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Abstract
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modified measure. The connection coefficients are computed via infinite-dimensional
bandedmatrix factorizations andmay be used to compute themodified Jacobimatrices
all in linear complexity with respect to the truncation degree. A family of orthogo-
nal polynomials with modified classical weights is constructed that support banded
differentiation matrices, enabling sparse spectral methods with modified classical
orthogonal polynomials. We present several applications and numerical experiments
using an open source implementation which make direct use of these results.
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Foundations of Computational Mathematics

1 Introduction

Let μ be a positive Borel measure on the real line whose support contains an infinite
number of points and has finite moments:

− ∞ <

∫
R

xndμ(x) < ∞, ∀n ∈ N0. (1.1)

We consider P(x) = (p0(x) p1(x) p2(x) · · · ) to be an orthonormal polynomial
basis with respect to the inner-product:

〈 f , g〉μ =
∫
R

f (x)g(x)dμ(x).

That is, 〈pm, pn〉μ = δm,n . This inner-product induces a norm, ‖ f ‖2μ = 〈 f , f 〉μ,
and the Hilbert space L2(R, dμ). We will assume that polynomials are dense in our
Hilbert spaces, making them separable—necessary and sufficient conditions for this
are discussed in [1, Theorem 2.3.3].

Orthonormal polynomials are important in numerical analysis for their ability to
represent f ∈ L2(R, dμ) via the expansion:

f (x) =
∞∑
k=0

〈 f , pk〉μ pk(x) = P(x) f ,

where f = (〈 f , p0〉μ, 〈 f , p1〉μ, . . .)�, establishing thewell-known isometric isomor-
phism between L2(R, dμ) and �2 by identifying for each such function the unique
corresponding infinite vector. For simplicity we assume our function spaces are over
the reals (that is, we only consider real-valued functions and vectors).

Given a nontrivial rational function

r(x) = u(x)

v(x)

with polynomials u and v, we will also considerQ(x) = (q0(x) q1(x) q2(x) · · · )
to be an orthonormal polynomial basis in L2(R, rdμ). The conditions on dμ are also
imposed on rdμ; in particular, r(x) is nonnegative and nonsingular on supp(μ). We
wish to describe efficient algorithms for the connection problem between the original
and the modified orthogonal polynomials, defined by the upper-triangular matrix R
in:

P(x) = Q(x)R.
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That is, the computation of the coefficients Rk,n (the entries of the matrix R) such
that:

pn(x) =
n∑

k=0

qk(x)Rk,n .

Before doing so, it is important to relate this connection problem with the cen-
tral object of a family of orthonormal polynomials, the Jacobi matrix. Every family
of orthonormal polynomials P(x) has a Jacobi matrix XP (an infinite irreducible
symmetric tridiagonal matrix), that implements multiplication by x :

xP(x) = P(x)XP .

That is, if we denote the three-term recurrence as:

xpn(x) = βn−1 pn−1(x) + αn pn(x) + βn pn+1(x), p−1(x) ≡ 0,

then the nonzero entries of the Jacobi matrix XP are (XP )k,k = αk−1, (XP )k+1,k =
(XP )k,k+1 = βk−1. As u and v are polynomial it is now straightforward to define U
and V by

u(x)P(x) = P(x) u(XP )︸ ︷︷ ︸
U

, v(x)P(x) = P(x) v(XP )︸ ︷︷ ︸
V

as symmetric banded commuting multiplication matrices whose bandwidths are
respectively equal to the degrees of the corresponding polynomials. In practice the
entries of U and V can be efficiently computed via Clenshaw’s algorithm [9, 52]. We
also know that xQ(x) = Q(x)XQ , though at this point we assume only XP is in hand.

Definition 1.1 For 0 < p < ∞, let �p denote the space of all sequences v ∈ R
∞

satisfying:

∞∑
n=0

|vn|p < ∞.

By continuity, we shall consider �0 to be the space of sequences with finitely many
non-zeros.

In order to establish the results of this paper we need to think of the infinite-
dimensional matrices (XP , XQ , U , V ) as operators acting on function spaces, in-
particular �0 and �2, as we require access to functional calculus (square-roots, inverses,
etc.). Note that an infinite-dimensional matrix is essentially an operator in which
e�
j Aek ≡ 〈e j , Aek〉�2 exists for all j and k.
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Definition 1.2 Let Pn denote the canonical orthogonal projection:

Pn =
(
In 0
0 0

)
, (1.2)

where In is the n × n identity and the zero blocks are of conformable sizes.

On �0, triangular matrices with nonzero diagonals are trivially invertible. This can
be seen by examining:

PnRPn =
(
Rn 0
0 0

)
,

and noting that (R−1) j,k = (R−1
n ) j,k provided that j, k ≤ n; that is, the principal

finite section is taken to be sufficiently large.

Theorem 1.3 (Gautschi [21]) Let XP and XQ be the Jacobi matrices for the original
andmodified orthonormal polynomials,P(x) andQ(x), respectively. Then there exists
a unique infinite invertible upper triangular operator R : �0 → �0 such that:

1. P(x) = Q(x)R and,
2. RXP = XQR.

Proof The proof is in two parts.

1. Since both P(x) andQ(x) are complete orthonormal bases of degree-graded poly-
nomials, the degree-n polynomial of one basis must result from the other as a
unique linear combination of its first n + 1 elements, resulting in a unique upper
triangular conversion operator. R−1 exists because all upper triangular operators
with nonzero diagonals are invertible on �0.

2. This follows from:

xP(x) =
{
P(x)XP = Q(x)RXP ,

xQ(x)R = Q(x)XQR.

�
This result shows that there is an infinite-dimensional similarity transformation
between the two Jacobi matrices (viewed as operators on �0):

XQ = RXP R
−1,

and the principal finite section of XQ may be computed in linear complexity. In
particular, it depends only on XP and the main and first super-diagonals of R:

(XQ)0,0 = R0,0(XP )0,0 + R0,1(XP )1,0

R0,0
,

(XQ)i,i+1 = (XQ)i+1,i = Ri+1,i+1(XP )i+1,i

Ri,i
,
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Table 1 A collection of connection problems resulting from banded matrix factorizations

r(x) = u(x)/v(x) Factorization(s) Connections

v(x) = 1 U = R�R P(x) = Q(x)R

u(x)Q(x) = P(x)R�

v(x) = 1
√
U = QR P(x) = Q(x)R√

u(x) is a polynomial
√
u(x)Q(x) = P(x)Q

u(x) = 1 V = L�L Q(x) = P(x)L�
v(x)P(x) = Q(x)L

u(x) = 1
√
V = QL Q(x) = P(x)L�

√
v(x) is a polynomial

√
v(x)P(x) = Q(x)Q�

Rational case 1 V = QL Q(x)RI = P(x)L�

Q�UL� = R�
I RI v(x)P(x) = Q(x)RI Q

�

Rational case 2 V = L�L Q(x)RII = P(x)L�

LUL−1 = R�
II RII v(x)P(x) = Q(x)RII L

(XQ)i,i = Ri,i (XP )i,i + Ri,i+1(XP )i+1,i − (XQ)i,i−1Ri−1,i

Ri,i
.

