
© 2002 SFoCM
DOI: 10.1007/s102080010025

Found. Comput. Math. (2002) 2:429–465

The Journal of the Society for the Foundations of Computational Mathematics

FOUNDATIONS OF
COMPUTATIONAL
MATHEMATICS

C1 Lohner Algorithm

Piotr Zgliczynski

Jagiellonian University
Institute of Mathematics
Reymonta 4
30-059 Kraków, Poland
zgliczyn@im.uj.edu.pl

Abstract. We present a modification of the Lohner algorithm for the computation
of rigorous bounds for solutions of ordinary differential equations together with
partial derivatives with respect to initial conditions. The modified algorithm requires
essentially the same computational effort as the original one. We applied the algorithm
to show the existence of several periodic orbits for Rössler equations and the 14-
dimensional Galerkin projection of the Kuramoto–Sivashinsky partial differential
equation.

1. Introduction

In recent years we have witnessed a growing number of computer-assisted proofs
in the dynamics of ordinary differential equations (ODEs), where a computer is
used to rigorously check the assumptions of abstract theorems from the dynamical
systems theory (see, e.g., [2], [4], [6], [12], [19], [15]). For all these proofs rigorous
bounds for an appropriate Poincaré map were obtained with computer assistance.

The goal of this paper is to present a modification of the Lohner algorithm [8],
[9] which, for a given autonomous ODE

dx

dt
= f (x), x ∈ Rn, f ∈ C∞, (1)

Date received: April 18, 2001. Final version received: January 10, 2002. Communicated by Arieh
Iserles. Online publication: March 15, 2002.
AMS classification: 65G20, 65L05.

430 P. Zgliczynski

and a section �, rigorously computes the Poincaré map P(x0) and (∂ P/∂x)(x0),
where x0 ∈ �.

To this end we need to solve a system of ODEs consisting of (1) and the
variational equation corresponding to it

dV

dt
(t, x0) = ∂ f

∂x
(x(t)) · V (t, x0), V ∈ Rn×n, (2)

with initial condition V (0, x0) = Id, where by Id we denote the identity matrix.
Once we have rigorous bounds for a trajectory of (1) and (2) we need to consider

its intersection with � to obtain P and its derivatives.
By ϕ(t, x0) we will denote a solution at time t of (1) with initial condition

x(0) = x0. It is obvious from (1) and (2) that V (t, x0) = (∂ϕ/∂x)(t, x0).
By a C0 algorithm we refer to a procedure which gives rigorous estimates

for ϕ(t, x) (or the Poincaré map P(x)). By a C1 algorithm we mean a rigorous
procedure for the computation of ϕ(t, x) and ∂ϕ(t, x)/∂x (or P(x) and ∂ P/∂x).

Examples of C0 algorithms: algorithms based on logarithmic norms (used in
[12], [4]), the Lohner algorithm [8], or the Hermite–Oberschkoff method proposed
by Nedialkov and Jackson (see [13] for a more complete list).

We can perform a C1 computation just by a direct application a C0 algorithm to
the problem consisting of (1) and (2). This approach totally ignores the structure
of the system (1) and (2) and usually leads to very poor performance and long
computation times (see Section 6 for more comments). In this paper we present a
modification of the Lohner algorithm, which allows us to perform the C1 compu-
tations essentially in the same time as required for the C0 algorithm.

The reader should be aware that the basic problem, with rigorous computa-
tions of solutions of (1), is our inability to obtain good rigorous bounds on the
difference between solutions starting from different points (we refer to this as the
Lipschitz part of error). A part of this inability is due to the very nature of interval
computations—a phenomenon called the wrapping effect, which is discussed in
virtually every paper in the field of rigorous computations for ODEs (see [13]
and the references given there). This is the reason for the apparent complexity of
Lohner-type algorithms—the original Lohner algorithm, the Hermite–Obreschkoff
method [13], or the algorithm presented here—because an essential part of these
algorithms is devoted to controlling the Lipschitz part of the error to avoid, or rather
to suppress, the wrapping effect. This complexity results in the slowness of these
algorithms compared to those based on logarithmic norms or on direct interval
evaluation, when we consider the time needed to compute one initial condition.
But the bounds for the Lipschitz part of the error obtained using this approach
are so poor that it turns out that the Lohner-type algorithms are much faster in
the task of computing the image of the Poincaré map of a cube with a desired
accuracy.

There also exists another way to effectively control the Lipschitz part of the
error. We call this a division method. It was used in [12], [19], [20]. To explain

C1 Lohner Algorithm 431

the main idea let us consider the computation of P([x]), where [x] is a box in
Rn and P is a Poincaré map. As we compute ϕ(t, [x]) along the trajectory, the
obtained image (denoted here by 〈ϕ(t, [x])〉) soon becomes considerably larger
than the true image, ϕ(t, [x]), and usually starts to grow exponentially at a much
faster rate than the intrinsic growth rate from the ODE under consideration. To deal
with this problem we divide, at some moment t , the current value of 〈ϕ(t, [x])〉
into smaller pieces and we continue to evolve them separately. The division pro-
cedure can be applied many times until we reach the Poincaré section. It turns
out that the small pieces will move away from one another at the rate given by
the ODE and, since they are smaller, their growth rate due to the numerics will
usually be smaller than that for the undivided set, hence resulting in much better
bounds. As a result we allow the intrinsic dynamics of the ODEs to take part in
the control of the Lipschitz part of the error, but this happens at the cost of man-
aging the division process and the computation of a larger number of initial value
problems.

One can expect that the optimal algorithm will be a combination of both the
Lohner-type approach and the division method, but how to link them in the
most efficient way will probably depend on the particular ODE under consid-
eration.

Sections 2 and 3 contain a detailed description of the proposed C1 Lohner al-
gorithm. In Section 6 we discuss briefly the relative cost of the C0 Lohner and
the C1 Lohner algorithms, we also address there the issue of a direct computation
of solutions of (1) and (2) using the C0 Lohner algorithm. In Section 5 we de-
scribe how we extract P(x) and ∂ P/∂x from rigorous estimates for ϕ(t, x) and
∂ϕ(t, x)/∂x .

In Section 7 we report on two applications of the proposed algorithm to obtain
proofs of an existence of single periodic orbits for the Rössler equation and on the
14-dimensional Galerkin projection of the Kuramoto–Sivashinsky (KS) equations.
The algorithm described here was also successfully applied to the Henon–Heiles
Hamiltonian (see [3]), and to the planar restricted circular three-body problem (see
[21]), to obtain an infinite number of geometrically distinct homo- and heteroclinic
orbits to some periodic orbits.

The Appendix contains the formulas we used to generate the Taylor expansion
for the applications described in Section 7.

2. C1 Lohner Algorithm

The goal of this section is to present the C1 Lohner algorithm for ODEs. In
fact we give a description of three algorithms: the original Lohner algorithm (C0

computation) and two C1 algorithms called the C1
1 and C1

2 algorithms.
We want to solve the system consisting of (1) and (2) with the following initial

conditions

x(0) ∈ [x0] ⊂ Rn, V (0, [x0]) = Id. (3)

432 P. Zgliczynski

2.1. Notation

In the sequel, by Arabic figures we denote single-valued objects like vectors, real
numbers, and matrices. Quite often in this paper we will use square brackets, e.g.,
[r], to denote sets. Usually this will be some set constructed in the algorithm. Sets
will also be denoted by single letters, e.g., S, when it is clear from the context
that it represents a set. In situations when we want to stress (e.g., in the detailed
description of an algorithm) that we have a set in a formula involving both single-
valued objects and sets together we will use square brackets, hence we prefer to
write [S] instead of S to represent a set. From this point of view [S] and S are
different symbols in the alphabet used to name variables and, formally speaking,
there is no relation between the set represented by [S] and the object represented
by S. Quite often in the description of the algorithm we will have a situation that
both variables [S] and S are used simultaneously, then usually S ∈ [S], but this is
always stated explicitly.

For a set [S] by [S]I we denote the interval hull of [S], i.e., the smallest product
of intervals containing [S]. The symbol hull(x1, . . . , xk) will denote the interval
hull of intervals x1, . . . , xk . For any interval set [S] = [S]I by m([S]) we will
denote a center point of [S]I . For any interval [a, b] we define a diameter by
diam([a, b]) = b − a. For an interval vector or an interval matrix [S] = [S]I by
diam([S]) we will denote the maximum of diameters of its components. For an
interval [x−, x+] we set right ([x−, x+]) = x+ and le f t ([x−, x+]) = x−.

For a set X ⊂ Rd by intX we denote an interior of X .

2.2. Taylor Coefficients for x(t, x0) and V (t, x0)

Let 	(h, x, p) denote the Taylor method of order p for (1). For a description of
a procedure for the generation of 	, for an arbitrary order for a wide class of
functions, the reader is referred to [10], [16]. The basic idea of this procedure
can be explained as follows. Let us set x(t, x0) = ϕ(t, x). By differentiation with
respect to t of (1) and (2) we obtain

d2

dt2
x(t, x0) = d

dt
f (x(t, x0)) = d f (x(t, x0)) · f (x(t, x0)),

d2

dt2
V (t, x0) = d

dt
(d f (x(t, x0)) · V (t, x0))

= d f 2(x(t, x0))(f (x(t, x0), f (x(t, x0))

+ d f (x(t, x0)) · d f (x(t, x0)) · V (t, x0).

We see that the second derivatives with respect to t of x(t, x0) and V (t, x0) are
functions of x(t, x0) and V (t, x0) only. Hence there exist functions a1: Rn → Rn

C1 Lohner Algorithm 433

and b1: Rn × Rn×n → Rn×n such that

d2

dt2
x(t, x0) = d

dt
f (x(t, x0)) = a1(x(t, x0)), (4)

d2

dt2
V (t, x0) = d

dt
(d f (x(t, x0)) · V (t, x0)) = b1(x(t, x0), V (t, x0)). (5)

An easy induction shows that, in general for i ≥ 2, we have

di

dt i
x(t, x0) = di−1

dti−1
f (x(t, x0)) = ai−1(x(t, x0)), (6)

di

dt i
V (t, x0) = di−1

dti−1
(d f (x(t, x0)) · V (t, x0))

= bi−1(x(t, x0), V (t, x0)), (7)

for some functions ai : Rn → Rn and bi : Rn × Rn×n → Rn×n . In the sequel we
will use the following notation

di

dt i
f = ai , (8)

di

dt i

(
∂ f

∂x
V

)
= bi . (9)

In this notation the symbols (di/dti) f and (di/dti)((∂ f/∂x)V) are the functions
of x and V .

Explicit formulas for Taylor coefficients for polynomials of degree 2 are given
in the Appendix.

