standardized view of what makes a software product or

a website accessible. The Trace Center of the University of

Wisconsin and the World Wide Web Consortium (W3C)

have been pioneers in developing guidelines for accessible

design in the software and Web domains [3, 24]. Today,

accessibility guidelines exist for the major operating sys-

tems and platforms, for software in general [9, 10], for the

Web, for e-learning applications, for public terminals, for

telecommunications, and other domains. For a list of

accessibility standards and guidelines, refer to [26].

This paper proposes a methodology that draws from the

work on accessibility guidelines, combining them with

existing tools in software development, thus providing a

model that integrates the implementation of accessibility in

mainstream products within existing product development

practice.

Guidelines need to be built into today’s development

environments to impact the products that are being devel-

oped in these environments. Application development is

typically happening under time and budget constraints, and

there is rarely time for designers and developers to go

through long lists of accessibility criteria. It is important for

accessible design to be integrated into the software engi-

neering process so tight, that its manifestation mingles with

G. Zimmermann (&)

Access Technologies Group, Wilhelm-Blos-Str. 8,

72793 Pfullingen, Germany

e-mail: gzimmermann@acm.org

G. Vanderheiden

Trace R&D Center, University of Wisconsin-Madison,

1550 Engineering Dr., 2107 Engineering Centers Bldg,

Madison, WI 53706-1609, USA

123

Univ Access Inf Soc (2008) 7:117–128

DOI 10.1007/s10209-007-0108-6

other concepts and methods to the degree that there is no

difference in handling, whether an activity is motivated by

accessibility concerns or for any other reason. In effect, this

paper proposes to extend the development process in order

to enhance the usability of the products so that they natu-

rally accommodate and are usable by people with a wide

range of abilities and in a wide range of environments.

It is important that the development of accessible

applications be supported in an automated fashion as much

as possible. Tools are needed that automatically assess the

accessibility of a product in general, and with regard to

specific user groups, and provide process-integrated and

constructive guidance to the developer on how to apply

accessibility principles.

Accessibility considerations need to be included into the

development process from the beginning, and not as a

patch that can be applied to a product after it is complete.

In fact, if accessibility is added on to a Web application

after development, costs are about 10 times more than if it

is built in from beginning [23]. As a consequence, acces-

sibility has the notion of being unaffordable, and is widely

assumed to harm the competitiveness of a product.

To change this situation, it is necessary to make acces-

sible design principles understandable and operable for

mainstream application development, and to impact the

design of the development tools and environments that are

widely used by the software and Web industry. In such a

context, accessibility requirements are treated as ordinary

requirements, so that developers find them in their task

descriptions together with functional and performance

requirements. In this integrated approach, the developers

do nothing special to make a product usable to those with

disabilities—they just do their ordinary job of developing

software to meet the specified requirements.

Software and Web application development is not a new

discipline. Although there are many projects that have

failed, there are well-known concepts that have proven

successful in dealing with the complexity of application

development. Therefore, the goal of this work is to use ‘‘best

practices of software engineering’’ as a vehicle for incor-

porating accessible design principles into the mainstream

application development. By building on existing process

frameworks, designers and implementers can more easily

address accessibility related issues, rather than having to

learn and adopt fundamentally new tools and processes.

The remainder of this paper describes a proposed

methodology or process model for accessible design and

testing, combining existing software development best

practices in a new way for an integrated approach:

1. Capturing accessibility requirements in a way that

makes them tangible and comprehensible, through use

cases and personas.

2. Making accessibility requirements concrete through

scenarios and guidelines for accessible design. (In this

paper, the term ‘‘guidelines’’ is used to mean acces-

sibility standards and guidelines that contain

interoperability techniques and heuristics for accessi-

ble design).

3. Manual and automatic testing based on test cases and

accessibility checkpoints that are derived from

guidelines.

4. Complementary user testing and expert reviews, thus

evaluating intermediate and end results, and continu-

ously improving the overall process model.

The proposed approach is based on experience of the

authors with over 50 companies. It is summarized here in

order to facilitate discussion and trial within corporations

interested in exploring ways to incorporate accessibility

directly into their processes. Since every company is

different (and often even different from division to

division), no company will be able to incorporate the

process directly as described. Additionally, any implemen-

tations by one company may have limited relevance to

successful implementation in another. The concepts are

presented here therefore, not so much as a roadmap, but to

facilitate thinking and exploration within companies inter-

ested in long-term evolution of their core design processes

to include accessibility, including design for an aging

population.

In this paper, the phrase ‘‘application development’’ is

used as a term for the development of software in general,

and the development of Web sites and Web applications.

Also, ‘‘product’’ is used to refer to the outcome of the

application development process, which may be any soft-

ware application or Web-based application.

2 Related work

Use cases were introduced by Ivar Jacobson in 1992 [11].

A use case is a sequence of actions a system performs that

yields an observable result of value to a particular actor

[12]. Use cases focus on what a system should do rather

than how it should do it. They act as a common language

for communication between the customers or users and the

system developers. Therefore, they can be used to capture

requirements very early in a development project. They are

the drivers of an incremental application development and

the threads that hold the various development activities

together throughout a product’s lifecycle.

Even before being dubbed ‘‘personas’’, various tech-

niques of user profiling and the creation of user archetypes

have been used in software development for a long time,

under various names (for an example, see [7]).