As a finite-dimensional similarity transformation preserves the spectrum, only the
(n − 1) × (n − 1) principal finite section of XQ may be recovered by the n × n
principal finite sections of R and XP—an observation of Kautsky and Golub [30] that
follows from triangular and tridiagonal matrix multiplication:

Pn−1XQ Pn−1 = (Pn−1RPn)(PnXP Pn)(PnR
−1Pn−1).

Remark 1.4 In the modified Hilbert space L2(R, rdμ), P(x) is not orthonormal (apart
from trivial measure modifications); hence, Theorem 1.3 (1) may be thought of as a
QR factorization in the sense of quasimatrices.

The main contributions of this paper are outlined in Table 1, where we relate the
computation of the connection coefficient matrix directly to different matrix factor-
izations in a unified manner. We also consider approximating more general bounded
modifications by rationals (Sect. 2.1), and when orthogonal polynomials have banded
derivative relationships (Sect. 2.3). Some of these factorizations are exactly realis-
able with finite-dimensional linear algebra (e.g. the Cholesky and QR factorizations),
while others are inherently infinite-dimensional (e.g. the reverse Cholesky and QL
factorizations), though in practice they can be approximated effectively using trun-
cations (Sect. 3). Finally, we present several applications and numerical experiments
making use of the results described in this paper (Sect. 4).
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1.1 PreviousWork

Polynomial and rational measure modifications and its connection problem in Theo-
rem1.3 are classical problems discussed at length inGautschi’s book on computational
orthogonal polynomials [23]. We mention some selected important advances on this
problem without any claim to historical completeness. Much of the early development
of methods to compute nonclassical orthogonal polynomials was motivated by their
applications in quadrature methods.

As early as 1968, it was already known to Mysovskikh [37] that the connection
coefficients are the upper-triangular Cholesky factor of the Gram matrix, the matrix
that corresponds to the left-hand side of our Eq. (2.1) in the case of a rational mod-
ification. This abstract notion does not require polynomial or rational structure to
the modification; and conversely, the sparsity structures present in the more specific
modifications are absent in that discussion. The next year, Uvarov [61] discusses
the rational measure modification problem, uncovering the banded sparsity in the
polynomial connection problem and in a Fourier–Christoffel version of the rational
connection problem, u(x)Q(x) = P(x)C , where C is a banded matrix with lower
bandwidth deg(u) and upper bandwidth deg(v). The banded sparsity of C in fact
characterizes the generalized Christoffel–Darboux formula, which explains why the
modified basis must be multiplied by u(x). While this connection problem has been
solved since 1969, there are a few outstanding numerical issues. Firstly, while banded
sparsity is important numerically, a general banded matrix such as C must be further
factored in order to allow the solution of linear systems. Secondly, Uvarov’s method
requires the computation of the roots and poles of r(x), which are unstablewith respect
to perturbations. The method is also encumbered by the use of second-kind functions,
whose numerical evaluation is not universally available. As a matter of computational
complexity, the cost of computing the first n columns ofC isO([deg(u)+deg(v)]3n),
as each column requires the solution of linear systems on the order of the bandwidth.
We will note that Uvarov’s Fourier–Christoffel connection problem may be recon-
structed from either of lines (5) or (6) in Table 1 as, for example, C = UL�R−1

I .
While our table of factorizations may appear more complicated, the factors are all
orthogonal or triangular, hence directly applicable and invertible.

By 1970, the work of Mysovskikh and Uvarov had begun disseminating in the
West, though incompletely, with Gautschi [21] using the Cholesky factor of the Gram
matrix to compute the modified Jacobi matrices for the purposes of modified Gaussian
quadrature. Kumar [35] independently proves Uvarov’s Lemma 1, that reciprocal
linear polynomial measure modifications connect the modified polynomials to the
original polynomials by coefficients that are computed by second-kind functions. He
uses this to computemodified first, second, and third kind Chebyshev quadrature rules,
as the second-kind Chebyshev functions are particularly easy to compute. Price [29]
generalizes the work of Kumar to a general rational measure modification. In the case
of a reciprocal polynomial measure modification, his Theorems 1 and 2 uncover the
banded sparsity in this special case of the connection problem; see line (3) in Table 1.
This method corresponds to an upper–lower factorization of v(XP ), though it relies
on second-kind functions to compute the first row/column of the factors to allow
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such a factorization to proceed directly. Since Price’s method relies on monomial
moments, it is not suitable for large degree problems. In Skrzipek [49] builds on
Price’s method by replacing the computation of monomial moments and second-
kind functions with Gaussian quadrature for the starting columns in the upper–lower
factorization of v(XP ). This improves the stability of the method, but results in a
computational complexity that depends on the degree of the quadrature rule. Inevitably,
this may become quite large when the poles of the rational modification come close
to the support of μ.

It is well-known that Cholesky factorization is numerically stable, though the error
may be large for an ill-conditioned matrix. In the context of polynomial modifications,
if the roots of u(x) are near the support of μ, the condition number ofU will be large.
Kautsky and Golub [30] observed this phenomenon in the computation of XQ by
the similarity transformation implied by Theorem 1.3, and provided two alternative
algorithms that maintain a much higher accuracy for the computation of the modified
Jacobi matrix. The first requires an orthogonal diagonalization of a principal finite
section of XP , while the second requires the polynomial u(x) to be factored in terms
of its roots, which allows Cholesky and QR factorizations of successive modifications
to take place. In related work, Buhmann and Iserles [7] use the unshifted infinite-
dimensional QR algorithm to compute the r(x) = x2 measure modification and
draw interesting connections with certain Sobolev orthogonal polynomials. Elhay and
Kautsky [15] develop an inverse Cholesky method for a reciprocal degree polynomial
modification of degree at most 2, where a finite-rank correction based on second-kind
function evaluation is added to the top of V to allow the upper–lower factorization
to proceed from the top down, that is, directly. Combined with a partial fraction
decomposition of r(x) and the summation technique of Elhay et al. [14], the method
enables a general rational weight modification. Elhay and Kautsky compare their
method to Gautschi’s method [22] of minimal solutions of certain recurrence relations
and find the performance of methods complimentary: where one is poor the other is
excellent, and vice versa.

Finally, we also mention that aside from the Gram–Schmidt type approaches which
constitute the primary methods referenced in the literature and the secondary line of
research projects on factorizationmethods outlined above, there have also been tertiary
approaches to computing non-classical orthogonal polynomials independent of these
two. An example of such a method is to solve the corresponding Riemann–Hilbert
problem for the modified orthogonal polynomials as discussed in [60].

