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Abstract. Cellulations of the projective plane R P2 define single qubit topological
quantum error correcting codes since there is a unique essential cycle in H1(R P2; Z2).
We construct three of the smallest such codes, show they are inequivalent, and identify
one of them as Shor’s original 9 qubit repetition code. We observe that Shor’s code
can be constructed in a planar domain and generalize to planar constructions of
higher-genus codes for multiple qubits.

Kitaev has constructed a class of quantum error correcting codes, using qubits
arranged on the edges of square lattices embedded in the two-dimensional torus
[1]. While these toric codes are not particularly efficient—they do not come close
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to saturating the quantum Hamming bound [2]—they are nevertheless interesting
for several reasons: Toric codes have local stabilizers, which means that the code
subspace can be identified as the (degenerate) ground state subspace of a local
Hamiltonian; thus there would be some level of automatic error correction in
such a quantum system. Furthermore, fault-tolerant quantum computation can be
performed using elementary excitations of the Hamiltonian [3]; universal quantum
computation is possible if the qubits (lying in C

2 = C
Z2 ) are replaced in the model

with states in C
60 = C

A5 [4].
Kitaev also remarks that cellulations with |E | edges of genus g compact ori-

entable surfaces generally encode 2g qubits using |E | qubits [3]. The toric codes,
for example, encode 2 qubits. In this paper we observe that, as is the case for perco-
lation, there is something to be learned from studying the problem on the projective
plane R P2 [5]. Since there is a unique essential cycle in H1(R P2; Z2), cellulations
of R P2 encode a single qubit. Here we consider the smallest such quantum error
correcting codes and compare them with single qubit codes obtained otherwise.

We begin by reviewing the construction of (two-dimensional) topological quan-
tum error correcting codes. A cellulation C of a surface defines sets F , E , and V
of faces, edges, and vertices, respectively. For each face f ∈ F , let E f ⊂ E be
the set of edges in the boundary of f ; define (our construction is dual to Kitaev’s
[1], but equivalent)

Af :=
⊗
e∈E

σ
δ(e∈E f )
x . (1)

Similarly, for each vertex v ∈ V , let Ev ⊂ E be the set of edges in whose boundary
v lies; define

Bv :=
⊗
e∈E

σ δ(e∈Ev)
z , (2)

where σx and σz are the usual Pauli matrices

σx =
(

0 1
1 0

)
and σz =

(
1 0
0 −1

)
,

the exponents in equations (1) and (2) are 1(0) according to the truth (falsity) of the
argument of δ(·), and the stabilizer operators Af and Bv act on the Hilbert space
H = (C2)⊗|E | with qubit tensor factors labeled by the edges of the cellulation.
These stabilizer operators form an overcomplete set of generators for the stabilizer
group; there are two relations:

∏
f

A f = id =
∏
v

Bv. (3)

As usual, let 0 and 1 denote the eigenvectors of σz with eigenvalues 1 and
−1, respectively. The 2|E | configurations of 0’s and 1’s on the edges of C form a
basis for H. There is a natural bijection between this basis and the set of Z2-linear
combinations of elements in E , the 1-chains ofC with coefficients in Z2, C1(C; Z2);
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thus we identify H = C
C1(C;Z2). The subspace of H which is the intersection of

the eigenvalue 1 eigenspaces of the Bv is spanned (over C) by configurations with
an even number of edges labeled by 1’s incident at each vertex; these are chains
in C1(C; Z2) without boundary, i.e., the cycles Z1(C; Z2). So, the subspace of H,
fixed by all the Bv , is C

Z1(C;Z2), the functions from Z2 1-cycles to C. Since σx acting
at an edge exchanges 0 and 1, each Af corresponds to the order 2 automorphism
of Z1(C; Z2) which changes each cycle by the Z2-addition of the cycle bounding
f . Thus the subspace of H fixed by both all the Bv and all the Af is the set
of functions on Z1(C; Z2) which are invariant under the Z2-addition of cycles
bounding 2-chains in C, the boundaries B1(C; Z2). This code subspace is therefore
C

H1(C;Z2), where H1(C; Z2) = Z1(C; Z2)/B1(C; Z2) is the first homology group
of C over Z2. For a genus g compact orientable surface 	, H1(	; Z2) = ⊕2g

i=1 Z2,
so a corresponding code subspace would have dimension 22g and thus encode
2g qubits. But the real projective plane R P2 has a unique essential cycle, so
H1(R P2; Z2) = Z2 and any corresponding code subspace has dimension 2 and
encodes a single qubit.