118 Univ Access Inf Soc (2008) 7:117–128

123

In 1999, Alan Cooper introduced the concept of ‘‘per-

sona’’ [4]. A persona is a realistic description of a user of a

system, capturing their goals and needs when using the

system (‘‘goal-directed design’’). The specification of a

persona gives a system’s fictitious user a name and a face

(photo), and typically contains a rough description of a day

in the life of that persona. Though described as a user with

a real life, a persona typically reflects a group of users

rather than an existing individual.

Personas have been used in user-centered and partici-

patory design. By the means of personas, developers are

enabled to look upon their system through the eyes of

potential users, with their specific goals and needs. This is

extremely helpful if an application is to be developed that

will be used by a variety of users with varying needs and

preferences (cf. [18]).

Four years after the introduction of personas, Dayton

reports [6]: ‘‘Storytelling through personas and scenarios is

becoming a widely implemented practice in the design of

large websites and other interactive technology products’’

(p. 332). Dayton examines how personas and scenarios

have been used in user and task analysis, and identifies

three main aspects: user research, empathetic identification

with personas and their goals, and information and inter-

action design.

Randolph suggests the use of personas in smaller soft-

ware development projects, to get an early start in thinking

about user requirements [18]. Dantin reports on a study of

how Randolph’s approach would have benefited the user

interface design of two small-scale educational applica-

tions [5]. In this study, the meaning of Nielsen’s usability

heuristics was clarified by attaching them to personas. The

methodology proposed in this paper takes a similar

approach—tying guidelines to personas for the sake of

making it easier for designers to understand and apply

them.

Creators of personas have followed different approaches

and principles in application development projects. In an

interesting study [22], Shyba and Tam compare the

development of personas with the process of an actor

identifying itself with a role in a play.

Among many companies that have taken the persona

approach seriously in software development, Microsoft has

adopted and extended the persona idea and made it part of

their software development process. Pruitt and Grudin [17]

describe how personas were used in two projects of dif-

ferent size at Microsoft, namely the development of the

MSN Explorer, and the development of Windows. The use

of personas was extended beyond the domain of designers

and their clients, to include developers, testers, writers,

managers, marketers, and others. Although not aiming for

disabled personas (the 6 personas that were created for the

development of Windows would hardly be sufficient to

reflect the various kinds of disabilities), their descriptions

included information on accessibility. Pruitt and Grudin

argue that personas are more engaging than design based

primarily on scenarios, and underline that with insights

from psychological theory.

In consumer electronics, requirements engineering is

particularly challenging, because of the anonymity of users

and their large variety of preferences and needs. Aoyama

[2] reports about using personas and scenarios for effective

capture of user requirements for embedded software in

mobile phones, using a combination of conjoint analysis

and requirements engineering. The development of soft-

ware based on a universal design approach has to cope with

similar issues. However, in contrast to the approach pro-

moted by [2], in the context of universal design user

requirements that have only little user representation

(called ‘‘marginal services’’ by Aoyama), should not be

eliminated, since this would defeat the purpose of devel-

oping applications that are accessible for everybody.

Personas have captured user requirements in the devel-

opment of domestic ubiquitous computing applications.

Schmidt and Terrenghi [21] report about a study that

brought about design guidelines for the creation of novel

display artifacts for home environments, using a scenarios-

based participatory design process.

Personas have also been used for modeling users of

educative software. A process involving personas and

scenarios for the development of interactive online teach-

ing systems is introduced by Yu and Liu [25]. That process

is similar to the methodology described in this paper,

although its notion of scenarios is somewhat broader.

A more critical view on personas is taken by Rönkkö

[19]. In three studies, Rönkkö claims that personas have

played no or only a little role in user interface design,

compared to other design influences. However, he admits

that in one project the concept of personas was useful as a

political instrument.

In some cases (that are of particular interest here), per-

sonas have been used in application development to reflect

the requirements of a particular user group that would

otherwise run the risk of being overlooked or not being

sufficiently addressed.

Personas have been used to model children as a targeted

user group, and adaptations to the original persona concept

have been made to reflect the specific needs of children.

Antle [1] describes a theoretical and empirical framework

for creating and using user abstractions of children (child-

personas), thus mostly eliminating a designer’s assump-

tions about children.

Personas can also guide designers in understanding the

needs of older people and people with disabilities.

Mueller [14, 15] describes this approach (using personas

with disabilities in the design process) as a tool to help

Univ Access Inf Soc (2008) 7:117–128 119

123

designers understand how users of all ages and abilities

might react to their designs. His work has led to a set of

personas developed at the Wireless RERC (Rehabilitation

Engineering Research Center on Mobile Wireless Tech-

nologies) in Atlanta, GA. These personas are used to

describe how people with disabilities use their cellular

phones and smart phones.

The methodology proposed in this paper follows the use

of personas for the sake of accessible design, following the

universal design approach. Within countries of the Euro-

pean Community and beyond, universal design has been

promoted as a promising approach for a sustainable

improvement on people’s access to products and services

in information and communication technologies (ICT). In

addition to reaching new customers who have been

excluded from of the market previously, universal design

has been shown to make products more attractive for many

users [13].

3 Capturing accessibility requirements

When designing a product, it is necessary to know the users

addressed by the design. Although accessibility is some-

times described as ‘‘usability for all users’’, some aspects of

accessibility go beyond usability in its traditional inter-

pretation, and involve usability by people with different

sets of abilities and personal tools. A substantial aspect of

accessibility is interoperability with assistive technology,

and hence the requirement of conformance to established

standards.

Accessibility regulations and policies will in many cases

require that a product has to be accessible to users with a

very broad range of functional limitations, including indi-

viduals who are older and often have multiple functional

limitations. Typically, a product will have to be usable by

almost any type of user, possibly with the exception of

some age-based user groups. For example, an online

banking system will not ordinarily be used by a 6-year old

child.

