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Abstract. The mathematical problem of localizing modular functors to neighbor-
hoods of points is shown to be closely related to the physical problem of engineering
a local Hamiltonian for a computationally universal quantum medium. For genus
= 0 surfaces, such a local Hamiltonian is mathematically defined. Braiding defects
of this medium implements a representation associated to the Jones polynomial and
this representation is known to be universal for quantum computation.

1. The Picture Principle

Reality has the habit of intruding on the prodigies of purest thought and encumber-
ing them with unpleasant embellishments. So it is astonishing when the chthonian
hammer of the engineer resonates precisely to the gossamer fluttering of theory.
Such a moment may soon be at hand in the practice and theory of quantum com-
putation. The most compelling theoretical question, “localization,” is yielding an
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answer which points the way to a solution of Quantum Computing’s (QC) most
daunting engineering problem: reaching the accuracy threshold for fault tolerant
computation.

After Shor’s discovery [21] of a polynomial time factoring algorithm in the
quantum model QC, skeptics properly questioned whether a unitary evolution
could ever be induced to process information fault tolerantly. The most obvious
tricks, such as making a backup copy, useful in a dissipative system (e.g., pencil
and paper) are unavailable in quantum mechanics. To overcome these difficulties, a
remarkable theoretical framework based on “stabilizer codes,” “transversal gates,”
“cat-state-ancilli,” and nested concatenations of these was erected [22], [23], [2],
[12], and [16]. While the result is a consistent recipe for fault-tolerant quantum
computation, the accuracy threshold which would allow this combinatorial behe-
moth to overcome its own overhead has been estimated as about 10−6, one i.i.d.
error per one million physical gate operations and requiring gates accurate also
to one part in a million. This places a formidable task before the engineer and
physicist. But within the year the beginnings of a new idea on fault tolerance had
been generated by Kitaev [13].

While the term is not yet present in that paper the idea is to construct (first
mathematically) a “quantum medium” and to store quantum states as topological
structures within the medium and (eventually) manipulate these states, that is, apply
gates to them, by topological transformations of the medium. For our purposes,
we define a quantum medium as a collection of many finite level systems coupled
together by a HamiltonianH obeying a strong locality condition: The individual
systems are located in a two-dimensional lattice or a more irregular cellulation of a
surface6. We postulate a constantd > 0 so thatH = 6Hk and eachHk = Hk⊗id,
where the identity is on all tensor factors (= subsystem) not located within some
ball B` of diameterd in the lattice. For example, the Heisenberg magnet with

H = −J6a,b=∂ edge
⇀
σa⊗ ⇀

σb is a quantum medium of diameter= 1. (But engineer
be warned; localizingH ` within balls of diameter= d impliesn-ary interaction for
n ∼ d2. Controlling effectiven-ary terms forn ≥ 2 will be tricky in the extreme and
probably will require enforcing symmetries to cancel lower-order terms.) Kitaev’s
“toric code” [13] in which quantum states are stored as first homology of a torus,
can be counted as havingd = 2; they require 4-ary interactions.

We study here a partial generalization of the toric code which also stores quan-
tum information in a degenerate ground stateV(6) of a quantum medium. The
medium is on a disk with pointlike defects which we treat as punctures. The di-
mension ofV(6),6 the punctured disk, grows exponentially with the number of
punctures. Transformations of6, that is, braidings (up to isotopy) of the punc-
tures in space–time,6×R, operate unitarily onV(6). Other work ([13], [19], and
[14]) also explores the realization of elements of computation by braiding anionic
“quasi-particles” or “defects” of a quantum medium.

The vision is that stability of computation, at least sufficient to reach the 10−6

threshold for “software” error correction, is to be realized by the discreteness
of algebraic topology: twoZ2-homology cycles are never “close,” two words in
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the braid group are equal or distinct. More exactly, it is geometry not topology
which will confer stability. Working in a lattice model one may calculate [13]
that the perturbation HamiltonianP must be raised to the length scaleL before
nonzero terms,〈ζ |PL |η〉, ζ, η ∈ ground state(H), are encountered and so the
splitting of the ground state is estimated to be proportional toe−Ä(L). The length
scale in the previous two examples are:L = (length of shortest essential cycle);
and in the anionic context, the closest that two defects are allowed to come to
each other during braiding. The “engineering goal” is to construct aphysical
quantum medium on a material disk whose ground state admits many localized
excitations (“anions”) whose braidings effect computationally universal unitary
transformations of the ground state. It is further hoped that actual “errors,” the
result of unwanted noisy excitations, are to be removed automatically by some
relaxation process in which the system is coupled to a cold bath by another much
weaker HamiltonianH ′. The mathematicians first cut at the engineering goal
is to produce amathematicalquantum medium with these properties and this
is accomplished by the theorem below. This “first cut” is not yet interesting to
experimentalists since the Hamiltonian contains summands which have as many
as 30 nontrivial indices, but it represents an exact existence theorem. The question
for physicists is whether this phase can also be represented perturbatively with a
simple Hamiltonian, perhaps an RVB model [1], [18]. This would be a major step
toward physical realization.