2.3. An Outline of Algorithms

Before we present the Lohner algorithm and our C1 modification of it we would
like to stress the main points in the original Lohner algorithm [8]:

• Even to perform C0 computations one needs some kind of a C1 data, because
a direct evaluation of 	(h, x0, p) using an interval arithmetic leads to the
wrapping effect, which allows us to integrate (1) for a very short time, only.

• The C1 information about ϕ is obtained by computing a partial derivative of
an explicitly given 	(h, x, p) instead of estimating ∂ϕ(h, x)/∂x .

• The rearrangement computations together with the knowledge of ∂	(h, x,

p)/∂x reduces considerably the wrapping effect.

Obviously to have a rigorous procedure one also needs to take care of the errors in-
troduced by the finite computer arithmetic (round-off errors) and the discretization
error of the numerical method used (the Taylor method in the Lohner algorithm).

434 P. Zgliczynski

The round-off errors are taken care of by the interval arithmetic (see [8], [11] and
the references given there).

The basic idea of modification of an original Lohner algorithm, which leads to a
C1 Lohner algorithm presented here, is the realization that ∂	(h, x, p)/∂x is also
a Taylor expansion for ∂ϕ(h, x)/∂x , hence with a little additional computational
effort we can turn a C0 algorithm into a C1 algorithm. More precisely, we have
the following:

Lemma 1. Consider the problem (1)–(3). Let h > 0. Assume that [W1] ⊂ Rn is
a compact and convex set such that

ϕ([0, h], [x0]) ⊂ [W1], (10)

and [W3] ⊂ Rn×n is a compact and convex set such that

V ([0, h], [x0]) ⊂ [W3]. (11)

Then:

• ∂ϕ

∂x
(t, x) = V (t, x) for t ∈ [0, h] and x ∈ [x0]; and

• V (h, [x0]) ⊂ ∂	(h, [x0], p)

∂x
+ h p+1

(p + 1)!

(
d p

dt p

(
∂ f

∂x
V

)
([W1], Id)

)
· [W3].

Let us remind the reader (see Section 2.2), that the symbol (d p/dt p)((∂ f/∂x)V)

is a function of x and V , hence it makes sense to plug in [W1] for x and Id for V .

Proof. The first assertion is obvious.
To prove the second assertion we show that it is a Taylor expansion for V of

order p plus a remainder term.
Observe that by the definition of 	 it follows that

	(h, x, p) =
p∑

i=0

∂ iϕ(0, x)

∂t i

hi

i!
. (12)

We differentiate the above formula with respect to x to obtain

∂	(h, x, p)

∂x
=

p∑
i=0

∂ i

∂t i

∂ϕ(0, x)

∂x

hi

i!
=

p∑
i=0

di

dt i
V (0, x)

hi

i!
. (13)

It remains to compute an enclosure for the remainder term [R] ⊂ Rn×n given
by

[R]i j = h p+1

(p + 1)!

d p+1

dt p+1
Vi j (θi j h, x) (14)

for i, j = 1, . . . , n and x ∈ [x0], where θi j ∈ [0, 1] depends on x .

C1 Lohner Algorithm 435

We will derive a different expression for the remainder term. Observe that, for
t, s ≥ 0, we have

V (t + s, x) = V (s, ϕ(t, x)) · V (t, x). (15)

Hence, after taking m derivatives with respect to s, we obtain for s = 0 the
following identity

dm

dtm
V (t, x) =

(
dm

dtm
V (0, ϕ(t, x))

)
· V (t, x). (16)

Hence, for m = p+1, taking into account that ϕ(θi j h, x) ⊂ [W1], V (t, x) ⊂ [W3]
for x ∈ [x0], and (7) and (9) we obtain

[R] ⊂ h p+1

(p + 1)!

(
d p

dt p

(
∂ f

∂x
V

)
([W1], Id)

)
· [W3]. (17)

Remark 2. Observe that we can enclose the remainder term for V (h, [x0]) in
the second assertion of Lemma 1 by

[R] = d p

dt p

(
∂ f

∂x
V

)
([W1], [W3])

h(p+1)

(p + 1)!
, (18)

but the formula given there is cheaper to compute and gives better bounds.

Let us fix pe and pv being, respectively, the orders for the Taylor methods used
to solve (1) and (2), respectively. For the C1

2 algorithm we require that pv ≥ pe.
In the description below the objects with an index k refer to the current values

and those with an index k + 1 are the values after the next time step.
One step of the Lohner algorithms is a shift along the trajectory of system (1)

and (2) with the following input and output data:

Input data:

• tk is the current time;
• hk is a time step;
• [xk] ⊂ Rn , such that ϕ(tk, [x0]) ⊂ [xk]; and
• (for C1 algorithms, only) [Vk] ⊂ Rn×n , such that (∂ϕ/∂x)(tk, [x0]) ⊂ [Vk].

Output data:

• tk+1 = tk + hk is a new current time;
• [xk+1] ⊂ Rn , such that ϕ(tk+1, [x0]) ⊂ [xk+1]; and
• (for C1 algorithms, only) [Vk+1] ⊂ Rn×n , such that (∂ϕ/∂x)(tk+1, [x0]) ⊂

[Vk+1].

436 P. Zgliczynski

We do not specify here a form (a representation) of sets [xk] and [Vk]. They can
be interval sets, balls, doubletons, etc. (see [11]). This issue is very important in
handling the wrapping effect and will be discussed in detail in Section 3.

One step of the algorithm consists of the following parts:

Part 1(a) A computation of a rough enclosure [W1] for (1).
[W1] is a compact and convex set such that

ϕ([0, hk], [xk]) ⊂ [W1]. (19)

Part 1(b) (Required for the C1
1 Algorithm). A computation of a rough enclosure

[W2] for (1).
[W2] is a compact and convex set, such that

ϕ([0, hk], m([xk])) ⊂ [W2]. (20)

Part 2 (Required for C1 Algorithms). A computation of a rough enclosure [W3]
for (2).
[W3] is a compact and convex set, such that

V ([0, hk], [xk]) ⊂ [W3]. (21)

Part 3 A computation of ∂	/∂x and (for C1 algorithms) [Vk+1].
Part 4 A computation of [xk+1].

2.4. Part 1—A Computation of a Rough Enclosure
for Equation (1)

Let [Y] = [Y]I be an interval set, such that [xk] ⊂ [Y]. It is easy to see that if

[[xk] + [0, hk] f ([Y])]I ⊂ int[Y] (22)

holds, then

ϕ([0, hk], [xk]) ⊂ [W1] = [[xk] + [0, hk] f ([Y])]I , (23)

where by [[xk] + [0, hk] f ([Y])]I we denote the interval enclosure of the set [xk]+
[0, hk] f ([Y]).

Equation (22) suggests an iterative procedure. We can start with some [Y0] such
that [xk] ⊂ [Y0] and then set [Yi+1] = [[xk]+ [0, hk] f ([Yi])]I , till (22) holds. This
procedure does not always work, for example, usually hk cannot be too large for
this procedure to succeed.

Sometimes, if some a-priori bounds, B, for the solutions of (1) are known we
can take these bounds as [W1]. To tighten these bounds we can refine [W1] as
follows:

[W1] = B ∩ [[xk] + [0, hk] f (B)]I . (24)

C1 Lohner Algorithm 437

2.5. Part 2—A Computation of a Rough Enclosure
for the Variational Part

In this section by ‖x‖ we denote an arbitrary norm.
In order to present and justify the procedure for producing a rough enclosure

for the variational part we need to recall a notion of the logarithmic norm of a
square matrix.

Definition 1 [5, Definition I.10.4]. Let Q be a square matrix, then we call

µ(Q) = lim
h>0,h→0

‖Id + hQ‖ − 1

h

the logarithmic norm of Q.

Theorem 3 [5, Definition I.10.5]. The logarithmic norm is obtained by the fol-
lowing formulas:

• for the Euclidean norm

µ(Q) = the largest eigenvalue of 1/2(Q + QT);
• for the max norm ‖x‖ = maxk |xk |:

µ(Q) = max
k

(
qkk +

∑
i �=k

|qki |
)
;

• for the norm ‖x‖ =∑
k |xk |:

µ(Q) = max
i

(
qii +

∑
k �=i

|qki |
)

.

The following theorem was proved in [5, Theorem I.10.6].

Theorem 4. Consider the differential equation

dx

dt
= f (t, x), f ∈ C1, x ∈ Rn. (25)

Let t0 < t1 < · · · < tk = tN . Let x(t) be any solution of (25) on the interval
[t0, tN]. Let ν(t) denote the Euler polygon, so that

ν ′(t) = f (ti , xi) for ti < t < ti+1, i = 0, . . . , N − 1. (26)

Suppose that we have the estimates for t0 ≤ t ≤ tN :

µ

(
∂ f

∂x
(t, η)

)
≤ l(t) for η ∈ [x(t), ν(t)], (27)

‖ν ′(t) − f (t, ν(t))‖ ≤ δ(t), (28)

‖ν(t0) − x(t0)‖ ≤ ρ. (29)

438 P. Zgliczynski

Then, for tN ≥ t > t0, we have

‖x(t) − ν(t)‖ ≤ eL(t)

(
ρ +

∫ t

t0

e−L(s)δ(s) ds

)
, (30)

where L(t) = ∫ t
t0

l(s) ds.

In fact the proof of the above theorem, given in [5], is valid for any function ν,
which is piecewise C1. Hence we can take ν(t) to be also the solution of (25) in
the above theorem. In this situation δ(t) = 0 and we obtain the following:

Theorem 5. Let Z be a convex set and let µ((∂ f/∂x)(x)) ≤ l for x ∈ Z . Suppose
that ϕ(t, x) ∈ Z and ϕ(t, y) ∈ Z for all t ∈ [0, h]. Then

‖ϕ(h, y) − ϕ(h, x)‖ ≤ ehl‖y − x‖,∥∥∥∥∂ϕ(t, x)

∂x

∥∥∥∥ ≤ etl for t ∈ [0, h].

The enclosure procedure can be formulated as follows:

Input parameters:

• hk is a time step;
• [xk] ⊂ Rn and [Vk] ⊂ Rn×n; and
• [W1] ⊂ Rn is compact and convex, such that ϕ([0, hk], [xk]) ⊂ [W1].

On output we compute [W3] as follows:

(1) l = µ((∂ f/∂x)([W1]));
(2) we define an interval matrix [W] ⊂ Rn×n by [Wi j] = [±max(el[0,hk])],

i, j = 1, . . . , n; and
(3) [W3] = (Id + [[0, hk] · (∂ f/∂x)([W1])]I · [W]) ∩ [W].