1.2 Infinite-Dimensional Matrix Factorizations

In finite dimensions, matrix factorizations are a powerful collection of tools for the
solution of various ubiquitous types of problems. Some commonly used factorizations
include the LU , QR, Cholesky, and Schur factorizations among many others [24, 59].
Depending on the specific needs of a particular application, there also may exist
different algorithms for these factorizations favouring either speed or accuracy and
allowing different levels of parallelization, a typical example being the contrast of
Gram–Schmidt and Householder-based QR factorization.
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Cholesky factorization of a symmetric positive-definite square matrix M = M� ∈
R
n×n represents M as the unique product R�R, with an upper-triangular matrix R

with positive diagonal entries. Reverse Cholesky factorization produces an upper–
lower factorization of the form M = L�L . QR is one of the most well-studied and
widely used matrix factorizations, in particular in the form of so-called thin or reduced
QR factorization, which allows the representation of a matrix M ∈ R

m×n in terms of
a product of a matrix Q ∈ R

m×n with orthonormal columns and an upper-triangular
matrix R ∈ R

n×n . This factorization is unique up to a phase, or a diagonal matrix
D ∈ R

n×n with entries ±1, since QR = QDDR and the matrices QD and DR
are respectively also orthogonal and upper-triangular. The QL factorization is defined
analogously, where the matrix L now is lower-triangular. For orthogonal-triangular
matrix factorizations, we shall impose uniqueness by adopting the positive phase
convention in L and R, whereby Li,i > 0 and Ri,i > 0, ∀i .

In this work, we shall find it convenient to work with the infinite-dimensional ana-
logues of Cholesky, reverse Cholesky, QR and QL factorizations. In a computing
environment, one can represent infinite-dimensional linear operators as cached adap-
tive arrays [44], and this is facilitated and simplified in the case of banded operators.
There is a distinction between Cholesky and QR on the one hand and reverse Cholesky
and QL on the other, where finite sections of the former are computable (that is, with a
finite number of operations), while finite sections of the latter are not. By perturbative
arguments, we shall show in Sect. 3 when we expect (larger) finite section methods to
approximate the true finite sections of the non-computable matrix factorizations.

If A : �2 → �2 is a bounded invertible linear operator, then A = QR, where Q is
not only an isometry,1 Q�Q = I , but also orthogonal, QQ� = I , and R is upper-
triangular, bounded, and invertible. We refer the reader to [10, 12, 27] for further
details. If A is banded and unbounded, then a QR factorization still exists with an
isometric Q because it is independent of a diagonal column scaling, say D, such that
AD : �2 → �2. If A has dense column space, then Q is also orthogonal as Q and A
must have the same range, a fact that was used in [3]. Moreover, the diagonal column
scaling shows that the upper-triangular operator R is unbounded with the same growth
as A.

Cholesky and reverse Cholesky factorizations may be extended analogously to the
infinite-dimensional case, but there is a subtlety to the QL factorization. For QL to
exist with orthogonal Q, it is sufficient2 that A be invertible [63].

1.3 Contemporary Applications

Almost all previous work mentions modified Gaussian quadrature as the archetypal
application. But there are numerous reasons to be interested in modified classical
orthogonal polynomials. Our interest can be divided into two classes of problems.
Firstly, we are interested in the orthogonal structure in and on algebraic curves.
Recent advances in this direction include a description of the orthogonal structures
on quadratic [46], planar cubic [16], and a class of planar algebraic curves [17] and

1 We use � to denote the adjoint operator, to emphasise that our function spaces are over the reals.
2 For non-invertible A it is unclear under what conditions a QL factorization exists or indeed is unique.
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quadratic surfaces of revolution [45]. Secondly, we are interested in the Koornwinder
constructions of bivariate (and multivariate) orthogonal polynomials that are semi-
classical. Orthogonal polynomials on half-disks and trapeziums are described in [54]
and on spherical caps in [55] and we briefly introduce two more classes of polynomi-
als on an annulus and a spherical band in Sects. 4.4 and 4.5, respectively. Orthogonal
polynomials with nonclassical weights can further be used for computing random
matrix statistics for general invariant ensembles [11], and in-particular, sampling their
eigenvalues corresponds to a sequence of rational modifications of the measure [41].

2 Rational Measure Modification via Infinite-Dimensional Matrix
Factorizations

In what follows, we denote the synthesis operator:

S : �2 → L2(R, dμ), f �→ P f = f ,

and the analysis operator:

A : L2(R, dμ) → �2, f �→
∫
R

P(x)� f (x)dμ(x) = f .

For computational purposes, it is well-known that both operators have discrete
analogues [42].

Note that any bounded invertible operator has QR and QL factorizations and any
symmetric positive definite operator has a Cholesky factorization.

Proposition 2.1 [10, 12, 27] If A : �2 → �2 is a bounded invertible operator then the
QR factorization (A = QR for Q orthogonal and R is invertible and bounded upper
triangular) exists. If A is not invertible then Q is only guaranteed to be an isometry
and R may not be invertible.

Proposition 2.2 [63]3 If A : �2 → �2 has a bounded inverse, then the QL factorization
(A = QL for Q orthogonal and L lower triangular) exists.

In the infinite-dimensional setting there are two possible definitions for posi-
tive definite (which are equivalent in finite-dimensions) as outlined in the following
definition:

Definition 2.3 A linear operator A : �2 → �2 is:

1. Positive semi-definite if 〈v, Av〉 ≥ 0, for all v ∈ �2;
2. Positive definite if 〈v, Av〉 > 0, for all nonzero v ∈ �2; and,
3. Strictly positive definite if ∃M > 0 such that 〈v, Av〉 ≥ M〈v, v〉, for all v ∈ �2.

Proposition 2.4 [8, 25, 26] Let A : �2 → �2 be a self-adjoint linear operator with
dense domain in �2. If A = R�R with upper-triangular R, then:

3 There is an issue in Webb’s proof for the non-invertible case.
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1. A is positive semi-definite;
2. R is unique and invertible on �0 only if A is positive definite; and,
3. R is unique and invertible on �2 only if A is strictly positive definite.

Corollary 2.5 Let A : �2 → �2 be a self-adjoint linear operator with dense domain in
�2. If A is invertible and A = L�L with lower-triangular L, then:

1. A−1 is positive semi-definite;
2. L is unique and invertible on �0 only if A−1 is positive definite; and,
3. L is unique and invertible on �2 only if A−1 is strictly positive definite.

As occurs in unbounded domains, Jacobi matrices may be unbounded linear oper-
ators. Thus, our analytical framework for functional calculus must include bounded
and unbounded functions of bounded and unbounded operators. Thus we require the
Borel functional calculus, which will allow us to define functions of the Jacobi matrix
through the projection-valued measure, dμP(x) = P(x)�P(x)dμ(x). We refer the
interested reader to Reed and Simon [48, § VIII.3] for further details.

Definition 2.6 (p. 263 in [48]) Let r be a measurable function with finite μ-moments:

−∞ <

∫
R

xnr(x)dμ(x) < ∞, ∀n ∈ N0.

We define:

r(XP ) :=
∫
R

r(x)dμP(x).

If r is a polynomial, then r(XP ) is also realized by operator composition and the
Clenshaw algorithm, as alluded to earlier, and if r(x) = u(x)

v(x) is a rational function,

then it follows from P(x)r(XP ) = r(x)P(x) = u(x)
v(x)P(x) that:

r(XP ) = u(XP )v(XP )−1︸ ︷︷ ︸
UV−1

= v(XP )−1u(XP )︸ ︷︷ ︸
V−1U

.