Theorem 1.1. Consider a rectangle R of Euclidian square lattice consisting
of 15 boxes by30 n boxes. Associate a2-level spin systemC2 with each of the
e := 960n+36box edges in R. The disjoint union of these spin systems has Hilbert
space(C2)⊗e =: X. There is a time-dependent local Hamiltonian Ht = (6k Hk,t )

with fewer than2000n terms and each Hk having30or fewer indices, supported
in at most a5× 3 rectangle of boxes, “diameter= 5.” For t = 0, the ground
states of H0 form a sub-Hilbert space W⊂ X, and geometrically determines3n
exceptional points or “defects” spaced out along the midline of R. Within W there
is a “computational” sub-Hilbert space V∼= (C2)⊗n, V ⊂ W.W may be identified
with the SU(2)-Witten–Chern–Simons modular functor at level l= r − 2= 3 of
the3n-punctured disk with the fundamental representation of SU(2) labeling each
of the3n + 1 boundary components. The Braid group B(3n) of the defects acts
unitarily on W according to the Jones’ representation at level= 5. Any quantum
algorithm can be efficiently simulated on V by restricting the action of B(3n) to a
“computational subspace.”

The representation is implemented adiabatically by gradually deforming Ht to
Ht+1 and then to Ht+2 and so on. The passage from Ht to Ht+1 involves turning
off an exceptional termHk,t which defines a defect site, and turning on a new term
Hk,t H which determines an alternative, adjacent, site for the defect at time t+ 1.
Each braid generator can be implemented in4(r + 1) or time steps. We believe,
based on a conjectural energy gap, that the geometry confers stability to this
implementation which increases exponentially, error = e−Ä(L), under refinement
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of the lattice on R by a factor of L, while the number of time steps needed for a
computation increases only linearly in L.

Comments 1.2.

• The second paragraph of the theorem should be read as a defensible physical
proposition, whereas the first paragraph is mathematics.
• Our Hamiltonian may be too complicated to prove the persistence of an

energy gap above the ground state in the thermodynamic limit. But based on
an analogy with a simpler system the gap is conjectured and will be discussed
at the end of the proof.
• The passage from the Jones’ representation to computation onV is the subject

of [6] and [7] where it is proved that universality holds forr = 5 andr ≥ 7.
Functorially, V is a tensor summand of a subspace ofW but by fixing a
reference vector in the complementary tensor factor we regardV simply as
a subspace ofW.
• The idea of anionic computation is taken from [13] and in a more speculative

form from [8]. The new ingredient is the implementation of a computationally
complete modular functor by a local Hamiltonian. Witten’s approach [26] to
CSr was Lagrangian and so nonlocal; it yields an identically zero Hamiltonian
under Legendre transform, [5] and [1]. This lecture, in contrast, supplies a
Hamiltonian interpretation for CS5. (We may replace 5 by anyr ≥ 7 in the
statement at the expense of scaling the constants in the theorem byr/5 or
r 2/25 according to whether they scale as lengths or areas.).
• We know of two works in progress with a similar objective. Kitaev and

Bravyi [14] study a local model for the weaker functor CS4 on high genus
surfaces, and Kitaev and Kupperberg [15] have an approach to construct local
Hamiltonians generally for modular functors on surfaces of any genus which
(unlike CS5) are quantum doubles [3]. Their approach has the advantage that
the local contributions to the Hamiltonian can be arranged to commute so
that an energy gap will be rigorously established. In contrast, an interesting
feature of the present paper is that topologically a combinatorial means yields
an exact determination of a ground state defined bynoncommutingterms.
This is not usually possible. Finally, we will see that our local construction
for H extends to the higher genus surfaces if CSr is replaced by any modular
functors of the formV ⊗ V∗. The simple topological reason for this may
illuminate the analysis of [15].
• Shortly, we will give the reader a completely pictorial understanding of CSr

on planar surfaces.

So far, we have only discussed the “engineering”: the quest is to specifyH
(which will be described in the proof). Let us take a brief digression from that
sulfurous underworld of grinding gears to the Elysian fields of abstract thought. The
Witten–Chern–Simons theory descends from the signature (= Pontryagin form)
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in dimension 4 and every step of the desent to a lower dimension leads to deeper
abstraction until mathematical wit is well nigh exhausted as the point (dimension
= 0) is reached. To tell this story in its barest outline, we restrict toG = SU(2),
and borrow from Atiyah [1], Freed [4], and Walker [24]. The signature of a closed
4-manifold is an integer, as is the Pontryagin class of anSU(2) bundle over a
closed 4-manifold. AnSU(2)-bundle over a closed 3-manifold is topologically
trivial, but if endowed with a connection acquires a secondary “ Chern–Simons”
class in the circle= R/Z. Quantizing [26] at level l , leads to the topological
Jones–Witten–Chern–Simons invariant∈ C which is morally an average of the
classical Chern–Simons invariant over all connections. The invariant for a closed
surface6 (with some additional structure) is a finite-dimensional vector spaceV ;
and each 3-manifold bounding6 determines a vectorv ∈ V . Before dividing by
gauge symmetry, the vector spaceV is the infinite-dimensional space of sections of
the associated complex line bundle to a naturalS1-bundle over the space ofSU(2)
connectionsA on SU(2) bundles over6. A 3-manifoldY with connection,A, on
a bundle extending the bundle over the boundary,∂(Y, A) = (6, A), determines
a map f {(Y′, A′) | ∂(Y′, A′) = (6, A)} → S1 by integrating the Chern–Simons
form overY ∪ −Y′. The consistent choices for such functionals constitute the
total space of this “natural”S1−bundle. In general, a mapf is “consistent” if it
obeys the additivity properties of the Chern–Simons integral:f (Y′) − f (Y′′) =
C.S.(Y′ ∪ −Y′′). Symplectic reduction followed by quantization as explained in
[1] produces a finite-dimensionalV from V with v(Y) ∈ V depending only on the
topology ofY. The definition of the Witten–Chern–Simons invariant for a surface
with boundary is a collection of vector spaces indexed by certain labelings. For a 1-
manifold the invariant seems to be a certain type of “2-category” while the correct
definition for a point is but dimly perceived and the object of current research.
Several authors assert that it is unnecessary to finish the progression, that we can
be content with a theory whose smallest building blocks are “pairs of pants” (three
punctured spheres). The invariant for these while technically a vector in a 2-vector
space is easily understood in terms of sets of vector spaces parameterized by
“labelings” of the boundary circles so no unusual categorical abstractions need be
mastered. The reason for this assertion is that, using a handle body decomposition,
all closed 3-manifold invariants can be calculated from gluing along surfaces with
smooth boundary; gluings along faces with corners on the boundary, which one
would encounter computing from a cellulation, can be avoided. But the Freed–
Walker program rejects this advice on two grounds. First, localizingV(6) not
merely to “pants,” but to cells (i.e., neighborhoods of points) may give more natural
consistency conditions, to replace the 14 consistency equations of [24]; which in
turn could eventually lead to classification of modular functors and a conceptual
understanding. Second, to paraphrase Edmund Hillary, we should localize to points
“because they are there.”