From Theorem 5 it follows that V ([0, hk], [xk]) ⊂ [W], where [W] is defined
in the second step of the above procedure. The next step is an attempt to refine this
enclosure by using (2).

2.6. Part 3—A Computation of the Variational Part

Input parameters:

• hk is a time step;
• [xk] ⊂ Rn and [Vk] ⊂ Rn×n;
• [W1] ⊂ Rn is compact and convex, such that ϕ([0, hk], [xk]) ⊂ [W1]; and
• (for C1 algorithms) [W3] ⊂ Rn×n such that V ([0, hk], [xk]) ⊂ [W3].

C1 Lohner Algorithm 439

From the linearity of (2), with respect to V , it follows that

V (tk + hk, [x0]) ⊂ V (hk, [xk]) · [Vk],

hence to compute [Vk+1] it is enough to compute bounds for V (hk, [xk]), which
we will denote [Jk]. To control the Lipschitz part of the error for the x-variable we
will use the matrix [Ak], which for the C1

1 algorithm is equal to [Jk] (the partial
derivative of the flow with respect to initial conditions) and for the C0 and C1

2
algorithms we use instead the partial derivative of the Taylor expansion (this is an
original Lohner approach) .

To be more specific, we proceed as follows:

C1
1 algorithm. We set

[Ak] = [Jk] = Id +
pv∑

i=1

d(i−1)

dt (i−1)

(
∂ f

∂x
V

)
([xk], Id)

hi
k

i!

+ h pv+1
k

(pv + 1)!

(
d pv

dt pv

(
∂ f

∂x
V

)
([W1], Id)

)
· [W3]. (31)

From Lemma 1 it follows that we have

∂ϕ

∂x
(hk, [xk]) = V (hk, [xk]) ⊂ [Jk] = [Ak]. (32)

C1
2 Algorithm. We set

[Ak] = Id +
pe∑

i=1

d(i−1)

dt (i−1)

(
∂ f

∂x
V

)
([xk], Id)

hi
k

i!
. (33)

The remainder of the Taylor expansion of the order pv , plus the error term, are
given by

[�Ak] =
pv∑

i=pe+1

d(i−1)

dt (i−1)

(
∂ f

∂x
V

)
([xk], I d)

hi
k

i!

+ h pv+1
k

(pv + 1)!

(
d pv

dt pv

(
∂ f

∂x
V

)
([W1], Id)

)
· [W3]. (34)

Finally, we set

[Jk] = [Ak] + [�Ak]. (35)

Observe that, by Lemma 1, we have

∂	

∂x
(h, [xk], pe) ⊂ [Ak],

∂ϕ

∂x
(hk, [xk]) = V (hk, [xk]) ⊂ [Jk].

440 P. Zgliczynski

On output:

• the interval matrix [Ak], such that for the C0 and C1
2 algorithms we have

∂	

∂x
(hk, [xk], pe) ⊂ [Ak], (36)

and for the C1
1 algorithm we have

∂ϕ

∂x
(hk, [xk]) ⊂ [Ak]; (37)

• (for C1 algorithms, only) the interval matrix [Vk+1], such that

∂

∂x
ϕ(hk, [xk]) ⊂ [Jk], (38)

V (tk + hk, [x0]) ⊂ [Vk+1] = [Jk] · [Vk]. (39)

We do not specify here how we evaluate the product [Jk] · [Vk]. This depends on
the representation of [Vk] and is discussed in Section 3.

Let us stress here that what we add in the C1 algorithms, when compared to the
C0 algorithm, is only the computation of the error term for [Jk] plus an evaluation
of [Jk] · [Vk], because the Taylor expansion for V is already computed in [Ak],
which also is present in the C0 algorithm.

2.7. Part 4—A Moving Forward with x

Input parameters for the C0 and C1
2 algorithms:

• hk is a time step;
• [xk] ⊂ Rn is a current estimate for ϕ(tk, [x0]);
• [W] ⊂ Rn is a compact and convex set, such that ϕ([0, hk], [xk]) ⊂ [W]

(this is the set [W1] obtained in Part 1(a)); and
• [Ak] ⊂ Rn×n , such that (∂	/∂x)(hk, [xk], pe) ⊂ [Ak].

Input parameters for the C1
1 algorithm:

• hk is a time step;
• [xk] ⊂ Rn is a current estimate for ϕ(tk, [x0]);
• [W] ⊂ Rn is a compact and convex set, such that ϕ([0, hk], m([xk])) ⊂ [W]

(this is the set [W2] obtained in Part 1(b)); and
• [Ak] ⊂ Rn×n , such that (∂ϕ/∂x)(hk, [xk]) ⊂ [Ak].

On output we set

[xk+1] = 	(hk, m([xk]), pe)+ d pe

dt pe
f ([W])

h pe+1
k

(pe + 1)!
+[Ak]([xk]−m(xk)). (40)

C1 Lohner Algorithm 441

3. The Rearrangement Computations

It is well-known that the straightforward interval evaluation of the products of
matrices and vectors leads immediately to the so-called wrapping effect (see, e.g.,
[8], [13], [2]). As will follow from the discussion below we can avoid it to some
extent, by treating the products appearing in the algorithm carefully. We will refer
to this part of the algorithm as the rearrangement computations.

3.1. Evaluation of Equation (40)

To discuss various methods of an evaluation of (40), following [8], [9], we decom-
pose [xk] as follows:

[xk] = xk + [rk] where xk = m([xk]), [rk] = [xk] − xk . (41)

We set

xk+1 = m

(
	(hk, m([xk]), pe) + d pe

dt pe
f ([W])

h pe+1
k

(pe + 1)!

)
,

[zk+1] = 	(hk, m([xk]), pe) + d pe

dt pe
f ([W])

h pe+1
k

(pe + 1)!
− xk+1.

With these notations (40) becomes

[rk+1] = [Ak][rk] + [zk+1]. (42)

Evaluation 1. In [11] terminology this approach is called an interval set. This
is a direct evaluation of (42) using interval arithmetic. This method is simple and
fast, but usually produces very bad bounds due to the wrapping effect.

To avoid the wrapping effect Lohner proposed the following: instead of rep-
resenting [rk] as an interval vector, he proposed using parallelograms (interval
vectors in other coordinate systems), i.e., [rk] = Bk[r̂k], where Bk are nonsingular
matrices and [r̂k] are interval vectors. Equation (42) becomes

[rk+1] = [Ak][rk] + [zk+1] = Bk+1(B−1
k+1[Ak]Bk[r̂k] + B−1

k+1[zk+1]). (43)

In computer calculations it is usually impossible to find an exact inverse of a given
matrix. So in fact we deal with the interval matrices [Bi] and [B−1

i].
Finally, we calculate [r̂k] as follows:

[r0] = [B0][r̂0], [B0] = {Id}, (44)

[r̂k+1] = ([B−1
k+1][Ak][Bk])[r̂k] + [B−1

k+1][zk+1], (45)

[rk+1] = [Bk+1][r̂k+1]. (46)

442 P. Zgliczynski

It should be stressed that only [r̂k] is computed using interval arithmetic. When
evaluating the right-hand side of (45) we first do matrix multiplications as indicated
by square brackets. This is the place where we can reduce the wrapping effect, if
we make a good choice of [Bk]’s . We evaluate formula (46) to compute rough
enclosures and at the end of computations (while considering the intersection of
the orbit of [x0] with a Poincaré section).

Evaluation 2. In [11] terminology this approach is called a parallelepiped. We
choose Bk+1 ∈ [Ak][Bk]. This is not a method recommended for general applica-
tions. The main problem with this method is the need to calculate the inverse of a
matrix.

Evaluation 3. In [11] terminology this approach is called a cuboid. Choose a
matrix U ∈ [Ak][Bk], we perform an approximate floating-point QR-decomposi-
tion of U . Let the matrix Q be a Q factor from this decomposition. The matrix
Q is very close to an orthogonal one. Next we apply an interval Gram–Schmidt
procedure to columns of Q to obtain a matrix [Q0]. Observe that [Q0] contains an
orthogonal matrix, Q1, hence Q−1

1 = QT
1 ∈ [Q0]T .

We set Bk+1 = Q1, B−1
k+1 = QT

1 . This leads to

[Bk+1] = [Q0], [B−1
k+1] = [Q0]T . (47)

A slightly different approach (probably more efficient) was proposed originally
by Lohner. Namely, instead of orthogonalizing the columns of Q he proposed to
rigorously compute the inverse of Q. Observe that since Q is almost orthogonal,
the rigorous Q−1 can be obtained very easily with little cost.

Evaluation 4. In [11] terminology this approach is called a doubleton. This
method is designed to handle the situation, when the initial error is large in com-
parison to local errors produced at every step. Lohner proposed to keep track
separately of the error originating from [r0] and the local errors produced at every
step. An example of such a method is given by

[rk+1] = [Ek+1][r0] + [r̃k+1], (48)

where

[r̃k+1] = [Ak][r̃k] + [zk+1], (49)

and

[Ek+1] = [Ak][Ek], [E0] = Id, (50)

and [r̃k] is evaluated using any method described previously (preferably Evalua-
tion 3). It is easy to see that the matrix [Ek] corresponds to ∂ϕ(tk+1, ·)/∂x . We
still have some wrapping effect in the product [Ak][Ek], which becomes more and

C1 Lohner Algorithm 443

more important when we want to follow the trajectory for a longer time. To avoid
this, Lohner proposed the following:

[rk+1] = Ck+1[r0] + [r̃k+1], (51)

where

[r̃k+1] = [Ak][r̃k] + [zk+1] + ([Ak]Ck − Ck+1)[r0], [r̃0] = 0, (52)

and

C0 = Id, Ck+1 ∈ [Ak]Ck, (53)

and [r̃k] is evaluated using any method described previously (preferably Evalua-
tion 3).

The tests in [11] on the Rössler equation and on the Lorenz equation show that
the last approach—a doubleton—is far better than the previous ones.

3.2. Evaluation of Equation (39)

To evaluate (39) we mimic the approach from the previous subsection.

Evaluation 1. The direct interval evaluation.
To discuss other evaluations let us first decompose the interval matrices [Vk]

into the center point and the “remainder”

[Vk] = Vk + [�Vk]. (54)

We can rewrite (39) as follows:

Vk+1 + [�Vk+1] = [Jk]Vk + [Jk][�Vk]. (55)

Let

Vk+1 = m([Jk]Vk), (56)

[Zk+1] = [Jk]Vk − Vk+1. (57)

We have

[�Vk+1] = [Jk] · [�Vk] + [Zk+1]. (58)

We see that this equation has the same structure as (42), where [�Vk] corre-
sponds to [rk], [Zk+1] to [zk+1], and [Jk] to [Ak]. Hence we can treat it with similar
methods.