Often, accessibility is thought of as a software quality

that is inherent to a product or not. However, in a strict

sense, accessibility is not a binary attribute that is true or

false, but a relation between a product and a user in a

particular context of use. Therefore, the question to be

asked should not be: ‘‘Do we want to make this product

accessible?’’, but rather: ‘‘What is the range of users of this

product?’’, ‘‘What are their abilities and limitations?’’ and:

‘‘Under what circumstances will they use this product?’’

Based on these questions and their answers, the range of

personal, environmental, and task related factors that

should be addressed when identifying the requirements for

a product should be clear.

At the beginning of a software development project, the

first activity is to think about the envisioned product and its

users [16]. In doing so, it is important that the full range of

users be included, not just the typical or stereotypical users.

An online banking application is discussed here as an

example. Online banking addresses a variety of people,

men and women, old and young, English and Spanish

speaking, computer programmers and people who are not

comfortable with technology. The online banking appli-

cation has to be simple to use—people will not bother

reading a manual when doing their banking business. A

significant user group is the group of elderly people,

including those who are too frail to go to the bank building.

Elderly users will often experience fear in dealing with

technology. They may have difficulties when reading small

text or not be able to see at all. Also, some users may not be

able to use a mouse because of limited manual dexterity,

including users of all ages with physical disabilities.

The primary use context of the online banking appli-

cation will be the home environment. It will run on home

computers that are connected to the Internet. Some users,

however, may want to disconnect while working on their

wire transfer order because they use a dial-up modem on a

single phone line and want to make a phone call in the

process of editing the electronic form. Only by taking these

and other considerations on the target users and the con-

texts of use into account, the product can be successful in

its goal of serving more customers at lower cost to the

bank.

Based on the target users, their needs and constraints,

important functional (i.e., what the product does) and non-

functional (e.g., interface) requirements can be identified

before the design has begun. In the online banking exam-

ple, images should be used only if they are easy to

recognize, even for users who have poor vision. Design

constraints may also impact the platform the application

can run on. For example, since the product is intended to be

accessible by people who are blind, at least one screen

reader should be available on the targeted platforms and

work well with the application. Alternatively, the product

could be designed to provide audio output by itself where

this is practical and effective. The earlier these require-

ments are identified in the development process, the better.

The above are not intended to argue against an iterative

development process in which requirements are added,

modified or dropped during the lifecycle if indicated by

technical, time, budget or other reasons. An example of

such an iterative development process model is the

Rational Unified Process [12]. However, even in an itera-

tive approach, a major goal is to define an initial set of

requirements (which includes use cases) that is as complete

as possible, early in the process so that it can constitute the

basis for further iteration planning and risk management.

120 Univ Access Inf Soc (2008) 7:117–128

123

At any point in the process, the set of requirements should

reflect the current knowledge of the envisioned product.

Once accessibility requirements (including any legal

requirements that aim at making a product accessible to

people with disabilities) are captured, they should be

treated equally to other requirements. Thus, accessibility

for the entire target user base (an interface requirement)

should be integrated in the overall quality of the product, in

the same way that the product functional description

(functional requirements) contributes to its quality. Con-

sequently, it is a product defect if the product fails to be

accessible to any one of its targeted users.

Accessibility requirements should be based on the tar-

geted users, and the question arises of how these

requirements can be used to drive the development process.

Clearly, creating a long list of requirements that would

cover all types, degrees and combinations of disability

(requirements that the designers and developers have to go

through manually) will not be practical for most projects.

To make accessibility requirements effective in product

development, they have to be captured in a way that is

tangible, concrete and reasonable in number for the

members of a project team. As described in the following

sections, personas and guidelines, embedded in the context

of use cases and scenarios, are suitable tools for doing this.

3.1 Use cases

In mainstream software engineering, use cases have been

successfully employed in numerous projects to specify the

external behavior of an application. Use cases make

functional requirements operable and graspable for all

stakeholders in a development project (see Fig. 1).

From the use case perspective, the user of a system is an

‘‘actor’’, whose user interface needs and abilities are only

implicitly captured, if at all. While use cases are an

excellent means to describe the functionality and external

behavior of a system, they can not adequately convey

information on the real users, their user interface needs and

usage environments. The next section discusses how per-

sonas can fill this gap.

3.2 Use of personas

One of the most common obstacles for user-centered

design is that designers of a product have little knowledge

of how real users will use the product. This is especially

true if the designers are young and technically versed

(which is true for almost all projects making use of the

latest technology), and are to design a product that will be

used by older people, among others. Also, most designers

have no idea about how people with disabilities use today’s

technologies.

In the proposed model, personas are used for describing

the interface needs and other usage requirements of users

with disabilities, when developing accessible applications.

Personas should be described as sympathetic users, as

people with individual feelings and struggles in life [17].

As they work with these personas over a period of time,

developers will become more and more familiar with the

personas and even empathize with them. As a result, the

envisioned users with disabilities that are represented by

the personas become tangible and ubiquitous in the

development process.

The description of a persona will typically include the

use environment, including any assistive technology that is

employed by the persona to use the product. A detailed

persona description is instrumental in determining the set

of accessibility guidelines and standards that need to be

applied to the products to make it accessible to the par-

ticular persona. Sometimes this means that one user group

has to be represented as multiple personas, to reflect a

range of different use contexts and assistive technologies

that they are using. For example, the range of users who are

blind would include those who can use Braille and those

who can not.