The hyperbole of the first paragraph can now be made sound. CS5 is a universal
model for quantum computation and for the physicist/engineer to implement it a
local HamiltonianH must be described. For the pure mathematician to be satisfied
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with his understanding of CS5 it must be localized to points. The two objectives
are certainly similar in spirit and possibly identical. To clarify the connection, we
introduce an intermediate concept, undoubtedly plebeian, but dear to a topologist.
We would like, when possible, to describe a vector in a modular functor as a
linear combination of “admissible”picturesup to “equivalence.” This, after all,
is exactly how we understand homology:v ∈ H1(6, Z2) is an equivalence class
of admissible pictures. To be admissible the picture must be a closed 1-manifold,
the equivalence relation is bordism. Both “1-manifold-ness” and “bordism” can
be defined by local conditions which are the combinatorial analogs of “closed”
and “co-closed” familiar forms from de Rham’s theory of differential forms. In
Kitaev’s toric code these condition are imposed by vertex and face operatorsAv
and Bf , respectively. There is a subtle shift here from the usual way of thinking
of homology as equivalence classes of cycles, to the “harmonic” representative
which is merely the equally weighted average of all cycles in the homology class.
In this way quotients and equivalence classes are never encountered and homology
is located within cycles, within chains, just as a C.S.S. code space is located within
the fixed space of stabilizers built from products ofσz’s and further within the
fixed space of stabilizers,5σx ’s.

To generalize from homology, we should think of a picture as (linear combina-
tions of) anything we can draw on a surface6. If helpful, we allow various colors
and/or notational labels, framing fields, etc.. . . , and even additional dimensions
bundled over6. But in the present case no such embellishments are required.
What is important is that if we move the surface by a diffeomorphism, the picture
should also move and move canonically. Thus if6 is a torus it would not suit our
purposes to draw the picture ofv ∈ V(6) in a solid torusT , ∂T = 6: a meridial
Dehn twist on6 extends overT , twisting the picture, but a longitudinal Dehn twist
does not have any obvious way to act on a picture drawn inT . (To anticipate, a
modular functor we will have anS-matrix which can transform a picture in one
(call it the “inside”) solid torus to a picture in the dual (“outside”) solid torus,
where longitudinally a Dehn twist does act. But resorting to theS-matrix does not
solve our problem since its input and output pictures are on a scale of the injectivity
radius of the surfaces and hence nonlocal.) We demand that the “admissibility”
and “equivalence” of pictures be locally determined, i.e., decided on the basis of
restriction to small patches on6. To make the connection with lattice models, we
consider6 discretized as a cell complex; the conditions must span only clumps
of cells of constant combinatorial diameter. As in the example of harmonic 1-
cycles, “equivalence” is a slight misnomer: what we impose instead are invariance
conditions on the (linear combinations of) admissible pictures representing any
fixed v ∈ V which ensure that the stabilized vectors are in fact equally weighted
superpositions of all admissible pictures representingv.

Now consider the question, perhaps the first question a geometric topologist
should ask about a modular functorV(6); Can you draw a (local) picture of it
on6 so that the mapping class group of6 acts onV(6) by the obvious induced
action on pictures?
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combinatorial localization
(pictures)

algebraic localization
(3-catergories)

physical localization
(H)

Fig. 1. Picture principle.

We should not expect it to be easy to discover the local rules for the pictures
associated to a given modular functorV and in fact they may not exist in much
generality. Recall that a 3-manifoldY bounding6, ∂Y = 6 determines a vector
v(Y) ∈ V(6), so we might think of our proposed pictureP(v(Y)) drawn on6 as
some ghostly recollection ofY. The present understanding of modular functors is
closely related to surgery formulas on links, but to think in this way we must choose
a “base point” 3-manifoldY0, with ∂Y0 = 6 to hold the links. This choice seems to
create an asymmetry which should not be present inP(v(Y)). Thus for a pictorial
representation ofV which is derived from surgery, we expect that only part of the
mapping group—that part extending overY0—will act locally. To localize V, this
problem must be overcome.

Let us propose a meta theorem or “principle” that solving the “picture problem,”
which we call “combinatorial localization,” should imply both the Freed–Walker
program, which we call “algebraic localization,” and the design problem for the
HamiltonianH , which we call “physical localization.”

The solid arrow is asserted with some confidence at least as a mathematical
statement; the dotted arrow is speculative. While the solid arrow seems unlikely to
have a literal converse: ground states of even simple Hamiltonians in dimension
≥ 2 are too complicated to draw pictures of; conceivably the dotted arrow might
be an equivalence constituting a culmination of the Freed–Walker program.