For any family of nonsingular matrices [Bk], k = 0, 1, . . . , we set [�Vk] =
[Bk][�̃Vk]. Equation (58) becomes

[�Vk+1] = [Bk+1]([B−1
k+1][Jk][Bk][�̃Vk] + [B−1

k+1][Zk+1]). (59)

444 P. Zgliczynski

We define the following scheme for an evaluation of (58):

[�Vk] = [Bk][�̃Vk],

[�̃V0] = 0, [B0] = Id,

[�̃Vk+1] = ([B−1
k+1][Jk][Bk])[�̃Vk] + [B−1

k+1][Zk+1].

Evaluation 2. Choose Bk+1 to be any matrix in [Jk] · [Bk].

Evaluation 3. Take any U ∈ [Jk] · [Bk], perform the QR-decomposition of U ,
and set [Bk+1] = [Q]. Just as in the previous subsection this method appears to be
better than the previous evaluations.

Evaluation 4. Since we start with a zero matrix ([�V0] = 0), there is no Lips-
chitz part at the beginning and we apply any of the previous evaluations (preferably
the third one) till �̃Vk becomes “thick” (its diameter becomes larger than some
threshold value). Suppose that this happens after k0 steps. Then we switch to a
doubleton representation as follows:

[�Vk] = C V
k [�V0] + �Vk, k ≥ k0,

C V
k+1∈ [Jk]·C V

k , �Vk+1= [Jk] · [�Vk]+([Jk] · C V
k −C V

k+1)[�V0]+[Zk+1].

We initiate the variables C V
k0

, [�V0], �Vk0 , and redefine [Bk0] as follows:

[�V0] = [�̃Vk0], C V
k0
= m([Bk0]),

�Vk0 = ([Bk0] − C V
k0

)[�V0], [Bk0] = Id.

The interval matrix [�Vk] is evaluated using any of the previous evaluation methods
(preferably Evaluation 3).

4. Rigorous Estimates between Time Steps

The goal of this section is to answer the following question, which is very important
in the computation of the Poincaré map:

How to estimate ϕ(t, x) and ∂ϕ/∂x between time steps?

Obviously for this purpose we can use the rough enclosures [W1] and [W3].
Here we present a much more efficient and relatively cheap approach.

The following lemma tells us how well ϕ(τ+t, x) for t ∈ (0, h) is approximated
by the segment joining ϕ(τ, x) and ϕ(τ + h, x).

C1 Lohner Algorithm 445

Lemma 6. Let Z ⊂ Rn be a convex set such that ϕ(τ + t, x) ∈ Z for t ∈ [0, h],
then∣∣∣∣ϕi (τ + t, x) −

((
1 − t

h

)
ϕi (τ, x) + t

h
ϕi (τ + h, x)

)∣∣∣∣
≤ h2

2
max
z∈Z

∣∣∣∣∣∑
j

∂ fi

∂xj
(z) · f j (z)

∣∣∣∣∣ . (60)

Proof. Without any loss of generality we can assume that τ = 0, hence ϕ(τ, x) =
x . Observe that we can represent the interval joining x and ϕ(h, x) as follows:(

1 − t

h

)
x + t

h
ϕi (h, x) = x + t

ϕ(h, x) − x

h
, (61)(

1 − t

h

)
x + t

h
ϕi (h, x) = ϕ(h, x) −

(
1 − t

h

)
(ϕ(h, x) − x). (62)

We will use formula (61) for t ∈ [0, h/2] and formula (62) for t ∈ [h/2, h].
Assume that t ∈ [0, h/2]. From the mean value theorem we obtain, for some

θ1, θ2, θ3 ∈ [0, 1]:∣∣∣∣ϕi (t, x) −
(

xi + t
ϕi (h, x) − xi

h

)∣∣∣∣ =
∣∣∣∣(ϕi (t, x) − xi) − t

ϕi (h, x) − xi

h

∣∣∣∣
= |t || fi (ϕ(θ2t, x)) − fi (ϕ(θ1h, x))|
= |t ||θ2t − θ1h|

×
∣∣∣∣∣∑

j

∂ fi

∂xj
(ϕ(θ3h, x)) · f j (ϕ(θ3h, x))

∣∣∣∣∣
≤ h2

2

∣∣∣∣∣∑
j

∂ fi

∂xj
(z) · f j (z)

∣∣∣∣∣ ,
where z = ϕ(θ3h, x) ∈ Z .

Similarly, for t ∈ [h/2, h], we have

|ϕi (t, x) − (ϕi (h, x) − (1 − t/h)(ϕi (h, x) − xi))|
= |(ϕi (t, x) − ϕi (h, x)) + (1 − t/h)(ϕi (h, x) − xi))|
= |(t − h) fi (ϕi (θ1h, x) + (1 − t/h)h fi (ϕi (θ2h, x)|

= (h − t)|θ1h − θ2h|
∣∣∣∣∣∑

j

∂ fi

∂xj
f j (z)

∣∣∣∣∣ ≤ h2

2

∣∣∣∣∣∑
j

∂ fi

∂xj
(z) · f j (z)

∣∣∣∣∣ ,
where z = ϕ(θ3h, x) ∈ Z .

446 P. Zgliczynski

When we apply Lemma 6 to system (1) and (2), then for the right-hand side in
(60) for Vi j we obtain the following expression

∑
l

∂V ′
i j

∂xl
fl +

∑
lm

∂V ′
i j

∂Vlm
V ′

lm =
∑

kl

∂2 fi

∂xk ∂xl
Vkj fl +

∑
l

∂ fi

∂xl
V ′

l j

=
∑

kl

∂2 fi

∂xk ∂xl
Vkj fl +

∑
lm

∂ fi

∂xl

∂ fl

∂xm
Vmj .

Hence we have proved the following:

Lemma 7. Let Z ⊂ Rn and M ⊂ Rn×n be convex sets such that ϕ(τ + t, x) ∈ Z
and V (τ + t, x) ∈ M for t ∈ [0, h], then∣∣∣∣Vi j (τ + t, x) −

((
1 − t

h

)
Vi j (τ, x) + t

h
Vi j (τ + h, x)

)∣∣∣∣
≤ h2

2
max

z∈Z ,A∈M

∣∣∣∣∣∑
kl

∂2 fi

∂xk ∂xl
(z)Akj fl(z) +

∑
lm

∂ fi

∂xl
(z)

∂ fl

∂xm
(z)Amj

∣∣∣∣∣ .
Lemmas 6 and 7 offer a justification for the following procedure for the esti-

mation of ϕ([0, hk], [xk]) and V (tk + [0, hk], [x0]).

PROCEDURE:

Input parameters:

• hk is a time step;
• [xk] ⊂ Rn , such that ϕ(tk, [x0]) ⊂ [xk];
• [xk+1] ⊂ Rn such that ϕ(hk, [xk]) ⊂ [xk+1];
• [W1] ⊂ Rn compact and convex, such that ϕ([0, hk], [xk]) ⊂ [W1];
• (for C1 algorithms) [Vk] ⊂ Rn×n , such that V (tk, [x0]) ⊂ [Vk];
• (for C1 algorithms) [Vk+1] ⊂ Rn×n , such that V (tk + hk, [x0]) ⊂ [Vk+1];

and
• (for C1 algorithms) [W3] ⊂ Rn×n compact and convex, such that V ([0, hk],

[xk]) ⊂ [W3]

Output:

We compute [Ek] ⊂ Rn such that

ϕ([0, hk], [xk]) ⊂ [Ek],

and for C1 algorithms [Mk] ⊂ Rn×n such that

V (tk + [0, hk], [x0]) ⊂ [Mk].

C1 Lohner Algorithm 447

We proceed as follows:

• if 0 ∈ fi ([W1]), then

[Ek]i := hull([xk]i , [xk+1]i) + [−1, 1] · h2
k

2

∣∣∣∣∣∑
j

∂ fi

∂xj
([W1]) · f j ([W1])

∣∣∣∣∣ ;
• if 0 /∈ fi ([W1])i , then the i th coordinate is strictly monotone on [W1], hence

we set

[Ek]i = hull([xk]i , [xk+1]i).

For C1 algorithms
We define

[W4] = [W3] · [Vk]. (63)

It is easy to see that V (tk + [0, hk], [x0]) ⊂ [W4]:

• if V ′
i j ([W1], [W4]) =∑

l(∂ fi/∂xl)([W1]) · [W4]l j contains 0, then

[Mk]i j = hull([Vk]i j , [Vk+1]i j)

+ [− 1, 1] · h2
k

2

∣∣∣∣∣∑
kl

∂2 fi

∂xk ∂xl
([W1]) · [W4]k j · fl([W1])

+
∑
lm

∂ fi

∂xl
([W1]) · ∂ fl

∂xm
([W1]) · [W4]mj

∣∣∣∣∣ ;
• if V ′

i j ([W1], [W4])does not contain 0, then Vi j (tk+t, [x0]) is strictly monotone
for t ∈ [0, hk], hence we can set

[Mk]i j = hull([Vk]i j , [Vk+1]i j).

5. Poincaré Map

The goal of this section is to show how, from the bounds for ϕ(t, x) and ∂ϕ/∂x
obtained by the C0 and C1 Lohner algorithms, we can compute P(x) and ∂ P/∂x .

In Section 5.1 we derive the formulas, which express ∂ P/∂x in terms of ∂ϕ/∂x .
In Section 5.2 we discuss in detail the procedure which allows us to compute

P and ∂ P/∂x from the data obtained from the Lohner algorithm.
In Section 5.3 we discuss the issue of errors related to the computation of the

intersection of the trajectory with a section. Insights gained in this section are then
used in Section 5.4 to describe an efficient time-step selection scheme near the
section.

448 P. Zgliczynski

Let α: Rn → R be a C1 function. We define a section, �, by

� = {x | α(x) = 0, f (x) · ∇α(x) > 0}. (64)

We assume that � is a local section for (1).
For x ∈ Rn by tp(x) we will denote the return time to �. This means that

ϕ(tp(x), x) ∈ �. (65)

The Poincaré map P : � ⊃ dom(P) → � can be seen as a restriction, the section
of the map P̃ : Rn ⊃ U → Rn is given by

P̃(x) = ϕ(tp(x), x). (66)

From now on we will not distinguish between the maps P̃ and P , and we will use
the same symbol P to denote both of them. Hence we effectively treat a Poincaré
map as a map defined on some open subset in Rn for two reasons, we want to avoid
any particular coordinate system on � and we want to allow for maps between the
different sections.

To infer the derivatives of P : � → � we have consider how � is embedded
in Rn . For example, when α(x) = x1 −C and we use (x2, . . . , xn) to represent the
points on �, then we just drop the first row and the first column from the matrix
∂ P̃/∂x .