Cooper distinguishes between primary persona and

secondary personas. The primary persona represents the

primarily targeted user, and is the main driver for designing

the application’s user interface [4]. All other personas are

secondary personas. They have additional needs that the

user interface design needs to accommodate. Of course, the

resulting user interface must not conflict with the interface

needs of the primary persona, or with the interface needs of

other secondary personas.

In the proposed model for accessible design and testing,

one set of personas is associated with every use case that

involves a human actor (see Fig. 2). In each set of perso-

nas, the most prominent user type determines the primary

persona. For a disability related product, the primary

Use CaseFig. 1 Use case

Use CaseUse Case
Persona

…

…

…

Persona

…

…

…

has actors

Fig. 2 Use case and personas

Univ Access Inf Soc (2008) 7:117–128 121

123

persona would be the primary disabled user type. For a

mainstream product, it would be the most prominent

mainstream user type. The other personas (both main-

stream and disability related) are secondary personas. Both

primary and secondary personas drive the user interface

design for the use case. Secondary personas (both main-

stream and disability related) are used to express additional

requirements to the primary persona. This process creates a

user interface for every use case.

When looking at a use case that involves a user, the user

is virtually replaced with each one of the personas from the

set of associated personas, thus amending the user interface

design, and making sure that the user interface meets the

needs of all secondary personas.

In unusual cases, a secondary persona may have a

conflicting (rather than different) user interface need from

the primary persona, which can not be met with a flexible

user interface design. In this case, both personas are con-

sidered as primary, the use case is duplicated, and the

personas are distributed among the two so that each use

case has exactly one primary persona and non-conflicting

secondary personas. However, this does not result in two

products, but rather in alternate modes of operation for a

product.

It should be noted that personas alone are not a sub-

stitute for specific accessibility requirements. However, as

discussed later on in this paper, when used in conjunction

with specific accessibility guidelines, personas can give

meaning and context to them. Personas can make the

requirements and guidelines easier to understand and more

compelling to developers [5]. Over time, they can help

designers internalize the requirements and guidelines as

part of their experience and knowledge base, rather than

having to memorize them or follow them superstitiously.1

Superstitious conformance to accessibility guidelines usu-

ally results in designs that meet specifications but are not

necessarily optimal or even operational by intended users.

In summary, personas are used as illustrations for

accessibility requirements at design, as well as for linking

to accessibility guidelines which generate checkpoints for

conformance testing. As an additional benefit, personas are

also useful when developing user support that accommo-

dates users with different abilities (see next subsection).

3.3 How personas can help assist the users

After a product is developed, support must be available for

the users using the deployed product. Similar to the

development of a product, the set of personas should drive

the support mechanisms for the ‘‘real users’’ after the

product has been deployed.

Any documentation to the product, in any form, should

be developed with the personas in mind to make it usable to

the full range of intended users. Where documents are

handed out in printed form (e.g., user’s guide, installation

guide, course and training material), it might be necessary

to additionally make them available in an accessible elec-

tronic form. Any electronic documents (such as online

help, release notes, Web pages for download) should be

checked for accessibility to the targeted user groups. If the

product is to be sold as a physical package, issues of

packaging may be relevant as well. Also, for tutorial

events, appropriate rooms have to be chosen to be

accessible.

To provide instant support for the users, a hotline may

be established. If so, its accessibility to the targeted users

has to be checked. For example, a separate hotline for text

telephone users may have to be installed, and its number

included in the documentation.

4 Making accessibility requirements concrete

Use cases and personas make accessibility requirements

comprehensible for the human reader and designer. How-

ever, they need to be translated into constructs that are

more concrete and operable in the context of a software

development process that involves tools and automatic

tests. As described below, scenarios and guidelines are

suitable tools for this.

4.1 Scenarios

Scenarios are useful to illustrate use cases in more details.

While use cases capture a generalized view of a user and a

task, scenarios describe a specific instance of a use case in

terms of a concrete workflow with specific data, specific

events and possibly a specific user interface, sometimes

outlined on a storyboard (see Fig. 3). In a development

project, one would typically devise a few scenarios per use

case to illustrate the typical flow of events and some of its

error conditions. Scenarios are based on real data, which

1 Superstitious behavior occurs whenever someone does something in

a certain way that has no correlation to facts—just because it worked

that way before. For example, someone who always turns their phone

off and back on at the end of a call because once they were unable to

hang up without turning the phone off. Or someone who always

deletes and reenters information into a new record rather than just

editing the old record. Or someone that designs everything with a

certain spacing because that was the rule of thumb they were given

and they do not know what the basis was for deciding that spacing, so

they just continue to do what they used to do (even if it is not

necessary anymore—and even if it is not sufficient or correct

anymore).

122 Univ Access Inf Soc (2008) 7:117–128

123

makes them suitable as a basis for test cases later on in the

process.

4.2 Accessibility guidelines

In the proposed model, otherwise abstract accessibility

requirements are made concrete and understandable, and

express them in the form of personas and accessibility

guidelines that can be applied to the development of the

product. Importantly, every guideline is based on and tied

to a subset of personas. This means that the guideline has to

be met to serve any one of the linked personas. By linking

the guidelines to personas, the guidelines become under-

standable in the context of application development and for

the development team (see Fig. 4).

Guidelines are also related to scenarios. Every scenario

needs to conform to the guidelines that are linked to the

personas of the corresponding use case. The link between

scenarios and guidelines forms the basis for testing con-

formance, as discussed later.

Personas help define the set of guidelines that are

identified as accessibility requirements for the scenarios. It

is important that the full set of personas be considered

when designing the user interface, with each persona

adding accessibility and usability requirements to the

scenario.