2. Combinatorial Localization of CS5 on Marked Disks, and the Proof of
the Theorem

We show how to represent CS5 (and by extension all CSr) on a disk with marked
points by local pictures. Since the representation of quantum computing within
CS5 [6] only used the braid group acting on a disk with marked points, this partial
solution to the combinatorial localization problem will suffice to prove the theorem
(once we have explained the solid arrow in Figure 1).
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r

root

Fig. 2.

For anyr ≥ 2, CSr has a combinatorial localization on any cellulated disk
with marked labeled points (labelsε{0,1, . . . , r − 2} lie on the marked points
and disk boundary), provided the cellulation has bounded combinatorics and the
marked points stay sufficiently far from each other and the boundary. For a concrete
statement, let us take the cellulated disk to be a rectangleRwith a square Euclidean
cellulation. We suppose that all marked points are at leastr lattice spacings from
the boundary and 9r from each other. The marked points and∂R are all assigned
the label 1 (the irreducible two-dimensional representation ofsl(2,C)q). In this
circumstances it is easy to build a trivalent “r -collared rooted tree”Tr for the disk
with marked points, as shown in Figure 2.

All straight segments of the tree are to be more than 3r lattice bonds in length;
the root is on∂R and the leaves are the marked points. Ther -collard condition
is that andr/2e relative regular neighborhoodN(T) of lattice cells—the region
within the dashed line—should be embedded inR.

The box counts in the statement of the theorem are designed to permit a (dis-
continuous) family ofTr ’s to be found at all times during braiding. We say that
the boxing ofR is roomy relative to the location of the marked points if it has
this property. The key, Lemma 2.1, will show that, for roomy boxing, two dis-
crete pictures, which we regard as smoothly equivalent are in fact combinatorially
equivalent. More precisely, the infinity of smooth averaging operators acting on
the space of combinatorial pictures has exactly the same joint fixed set as a finite
subset of combinatorial operators.

Let us begin with a geometric interpretation of CS5(6) =: V(6). For a closed
surface6 it is implicit in [11]. Let 6 be bound by a handle bodyH . A general
3-manifoldY with boundary6 can now be represented as a “blackboard framed”
surgery diagram inH . The special cabling morphismw of the Temperley–Lieb
category (see, Chapter 12 of [11] or [20]), when composed into the surgery diagram,
yields a linear combination of 1-manifolds, each labeled by “1”. We may writeH
as a planar surface cross interval,H ∼= 6 × I , so that6 = 6 ∪∂−6 , where−6
denotes6 with its orientation reversed. Now projecting these 1-manifolds to6 ,
we see a linear combination of immersed 1-labeled 1-manifolds with overcrossings
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indicated at double points. This picture determines the vectorv(Y). The Kauffman
relations at a root of unity, in our casee2π i /5, allow extensive simplification of
these pictures via the recoupling formalism. In fact, eachv ∈ V can be encoded as
a labeling of a fixed (framed, embedded, and vertex planar) trivalent graph, which
is a spine for a6 .

It is an important observation of Walker’s (personal communication) and Gel-
ca’s [9] that this description can be extended to labeled surfaces with boundary.
(Verification follows directly from the gluing axiom.) In the case of a disk withn
marked points(D,n)—treating marked points as crushed boundary components—
the modular functor withn + 1 labels

⇀
`,V⇀

`
(D,n) has as its basisq-admissible

labelings with boundary conditions on a fixed trivalent tree embedded inD, rooted
on∂D, with leaves on the marked points. The boundary condition is that the label
on the root is the label given on∂D2 and each leaf has the label associated to its
marked point. As in [6], we only need consider the case where all labels= 1.

The (framed) braid group acts on the labeled treeT via its embedding in the
disk. To see the induced action onV(D,n) (we drop labeling subscripts), perturb
the embedding ofT (rel its endpoints) by pushing it downward into a three ball
D × [0,−1], where we think ofD identified with D × 0. Now implement any
desired braidb as a diffeormorphism ofD × [0,−ε] whereε > 0 is small with
respect to the previous push. Viewed from above,b(T) has overcrossings but the
recoupling(6 j ) rules (and isotopies) allowb(T) to be described in the original
basis ofq-admissible labelings onT (with root and leaves still carrying the label
1). For example, the simplest Kauffman relations, on strands ofb(T) labeled by
“1” read,

= eπ i /10)(e−π i /10 and © = eπ i /5+ e−π i /5 =: d.

A detailed example: the effect of a single braid generator is given immediately
following the statement of Lemma 2.1 to elucidate the recoupling of braids.

There is a topological observation inherent in inducing the braid action on
V(D,n). By capping off, any diffeomorphism of a planar surface extends to the
two spheres and can be extended further to a diffeomorphism of the 3-ballB3. The
action onV comes from projecting this topological extension acting on labeled
trivalent trees back into the original planar surface (after crushing the inner bound-
ary components to points). In fact, it is the correspondence between 3-manifolds
and diagrams which proves that we have correctly specified the action on the
functor, for we havev( f Y) = f∗v(Y) where f |∂Y=6 = f . Generally, when a
surface6 has genus> 0 there will be no way of including it in the boundary
of a 3-manifoldM so that all diffeomorphisms of6 extend overY. However, it
is a triviality that any diffeomorphism of6 extends over6 × I by product with
idI . Now let this extension act on the appropriate equivalence classes of framed
q-admissibly labeled trivalent graphs embedded in6 × I projected back into6
to define the action on anySU(N)-level= r modular functorV . Thus the “dou-
bled” functorV(6)⊗ V∗(6) = V(6 q6) = V(∂(6 × I )) has a combinatorial
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localization, i.e., is describable by local pictures. This may have some relation to
the unpublished work of Kitaev and Kupperberg (private communication) on local
descriptions for Drinfeld doubles.