5.1. A Formula for Partial Derivatives of the Poincaré Map

The Poincaré map P is defined by

P(x) = ϕ(tP(x), x), (67)

where tP : Rn → R satisfies the following equation

α(ϕ(tp(x), x)) = 0. (68)

Since � is a local section, it follows easily from the implicit function theorem
that tp is a smooth function. We now compute the derivatives of tp. We differentiate
(68) with respect to xj , j = 1, . . . , n, to obtain

n∑
i=1

∂α

∂xi

(
fi

∂tP

∂xj
+ ∂ϕi

∂xj

)
= 0,

(∇α · f)
∂tP

∂xj
+

n∑
i=1

∂α

∂xi

∂ϕi

∂xj
= 0.

Hence

∂tP

∂xj
= − 1

∇α · f

n∑
i=1

∂α

∂xi

∂ϕi

∂xj
. (69)

C1 Lohner Algorithm 449

Now we can compute ∂ Pi/∂xj :

∂ϕi (tP(x), x)

∂xj
= fi

∂tP

∂xj
+ ∂ϕi

∂xj
= ∂ϕi

∂xj
− fi

∇α · f

n∑
k=1

∂α

∂xk

∂ϕk

∂xj
. (70)

For example, if α(x) = x1 − C , we obtain

∂ Pi

∂xj
= − fi

f1

∂ϕ1

∂xj
+ ∂ϕi

∂xj
. (71)

Hence we have proved the following:

Lemma 8.
∂ Pi

∂xj
(x) = ∂ϕi

∂xj
(tp(x), x) − fi

∇α · f

(
ϕ(tp(x), x)

)
·

n∑
k=1

∂α

∂xk
(ϕ(tp(x), x))

∂ϕk

∂xj
(tp(x), x). (72)

5.2. Computation of a Poincaré Map

In this section we describe how, from the data supplied by the Lohner algorithm,
we can obtain P([x0]) and (∂ P/∂x)([x]). In this section we assume that we have a
prescribed sequence of time steps hk . A proposal for an efficient time-step selection
scheme near the Poincaré section is given in Section 5.4.

Let us set tk =
∑k−1

i=0 hi , where hi is the time step used in the (i + 1)th step of
the Lohner algorithm.

From the Lohner algorithm we have:

(1) a sequence [xN+k] ⊂ Rn , k = 0, . . . , s, such that ϕ(tN+k, [x0]) ⊂ [xN+k];
and

(2) a sequence [VN+k] ⊂ Rn×n , k = 0, . . . , s, such that (∂ϕ/∂x)(tN+k, [x0]) ⊂
[VN+k];

such that the following conditions are satisfied

ϕ((0, tN], [x0]) ∩ � = ∅, (73)

α([xN]) < 0, (74)

α([xN+s]) > 0. (75)

For k = 0, . . . , s − 1 we define [EN+k] ⊂ Rn , [MN+k] ⊂ Rn×n as the output
of the procedure described in Section 4. We have

ϕ([tN+k, tN+k+1], [x0]) ⊂ ϕ([0, hN+k], [xN+k]) ⊂ [EN+k], (76)

∂ϕ

∂x
([tN+k, tN+k+1], [x0]) = V ([tN+k, tN+k+1], [x0]) ⊂ [MN+k]. (77)

450 P. Zgliczynski

We set

〈P〉 =
s−1⋃
k=0

[EN+k], (78)

〈V 〉 =
s−1⋃
k=0

[MN+k]. (79)

The sums in the above equations are realized by taking the interval enclosures.
We have

ϕ([tN , tN+s], [x0]) ⊂ 〈P〉, (80)

∂ϕ

∂x
([tN , tN+s], [x0]) ⊂ 〈V 〉. (81)

Assume now that on 〈P〉 we have

∇α(〈P〉) · f (〈P〉) > 0. (82)

From the above equation it follows that α(t) = α(ϕ(t, x)) is an increasing function
for x ∈ 〈P〉. Hence from (73)–(75), (80), and (81) it follows immediately that, for
all x ∈ [x0], the Poincaré map, P , is well-defined and

tP([x0]) ⊂ (tN , tN+s), (83)

P([x0]) ⊂ [P] := 〈P〉 ∩ �, (84)

∂ϕ

∂x
(tP(x), x) ∈ 〈V 〉 ∀ x ∈ [x0]. (85)

Finally, from Lemma 8, it follows that

∂ Pi

∂xj
([x0]) ⊂ 〈d P〉i j := 〈V 〉i j −

fi

∇α · f
([P]) ·

n∑
k=1

∂α

∂xk
([P])〈V 〉k j . (86)

Let us remind the reader that the map P in the above formula is treated as map
P: Rn → Rn (see the beginning of Section 5). To infer the derivatives of a Poincaré
map P: � → � we have to consider how � is embedded in Rn . For example,
when α(x) = x1 − C , and we use (x2, . . . , xn) to represent the points on �, then
we just drop the first row and column from the matrix 〈d P〉 defined in (86).

5.3. Estimates for the Section Error

Let us consider a planar example. We assume that we have a section � defined by
α(x) = x1 − C = 0, and near � the flow is represented by the following system
of equations

x ′
1 = 1, x ′

2 = a, a ≥ 0, a ∈ R. (87)

C1 Lohner Algorithm 451

It is easy to see that the trajectory of a point (x1, x2) where x1 < 0 will intersect
the section � at the point P(x1, x2) = (0, a|x1| + x2) and tp(x1, x2) = |x1|.

Let [x] = [x−
1 , x+

1] × [x−
2 , x+

2], where [x−
1 , x+

1] < 0. We have

diam(tp([x])) = x+
1 − x1

−, (88)

P([x]) = {0} × [a|x+
1 | + x−

2 , a|x−
1 | + x+

2]. (89)

Now consider the computation of P([x]) using the method described in Section 5.2.
To this end assume that [xN] = [x] and the sum in (67) is realized as the interval
enclosure, then we have

[x−
1 , x+

1 + tN+s − tN] × [x−
2 , x+

2 + a(tN+s − tN)] ⊂ 〈P〉,
{0} × [x−

2 , x+
2 + a(tN+s − tN)] ⊂ [P].

Hence we obtain

diam([P]) − diam(P([xN])) = a · ((tN+s − tN) − diam(tP([xN]))). (90)

The above equation gives us the difference between the computed image and the
true image of the Poincaré map. We will call this difference a section error and
we will denote it by �S. In general, situation �S is an (n−1)-dimensional vector
and �Si is a section error for the i th coordinate on a section.

A higher-dimensional generalization of the above example leads us to the fol-
lowing formula (for small boxes [xN] and sections given by α(x) = xj − C) and
to the considerations given in Section 4:

�Si ≈ fi

f1
· ((tN+s − tN) − diam(tp([xN]))

)+ Ch2, (91)

where fi/ f1 should be evaluated on P([xN]), h is the time step used close to section
�, and C is some constant depending on f (see Lemma 6).

From the above formula we see that, in order to minimize the section error, we
can do three things:

(1) Take small time steps close to �, to minimize the Ch2 term.
(2) Choose section � to be as orthogonal to the flow as possible (to make fi/ f1

small). In this case it is reasonable to use a different coordinate, y, locally
close to section �, so that in new coordinates, α̃(y) = y1 − C , and the flow
is very close to the parallel flow y′1 = f̃1(y1, . . . , yn), y′i = 0 for i > 1.

(3) Minimize tN+s − tN to make it as close as possible to tp([xN]). This issue is
addressed in Section 5.4.

5.4. The Choice of Time Steps Close to the Section

Let us first estimate the diameter of the Poincaré return time, tp([x0]) = tp([xN]).
If we assume that [xN] is small and we are very close to �, then we can assume

452 P. Zgliczynski

that (d/dt)α(ϕ(t, x)) = ∇α · f (x) is approximately constant, while our trajectory
is crossing the section. For simplicity we also assume that diam(α(ϕ(t, [xN]))) is
also constant. From this we obtain the following estimate

tp([xN]) ≈ hC = diam (α([xN]))

∇α · f (x)
, (92)

where x is any point in [xN]. The number hC will be called the estimated crossing
time in the sequel.

Similar considerations allow us to make nonrigorous, but reasonably good,
guesses about the time needed to get very close to section and to the time needed
to get past the section, or very close to it.

A TIME-STEP SELECTION SCHEME
CLOSE TO THE SECTION
Let h > 0, D > 1 (we used D = 12, D = 36 in our implementation), and ε > 0
(this should be a small number, we used ε = 10−2):

(1) We compute [xk], [Vk], k = 1, . . . , N − 1, using the Lohner algorithm with
a constant time step hk = h as long as the equation

ϕ([0, hk], [xk]) ∩ � = ∅, (93)

is satisfied. For the N th step we have

ϕ([0, hN−1], [xN−1]) ∩ � �= ∅. (94)

(2) We discard the data obtained for the N th step. We find a new value for hN−1,
such that the Lohner algorithm applied to [xN−1] gives

α([xN]) < 0, (95)

and

− ε diam(α([xN])) < right(α([xN])). (96)

Obviously if we are doing a C1 computation we have to recompute [VN].
(3) We set h̄ = min(h/D, hC). This will be our time step, while we cross the

section.
(4) With hN+k = h̄, k = 0, . . . , we continue to compute [xN+k] (and [VN+k])

until, for k = s, we have

α([xN+s]) > 0. (97)

(5) We check if the following condition holds

left(α([xN+s])) < ε · diam([xN+s−1]). (98)

If the above condition is not true, then we discard the value of [xN+s] (and
[VN+s]). We decrease the value of hN+s−1 and we recompute [xN+s] (and
[VN+s]), until (97) and (98) are satisfied.

C1 Lohner Algorithm 453

Observe that from conditions (96) and (98) it follows that we overestimate the
diameter of the Poincaré return time, tp([xN]), by a factor approximately equal to
1 + 2ε.

Point (3) is necessary in the case when [xN] is relatively large, so that the
estimated crossing time becomes unacceptable for us (either the term h2C in (91)
becomes too large or the enclosure procedures cannot be completed). In this case
we use the previous time step divided by D. In this case we will cross the section
in several time steps. When [xN] is small we cross the section in one or two steps.

6. Remarks and Discussion

6.1. A Cost Comparison of C0 and C1 Algorithms

Let us observe that the C0 and C1
2 algorithms are identical on the x-variables, i.e.,

for the same order and [x0], for the same sequence of time steps hk , and for the
same rough enclosure procedure they return the same estimate for ϕ(t, [x0]). This
is not the case for the C1

1 algorithm because, instead of the partial derivative of the
Taylor method, the partial derivative of the flow is used.