Proposition 2.7 If rdμ is a positive Borel measure with finite moments, as in Eq. (1.1),
then r(XP) is symmetric positive definite.

Proof Symmetry of r(XP ) is a direct consequence of the orthonormality of P(x). To
show positive definiteness we observe that for any nonzero v ∈ �2 we have a nonzero
v(x) = P(x)v ∈ L2(R, dμ):

〈v, r(XP )v〉 =
∫
R

v(x)2r(x)dμ(x) > 0.

See also [48, Theorem VIII.5 (f)]. �
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From this last result we can translate the computation of the conversion operator R
between P(x) and Q(x) to computing a Cholesky factorization:

Lemma 2.8 If rdμ is a positive Borel measure with finite moments, then the Cholesky
factorization of r(XP ) encodes the conversion matrix R, i.e.:

r(XP ) = R�R, (2.1)

if and only if P(x) = Q(x)R. Furthermore:

r(x)Q(x) = P(x)R�.

Proof By Proposition 2.7, r(XP ) is a self-adjoint positive definite operator hence
its Cholesky factorization exists and R is invertible on �0: this much was known to
Mysovskikh [37], who called principal finite sections of r(XP) the Gram matrix.
Thus Q̃(x) = P(x)R−1 connects two families of graded polynomials with leading
coefficients of the same sign. While R−1 is not necessarily bounded on �2 we have
R−1en ∈ �2 for all n. Thus we find for q̃n(x) = Q̃(x)en :

∫
R

q̃m(x)�r(x)q̃n(x)dμ(x) = e�
m R−�

∫
R

P(x)�r(x)P(x)dμ(x)R−1en

= e�
m R−�r(XP )R−1en = δm,n,

which shows by uniqueness Q̃(x) = Q(x). For the other direction we have

r(XP ) =
∫
R

P(x)�r(x)P(x)dμ(x) = R�
∫
R

Q(x)�r(x)Q(x)dμ(x)R = R�R.

The final statement follows since:

r(x)Q(x) = P(x)r(XP )R−1 = P(x)R�.

�
The polynomial measure modification, where r(x) = u(x) is a polynomial, cor-

responds to the case V = I , in which case the banded Cholesky factorization of U
returns the connection coefficients, showing line (1) of Table 1, which is equivalent
to the result of Gautschi [21]. That is, in this setting one can establish the result using
only finite-dimensional linear algebra.

In the case that
√
u(x) is a polynomial we establish line (2) of Table 1 as follows:

Lemma 2.9 Suppose r(x) = u(x)where
√
u(x) is a polynomial. The QR factorization

of
√
U encodes the conversion matrix R, i.e.:

√
U = QR, (2.2)
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if and only if P(x) = Q(x)R. Furthermore:

√
u(x)Q(x) = P(x)Q.

Proof First note that Rn,n > 0 because the Cholesky factor of r(XP ), the square of
a polynomial, is invertible on �0 (exactly as argued above). The first result follows as
above by observing that

U = √
U

�√
U = R�Q�QR = R�R.

The second result follows from:
√
u(x)Q(x) = P(x)

√
UR−1 = P(x)Q.

�
Wenow consider r(x) = 1/v(x) to be a reciprocal polynomial. Note that the entries

of V−1 are not computable.4 However, lines (3) and (4) of Table 1 can be deduced
from factorizations of V directly: we know from the fact that r(x) has no poles in
supp(μ) that V has a bounded inverse. By Proposition 2.2 and Corollary 2.5, there
exist QL and reverse Cholesky factorizations and then the proofs follow along the
same lines as above.

For other rational modifications we use factorizations of the left-hand side of
Eq. (2.1) that respect the upper-triangular structure of the Cholesky factors on the
right-hand side. Two avenues to proceed require the infinite-dimensional QL and
reverse Cholesky algorithms.

Theorem 2.10 (Rational case 1) Suppose r ∈ L∞(R, dμ) and let V = QL. Then

Q�UL� = R�
I RI ,

if and only if Q(x)RI = P(x)L�. Furthermore:

v(x)P(x) = Q(x)RI Q
�.

Proof As above, nonsingularity of r(x) on supp(μ) guarantees that V is invertible,
and we find V−1 = L−1Q�. Define Q̃(x) := P(x)L�R−1

I and q̃n(x) as above, so
that

∫
R

q̃m(x)� u(x)

v(x)
q̃n(x)dμ(x) = e�

m R−�
I LV−1UL�R−1

I en = δm,n .

For the other direction we have R = RI L−� hence

Q�UL� = LV−1UL� = LR�
∫
R

Q(x)�r(x)Q(x)dμ(x)RL� = R�
I RI .

4 They can be approximated by approximating v(x)−1 by a polynomial but this degenerates if v(x) has
zeros near supp(μ).
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The final statement follows since V = V� = L�Q� and hence:

v(x)P(x) = P(x)V = Q(x)RI L
−�V = Q(x)RI Q

�.

�
Theorem 2.11 (Rational case 2) Suppose r ∈ L∞(R, dμ) and let V = L�L. Then

LUL−1 = R�
II RII ,

if and only if Q(x)RII = P(x)L�. Furthermore:

v(x)P(x) = Q(x)RII L.

Proof Note for the last time that nonsingularity of r(x) on supp(μ) guarantees that V
is invertible, and we find V−1 = L−1L−�. Define Q̃(x) := P(x)L�R−1

II and q̃n(x)
as above, so that

∫
R

q̃m(x)� u(x)

v(x)
q̃n(x)dμ(x) = e�

m R−�
II LV−1UL�R−1

II en = δm,n .

For the other direction we have R = RII L−� hence

LUL−1 = LUV−1L� = L
∫
R

P(x)�r(x)P(x)dμ(x)L� = R�
II RII .

The final statement follows since V = V� = L�L and hence:

v(x)P(x) = P(x)V = Q(x)RII L
−�V = Q(x)RII L.

�
Through banded matrix factorizations, Table 1 generalizes many familiar iden-

tities for the classical orthogonal polynomials. We give a few examples using the
orthonormal generalized Laguerre polynomials [40, § 18.3], related to the standard
normalization by:

L̃(α)
n (x) =

√
�(n + 1)

�(n + α + 1)
L(α)
n (x).