We set aside for later study the problem of devising combinatorial local rules for
the necessary elementary equivalences of such treesT : 6 j -moves, ribbon equiva-
lence, vertex half-twist equivalence, and regular homotopy.

One would hope to define a quantum medium for CS5 of individual systems
with levels to record labels 0,1,2,3 (and possible additional levels to store other
information) and termsHk with at most six indices (as in a 6j -symbol) corre-
sponding to these elementary equivalences. While this count seems correct in the
smooth setting, there the crude Hilbert space is infinite dimensional which may
create new difficulties. We have not been able to find a discrete setting in which
all the equivalences are expressed efficiently. For the purpose of this lecture, we
stay with discrete models for quantum media built from 2-level systems, but to do
this we accept termsHk with up to 30 indices.

The fundamental two-dimensional representation ofSU(2) generatesSU(2)’s
complex representation ring and, as a result, recoupling theory achieves a very
simple result: an elementv ∈ V(D,n) is a linear combination of embedded 1-
manifolds each labeled by “1”, i.e., the standard two-dimensional representation,
and given the boundary condition: each 1-manifold of the linear combination meets
each marked point (and∂D) once. Thus “manifoldness” and the “boundary condi-
tion” define admissibility for our picture. This makes good sense combinatorically
in the lattice ofR, as well as smoothly. We point out that our notion of 1-manifold
is strict: at each vertex 0 or 2 edges (not 4) should be occupied.

It is time to define the local equivalence moves between pictures. We are working
within the Temperley–Lieb category modulo the relation that the(r − 1)th= 4th
Jones–Wenzl projector is trivial. This is our most interesting relation. As a smooth
equivalence relation this has only one form but, combinatorially, we need to impose
two versions of it according to how the output endpoints are grouped. We denote

these by and . The second picture stands for in conventional
projector notation [11].

A second relation says that removing a circle, which bounds a disk free from
punctures, multiplies the diagram by the scalar 1/d, d = eπ i /5 + e−π i /5. A third
relation replaces the undercrossings that arise through braiding with legitimate
morphisms in the category. In terms of smooth pictures, the relation replaces the
“virtual” uncrossing in the middle diagram with a two-term sum.

The middle picture is “virtual”; it is not actually an admissible picture to be
assigned a weight. This relation requires a little care and lattice space to discretize,
since we do not want to permit the intermediate picture which would represent the
wrong boundary data at the indicated defect. Recall that each defect is labeled by
1 representing the two-dimensional irreducible representation ofsl(2,C)q which
is recorded by a single line leaving the defect.
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  −π i/10e

    π i/10e

left moving strand

skip over

Fig. 3.

Finally, a fourth class of equivalence permits isotopy. Again the reader should
note that enough neighboring sites should be observed by the appropriateHk to
preserve embeddedness. For example, cases 1 and 2 are allowable, case 3 is not.

There will be isotopy relations for arc end points as well. For example, in cases 1
and 2 of Figure 3 imagine the open circle filled to become an end point and the
shorter of the two line segments meeting it deleted. Morally, we should define
operatorsHk which enforce the average of the initialI and finalF configuration
of cases 1 and 2. However, there is a detail, to get the overall phase correct, and not
settle for merely a projective representation, we must fix a base point direction: say
the positive ray emanating from each endpoint at 45◦ and find positive semidefinite
Hk’s which assign zero norm to(1/2)(I1 − e−π i /10F1) and (1/2)[ I2 − F2] in
cases 1 and 2, respectively. These operators correspond to asserting equivalences:
I1 ∼ −e−π i /10F1 andI2 ∼ F2. The general rule is that a state obtained by clockwise
(counterclockwise) isotopy through the base point direction must be adjusted by
the phase+(−)eiπ/2r before being averaged. Similarly, there is an isotopy relation
for the arc endpoint on the boundary circle of the diskD. Here some point on the
boundary is chosen and the phase is adjusted by−(+)eiπ/2r as this point is crossed
clockwise (counterclockwise).

Fig. 4.
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case 1 case 2

case 3

Fig. 5.

Let us return to the relations = 0 = . Combinatorically, the first
may be written with the left-hand side a 3× 3 lattice square foliated by parallel
straight lines (of label= 1). Wenzl’s [We] recursion formula yields an identity
equating four parallel lines with a linear combination of 13 “smaller” terms each

containing “turn arounds.” The form of the relation is shown in Figure 6.0. In

its other incarnation, the fouth Jones–Wenzl’s projector relation= 0, looks as
in Figure 6.1. The coefficientsai are rational functors ofd which can be computed
from the Wenzl’s recursion relation for projectors (see page 18 of11] or [25]).
Figure 6.0 is merely the lattice counterpart of the more familiar smooth relation,
Figure 6.0′, which may be applied within any diagram (atr = 5) whenever four 1−
labeled lines are found running parallel. Obviously, Figure 6.1 also has a smooth
counterpart.
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b

Fig. 7.

The admissibility conditions and the above four classes of “equivalences” must
be rewritten as operatorsAi and Bj , respectively; collectively denotedHk. Let
G denote the ground state of the soon-to-be-defined HamiltonianH = 6k Hk.
Let V denote the CSr modular functor of the disk with 3n marked points and
all labels= 1. Via recoupling, we may describeV in the fashion of homology.
Set P = C [admissible pictures] and writeV = Vs = P/∼s, where∼s is the
smooth-category equivalence relation corresponding to our four combinatorical
equivalences∼c. Lemma 2.1 will prove that under the “roomy hypothesis”∼s and
∼c induce identical equivalence classes of admissible pictures (which of course
are combinatorial objects). So we may also writeV = Vc = P/∼c. Our goal is to
tailor H so that the ground statesg ∈ G correspond bijectively to linear functionals
φ: V → C under the mapφ 7→ 6p∈admissible picturesφ(p)(p). This will identify G
with V∗, but sinceV has a canonical nonsingular Hermitian inner product ([26]
and [11]) this also gives an isomorphismG ∼= V .