With respect to a cost for the same order observe that C1 algorithms add the
following:

(1) the computation of an enclosure [W2] (for the C1
1 algorithm, only);

(2) the computation of the error term of the Taylor method for (2) (all derivatives
of V up to order pv + 1) (if pv ≥ pe, then this is the most expensive part of
the algorithm); and

(3) the rearrangement computations of V .

From the items listed above (1) and (3) appear to be quite cheap when compared
to the second one. Hence we expect that the C1 algorithm with pv = pe = r will
run in time comparable to the C0 algorithm with the order pe = r − 1. We tested
this on Poincaré maps for the Rössler equation and the Galerkin projection of the
Kuramoto–Sivashinsky (KS) equations described in Section 7. These tests show
that the computation times of the C1 algorithm with pv = pe = r are usually less
that twice the computation time for the C0 algorithm with the same time step and
with the order pe = r + 1. The test was performed over the orders 3, 4, . . . , 9.

6.2. Remarks on a Direct Integration of the System (1)–(2) Using the C0

Lohner Algorithm

As was mentioned in the Introduction we can do a C1 computation by simply
applying the original Lohner algorithm to the system (1)–(2).

Observe that the dimension of the phase space for this system is n + n2, where
n is the dimension appearing in (1). This has an immediate consequence for the

454 P. Zgliczynski

computation time of the Taylor expansion. For example, from the formulas given
in the Appendix it follows that for a second degree polynomial and for an order p
the computation time has a leading term C(p)n4, where C is constant depending
of the order only. Hence one can expect that the proposed algorithm will be about
(n + 1)4 times faster.

But there is also one even more important issue. It turns out that the Lohner
algorithm applied to system (1)–(2) performs quite poorly with respect to con-
trolling the growth of the computed image. For example, we were not able, using
this approach, to compute any of the Poincaré maps considered in Section 7. Ap-
parently, the QR-decomposition for system (1)–(2), which plays a crucial role in
controling the wrapping effect by choosing a good coordinate frame, becomes
dominated very quickly by the variational variables (the V -variables). This pro-
duces a huge wrapping effect in the x-variables and leads to meaningless results,
i.e., the computed rigorous bounds are so large that they become impractical or
the program returns overflow. There is an obvious cure for this problem: do the
QR-decomposition separately for the x-variables and for the variational part. This
is what we are doing in the proposed C1 algorithm.

7. Applications—Proofs of an Existence of
Periodic Orbits for ODEs

In this section we report on some numerical experiments using the proposed C1

Lohner algorithm for the computation of a Poincaré map, P , for some ODEs
defined by second-degree polynomial vector fields. For this class of ODEs we
implemented the C1

1 Lohner algorithm in C ++ (we used the Borland C++ 5.01
compiler). The iterative formulas we used to obtain the Taylor coefficients are
given in the Appendix. The computations were performed on a PC Pentium III
733 MHZ machine. The orders pv and pe were equal. We always used a fixed time
step, h, but close to a Poincaré section we reduced h significantly (see Section 5
for more details).

7.1. Interval Newton Method for Maps

The goal of this subsection is to recall the interval version of the Newton method
(see [1] and the references given there) for finding the zeros of a function f : Rn →
Rn .

The following theorem was proved in [1, Theorem 1].

Theorem 9. Let f : Rn → Rn be a C1 function. Let X =∏n
i=1[ai , bi], ai < bi .

Assume that the interval enclosure of D f (X), [D f (X)]I , is invertible. Let x0 ∈ X
and we define

N (x0, X) = −[D f (X)]−1
I f (x0) + x0. (99)

C1 Lohner Algorithm 455

Then:

(0) if x1, x2 ∈ X and f (x1) = f (x2), then x1 = x2;
(1) if N (x0, X) ⊂ X , then ∃!x∗ ∈ X such that f (x∗) = 0;
(2) if x1 ∈ X and f (x1) = 0, then x1 ∈ N (x0, X); and
(3) if N (x0, X) ∩ X = ∅, then f (x) �= 0 for all x ∈ X .

When looking for the fixed point of the map P we set f = I − P , hence the
set N (x0, X) will be given by

N (x0, X) = −[I − D P(X)]−1
I (x0 − P(x0)) + x0. (100)

We can formulate an interval Newton algorithm to find the fixed points of the
map P as follows.

INTERVAL NEWTON ALGORITHM. Let X be a product of intervals. We define
the function N (x0, X) as follows:

x0 = mid(X), N (x0, X) = −[I − D P(X)]−1
I (x0 − P(x0)) + x0. (101)

Step 1. Compute N (x0, X).
Step 2. If N (x0, X) ⊂ X , then return success.
Step 3. If X ∩ N (x0, X) = ∅, then return fail. There are no fixed points in X .
Step 4. If X ⊂ N (x0, X), then we modify the computation parameters. For ex-

ample, decrease a time step, eventually increase the order of the algorithm used
to compute P . Go to Step 1.

Step 5. Define a new X by X := X ∩ N (x0, X) and go to Step 1.

7.2. Rössler Equations

The Rössler equations [17] are given by

x ′ = −(y + z),

y′ = x + 0.2y, (102)

z′ = 0.2 + z(x − a),

where a is a real parameter. We focus here on the values of a = 2.2, where
numerical simulations strongly suggest the existence of an attracting limit cycle
and a = 5.7, where numerical simulations suggest the existence of a strange
attractor.

We investigate the Poincaré map on a section � = {x = 0, y < 0}. In the sequel
we will denote this map by P . On � we will use (y, z) as the coordinates. All
data for the Rössler equations presented in Subsections 7.3 and 7.4 are expressed
in these coordinates.

456 P. Zgliczynski

7.3. Rössler Equations for a = 2.2, a Proof of an
Existence of an Attracting Periodic Orbit

For a = 2.2 numerical simulations suggest the existence of an attracting limit cycle
γ , which gives rise to an attracting fixed point, x0 ≈ (−3.9205, 0.063858), for P
on �. The existence of such a periodic orbit (using a topological method based
on the Conley index) was recently proved with computer assistance by Pilarczyk
[14] (the computation time was around 2 hours). The fact that the orbit is actually
attracting was not established there.

Using x0, obtained by an iteration of a nonrigorous Newton method, as the
starting location of the fixed point, we verified (for the first iterate of the interval
Newton method) that N (x0, X) ⊂ X , where X = x0 + [−2.5 · 10−2, 2.5 · 10−2]2.
The time step was h = 10−2 and the order of the numerical method was p = 4.

Below we list some data from this computation

N (x0, X) = x0 + {2.287225 · 10−8 + [−1.094486 · 10−7, 1.094486 · 10−7]}
× {−1.273267 · 10−10 + [−6.702682 · 10−9, 6.702682 · 10−9]}

⊂ X.

For x0 − P(x0) we obtained

x0 − P(x0) = [−3.672362 · 10−8, 2.247709 · 10−8]

× [−8.317404 · 10−10, 8.398115 · 10−10]

diam(x0 − P(x0) = 5.920072 · 10−8.

We obtained the following values for all entries of D P(X):

D P(X)11 = [−1.786834, 4.775295 · 10−1],

D P(X)12 = [1.998447, 4.929028],

D P(X)21 = [−4.231020 · 10−2, 4.040204 · 10−2],

D P(X)22 = [−3.912754 · 10−2, 6.046568 · 10−2],

diam(D P(X)) = 2.930582.

The computation times were 5 seconds for D P(X) and 3 seconds for P(x0).
The reader may notice that the diameter of the computed D P(X) is quite large,

hence with these data we cannot establish that the fixed point found is attracting.
It turns out that the increasing order of the method, while keeping the size of X

and the time step h constant, still gives the diameter of D P(X) of the same size.
To prove that we have here an attracting fixed point for P one needs either to

perform the next iterate of the interval Newton algorithm with the set N (x0, X)

obtained above or to choose a smaller starting set. Below we present an example
of such a set.

C1 Lohner Algorithm 457

For the initial X = x0 + [−1, 1]2 · 10−6, h = 10−2, and p = 4 we obtain

N (x0, X) ⊂ x0 + {4.546329 · 10−9 + [−2.075644 · 10−8, 2.075644 · 10−8]}
× {−1.358635 · 10−11 + [−8.82068 · 10−10, 8.82068 · 10−10]}

⊂ X.

For x0 − P(x0) we obtain

x0 − P(x0) = ([−3.672362, 2.247709] · 10−8)

× ([−8.317404, 8.398115] · 10−10),

diam(x0 − P(x0)) = 5.920072 · 10−8.

The entries of D P(X) are

D P(X)11 = [−5.568081 · 10−1, −5.567340 · 10−1],

D P(X)12 = [3.377049, 3.377150],

D P(X)21 = [−2.063501 · 10−3, −2.061059 · 10−3],

D P(X)22 = [1.246689 · 10−2, 1.247005 · 10−2],

diam(D P(X)) = 1.019493 · 10−4.

The eigenvalues of D P(X) are given by

λ1 = [−9.0097845007 · 10−5, 7.6326532192 · 10−6],

λ2 = [−5.4431024142 · 10−1, −5.4421251092 · 10−1].

Hence the fixed point found is attracting.

7.4. Rössler Equations for a = 5.7, a Proof of the
Existence of an Unstable Periodic Orbit

The goal of this section is to show that the proposed C1 Lohner algorithm works
well enough to obtain the existence of an unstable fixed point.

For the parameter value a = 5.7 numerical simulations suggest the existence of
a strange attractor. In [22] (see also [23]) it was proved, with computer assistance,
that the Poincaré map, P , has symbolic dynamics on three symbols. In particular,
it follows from [22] that there exists a fixed point x∗ ∈ [−9,−7] × [−0.02, 0.08]
for P . Using below the C1 Lohner algorithm and the interval Newton method we
find coordinates of this point which much better precision.

For x0 ≈ (−8.38095, 0.0295902), X = x0 + [−10−3, 10−3]2, h = 10−2, and
p = 4 we were able to verify that

N (x0, X) = x0 + {−4.327904 · 10−8 + [−3.322230 · 10−7, 3.322230 · 10−7]}
× {−3.937174 · 10−8+[−6.728499 · 10−9, 6.728499 · 10−9]}⊂ X.

458 P. Zgliczynski

For x0 − P(x0) we obtained the following values

x0 − P(x0) = [−1.038311 · 10−6, 1.176263 · 10−6]

× [3.310963 · 10−8, 4.566477 · 10−8],

diam(x0 − P(x0)) = 2.214574 · 10−6.

The computed bounds for D P(X) are given by

D P(X)11 = [−2.438481, −2.372972],

D P(X)12 = [1.946089, 1.988827],

D P(X)21 = [−1.334871 · 10−3, −8.601484 · 10−4],

D P(X)22 = [7.680544 · 10−4, 1.019349 · 10−3],

diam(D P(X)) = 6.550938 · 10−2.