For example, if one persona (this may be the primary

persona) uses a mouse and keyboard in a visual interaction

style, another persona (a secondary persona) that uses a

screen reader and keyboard navigation would add the fol-

lowing requirements to the scenario: Make sure that all

elements are exposed through the accessibility API of the

pertinent platform, that images have textual equivalents,

that all elements can be accessed through the keyboard, etc.

Additionally, considering yet another persona with hearing

impairment, one would have to make sure that audio output

can be adjusted in volume, that there are subtitles available

for video clips, etc. If a persona has a language or learning

disability (common but often invisible), special attention

should be paid to the product’s ease of use, the reading

level of the online help texts should be assessed, etc.

The success of this method hinges on the selection of the

personas and their descriptions, and a comprehensive cat-

alogue of guidelines linked with the personas. The set of

personas should reflect the broad variety of targeted users,

in particular users with disabilities, including multiple

disabilities or functional limitations as is common with

people who are older.

Unfortunately, most existing guidelines are not explic-

itly linked to certain types of disabilities (or even

personas). In general, more research is needed to identify

practical and reliable approaches for this issue. Also, test-

ing is important to prove the effectiveness of particular

accessibility guidelines for particular user groups.

The number of distinct categories of users with dis-

abilities (different types, degrees, combinations, onset, etc.)

that have different user interface needs has been calculated

at over 100 [20]. Although a smaller set of personas might

be used to represent them, it would still need to be sig-

nificant in size and many times larger than is used for

mainstream users. Using a set of personas that does not

represent the diversity of limitation, onset, skills, etc., is

very dangerous, yet common. It can lead to a serious

misunderstanding of many disabilities and can result in

much careful design effort inadvertently missing important

user groups’ needs—including groups of aging users.

When used together, use cases, personas, scenarios and

guidelines form a powerful tool for user centered devel-

opment (see Fig. 5). Use cases are employed to capture the

Use Case

…

… …

Scenario
…

… …

illustrated by

Fig. 3 A use case is illustrated

by a set of scenarios

…

…

…

Persona

…

…

…

Guidelines

linked to

Fig. 4 Personas and guidelines

are linked

Use CaseUse Case
Persona

…

…

…

Persona

…

…

…

Scenario
…

… …

Scenario
…

… …
Guidelines

linked to

conforms to?

has actors

illustrated by

Fig. 5 Use case, personas, scenarios and guidelines

Univ Access Inf Soc (2008) 7:117–128 123

123

overall functional behavior of a product. Personas express

accessibility requirements by specifying a (diverse) set of

target users for a use case. Scenarios, linked to specific use

cases, describe a real-life sequence of events of a ‘‘real’’

user. Finally, guidelines, linked to personas, guide the

developer in making the product accessible and usable for

the target users.

5 Testing for accessibility

Testing activities in application development should be

spread over the complete lifecycle, as a continuous

approach to quality. Early testing can significantly lower

the cost of completing and maintaining the software. Tests

are derived from requirements, but will also draw from

other sources, for example when testing against specific

error conditions. Productivity tools are essential for gen-

erating test data, and for running and analyzing tests.

5.1 Test cases

Heumann describes a method to generate test cases from

use cases and pertinent scenarios [8]. For every use case, a

set of scenarios is identified so that one scenario stands for

each possible execution path through the main and alter-

nate flow of events of a use case. Then one or more test

cases are derived for each scenario, and data values are

attached to the test cases (see Fig. 6).

5.2 Accessibility checkpoints

Test cases are useful for evaluating a product against the

functional requirements of a product. To evaluate the

product against the accessibility requirements, it is neces-

sary to make sure that the user interfaces are accessible to

the target users. The test cases need to contain accessibility

checkpoints, reflecting the guidelines and their associated

personas (see Fig. 7).

An accessibility checkpoint is an atomic checkpoint

related to an accessibility guideline. It is specific to a

particular platform and can be tested either in an automated

or manual fashion. One guideline may have multiple

related checkpoints.

Accessibility checkpoints are derived based on guide-

lines, personas and their contexts of use. For making the

proposed model feasible, a seamless connection between

personas, guidelines and accessibility test tools needs to be

achieved. The model raises specific requirements on the

guidelines which the checkpoints are drawn from.

First, the guidelines should identify for each of their

checkpoints how it affects the usability for different types

of users (personas). The benefit to a user can be described

in three degrees: essential, important, and beneficial. If a

checkpoint is essential for a particular persona, the persona

will not be able to use the system at all if the checkpoint is

not met. If the checkpoint is important, the persona can use

the product, but only with a high effort and in an inefficient

way. If the checkpoint is beneficial, the product will be

more usable for the persona if the checkpoint is met, but

could be used even without the checkpoint being met. The

same checkpoint may be ‘essential’ for one persona, but

only ‘important’ or ‘beneficial’ to another.

To accommodate those cases where a particular check-

point may actually make it harder for a particular persona

to use the product, and for the sake of symmetry, three

degrees of disadvantage are also defined: excluding,

impeding, and inconveniencing. Excluding means that if

the checkpoint is met, the persona can not use the product

at all; impeding means that it could use it but only with

Use Case

…

… …

Scenario
…

… …

…

Test
case

…

illustrated by

derive

Fig. 6 Use case, scenarios and

test cases

…

…

…

Persona

…

…

…

Checkpoints

Guidelines

linked to

derive

Fig. 7 Personas, guidelines and

checkpoints

124 Univ Access Inf Soc (2008) 7:117–128

123

high effort; and inconveniencing means that the checkpoint

makes the product less usable for the persona, but the

persona can still use it without significant hardship.