The inner product〈p1, p2〉 is defined on pictures by embedding the diskD
into the(x, y)-plane, deformingp1 upward rel endpoints andp2 downward rel
endpoints. The union of the deformed picturesp̃1 ∪ p̃2 is a (vertically framed)
link in R3 and its Kauffman bracket is〈p1, p2〉. Note that the vertical framing is
singular wherep1 andp2 share a common lattice bond meeting∂p1 and∂p2; here
the convention is to bend such bonds ofp2 slightly clockwise at the endpoints
internal toD and counterclockwise at an endpoint on∂D.

The definition of theAi operators is quite obvious. Consider, a vertexv in the
interior of R. A Hermitian Av with four indices, whose ground state is spanned
by classical states of valence 0 or 2 atv, is said to enforce “1-manifoldness” at
v. Clearly the ground state ofAv has dimension 7. To enforce, instead, a “defect”
or marked point labeled by the fundamental representation, “1” ofSU(2), we
would use instead a Hermitian operatorA′v with a ground state spanned by the
four classical states of valence= 1 atv.

Turning now to “relations”Bj consider a boxb of R centered in a 3× 3
square of boxes (Figure 7); there are 12 nonboundary edges{e} (shown in bold). If
the{c’s} are the nonempty (classical) manifold configuration of these edges, i.e.,
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valence∈ {0,2} at each of the four internal vertices, and iffc0 andc1 = c0 or
∂b ∈ {c’s}, setd = (1/√2) (c0− c1) and let{d} be the set of such vectors. Let
Bb = 6dε{d}|d〉〈d| be the Hermitian operator with 12 indices on(C2)⊗{e} whose
ground state is orthogonal to span{d}. Bb is the operator which “allows isotopy
acrossb.”

To remove circles which bound disks we need, in the presence of isotopy, only
introduce operators which delete a box. This operator may be written as|θ〉〈θ |
whereθ is a unit vector proportional to|box〉 + (eπ i /5+ e−π i /5)|φ〉.

We postpone the definition of the operator corresponding to Figures 3 and 4
since this must involve the dynamics “t” of Ht . Some trick is needed to avoid
adding new levels to our system to encode “crossings.”

The projector corresponding to , Figure 6.0, requires a 24-index operator
acting on a 3×3 grid of edges or “box”B whose one-dimensional excited state is
spanned by the vector obtained by putting all 14 terms in Figure 6.0 on the left-hand

side of the equation. Similarly, the projector corresponding to, Figure 6.1 is a
30 index operator acting on the bonds of a region the shape of the left-hand side
in Figure 6.1. This “nobby box”B′ is a 2× 5 rectangle union, an additional small
box in the middle of one of the long sides.

Now we turn to the dynamics. Almost all conditionsHk that combine to yield
H are permanent, only the endpoint operatorsA′v should change as we execute
braiding. Because of the technical problem illustrated in Figure 4; any lattice
resolution into a superposition of two 1-manifolds, as in Figure 3, may cause
collision with other strands. One way to deal with this problem is to locate the
marked points on a second latticeL ′ consisting of the midpoints of the edges in the
original latticeL of boxes inR. This means that we have to add additional 2-index
A operators, holding equal the two classical states on both halves of the original
edges, i.e., ground state(A) = (|00〉, |11〉), and that the endpoint operatorsA′w
actually occur (with two-dimensional ground states) on the finer latticeL ′, wεL ′.
The dynamics consists of moving an endpoint diagonally onL ′, i.e., translating
one unit horizontally or vertically in the structure ofL . In Figure 8 the endpointw
is moved horizontally tow′ by replacing{A′w, Aw′ } with {Aw, A′w′ }. If w andw′

are immediately adjacent inL the operator swap will cause the endpoint to travel
around a corner.

This operator swap can be performed gradually by slowly turning the appro-
priate terms on or off. If the adiabatic theory is applicable, and following the
proof of Lemma 2.1, we discuss the heuristics for an energy gap (in the therom-
dynamic limit) for the familyHt , ψt will be carried to a unique ground stateψt

of Ht+1. This ground state, as a functional on pictures, is identical toψt provided
pictures are identified according to the obvious isotopy rules (and phase rules at
endpoints). If the lattice is refined by a linear factorL, tunneling to an undesired
orthogonal ground stateψ ′t+1 should, by arguments analogous to those for the sta-
bility of homology classes [13], have amplitudes scaling likeε(L) = e−Ä(L). The
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Fig. 8.

mathematical description for adiabatic evolution of the system is via the natural
connectionA on the tautological bundle over the complex GrassmannianX: The
time evolution ofG := {ground states(Ht )} defines a path inX, andA-transport
covers this motion with a unitary (i.e., isometric) identificationG0 ≡ Gt , for
all t ≥ 0. After a braidingb is completed at timet = T , the self-identification
G0 ≡ GT is the representation of the braidb.

A ground stateg ∈ G ⊂ P defines a functionalg∗ on P via orthogonal
projection. The{Bj } have been chosen to correspond to∼c precisely so that a
unique extensionφ exists:

andφ satisfiesg = 6φ(p)(p). Conversely, given a functionalφ on Vc, the g
associated toφ by the formula above lies in the null space of eachBj , so in fact
G = V∗c .