Given XL̃(α) , whose entries are determined by:

x L̃(α)
n (x) = −√n(n + α)L̃(α)

n−1(x) + (2n + α + 1)L̃(α)
n (x)

−√(n + 1)(n + α + 1)L̃(α)
n+1(x),

four other operators arise by Cholesky and QR factorization. These are:
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1. The raising operator that is the upper Cholesky factor of XL̃(α) = R�R:

L̃(α)
n (x) = √

n + α + 1L̃(α+1)
n (x) − √

nL̃(α+1)
n−1 (x),

2. The lowering operator that is the transpose of the raising operator:

x L̃(α+1)
n (x) = √

n + α + 1L̃(α)
n (x) − √

n + 1L̃(α)
n+1(x),

3. The iterated raising operator that is the triangular factor of XL̃(α) = QR:

L̃(α)
n (x) =√(n + α + 1)(n + α + 2)L̃(α+2)

n (x)

− 2
√
n(n + α + 1)L̃(α+2)

n−1 (x) +√n(n − 1)L(α+2)
n−2 (x),

4. The corresponding orthogonal factor [42, Corollary 4.8]:

x L̃(α+2)
n (x) +

√
n + 1

n + α + 2
L̃(α)
n+1(x)

= (α + 1)
n∑

�=0

√
�(� + α + 1)

�(� + 1)

�(n + 1)

�(n + α + 3)
L̃(α)

� (x).

Remark 2.12 In the general rational cases, it is important to relate the main and first
super-diagonals of R to the factored forms of the connection coefficients to efficiently
compute themodified Jacobimatrix XQ . In thefirst general rational case, R = RI L−�,
so:

Ri,i = (RI )i,i/Li,i ,

Ri,i+1 = (RI )i,i+1 − Ri,i Li+1,i

Li+1,i+1
.

In the second general rational case, the same formulas hold with RI ↔ RII .
Finally, we observe that RI is an upper-triangular banded matrix with upper band-

width at most deg(u) + deg(v). This inference follows from the same bound on the
lower bandwidth of Q�UL�. Similarly, RII is an upper-triangular bandedmatrix with
upper bandwidth at most deg(u), a result that follows from comparison with LUL−1.
Since RI and RII are banded matrices, their principal finite sections are computable
in O(n) flops.

2.1 L∞ Measure Modifications

It is reasonable to consider irrational measure modifications r(x). We wish to char-
acterize the rational approximation error in L∞(R, dμ) to the 2-norm error in
approximating the infinite-dimensional matrix r(XP ). In this way, we will understand
when polynomial and rational approximants construct nearby matrices of measure
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modifications to the true problems. This confers a significant computational advantage
as then we are able to leverage the banded sparsity in the nearby problem.

Lemma 2.13 (Proposition 1, § VIII.3 in [48]) For any r ∈ L∞(R, dμ):

‖r(XP )‖2 = ‖r‖L∞(R,dμ).

A consequence of this is that we can control the error in approximating a measure
modification by a rational function:

Theorem 2.14 Given ε > 0 and a measure modification r ∈ L∞(R, dμ), if it is
approximated by a rational function u/v such that:

∥∥∥r − u

v

∥∥∥
L∞(R,dμ)

≤ ε‖r‖L∞(R,dμ),

then:
∥∥∥r(XP ) − V−1U

∥∥∥
2

≤ ε‖r(XP )‖2.

As an example, we consider a Jacobi polynomial approximation to an analytic
function on [−1, 1]. By classical results of approximation theory [58, Theo-
rems 8.2 and 12.1], the canonical finite-dimensional interpolation and projection errors
are dominated by exponential convergence; in particular, the degree dependence is
O(log ε−1) as ε → 0. Thus, to relative error ε, the matrix r(XP ) is well-approximated
by U (and thereby trivially V−1U ) of effectively finite bandwidth.

On unbounded domains, it is impossible to approximate a boundedmeasuremodifi-
cation in the uniform norm by polynomials, partially motivating our interest in rational
approximation.

2.2 Measure Modifications withM-Matrix Connection Coefficients

We include in this section a result on a property of the measure modification that
implies a property of the connection coefficients. Since this property is inherently
entry-wise, it is understood that in this section we work with principal finite sections
of the connection coefficients; hence, all matrices are finite-dimensional.

Definition 2.15 A positive-definite matrix A is an M-matrix if Ai,i > 0, Ai, j ≤ 0 for
i �= j . A symmetric M-matrix is also known as a Stieltjes matrix.

Triangular M-matrices and their inverses have tighter-than-general 2-norm con-
dition number estimates [47]; and it has been useful to identify this property in the
setting of a connection problem [31].

Lemma 2.16 (Fiedler and Pták [18]) Let A be an M-matrix. Then A = LU and both
L and U are M-matrices.

In particular, this means that the Cholesky factors of a Stieltjes matrix are M-matrices.
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Definition 2.17 (Fiedler andSchneider [19])A smooth function f : (0,∞) → [0,∞)

is completely monotonic if (−1)k f (k)(x) ≥ 0 for x > 0 and k ∈ N0.

Theorem 2.18 (Fiedler and Schneider [19]) Let f be positive on (0,∞) and f ′ be
completely monotonic. Then A is an M-matrix if and only if f (A) is an M-matrix.

Corollary 2.19 Let r(x) = f (s(x))where f is positive on (0,∞) and f ′ is completely
monotonic and s is smooth. If principal finite sections of s(XP ) are Stieltjes matrices,
then principal finite sections of r(XP ) are Stieltjes matrices if and only if principal
finite sections of R are M-matrices.

Proof This corollary constructively combines Lemma 2.16 and Theorem 2.18. �
Given the Jacobi polynomials, it is easy to show that principal finite sections of

I − XP and I − X2
P are Stieltjes matrices, corresponding to s(x) = 1 − x and

s(x) = 1 − x2, respectively. For the Laguerre polynomials, principal finite sections
of XP itself are Stieltjes matrices. A few concrete examples of f positive and f ′
completely monotonic include:

1. f (x) = xλ for 0 ≤ λ ≤ 1; and,

2. f (x) = x

x + γ
for γ > 0.

2.3 Banded Derivatives of Modified Classical Orthogonal Polynomials

Classical orthogonal polynomials are characterized by Bochner [5] and Krall [34]
as the polynomial solutions of the degree-preserving second-order linear differential
equation:

(
σD2 + τD + λn

)
pn = 0, (2.3)

where σ and τ are polynomials in x independent of n that satisfy deg(σ ) ≤ 2 and
deg(τ ) ≤ 1, and the eigenvalues λn = − n

2

[
(n − 1)σ ′′ + 2τ ′] ≥ 0.We call this factor-

ization degree-preserving because the degrees of the polynomial variable coefficients
do not exceed the orders of the respective differential operators.

In addition, themeasure is expressed in terms of a positiveweight function, dμ(x) =
w(x) dx supported on the (possibly unbounded) interval (a, b), that satisfies the first-
order Pearson differential equation:

D(σw) = τw. (2.4)

A useful property of σ is that it is zero at finite boundary points: for χ equal to a or b
if they are finite we have σ(χ)w(χ) = 0, annihilating boundary terms in integration
by parts.

By considering the self-adjoint form of Eq. (2.3):

(−D) (σwD) pn = λnwpn, (2.5)
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it follows that the polynomials Dpn are orthogonal with respect to L2(R, σdμ).
Thus the characterization of classical orthogonal polynomials is often stated as those
polynomials whose derivatives are also orthogonal polynomials.