A checkpoint may also be neutral to a persona, i.e., it

has no impact on the accessibility and usability for the

persona. Taken together, the relation between a checkpoint

and a persona can be described along a scale of seven

values as follows: essential, important, beneficial, neutral,

inconveniencing, impeding, excluding. The goal is for a

product to meet all ‘‘essential’’ and as many as possible

‘‘important’’ criteria for all personas, without creating any

‘‘excluding’’ or ‘‘impeding’’ elements for others.

The second requirement on standards and guidelines is

that checkpoints must be available for multiple runtime

platforms, if they vary for different platforms. Ideally, a

standard or set of guidelines comes with multiple sets of

checkpoints, each set complete in itself and pertaining to a

specific platform. If in a development project the runtime

platform was to be switched in the middle of the project,

the set of checkpoints would be traded with the appropriate

set of checkpoints for the new platform. In this trade, the

set of requirements—based on the set of personas—would

remain stable, and drive the selection of the checkpoints for

the new platform.

5.3 Use automated and manual tests to verify

accessibility

As with most testing, the testing of a product against

accessibility requirements needs to be automated as much

as possible. Running a test case in an automated fashion,

makes it possible to reap the full benefit of regression tests

that are run repeatedly over the lifecycle of the product.

Repetitive tests are important because changes on a sys-

tem’s architecture or its user interface can break

accessibility features that were previously built in. Ideally,

even the test script (or part of it) that implements the test

case, may be generated automatically.

Unfortunately, not all accessibility checkpoints can be

tested by machines. For example, a machine can test

whether a text equivalent is available for an image, but it

can not test the quality of the text. However, if a tester

validates a particular text for a particular image, a machine

can validate whether the texts for all copies of the image

are consistent throughout the application. Also, in sub-

sequent test runs, a human tester needs to look at the text

equivalent only if the image or the text has changed since

the last test run. So, even for manual checkpoints, com-

puters are useful to free a human tester from repetitive

checks, and to keep a record of who tested what and when.

Most accessibility requirements are common across test

cases and functional units if running on the same platform,

so that guidelines and checkpoints can be reused across test

cases and use cases within a project. This is because most

accessibility requirements are concerned with user inter-

face design, and as such repeat themselves for use cases

with similar user interfaces.

There are a number of commercial and free tools

available for accessibility checking that go a long way

toward automatic testing. Most of these tools evaluate Web

pages on the basis of guidelines and regulations such as the

W3C Web Content Accessibility Guidelines 1.0 and sec-

tion 508. Some of these tools allow configuring the set of

checkpoints that are to be applied to a software or Web

application. Unfortunately, the number and sophistication

of the Web accessibility tools is not paralleled in the

graphical user interface domain. However, this is likely to

change, as the demand for productivity tools for accessible

design in software development increases.

A project can draw from existing tools by having the

developers write test code that calls these tools from a test

case to validate the product against accessibility check-

points. The test code may be even generated automatically.

Of course, an appropriate test tool must be available and

has to be configured to include checkpoints based on the

requirements of the project, its use cases and personas. To

further ease the application of accessible design principles

in mainstream application development, accessibility test

tools should be incorporated into the development envi-

ronments in a seamless fashion.

6 Putting it together—a process model for accessible

design and testing

The previous sections have introduced the components of

the process model for accessible design and testing: use

cases, personas, scenarios, guidelines, test cases and

checkpoints. These model components are not new in

software development.

As shown above, use cases, scenarios, test cases, per-

sonas, guidelines and checkpoints are proven tools, drawn

from best practices in mainstream software engineering.

However, this paper defines a new way to use these

components for accessibility purposes, and to relate them

to each other, thus facilitating automation as much as

possible (see Fig. 8). For design projects that are

employing a use case driven methodology, this approach

allows to incorporate accessible design into the existing

processes rather than having to add accessibility as a new

process.

An example illustrating the benefit of this model, and

the testing aspect in particular, is a situation where a test

case is failing because an accessibility requirement is not

met. In this case, the proposed model makes it possible to

Univ Access Inf Soc (2008) 7:117–128 125

123

pinpoint to the particular checkpoint that is causing the

failure, and trace it back to the particular guideline that is

violated. This allows identifying the particular personas

that will not be able to access the application because of

that failure (see Fig. 9). This is not only useful for fixing

the accessibility problem, but also provides context to the

developer and an understanding of the consequences of the

failure. Understanding the reason behind the guideline not

only facilitates avoidance of the error in the future, but also

increases the probability that the fix will be implemented in

a proper and effective manner.

7 Reinforcing the model—expert reviews

and user testing

The described process model for accessible design and

testing provides basic support for designers and imple-

menters in the development of products that are accessible

to the personas involved. However, since personas are only

approximations of the users and not the users themselves,

this model should be complemented with expert reviews

and real user testing.

7.1 Expert reviews

Ideally, users should be involved at every stage of a pro-

ject. This is mostly not possible due to budget and time

constraints. Expert reviews can discover many design

problems that user testing would identify, and provide

guidance on how to fix them in advance—before users are

brought on site.

Experts (who are familiar with the characteristics of

people with disabilities and their implications on various

product designs) can support the development of an

application in various stages. At the beginning, they can

help to identify the targeted users of a product, and the

regulative requirements regarding accessibility and

usability. The design or selection of personas based on the

identified user base is a crucial task, and should not be

performed without guidance by experts. To facilitate the

process, a common sets of personas can be used that will be

developed and verified in the context of research projects

(cf. [14] as a first starting point). If necessary, these sets

may be adapted to a specific application domain. A careful

selection of the personas at the beginning of a project will

pay off multiple times over a product’s lifecycle.