The important remaining point is to see that after braiding, when the marked
points have been returned to there original sites set-wise, that the induced transfor-
mation on the ground state is precisely, up to error≈ ε(L), the unitary CS5 rep-
resentation originally introduced by Jones [10] and studied in [6] and [7]. But this
follows from the recoupling theory as presented in [11] provided we show that the
combinatorial relations, that we have imposed through Hermitian operators{Bj },
in fact are sufficient to span all the relations implied by the infinitely many smooth
relations between pictures, that is,Vs = Vc. For this the following lemma suffices:

Lemma 2.1. Letρ = 6i ai pi be a linear relation between admissible combina-
torial pictures in(R, {3n}) which holds under∼s, the smooth recoupling theory
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associated toCSr . Provided that the configuration{3n} ⊂ R is roomy in the
rectangle R, the same relation already holds under∼c.

Before proving the lemma let us carry out a simple calculation to get a feel
for how the action of braiding is computed via recoupling theory. If the reader
wishes to try more complicated examples, the formulas on pages 93–100 of [11]
are helpful. Here we compute the effect of a braid generator on a vectorψ◦ ∈ V :=
CS5 (3-punctured disk) where each boundary component has label= 1 (the two-
dimensional representation ofsl(2,C)q), and to account for phase each boundary
has a marked base point

ψ ′◦ is the diagram: ,

which as a labeled tree is

ψ ′◦ =

1 1 1 1 
0

.

Let b be the counterclockwise braided of the right-most pair of punctures. Then
bψ ′◦ is represented by

=
“virtual picture”

= A + A−1 , whereA = e2π i /10. (∗)

Now
2

is our notation for the Jones–Wenzl idempotent
2

=
1/
√

d2− 1( − 1/d ⊃⊂) whered = −A2 − A−2 and, as usual, the open
ends in the above diagrams can be interpreted as permitting arbitrary (but con-
stant) extension to the outside.Note: The orthogonality relations

•
〈

1

d
⊃⊂, 1

d
⊃⊂

〉
= 1

d2
= 1;
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•
〈

1√
d2− 1

(
− 1

d
⊃⊂

)
,

1√
d2− 1

(
− 1

d
⊃⊂

)〉
= 1

d2− 1

(
− 2

d
+ 1

d2

)
= 1

d2− 1

(
d2− 2

d
d + 1

d2
d2

)
=

1; and

•
〈

1√
d2− 1

(
− 1

d
⊃⊂

)
,

1

d
⊃ ⊂

〉
= 1

d
√

d2− 1

(
− 1

d

)
= 1

d
√

d2− 1

(
d − 1

d
d2

)
= 0.

Normalizing,ψ◦ = (1/d)ψ ′t is a unit vector,〈ψ◦, ψ◦〉 = 1.

From the definition of
2

we have = √d2− 1
2 −1/d ⊃⊂.

So we use this to expand the two parallel lines in the second term of(∗) to get

bψ◦ = Aψ◦ + A−1

d





= Aψ◦ + A−1

d


√

d2− 1

2

+ 1

d


= Aψ◦ +

√
d2− 1

d
A−1ψ2+ A−1

d
ψ◦, (**)

whereψ2 :=
2

,

=
(

A+ A−1

d

)
ψ◦ +

√
d2− 1

d
A−1ψ2.

As a check on unitarity, note that under the sesquelinear pairing

〈bψ◦,bψ◦〉 =
(

A+ A−1

d

)(
A−1+ A

d

)
+
(√

d2− 1

d
A−1

√
d2− 1

d
A

)
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= 1+ A2+ A−2

d
+ 1

d2
+ d2− 1

d2
= 1.

Proof of Lemma 2.1. The argument is based on the Birkhoff curve shortening
principle whereby a family of embedded arcs and circles can be “pulled tight” to a
shorter geodesic position without crossings developing. We work combinatorically.
By the “roomy hypothesis” there is anr -collared treeT := Tr ⊂ R. Assign a
positive weightw(β) to each bondβ (or 1-cell) of the cellutation ofR so that
w grows rapidly with distance toT : as a good first approximation, we may take
w(β) = 10#(β) where #(β) = minimum number of bonds joiningβ to T . Now
for any (classical) picturepi define its lengthL(pi ) = 6βεpiw(β). Permitting
combinatorial isotopy (rel the marked points) and the removal of small circles, but

not the undercrossing or relations, we may pullpi tight by local moves
to equivalent pictures (up to a scalar) which steadily reduceL(pi ) until a local
minimum is reached. Call this step “pull tight.” Because of our weight functionw,
the newpi will try to lie mainly in a small neighborhood ofT , and only occupancy
of the bonds close toT will force parts of the picture to lie farther away. Also the
picture seeking to occupy the bonds nearT efficiently will have its strands running
parallel toT in (r − 2)× (r − 2) lattice blocksβ athwart the middler -bonds of
each of the distinguished length 3r segments ofT . Also at the trivalent vertices of
T near which sufficiently many strands pass, we would like to see copies of the
left-hand side of Figure 6.1. This will be true up to a small isotopy (across a few
boxes), and can be made true on the nose by modifying the weight functionw,
by adding a small term proportional to the distance from each trivalent vertex out

to a distancer from that vertex. Now apply at some site inB, or at
some siteB′ if the opportunity presents. This breakspi into6j bi j qi j and for all j ,
L(qi j ) < L(pi ). Pull tight again to remove the slack created by the “turn arounds”

in Figure 6.0 or 6.1. Alternate the pulling tight with applications of or
until no further reductions in length can be made in this way. Call this cycle “pull
and cut.” With a slight abuse of notation letqi j denote one of the terminal classical
states of this process. Now allow a single “under crossing” move (Figure 3) to
further reduceL(qi j ) if such a move is available. Now alternate the “pull and cut”
cycle with single under-crossing moves until no daughter picture (still denote by
qi j ) can have its length reduced by further iteration of this process.