Consider a bit flip error in the qubit on some edge e, i.e., multiplication by σx on
the corresponding tensor factor ofH. This error will be detected by the eigenvalues
of the stabilizer operators Bv for the two vertices in the boundary of e—unless
there are bit flip errors on an even number of the edges incident at one or the
other vertex. More generally, bit flip errors in the qubits on any collection of edges
corresponding to a chain c1 ∈ C1(C; Z2) will be detected by the Bv for the vertices
in the boundary of c1. Error correction by choosing any chain c2 ∈ C1(C; Z2),
with the observed boundary vertices and acting by σx on the corresponding qubits,
succeeds unless c1 + c2 contains an essential cycle. The length of the shortest
essential cycle in C is thus the (bit flip error) distance of the code [6].

Similarly, phase errors are detected by the eigenvalues of the stabilizer operators
Af . The observed faces correspond to vertices in the dual cellulation C∗ bounding
a chain c∗

1 ∈ C1(C∗; Z2) of edges at which phase errors have occurred (edges in
C∗ are dual to edges in C). Error correction by choosing any c∗

2 ∈ C1(C∗; Z2) with
the observed boundary and acting by σz on the corresponding qubits succeeds
unless c∗

1 + c∗
2 contains an essential cycle in C1(C∗; Z2). The length of the shortest

essential cycle in the dual cellulation C∗ is thus the (phase error) distance of the
code. The smallest square lattice toric code correcting an arbitrary single error,
i.e., with distance 3, uses 18 qubits to encode 2 qubits.

Theorem. There exist topological quantum codes based on cellulations of the
real projective plane R P2 which protect a single qubit against error. Shor’s en-
coding of 1 qubit into 9 is isomorphic to a code of this type. Varying the cellulation
of R P2 yields additional inequivalent examples of 1 qubit encoded into 9, also
secure against any single error.

Proof. Figure 1 shows a similarly regular triangulation of R P2 with 15 edges,
defining a 15 qubit code for 1 qubit. In this diagram, antipodal points on the circle
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Fig. 1. A triangulation of the projective plane

with 15 edges, all minimal essential (dual) cycles

of length 3 (5). Antipodal points on the circle are

identified.

Fig. 2. A less regular, but more efficient, cel-

lulation of the projective plane using nine edges.

Both the minimal essential cycles and the minimal

essential dual cycles have length 3.

are identified and it is easy to see that while the minimal length of any essential
cycle is 3, it is 5 in the dual cellulation. By considering more general cellulations
we can construct smaller codes correcting one error. Figure 2 shows a cellulation
of R P2 with nine edges, defining a distance 3 code for 1 qubit using 9 qubits; the
minimal length of any essential cycle is 3 in both this cellulation and its dual. The
dual cellulation also defines a code, with the stabilizers Af and Bv replaced by
corresponding Bf ∗ and Av∗ . The resulting code, however, is equivalent [7] to the
original under multiplication of each tensor factor by the Hadamard transform

H = 1√
2

(
1 1
1 −1

)

since σz = Hσx H−1.
But there are other cellulations of R P2 which define distinct codes. Figure 3

shows a cellulation obtained from the one in Figure 2 by identifying two ver-
tices. The resulting 9 qubit code still has distance 3 and is not equivalent to the
code derived from the cellulation in Figure 2. To demonstrate that these codes
are inequivalent, we consider the projections P1 and P2 onto the respective code
subspaces—and their polynomial invariants under the adjoint actions of U (2)⊗9

and the permutation group S9. There are, of course, many such invariants [8] but,
for our purpose, it suffices to consider the coefficients of the characteristic poly-
nomials of the reduced density matrices obtained by tracing over pairs of tensor
factors. For P1 exactly two of these reduced density matrices have rank 2 (the two
obtained by tracing over either the qubits on the two edges incident at the valence
2 vertex, or the qubits on the edges bounding the 2-gon in the cellulation). For
P2, however, there are three rank 2 reduced density matrices—corresponding to
the presence of the three 2-gons in Figure 3. Thus the two codes are inequiva-
lent.
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Fig. 3. Another cellulation of the projective

plane obtained by identifying two vertices of the

cellulation shown in Figure 2. Both the minimal

essential cycles and the minimal essential dual

cycles still have length 3.

Fig. 4. A third cellulation of the projective plane

with minimal essential cycle (also dual cycle) of

length 3. The interior of one face and a neigh-

borhood of one vertex are shaded; the remaining

cellulation is planar.