Conducting accessibility reviews, experts can discover

design problems, based on heuristics and their expertise.

These reviews should be considered for every iteration of

development, with emphasis on the earlier iterations,

because design problems can be fixed easier if discovered

earlier. Based on an expert review, it may be necessary to

amend the personas, so that the set of personas gets more

and more complete or understandable to designers with

every iteration.

7.2 User testing

While expert reviews are significantly cheaper than user

testing, there are design problems that can only be dis-

covered by user testing. At some point in the project, the

product should be tested by real users. It is recommendable

to conduct user tests based on prototypes even at early

Use CaseUse Case
Persona

…

…

…

Persona

…

…

…

Scenario
…

… …

Scenario
…

… …

Test
case

…

Test
case

…
CheckpointsCheckpoints

Guidelines

linked to

checks

conforms to?

has actors

illustrated by

derive derive

Fig. 8 Components of the integrated approach and their relation-

ships: use case, scenarios, test cases; personas, guidelines and

checkpoints

Use CaseUse Case Persona

…

…

…

Persona

…

…

…

Scenario
…

… …

Scenario
…

… …

…
CheckpointsCheckpoints

Guidelines

linked to

fails

pinpoint

detect
violation

identify
impact

Test
case

checks

conforms to?

has actors

illustrated by

derive derive

Fig. 9 When a test case fails, the model helps to pinpoint the

appropriate checkpoint, detect the violated guideline and identify the

impact on the user (personas)

126 Univ Access Inf Soc (2008) 7:117–128

123

stages of the project, to mitigate accessibility risks as early

as possible. Accessibility experts can help to plan for and

to conduct appropriate user testing. Of course, they should

be involved in analysis and evaluation of user testing.

Especially at earlier stages, the results of user testing can

be used to fine-tune the set (and descriptions) of personas,

in an attempt to have as many issues as possible covered by

the personas and to have them described in ways that are

most meaningful to the designers and for the purposes of

the product under design. This will help to strengthen the

efficiency of the proposed process model, and to improve

its use across development projects. It is important that the

knowledge about the design of personas that has been

acquired in a project is reused beyond a product’s lifecycle,

in other development projects.

8 Conclusion

This paper has proposed and theoretically justified an

integrated approach for accessible design and testing in the

development of software applications. A key feature of the

proposed process model is the combination of use cases,

personas and accessibility guidelines, which drives the

development of the product and triggers the inclusion of

checkpoints for iterative testing. The proposed concepts fit

well to an iterative development approach, but can be

applied also to non-iterative processes.

It has also been emphasized that the model needs to be

reinforced by expert reviews and user testing, thus miti-

gating for potential inaccuracies in the model and driving a

process for continuous improvement of the model in a

specific development context.

Some of the proposed concepts could only be touched

upon in this paper, and other aspects were completely left

out. Beyond the proposed concepts, the concept of archi-

tectural patterns and user interface patterns could be

applied to generate code (semi-)automatically that would

accommodate the user interface needs of the selected

personas. This would increase the quality of code and boost

development productivity.

Although the model presented here is based on author

interaction with companies both large and small, the

evaluation of the approach will, by necessity, only occur as

companies experiment with these ideas. They will also

need to be adapted to the various practices and constraints

of the companies. Only in long-term practice can they (or

variations of them) be proven.

In conclusion, the authors hope that this paper contribute

to an ‘‘inclusive thinking’’ in application development that

sets the user in the center of planning and builds accessi-

bility features into software products from the beginning,

rather than trying to add them on late in the lifecycle. In

particular, development tool vendors and third-party sup-

pliers for application development frameworks are

encouraged to develop appropriate tools for an integrated

approach in software development. The described inte-

grated approach, together with appropriate tools being

available, is envisioned to ultimately increase productivity

and quality in making products accessible and usable for all

of its users, and bring about new market opportunities for

companies that excel in accessible design.

Acknowledgments This work was partially funded by the National

Institute on Disability and Rehabilitation Research, US Department of

Education under Grant H133E030012 as part of the Universal Inter-

face and Information Technology Access Rehabilitation Engineering

Research Center of the University of Wisconsin -Trace Center. The

opinions herein are those of the authors and not necessarily those of

the funding agency.

References

1. Antle A.: Child-user abstractions. In: CHI ‘06 Extended Abstracts

on Human Factors in Computing Systems, Montréal, Québec,

Canada, pp. 478–483. ACM, New York (2006)

2. Aoyama, M.: Persona-and-scenario based requirements engi-

neering for software embedded in digital consumer products. In:

Proceedings 13th of the IEEE International Conference on

Requirements Engineering, pp. 85–94, 29 August–2 September

2005

3. Chisholm, W., Vanderheiden, G., Jacobs, I.: Web Content Acces-

sibility Guidelines 1.0, W3C Recommendation, 5 May 1999.

http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990505/

4. Cooper, A.: The Inmates are Running the Asylum. SAMS/Mac-

millan, Indiana (1999)

5. Dantin, U.: Application of personas in user interface design for

educational software. In: Proceedings of the 7th Australasian

Conference on Computing Education, vol. 42, Newcastle, NSW,

Australia. ACM International Conference Proceeding Series, vol.

106, pp. 239–247 (2005)

6. Dayton, D.: Audiences involved, imagined, and invoked: trends

in user-centered interactive information design. Proceedings of

Professional Communication Conference, 21–24 Sept. 2003, pp.