Manifestly, all the daughter picturesqi j now lie in N(T) and pass through all
boxesB parallel toT and with three or fewer strands and pass through eachB′

in a standard way according to some admissible triple as explained below. Note
that (3,3,2) is not admissible. At this point it is simple to formally reorganize
the term of this sum6i j bi j ,qi j as6c`T̀ whereT̀ is an admissible labeling of
T . As explained in [11], the leaves and rootT of t are always labeled by 1 (this
is our choice) and the admissibility condition says that other edges (i.e., com-
ponents of the intrinsic 1-skeleton ofT) are labeled bya,b, c,d, . . . taken from



202 M. H. Freedman

{0,1,2, . . . , r −2} so that at each trivalent vertex ofT the following relations hold
on the triple of incident labelsa,b, andc:

a ≤ b+ c,

b ≤ c+ a,

c ≤ a+ b,

a+ b+ c ≡ 0 (mod 2), and

a+ b+ c < 2(r − 1) = 8.

An admissible labelingT̀ is interpreted as a linear combination of pictures by
replacing each edge with the Jones–Wenzl projector corresponding to its label.
The set of admissible labeled trees{T̀ } is an orthogonal basis for the modular
functorVs(R, {3n}), defined topologically using the smooth equivalence relation.
(The subscripts is to emphase that the smooth relations are used in this definition;
of course,Vs = V .)

Because of the assumedp = 6i, j bi j ,qi j = 0 ∈ Vs(R, {3n}), c` = 0 for all
admissiblè . But eachqi j is an embedded arc pairingx of the{leaves∪ root} in
N(T) satisfying the additional admissibility restriction at each trivalent vertex of
T . Such pairings are an alternative (though not orthogonal) basis for the modular
functorV(R, {3n}) so, collected in this basis we have for each pairing typex, we
have6bx

i j ,q
x
i j = 0 where

bx
i j = bi j if qi j has type= x,

= 0 if qi j has type 6= x.

But all qi j of a fixed type are clearly combinatorally equivalent(∼c). Thus we
have found a combinatorial path through applications of(∼c) from p to the empty
picture or, more precisely, to a sum of zero times various pictures.

Unlike [13] the individual summands ofH do not commute. The ground state
of H has been computed topologically, however the spectrum spec(H) is less ac-
cessible. The most important question is the existence of an energy gap above the
ground state which is constant under lattice refinement,L →∞, i.e., in the ther-
modynamic limit. The following heuristics motivate the conjectured energy gap.

In finite classical systems, such as random walk on a graph, diffusion time is
well known to scale inversely with the spectral gap of the Laplacian. Similarly, in
some simple quantum mechanical systems where exact calculation is possible, the
energy gap scales inversely to the diffusion time between classical states. In [13],
where direct calculation yields an energy gap above the ground state, the classical
states are cycles and the “diffusion” is through elementary bordisms. Since we have
set up our ground state to be analogous to homology:G ∼= P/∼c with pictures
playing the role of cycles and our{Bj } playing the role of bordisms, we expect
similar diffusion properties and hence an energy gap. In Lemma 2.1 the proof shows
that equivalent picturesp1 and p2 are connected by a “path”γ of deformations
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(“down” from p1 to a neighborhood ofTr and then back up top2). Rapid diffusion
corresponds to observing that there are a plethora of such paths and, in fact, the
procedure for findingγ is highly under determined. More difficult would be a
rigorous implication between diffusion and spec(H). Extending the analogy with
[13], in both cases when the lattice is refined by a factor ofL, a sequence ofO(L)
local operators is required to transform between a pair of orthogonal ground states.
So, given the existence of an energy gap, the HamiltonianH will be stable to order
O(L) in perturbation theory, and formally corresponds to tunneling amplitudes
between orthogonal ground states which scale likee−Ä(L).

There are several important open questions. The first is a rigorous treatment of
the energy gap, but this is probably too difficult in the present model. Another is
how to deal with errors in the form of actual, rather than “virtual,” excitation which
have already been discussed in the context of tunneling. Can a coupling to a could
bath repair such errors or are more active measures required? For example, can
broken endpoint pairs of a 1-manifold find each other and cancel through some
imposed attraction (as suggested by Dan Gottesman in conversations) or merely
through a random walk? Nearby error pairs may be more serious in CS5 than in
the toric codes, since isotopy class not just homology needs to be preserved; the
wrong reconnection pairing would result in an unrecoverable error. To make this
unlikely, should additional terms be included into our HamiltonianH which could
force distinct strands to be widely separated? This would put more weight on the
simpler pictures, which are the ones that the quantum medium can most easily
correct if damaged.

Kitaev’s very general notion of quantum media, with its several antecedents in
the study of quantum statistical mechanics, looks likely to become a central object
of study shared between theoretical physics, solid state physics, and topology. The
main disappointment of the present investigation is the complexity of the local
HamiltonianH used to construct stable universaltopologicalquantum computa-
tion. One sees no easy road to radically simplifying it and still obtaining an exact
description of CS5. However another path may be open. In our discussions, Kitaev
has suggested (also see page 46 of [19]) that simpler lattice Hamiltonians may
renormalize in the scaling limit to topological modular functors. Perhaps the most
interesting topological theories, such as CS5, because of their simplicity, will have
large “basins of attraction” under renormalization, and that identifiable universal-
ity classes of quantum media may not only exist mathematically but may even lie
within the reach of engineers.
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