Finally, let us consider the cellulation shown in Figure 4, obtained from the
one in Figure 3 by identifying two vertices—which identifies the endpoints of
an edge—and then sliding the endpoints of this edge to the two other vertices.
This cellulation again defines a 9 qubit code with distance 3. The resulting code is
inequivalent to either of our first two by the same argument: the six reduced density
matrices corresponding to tracing the projection P3 over the qubits on the edges
of each 2-gon have rank 2. While the first two codes were new, this code is very
familiar—it is exactly Shor’s original 9 qubit repetition code [9] as can be seen by
comparing their stabilizer operators: The 9 qubits are partitioned into three triples
according to the endpoints of the edges on which they lie; there are six stabilizers
acting by σx on pairs of edges in the same triple and three stabilizers acting by σz

on all the qubits in pairs of triples; one of the latter is redundant, as is the stabilizer
corresponding to the hexagonal face of the cellulation. This is exactly the (dual of
the) stabilizer formulation of Shor’s code [10, p. 17].

By considering cellulations of the projective plane we have demonstrated the
existence of single qubit topological quantum codes. While two of the ones we find
are new, the third is Shor’s original 9 qubit code [9]; this connects Kitaev’s novel
perspective [1], [3] with the bulk of the work on quantum error correcting codes
(see, e.g., [10] and the references therein). One might ask whether the 5 qubit [11]
and 7 qubit [12] single qubit codes are also equivalent to some projective plane
quantum code. They are not—there are no cellulations of R P2 with five or seven
edges and lengths of all essential cycles and dual cycles at least 3. This exemplifies
the inefficiency of two-dimensional qubit topological quantum error correcting
codes, even for cellulations with few edges. We reiterate that their attraction lies
in the locality of the stabilizer operators which one might hope to implement with
designer (but local) Hamiltonians.
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Fig. 5. A cellulation of the 2-punctured disk which defines a planar topological quantum code for 2
qubits correcting one phase error and three bitflip errors.

As Kitaev remarks [3], for the purposes of physical implementation, one would
like to make two-dimensional topological quantum error correcting codes planar,
in the sense that the qubits lie in a plane and that each of the necessary stabilizers
acts locally on the qubits at the frontier of one of a set of disjoint regions (e.g., a
neighborhood of a vertex or the interior of a face). Notice that the redundancy of
the stabilizer operators, implied by the relations in (3), allows us to disregard one
of the faces and one of the vertices and thus make Shor’s code planar: removing
the interior of the hexagon face and a neighborhood of, say, the upper left ver-
tex in Figure 4 (both shaded), leaves a planar diagram∗ with a generating set of
stabilizers acting locally (imagine the qubits to be located at the midpoints of the
edges).

A related observation leads to planar constructions of topological quantum error
correcting codes for multiple qubits deriving from higher-genus surfaces [3]: the
faces of a cellulation need not be disks. For these more general cellulations C, the
code subspace corresponds to

H1(C; Z2)/
⊕

f

H1( f, ∂ f ; Z2).

To apply this observation to construct a planar code protecting g qubits, cellulate
an orientable surface of genus g using one large face with the topology of a g-
punctured disk and all other faces disks. Again, by the relation (3), we may discard
the Af corresponding to the large face; the remaining faces cellulate a g-punctured
disk which is, of course, planar. Particularly simple versions of such planar codes—
with all stabilizers involving no more than 4 qubits—can be constructed using
subsets of the square lattice. Figure 5 shows such a planar construction for a
2 qubit topological quantum code correcting one phase error and three bitflip
errors.

Kitaev and Bravyi have discovered a closely related planar construction by a
different route [13]. Their planar lattices have “x-boundary” and “z-boundary.”
Connecting the free edges of the x-boundary to an additional vertex (for which

∗ Perhaps the simplest way to conceptualize the resulting planarity is to think of the projective plane
as formed by the three faces of a cube incident at a single vertex with antipodal identification of the
hexagonal boundary. Discarding two of the three faces—these represent the domain of the redundant
Af and Bv—the result is a single square with no boundary identifications, clearly a planar object.
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the associated Bv can be discarded) and taking the z-boundary as the boundary of
an additional face (for which the associated Af can also be discarded) defines a
cellulation of a closed surface. We greatly appreciate Alexei Kitaev’s willingness to
describe their preliminary results and his assistance in recognizing the isomorphism
between their construction and ours.

We conclude by remarking that higher-dimensional manifolds offer the possi-
bility of constructing local codes which are more efficient, in the sense of protect-
ing against more (worst-case) errors relative to their size, than any local surface
code. Their intrinsic geometry [14] restricts n qubit surface codes for a constant
number of qubits to correcting O(n1/2) (worst-case) errors. But, for example, five-
dimensional n qubit topological quantum codes for a constant number of qubits
can correct O(n1/2 log1/2 n) (worst-case) errors [15] and [16].
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