The eigenvalues of D P(X) are

λ1 = [−3.3231261746 · 10−2, 3.3213281643 · 10−2],

λ2 = [−2.4380463797, −2.3716018363].

Hence the fixed point found is hyperbolic with one stable and one unstable direc-
tion.

7.5. A 14-Dimensional Galerkin Projection of
Kuramoto–Sivashinsky Equations

The Kuramoto–Sivashinsky equation [7], [18] (we will use the shorthand KS equa-
tion in the sequel), introduced in the context of a wave-front propagation, is given
by

ut =−νuxxxx−uxx+2uux , (t, x) ∈ [0,∞)×(−π, π), ν >0. (103)

Assuming odd and periodic boundary conditions the KS equation can be reduced
(see [24]) to the following infinite system of ODEs for the coefficients of the
Fourier expansion of u:

ȧk =k2(1−νk2)ak−k
k−1∑
n=1

anak−n+2k
∞∑

n=1

anan+k, k=1, 2, 3, (104)

We will refer to the coordinates ak as modes. In this paper we focus on ν =
0.127. For this parameter value, numerical simulations suggest the existence of an
attracting limit cycle, whose projection (a1, a3) is an ellipse on which the point
moves in the clockwise direction.

C1 Lohner Algorithm 459

We focus on the following two sections:

�1: angle −π/4 in the (a1, a3)-plane: a1 + a3 = 0, a1 > 0, a′
1 + a′

3 < 0; and
�2: angle −5π/4 in the (a1, a3)-plane: a1 + a3 = 0, a1 < 0, a′

1 + a′
3 > 0.

On these sections we use the following coordinates: (c1, c2, c3, c4, . . .)

= (
√

a2
1 + a2

3, a2, a4, a5, . . .). We will call them section coordinates.
Let R be a map which leaves even modes and changes the sign of odd modes:

a2k → a2k and a2k+1 → −a2k+1. It is easy to see that R leaves the system (104)
invariant (R is the symmetry of the equations) and sections �1 and �2 are mapped
one onto another by this symmetry.

Let P1→2: �1 → �2 and P2→1: �2 → �1 denote the Poincaré maps between
sections �1 and �2. We have

P2→1 = R P1→2 R. (105)

For the full Poincaré map on section �1 we obtain that

P = P2→1 P1→2 = R P1→2 R P1→2 = (R P1→2)
2. (106)

Hence any fixed point for R P1→2 is a fixed point for P .
For ν = 0.127 and the dimension of the Galerkin projection d = 14 we have the

following approximate fixed point for R P1→2 (expressed in section coordinates):

x0 = (0.548852, 1.32064, −0.34417, 0.106402, 0.0322448,

− 0.0153075, −0.00196743, 0.00166589, 2.79272 · 10−5,

− 0.000147416, 1.04171 · 10−5, 1.11144 · 10−5, −1.76484 · 10−6).

We started the interval Newton algorithm with the following parameters

δ = 10−5, X = x0 + [−δ, δ]d−1,

p = 4, h = 1

2d2(νd2 − 1)
≈ 0.000106773,

and were able to check the assumptions of Theorem 9 and show that the fixed point
found is attracting. Below we give some numerical data from these computations:

N (x0, X) = x0 + (−4.799947 · 10−7 + [−2.301085 · 10−7, 2.301085 · 10−7],

4.638543 · 10−7 + [−1.421597 · 10−7, 1.421597 · 10−7],

−3.642497 · 10−7 + [−1.266866 · 10−7, 1.266866 · 10−7],

−4.326831 · 10−8 + [−5.090406 · 10−8, 5.090406 · 10−8],

7.367633 · 10−8 + [−3.519784 · 10−8, 3.519784 · 10−8],

−2.027772 · 10−9 + [−9.687707 · 10−9, 9.687707 · 10−9],

460 P. Zgliczynski

−1.034572 · 10−8 + [−7.233898 · 10−9, 7.233898 · 10−9],

1.377686 · 10−9 + [−1.960368 · 10−9, 1.960368 · 10−9],

1.100782 · 10−9 + [−1.555556 · 10−9, 1.555556 · 10−9],

−2.520153 · 10−10 + [−5.082655 · 10−10, 5.082655 · 10−10],

−8.833202 · 10−11 + [−7.110429 · 10−10, 7.110429 · 10−10],

3.422440 · 10−11 + [−7.501527 · 10−10, 7.501527 · 10−10],

9.362639 · 10−12 + [−2.636542 · 10−9, 2.636542 · 10−9]) ⊂ x0 + X.

The rigorous bound for the matrix norm of DR P1→2(X), corresponding to the
norm ‖x‖m = maxi |xi |, is

‖DR P1→2(X)‖m = max
i=1,...,d−1

∑
j

|DR P1→2(X)i j | < 0.82, (107)

which shows that the fixed point found is attracting.
In Tables 1 and 2 we list two first rows and columns DR P1→2 to give the reader

a feeling about the sizes of the obtained bounds. The entries DR P1→2(X)i j are
decaying as i and j increase. For the diameter we have

diam(DR P1→2) = 2.538517 · 10−1

and it is reached for the (1, 1) entry.
Table 3 contains the computed bounds for x0 − R P1→2(x0).
The period of the fixed point found is approximately equal to 2.242. The com-

putation times were 1540 seconds (25.7 minutes) and 628 seconds (10.5 minutes)
for C1 and C0 computations, respectively.

Table 1. Two first rows of DR P1→2(X).

j DR P1→2(X)1 j DR P1→2(X)2 j

1 [4.450702, 6.989218] · 10−1 [−5.042949, −4.544209] · 10−1

2 [0.8580582, 7.208375] · 10−2 [6.742856, 7.952010] · 10−2

3 [−2.103405 · 10−2, 1.077716 · 10−3] [4.114357 · 10−2, 4.521749 · 10−2]
4 [7.242173 · 10−3, 1.785252 · 10−2] [−1.489896 · 10−2, −1.274972 · 10−2]
5 [−4.405318 · 10−3, −2.183634 · 10−3] [4.344733 · 10−3, 4.762542 · 10−3]
6 [−7.412482 · 10−4, −5.316928 · 10−4] [1.905524 · 10−4, 2.181210 · 10−4]
7 [1.844130 · 10−5, 1.331995 · 10−4] [−1.752168 · 10−4, −1.579311 · 10−4]
8 [−4.380603 · 10−5, 8.325807 · 10−6] [3.447287 · 10−5, 4.318816 · 10−5]
9 [1.565435 · 10−6, 2.055378 · 10−5] [−1.268904 · 10−5, −9.857161 · 10−6]

10 [−3.177638 · 10−6, 4.527249 · 10−6] [−7.197865 · 10−7, 2.291789 · 10−7]
11 [−3.236594 · 10−6, 1.487707 · 10−6] [6.155755 · 10−7, 1.206583 · 10−6]
12 [−1.415723 · 10−6, 1.494335 · 10−6] [−2.936788 · 10−7, 4.853580 · 10−8]
13 [−9.496676 · 10−7, 1.017148 · 10−6] [−1.434915 · 10−7, 8.756737 · 10−8]

C1 Lohner Algorithm 461

Table 2. Two first columns of DR P1→2(X).

i DR P1→2(X)i1 DR P1→2(X)i2

1 [4.450702 · 10−1, 6.989218 · 10−1] [8.580582 · 10−3, 7.208375 · 10−2]
2 [−5.042949 · 10−1,−4.544209 · 10−1] [6.742856 · 10−2, 7.952010 · 10−2]
3 [3.448295 · 10−1, 4.253800 · 10−1] [−5.718379 · 10−2,−3.723603 · 10−2]
4 [2.070086 · 10−2, 1.004633 · 10−1] [5.415046 · 10−3, 2.537533 · 10−2]
5 [−9.715707 · 10−2,−6.493140 · 10−2] [2.745561 · 10−3, 1.070263 · 10−2]
6 [−8.989916 · 10−3, 8.344327 · 10−3] [−5.325052 · 10−3,−1.055837 · 10−3]
7 [6.416967 · 10−3, 1.640791 · 10−2] [−1.843014 · 10−3, 6.005894 · 10−4]
8 [−2.897343 · 10−3, 6.205670 · 10−4] [2.720738 · 10−5, 8.916281 · 10−4]
9 [−2.582180 · 10−3, 2.064264 · 10−4] [−3.203044 · 10−4, 3.720348 · 10−4]

10 [−2.153901 · 10−4, 6.846829 · 10−4] [−1.697652 · 10−4, 6.874759 · 10−5]
11 [−5.261595 · 10−4, 7.236297 · 10−4] [−1.706955 · 10−4, 1.737552 · 10−4]
12 [−6.866004 · 10−4, 6.194646 · 10−4] [−1.857865 · 10−4, 1.971323 · 10−4]
13 [−2.308010 · 10−3, 2.286113 · 10−3] [−6.751461 · 10−4, 6.790530 · 10−4]

We performed a similar computation for d = (7, 8, 9)-dimensional Galerkin
projection and each time we obtained a proof of the existence of an attracting
fixed point. For a comparison, for d = 7, the computation times for h = 5 · 10−4,
δ = 10−5 were 52 and 25 seconds for C1 and C0 computations, respectively.

8. Conclusions and Future Directions

It is quite obvious that we can hope to improve the algorithm proposed here,
in terms of bounds produced at a given computation cost, by constructing much
better rough enclosures (by using a low-order Taylor method (see e.g., [8])) or by
introducing a smart time-step selection scheme.

Table 3. The bounds for x0 − R P1→2(x0).

i x0,i − R P1→2(x0)i

1 [2.100324 · 10−7, 2.120372 · 10−7]
2 [−2.094023 · 10−7,−2.085218 · 10−7]
3 [1.639110 · 10−7, 1.647684 · 10−7]
4 [1.873067 · 10−8, 1.925487 · 10−8]
5 [−3.372191 · 10−8,−3.350485 · 10−8]
6 [8.123026 · 10−10, 8.859718 · 10−10]
7 [4.608611 · 10−9, 4.645857 · 10−9]
8 [−5.926317 · 10−10,−5.824013 · 10−10]
9 [−4.717564 · 10−10,−4.629766 · 10−10]

10 [1.055226 · 10−10, 1.099981 · 10−10]
11 [3.324677 · 10−11, 4.100305 · 10−11]
12 [−1.666509 · 10−11,−1.160854 · 10−11]
13 [−6.625590 · 10−12, 1.340692 · 10−12]

462 P. Zgliczynski

But it appears to us that major improvements can be obtained if we are able
to control the Lipschitz part of the error (as was discussed in the Introduction).
Another possible huge improvement should be possible if we can evaluate the
Taylor formula (or any other formula used as a numerical method) in a way which
will allow for as many cancellations of the various terms as possible, so that the
computed range using interval arithmetic will be close to the ideal one. To explain
what we mean let us consider the computation of e−x using a series expansion

e−x = 1 − x + x2/2! − x3/3! + · · · . (108)

Assume that we want to compute e−[0,h] for some h > 0. It is easy to see that the
direct interval evaluation of (108) will give us an interval containing [e−h, cosh(h)],
because to compute a possible upper bound we insert x = 0 for the odd powers and
x = h for the even powers. We can imagine that much worse things may happen
in a higher-dimensional situation, when we evaluate the higher-order terms of the
Taylor method, which are complicated expressions, on a rough enclosure which,
in many applications, can have a considerable diameter. An example of such an
approach, which deals adequately with this problem for the Euler method, was
presented in [19], [20], where the monotonicity properties of the vector field were
exploited.