It follows that differentiation of the classical orthogonal polynomials can be
represented by infinite-dimensional banded matrices:

DP(x) = P′(x)DP ′
P , (2.6)

where D denotes the derivative operator, P(x) are the orthonormal polynomials with
respect to dμ(x) = w(x) dx , P′(x) are the orthonormal polynomials with respect to
σdμ and DP ′

P is a banded matrix with nonzero entries only on the first super-diagonal.
Moreover, the super-diagonal entries of DP ′

P may be found by Eq. (2.5):

(DP ′
P )�DP ′

P = ,  = diag(λ0, λ1, . . .).

From a computational perspective, banded multiplication, raising, and differentiation
enable sparse spectral methods to be constructed for linear differential equations with
(polynomial) variable coefficients [42, 43].

In light of the current work on rationally modified orthogonal polynomials, we may
ask:

Is there a basis in which the derivative of the rationally modified polynomials is
banded?

The following theorem shows that banded derivatives exist for this problem and
also more generally in the case of classical weights modified by algebraic pow-
ers of a product of polynomials. Let α = (α1, . . . , αd) be a multi-index and
u(x) = (u1(x), . . . , ud(x)) be a collection of polynomials. We will use the following
notation:

uα(x) =
d∏

i=1

uαi
i (x),

and the shorthand deg(uα) =
d∑

i=1

deg(uαi
i ) if α ∈ N

d
0 . Define λ : Rd → N

d
0 by:

[λ(α)]i =
{
1 αi �= 0,
0 αi = 0.

Theorem 2.20 Let w(x) be a classical orthogonal polynomial weight, let σ(x) be the
corresponding degree at most 2 polynomial, let:

dμ(α,β)(x) = w(α,β)(x) dx = uα(x)σβ(x)w(x) dx,

with uα(x)σβ(x) such that dμ(α,β)(x) is a positive Borel measure with finite moments.
Further, let P(α,β)(x) be orthonormal polynomials with respect to L2(R, dμ(α,β)) for
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any real α and β such that, in particular:

lim
x→a+ xnw(α+λ(α),β+1)(x) = lim

x→b− xnw(α+λ(α),β+1)(x) = 0, ∀n ∈ N0.

Then:

DP(α,β)(x) = P(α+λ(α),β+1)(x)D(α+λ(α),β+1)
(α,β) , (2.7)

where D(α+λ(α),β+1)
(α,β) is strictly upper triangular and has upper bandwidth at most

deg(uλ(α)) + 1.

Proof Differentiation of polynomials reduces the degree; hence, D(α+λ(α),β+1)
(α,β) is

strictly upper triangular. Consider at first the relaxed problem:

DP(α,β)(x) = P(α+1,β+1)(x)D(α+1,β+1)
(α,β) .

To find its upper bandwidth, we note that:

(D(α+1,β+1)
(α,β) )m,n

=
∫ b

a
p(α+1,β+1)
m (x)Dp(α,β)

n (x)w(α+1,β+1)(x) dx,

= −
∫ b

a
D
[
p(α+1,β+1)
m (x)w(α+1,β+1)(x)

]
p(α,β)
n (x) dx,

= −
∫ b

a

{
D
[
p(α+1,β+1)
m (x)

]
w(α+1,β+1)(x)

+ p(α+1,β+1)
m (x)D

[
uα+1(x)

]
σβ+1(x)w(x)

+p(α+1,β+1
m (x)uα+1(x)D

[
σβ+1(x)w(x)

]}
p(α,β)
n (x) dx,

= −
∫ b

a

{
D
[
p(α+1,β+1)
m (x)

]
u1(x)σ (x)

+ p(α+1,β+1)
m (x)

d∑
i=1

(αi + 1)u′
i (x)

d∏
j=1
j �=i

u j (x)σ (x)

+p(α+1,β+1)
m (x)u1(x)(τ + βσ ′)

}
p(α,β)
n (x)w(α,β)(x) dx .

It follows that the first term is a degree at mostm+deg(u1)+max{deg(σ )−1, deg(τ )}
polynomial, proving that (D(α+1,β+1)

(α,β) )m,n = 0 if n > m + deg(u1) + 1, by orthogo-

nality of p(α,β)
n (x) with all polynomials of lesser degree. If any of the exponents αi is

zero, then this overestimates the upper bandwidth, as u0i (x) ≡ 1, no matter how large
its degree. �
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While Theorem 2.20 shows that these classes of orthogonal polynomials have
banded derivatives, it does not provide an algorithm for computations. In fact, there
are many different formulas to compute these based on connection coefficients. For
example, if:

P(α,β)(x) = P(γ ,δ)(x)R(γ ,δ)

(α,β),

then it is true that:

D(α+λ(α),β+1)
(α,β) = R(α+λ(α),β+1)

(γ+λ(γ ),δ+1) D
(γ+λ(γ ),δ+1)
(γ ,δ) R(γ ,δ)

(α,β). (2.8)

If γ = 0, then D(γ+λ(γ ),δ+1)
(γ ,δ) is a classical orthogonal polynomial differentiation

matrix.
In the proof of Theorem 2.20, we found that:

D(σβ+1w) = (τ + βσ ′)σβw,

which shows that σβ(x)w(x) is also a classical weight. We include σβ(x) to enable
convenient notation for higher order derivatives.

Without loss of generality, we discuss the banded higher order derivatives of ratio-
nally modified orthonormal polynomials. To represent a rational classical weight
modification, suffice it to take d = 2 and identify u(x) = (u(x), v(x)) and
α = (1,−1). Then:

DP(1,−1,0)(x) = P(2,0,1)(x)D(2,0,1)
(1,−1,0).

It follows that:

D(2,0,1)
(1,−1,0) = R(2,0,1)

(0,0,1)D
(0,0,1)
(0,0,0)(R

(1,−1,0)
(0,0,0) )−1.

This formula finds the banded derivative D(2,0,1)
(1,−1,0) in terms of a polynomial weight

modification R(2,0,1)
(0,0,1) , the classical derivative D(0,0,1)

(0,0,0) , and the inverse of the rational

weight modification R(1,−1,0)
(0,0,0) , all computable or well-approximable matrices with the

connection problems described in Table 1. Subsequent differentiation is natural:

DP(k+1,0,k)(x) = P(k+2,0,k+1)(x)D(k+2,0,k+1)
(k+1,0,k) , ∀k ∈ N,

where:

D(2,0,1)
(1,0,0) = R(2,0,1)

(0,0,1)D
(0,0,1)
(0,0,0)(R

(1,0,0)
(0,0,0))

−1,

D(k+2,0,k+1)
(k+1,0,k) = R(k+2,0,k+1)

(k+1,0,k) D(k+1,0,k)
(k,0,k−1)(R

(k+1,0,k)
(k,0,k−1))

−1, ∀k ∈ N.

All of these connection problems are banded with a minimal bandwidth in the sense
that they are independent of v(x).
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Equation (2.6) offers two more practical interpretations. Firstly, the transpose of
the differentiation matrix is the discretization of the weighted negative derivative:

(−D)
[
σ(x)w(x)P′(x)

] = w(x)P(x)(DP ′
P )�.