327–335. IEEE International (2003)

7. Hackos, J., Redish J.: User and Task Analysis for Interface

Design. Wiley, New York (1998)

8. Heumann, J.: Generating Test Cases from Use Cases. Rational

edge, June 2001. http://www-106.ibm.com/developerworks/rational/

library/content/RationalEdge/jun01/GeneratingTestCasesFromUse

CasesJune01.pdf

9. HFES 200 Committee: Draft Standard for Trial Use: Human

Factors Engineering of Software User Interfaces (BSR/HFES

200). Human Factors and Ergonomics Society, Santa Monica

(2003, in revision 2006)

10. ISO TS 16071:2003: Ergonomics of Human–System Interac-

tion—Guidance on Accessibility for Human–Computer

Interfaces

11. Jacobson, I.: Object-Oriented Software Engineering: A Use-Case

Driven Approach. Addison-Wesley, Reading (1992)

12. Kruchten, P.: The Rational Unified Process—An Introduction.

Addison-Wesley, Reading (2004)

13. Microsoft (2004) The Wide Range of Abilities and Its Impact on

Computer Technology. Research Study by Microsoft, conducted

by Forrester Research. http://www.microsoft.com/enable

Univ Access Inf Soc (2008) 7:117–128 127

123

http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990505/
http://www-106.ibm.com/developerworks/rational/library/content/RationalEdge/jun01/GeneratingTestCasesFromUseCasesJune01.pdf
http://www-106.ibm.com/developerworks/rational/library/content/RationalEdge/jun01/GeneratingTestCasesFromUseCasesJune01.pdf
http://www-106.ibm.com/developerworks/rational/library/content/RationalEdge/jun01/GeneratingTestCasesFromUseCasesJune01.pdf
http://www.microsoft.com/enable

14. Mueller, J.: Getting personal with universal. Innovation, 23(1)

(2004).

http://www.idsa.org/webmodules/articles/articlefiles/Mueller.pdf

15. Newell, A., Mueller, J., and Jones, M.: Promoting user sensitive

inclusive design: strategies for communicating user needs to

designers. In: Gibson, L., Gregor, P., Sloan, D. Accessible Design

in the Digital World Conference 2005, Workshops in Computing

(eWIC) Series (ISSN 1477-9358). British Computer Society,

Wiltshire

16. Norman D.A.: The Invisible Computer. Why Good Products Can

Fail, the Personal Computer Is So Complex, and Information

Appliances are the Solution. MIT, Cambridge (1998)

17. Pruitt J., Grudin J.: Personas: practice and theory. In: Proceedings

of the 2003 Conference on Designing for User Experiences, San

Francisco, California, pp 1–15. ACM, New York (2003)

18. Randolph, G.: Use-cases and personas: a case study in light-

weight user interaction design for small development projects.

Inform Sci J 7,105–116 (2004)

19. Rönkkö, K.: An empirical study demonstrating how different

design constraints, project organization and contexts limited the

utility of personas. In: Proceedings of the 38th Annual Hawaii

International Conference on System Sciences. IEEE Interna-

tional, Washington, DC, USA, 3–6 January 2005

20. Sesto, M., Vanderheiden, G., Radwin, R.: Functional Character-

ization of Disability and Interface Use. RESNA 27th Annual

Conference, Orlando, Florida (2004)

21. Schmidt, A., Terrenghi, L.: Methods and guidelines for the design

and development of domestic ubiquitous computing applications.

In: Fifth Annual IEEE International Conference on Pervasive

Computing and Communications, pp. 97–107, March 2007

22. Shyba L., Tam J.: Developing character personas and scenarios:

vital steps in theatrical performance and HCI goal-directed

design. In: Proceedings of the 5th Conference on Creativity and

Cognition, pp. 187–194. ACM, New York (2005)

23. Souza, R. Design Accessible Sites Now, Forrester Report,

December 2001. http://www.forrester.com/ER/Research/Report/

Summary/0,1338,11431,00.html

24. Vanderheiden, G.: Application Software Design Guidelines, Ver-

sion 1.1, 1 June 1994. Trace Center. http://trace.wisc.edu/docs/

software_guidelines/software.htm

25. Yu, Y., Liu, Z.: Research on a user-centered design method for

interactive online teaching system. In: ICCT ‘06. International

Conference on Communication Technology, pp. 1–4, November

2006

26. Zimmermann, G.: Access Technologies Group—Resources.

http://www.accesstechnologiesgroup.com/Resources (2006)

128 Univ Access Inf Soc (2008) 7:117–128

123

http://www.idsa.org/webmodules/articles/articlefiles/Mueller.pdf
http://www.forrester.com/ER/Research/Report/Summary/0,1338,11431,00.html
http://www.forrester.com/ER/Research/Report/Summary/0,1338,11431,00.html
http://trace.wisc.edu/docs/software_guidelines/software.htm
http://trace.wisc.edu/docs/software_guidelines/software.htm
http://www.accesstechnologiesgroup.com/Resources

	Accessible design and testing in the application development process: considerations for an integrated approach
	Abstract
	Introduction
	Related work
	Capturing accessibility requirements
	Use cases
	Use of personas
	How personas can help assist the users

	Making accessibility requirements concrete
	Scenarios
	Accessibility guidelines

	Testing for accessibility
	Test cases
	Accessibility checkpoints
	Use automated and manual tests to verify accessibility

	Putting it together?a process model for accessible design and testing
	Reinforcing the model?expert reviews �and user testing
	Expert reviews
	User testing

	Conclusion
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