Let us finish by pointing out two important directions, in the context of the
application of rigorous numerics to the dynamics of ODEs and partial differen-
tial equations (PDEs), which apparently require the development of new efficient
algorithms.

Bifurcation of periodic orbits for ODEs. The C1 algorithm developed here
should allow us to rigorously trace branches of periodic orbits for ODEs, but to
treat a rigorous bifurcation point one needs some C2 information, which clearly
requires an efficient C2 algorithm for ODEs.

The dynamics of dissipative PDEs. The dynamics of many important PDEs
(e.g., the Navier–Stokes equations) is effectively finite-dimensional (see, e.g.,
[24] and the references given there). The tools developed in [24] promise that
we can exploit this finite-dimensionality to perform rigorous computations for
these equations. To this end we need to develop an efficient algorithm for solving
ODEs with a controlled perturbation.

9. Appendix. Iterative Formulas for the Taylor Method for a Second
Degree Polynomial

Consider the ODE

x ′ = f (x), x ∈ Rn, f is a polynomial of degree 2, (109)

and let ϕ(t, x0) be a local flow induced by (109).

C1 Lohner Algorithm 463

Theorem 10. Let x (s) = x (s)(t, x0) = (ds/dts)ϕ(t, x0), then

x (1)
i = fi , (110)

x (2)
i =

n∑
j=1

∂ fi

∂xj
x (1)

j , (111)

x (r)
i =

n∑
j=1

∂ fi

∂xj
x (r−1)

j +
n∑

j,k=1

∂2 fi

∂xj xk
ark j if r > 2, (112)

where

ark j =
{

r−3∑
s=0

(
r − 2

s

)
x (r−2−s)

k x (1+s)
j

}
. (113)

In the above formulas the functions fi , ∂ fi/∂xj , and ∂2 fi/∂xj xk are all evaluated
at x = ϕ(t, x0).

Proof. The formula for r ≤ 3 is obviously satisfied. So suppose that the formula
for r − 1 holds and we will show it for r . The term involving ∂ fi/∂xj is obviously
correct.

Consider now the coefficient of the term x (r−2−s)
k x (1+s)

j . If s = 0, then this coef-

ficient may result only from the differentiation of x (r−3)
k x (1)

j which was multiplied

by
(r − 3

0
) = (r − 2

0
)
.

For 0 < s ≤ r − 1 − 3 we have two possibilities of obtaining x (r−2−s)
k x (1+s)

j :

we differentiate either xk or xj . This gives us the coefficient
(r − 3

s
)+ (r − 3

s − 1
) =(r − 2

s
)
.

For s = r − 3 we have the coefficient
(r − 3
r − 4

)
from the last term in the sum

over s and we have to add to it 1 = (r − 3
r − 3

)
which arises from the differentiation

of (∂ fi/∂xj)x (r−2)
j . Hence we obtain a coefficient

(r − 2
r − 3

)
.

By taking partial derivatives of x (r)
i (t, x0) we easily obtain the following:

Theorem 11. Let Dbx (r)
i = Dbx (r)

i (t, x) := (∂x (r)
i /∂xb)(t, x). We have

Dbx (1)
i =

n∑
k=1

∂ fi

∂xk
Dbx (0)

k , (114)

Dbx (2)
i =

n∑
j,k=1

∂2 fi

∂xj ∂xk
x (1)

j Dbx (0)
k +

n∑
j=1

∂ fi

∂xj
Dbx (1)

j , (115)

464 P. Zgliczynski

and, for r > 2,

Dbx (r)
i =

n∑
j,k=1

∂2 fi

∂xj ∂xk
x (r−1)

j Dbx (0)
k +

n∑
j=1

∂ fi

∂xj
Dbx (r−1)

j +
n∑

j,k=1

∂2 fi

∂xj xk
Dbark j ,

where

ark j =
r−3∑
s=0

(
r − 2

s

)
x (r−2−s)

k x (1+s)
j ,

Dbark j =
r−3∑
s=0

(
r − 2

s

)
{Db(x (r−2−s)

k) · x (1+s)
j + x (r−2−s)

k · Db(x (1+s)
j)}.

In the above formulas the functions fi , ∂ fi/∂xj , and ∂2 fi/∂xj xk are all evaluated
at ϕ(t, x).

Observe that Vib(t, x) = (∂ϕi/∂xb)(t, x) is in the notation used in the above
theorem equal to Dbx (0)

i (t, x).
It is clear from the expressions given in Theorems 10 and 11, that to compute

the functions x (s) and Dbx (s), it is enough to specify x (0) = ϕ(t, x0) and Dbx (0)
i =

(∂ϕi/∂xb)(t, x0).
The functions (di/dti) f and (di/dti) ((∂ f/∂x)V), used in Section 2, are given

by (
ds

dts
f

)
(x0) = x (s+1)(x0),(

ds

dts

(
∂ f

∂x
V

))
ib

(x0, V0) = Dbx (s+1)
i (x0, V0),

where x0 ∈ Rn and V0 ∈ Rn×n .
The derivative of the Taylor method of order p and time step h is given by

∂

∂xb
	i (h, x, p) = δib +

p∑
s=1

(
ds−1

dts−1

(
∂ f

∂x
V

))
ib

(x, Id)
hs

s!

= δib +
p∑

s=1

Dbx (i)(x, Id)
hs

s!
,

where δi j is a Kronecker symbol: δi j = 1 if i = j and δi j = 0 otherwise.

Acknowledgments

Research supported in part by Polish KBN Grant 2 P03A 011 18 and by NSF Grant
DMS-9706903.

C1 Lohner Algorithm 465

References

[1] G. Alefeld, Inclusion methods for systems of nonlinear equations—the interval Newton method
and modifications, in Topics in Validated Computations (J. Herzberger, ed.), Elsevier Science,
New York, 1994.

[2] G. Arioli and P. Zgliczyński, Symbolic dynamics for the Hénon–Heiles Hamiltonian on the critical
energy level, J. Differential Equations 171 (2001), 173–202.

[3] G. Arioli and P. Zgliczyński, in preparation.
[4] Z. Galias and P. Zgliczyński, Computer-assisted proof of chaos in the Lorenz system, Phys. D,

115 (1998), 165–188.
[5] E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations I, Nonstiff

Problems, Springer-Verlag, Berlin, 1987.
[6] B. Hassard, J. Zhang, S. Hastings, and W. Troy, A computer proof that the Lorenz equations have

“chaotic” solutions, Appl. Math. Lett., 7 (1994), 79–83.
[7] Y. Kuramoto and T. Tsuzuki, Persistent propagation of concentration waves in dissipative media

far from thermal equilibrium, Progr. Theoret. Phys. 55 (1976), 365.
[8] R. J. Lohner, Computation of guaranteed enclosures for the solutions of ordinary initial and

boundary value problems, in Computational Ordinary Differential Equations (J. R. Cash and I.
Gladwell, eds.), Clarendon Press, Oxford, UK, 1992.

[9] R. J. Lohner, Einschliessung der Lösung gewonhnlicher Anfangs- and Randwertaufgaben und
Anwendungen, Universität Karlruhe (TH), these, 1988.

[10] R. E. Moore, Interval Analysis, Prentice Hall, Englewood Cliffs, NJ, 1966.
[11] M. Mrozek and P. Zgliczyński, Set arithmetic and the enclosing problem in dynamics, Ann. Polon.

Math. LXXIV (2000), 237–259.
[12] K. Mischaikow and M. Mrozek, Chaos in the Lorenz equations: A computer-assisted proof. Part

II: Details, Math. Comp. 67 (1998), 1023–1046.
[13] N. S. Nedialkov and K. R. Jackson, An interval Hermite–Obreschkoff method for computing

rigorous bounds on the solution of an initial value problem for an ordinary differential equation,
in Developments in Reliable Computing (Budapest, 1998), Kluwer Academic, Dordrecht, 1999,
pp. 289–310.

[14] P. Pilarczyk, Computer assisted method for proving existence of periodic orbits, Topological
Methods Nonlinear Anal. 13 (1999), 365–377.

[15] T. Rage, A. Neumaier, and C. Schlier, Rigorous verification of chaos in a molecular model, Phys.
Rev. E 50 (1994), 2682–2688.

[16] L. B. Rall, Automatic Differentiation: Techniques and Applications, Lecture Notes in Computer
Science, Vol. 120, Springer-Verlag, Berlin, 1981.

[17] O. E. Rössler, An equation for continous chaos, Phys. Lett. A 57 (1976), 397–398.
[18] G. I. Sivashinsky, Nonlinear analysis of hydrodynamical instability in laminar flames—1. Deriva-

tion of basic equations, Acta Astronom. 4 (1977), 1177.
[19] W. Tucker, Lorenz attractor exists, C. R. Acad. Sci. Paris Sér I 328 (1999), 1197–1202.
[20] W. Tucker, A rigorous ODE solver and Smale’s 14th problem, Found. Comp. Math. 2 (2002),

53–117.
[21] D. Wilczak and P. Zgliczyński, Heteroclinic connections between periodic orbits in

planar restricted circular three-body problem—A computer-assisted proof, submitted,
http://www.im.uj.edu.pl/˜zgliczyn

[22] P. Zgliczyński, Computer-assisted proof of chaos in the Hénon map and in the Rössler equations,
Nonlinearity, 10 (1997), 243–252.

[23] P. Zgliczyński, Multidimensional perturbations of one-dimensional maps and stability of
Sharkovskii ordering, Internat. J. Bifurcation Chaos 9 (1999), 1867–1876.

[24] P. Zgliczyński and K. Mischaikow, Rigorous numerics for partial differential equations: The
Kuramoto–Sivashinsky equation, Found. Comput. Math. 1 (2001), 255–2889.