Secondly, an indefinite integral of P′(x) is discretized by the Moore–Penrose
pseudoinverse [24]:

∫ x

P′(x) dx = P(x)(DP ′
P )+.

Since DP ′
P has full row rank and only one nontrivial band, (DP ′

P )+ is a right
inverse that is particularly easy to compute: it too only has one nontrivial band, and
(DP ′

P )+n+1,n = (DP ′
P )−1

n,n+1. Both of these properties carry over to the more general
setting of Theorem 2.20.

Corollary 2.21 Consider P(α,β)(x) to be the same as in Theorem 2.20.

1. The weighted negative derivative is:

(−D)
[
w(α+λ(α),β+1)(x)P(α+λ(α),β+1)(x)

]

= w(α,β)(x)P(α,β)(x)(D(α+λ(α),β+1)
(α,β) )�,

2. and an indefinite integral is:

∫ x

P(α+λ(α),β+1)(x) dx = P(α,β)(x)(D(α+λ(α),β+1)
(α,β) )+.

While D(α+λ(α),β+1)
(α,β) in general has a larger upper bandwidth than DP ′

P , its full row rank
enables direct computation of successive columns of its pseudoinverse, preserving the
lower bandwidth of 1. In particular, we may take the first row of (D(α+λ(α),β+1)

(α,β) )+ to
be zero, and for the rest:

(D(α+λ(α),β+1)
(α,β) )+2:n+1,1:n = (D(α+λ(α),β+1)

(α,β) )−1
1:n,2:n+1.

Combining Theorem 2.20 and Corollary 2.21 is now irresistible.

Theorem 2.22 Consider P(α,β)(x) to be the same as in Theorem 2.20.

(−D)
[
w(α+λ(α),β+1)(x)D

]
P(α,β)(x)

= w(α,β)(x)P(α,β)(x)(D(α+λ(α),β+1)
(α,β) )�D(α+λ(α),β+1)

(α,β) .
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3 Algorithms for Infinite-Dimensional Matrix Factorizations

As mentioned above, there is an important distinction between Cholesky and QR
decompositions of infinite-dimensional matrices and their reverse Cholesky and QL
decompositions: Finite sections of infinite-dimensional Cholesky and QR decompo-
sitions are computable while in the QL and reverse Cholesky factorizations, matrix
factorizations are employed that in general are not computable (with a finite number
of operations) for infinite-dimensional matrices. In finite dimensions, a QL factoriza-
tion may proceed by orthogonal transformations designed to lower-triangularize the
matrix in question. It follows that these orthogonal transformations must begin in the
bottom right corner but in infinite dimensions, the bottom right corner is always out
of reach, see [63]. A similar argument follows for the reverse Cholesky factorization.
In finite dimensions, symmetric elementary transformations introduce zeros starting
with the last row and column.

Since we only require the n × n principal section of the connection coefficients,
we develop iterative methods to compute the approximate infinite-dimensional QL
and reverse Cholesky factorizations based on larger principal sections. Let N > n and
partition V as follows:

V =
(
VN Vb
V�
b V∞

)
.

Here, VN is the N×N principal section of V . It inherits the symmetric positive-definite
and banded structure from V . Next, Vb is an N × ∞ block with a rank bounded by
the bandwidth of V and sparsity pattern of a b × b lower-triangular matrix in the first
b columns and the last b rows. Finally, V∞ is the trailing infinite-dimensional section.

3.1 Approximating theQL Factorization

We compute the QL factorization of VN and we wish to analyse the proximity of
its n × n principal section to the same sized section of the infinite-dimensional QL
factorization of a nearby matrix to V ; thus, we shall make a perturbative argument.
Recall that Pn is the canonical orthogonal projection of Eq. (1.2). We compute VN =
QN LN and consider:

(
Q�

N
I

)
V =

(
LN Q�

NVb
V�
b V∞

)
.

In the first n rows, the orthogonal transformation Q�
N has successfully lower triangu-

larized the first N columns of V . However, in the next b columns, the entries PnQ�
NVb

interfere with a complete lower triangularization. Were they 0, we would declare vic-
tory as the orthogonal lower triangularization would have succeeded. In general, this
is impossible and yet we notice that in practice for N � n these entries may be 2-
normwise small. Thus, we conclude with the following criterion for convergence of
principal sections of the QL factorization.
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Lemma 3.1 Given ε > 0, if:

‖PnQ�
NVb‖2 < ε‖Q�

NVb‖2 = ε‖Vb‖2,

then there exists a Ṽb such that:

PnQ
�
N Ṽb = 0, and

‖Vb − Ṽb‖2 < ε‖Vb‖2.

Proof We choose Ṽb = QN (IN − Pn)Q�
NVb. Then:

PnQ
�
N Ṽb = PnQ

�
N QN (IN − Pn)Q

�
NVb = Pn(IN − Pn)Q

�
NVb = 0,

and:

Vb − Ṽb =
[
IN − QN (IN − Pn)Q

�
N

]
Vb

= QN PnQ
�
NVb,

and the result follows. �
Since ‖Vb‖2 ≤ ‖V ‖2, Lemma 3.1 suggests that introducing a 2-normwise small
relative perturbation in Vb is sufficient to result in an n-row lower triangularization of
a Ṽ by the orthogonal transformation Q�

N . Moreover, as the perturbation is localized
to the Vb block, the statement is in fact stronger than:

‖V − Ṽ ‖2 < ε‖V ‖2.

It may not be immediately obvious, but Lemma 3.1 guarantees that for every M > N ,
if ṼM = QMLM , then the first n rows of LM coincide with those of LN , and the
first n columns of QM are also the first n columns of QN . Since LM and LN are
lower-triangular matrices, the first n × n principal sections are the same. Similarly,
the N × n principal sections of QM and QN are same. If N is sufficiently large, then
Ṽ is 2-normwise close to V and we have computed the exact partial QL factorization
of a nearby matrix.

Our algorithm is as follows: given ε > 0, we begin by setting N = 2n, we compute
VN = QN LN , and we double N until we may invoke Lemma 3.1 and continue with
the finite-dimensional aspect of the computations involved in the QL factorization.
As there is no universal guarantee for this to occur, the software implementation of
our algorithm issues a warning if N reaches a huge maximum value.

3.2 Approximating the Reverse Cholesky Factorization

As above, we compute the reverse Cholesky factorization of VN , and we make a
perturbative argument to consider the utility of its n× n principal section. With VN =
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L�
N LN in hand:

(
L−�
N

I

)
V =

(
LN L−�

N Vb
V�
b V∞

)
,

and we wish to consider how closely we have lower-triangularized the first n rows.

Lemma 3.2 Given ε > 0, if:

‖L�
N PnL

−�
N Vb‖2 < ε‖Vb‖2,

then there exists a Ṽb such that:

PnL
−�
N Ṽb = 0, and

‖Vb − Ṽb‖2 < ε‖Vb‖2.

Proof We choose Ṽb = L�
N (IN − Pn)L

−�
N Vb. Then:

PnL
−�
N Ṽb = PnL

−�
N L�

N (IN − Pn)L
−�
N Vb = Pn(IN − Pn)L

−�
N Vb = 0,

and:

Vb − Ṽb =
[
IN − L�

N (IN − Pn)L
−�
N

]
Vb

= L�
N PnL

−�
N Vb,

and the result follows. �

Since ‖Vb‖2 ≤ ‖V ‖2, Lemma 3.2 suggests that introducing a 2-normwise small
relative perturbation in Vb is sufficient to result in an n-row lower triangularization of
V by L−�

N . Our algorithm is as follows: given ε > 0, we begin by setting N = 2n,
we compute VN = L�

N LN , and we double N until we may invoke Lemma 3.2 and
continue with the finite-dimensional aspect of the computations involved in the reverse
Cholesky factorization.

3.3 AModel for Infinite-Dimensional Matrix Factorizations

We consider a model problem of a rational modification describing a single simple
pole off [−1, 1]:

v(x) = α + 2βx .
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If this modifies the (orthonormal) Chebyshev polynomials of the second-kind, then:

V =

⎛
⎜⎜⎝

α β

β α
. . .

. . .
. . .

⎞
⎟⎟⎠ ,

and |α| > 2|β|. This symmetric tridiagonal matrix is also Toeplitz [24, § 4.7], which
allows us to draw from the literature on the QL and Wiener–Hopf factorizations of
Toeplitz matrices.

3.3.1 QL Factorizations

Let Gi (c, s) denote the real Givens rotation matrix in the ei ei+1-plane embedded in
the infinite-dimensional identity:

Gi (c, s) =

⎛
⎜⎜⎝
Ii−1

c s
−s c

I

⎞
⎟⎟⎠ ,

where s2 + c2 = 1.

Lemma 3.3 (Theorem 5.2.6 in [63]) If α > 2|β|, the QL factorization of V exists and
is given by:

V =
∞∏
i=1

Gi (c, s)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
(α+

√
α2−(2β)2)

√
α2−(2β)2

2

2β α+
√

α2−(2β)2

2
2β2

α+
√

α2−(2β)2
2β

. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where:

s = 2β

α +√α2 − (2β)2
, and c =

√√√√ 2
√

α2 − (2β)2

α +√α2 − (2β)2
,

and the Givens rotations are applied to the lower triangular matrix in the order
determined by their index; that is, the infinite product iteratively prepends Givens
rotations on the left.
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Proof We parameterize some of the entries of L by s and c. We apply G1 to L:

G1 (c, s)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

√
(α+

√
α2−(2β)2)

√
α2−(2β)2

2

2β α+
√

α2−(2β)2

2

sβ 2β
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

α β

β

√
2
√

α2−(2β)2

α+
√

α2−(2β)2

√
(α+

√
α2−(2β)2)

√
α2−(2β)2

2

sβ 2β α+
√

α2−(2β)2

2
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

,

=

⎛
⎜⎜⎜⎜⎜⎜⎝

α β

cβ

√
(α+

√
α2−(2β)2)

√
α2−(2β)2

2

sβ 2β α+
√

α2−(2β)2

2
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Then, applying G2 to the result, we find:

G2 (c, s)

⎛
⎜⎜⎜⎜⎜⎜⎝

α β

cβ

√
(α+

√
α2−(2β)2)

√
α2−(2β)2

2

sβ 2β α+
√

α2−(2β)2

2
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

α β

β α β

0 cβ

√
(α+

√
α2−(2β)2)

√
α2−(2β)2

2

sβ 2β α+
√

α2−(2β)2

2
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We have now shown that the first two rows of G2G1L are equal to the first two rows
of V , and since the 2 : ∞ × 2 : ∞ section of G2G1L is equal to G1L , the full
factorization follows by induction. �
If α = 2|β|, then the infinite product of Givens rotations with |s| = 1 and c = 0 is an
isometry but it is not orthogonal as every entry in the first column is zero.

Next, we compare this result to the computable factorization VN = QN LN .
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Lemma 3.4 If α > 2β > 0, the QL factorization of VN is given by:

VN =
N−1∏
i=1

Gi (ci , si )LN ,

where:

sN−k =
√√√√
∑k

j=1 a
2
j∑k+1

j=1 a
2
j

, and cN−k =
√√√√ a2k+1∑k+1

j=1 a
2
j

, (3.1)

where:

a j = β2√
α2 − (2β)2

⎡
⎣
(

α +√α2 − (2β)2

2β

) j

−
(

2β

α +√α2 − (2β)2

) j
⎤
⎦ , (3.2)

and where:

(LN )1,1 = c1α − s1c2β, (3.3)

(LN )k,k =
√

(ckα − skck+1β)2 + β2, k > 1, (3.4)

(LN )k+1,k = skα + ckck+1β, (3.5)

(LN )k+2,k = sk+1β. (3.6)

Proof As VN is finite-dimensional, we may begin in the bottom right corner. As VN

is tridiagonal, we focus on the six entries that change for each Givens rotation. Note
that:

sN = 0, and cN = 1.

Then the next sine and cosine are determined by GN−1(cN−1, sN−1)
�VN introducing

a zero in the N − 1, N position:

(
cN−1 −sN−1
sN−1 cN−1

)(
β α β

0 β α

)
=
(
cN−1β cN−1α − sN−1β 0
sN−1β sN−1α + cN−1β

√
α2 + β2

)
,

=
(
cN−1β cN−1α − sN−1cNβ 0
sN−1β sN−1α + cN−1cNβ

√
α2 + β2

)
,

or:

sN−1 = β√
α2 + β2

, and cN−1 = α√
α2 + β2

.
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Introducing another zero in the N − 2, N − 1 position involves the computation
GN−2(cN−2, sN−2)

�GN−1(cN−1, sN−1)
�VN :

(
cN−2 −sN−2
sN−2 cN−2

)(
β α β

0 cN−1β cN−1α − sN−1cNβ

)

=
(
cN−2β cN−2α − sN−2cN−1β 0
sN−2β sN−2α + cN−2cN−1β

√
(cN−1α − sN−1cNβ)2 + β2

)
,

or:

sN−2 = β√
(cN−1α − sN−1cNβ)2 + β2

, and

cN−2 = cN−1α − sN−1cNβ√
(cN−1α − sN−1cNβ)2 + β2

.

After k steps, GN−k(cN−k, sN−k)
� · · ·GN−1(cN−1, sN−1)

�VN , the sine and cosine
are determined by two nonlinear recurrence relations:

s2N−k = β2

(cN−k+1α − sN−k+1cN−k+2β)2 + β2 , and (3.7)

c2N−k = (cN−k+1α − sN−k+1cN−k+2β)2

(cN−k+1α − sN−k+1cN−k+2β)2 + β2 . (3.8)

Substituting Eqs. (3.1) into Eq. (3.7), we find:

β2
k+1∑
j=1

a2j =
[
(cN−k+1α − sN−k+1cN−k+2β)2 + β2

] k∑
j=1

a2j ,

β2a2k+1 = (cN−k+1α − sN−k+1cN−k+2β)2
k∑
j=1

a2j ,

= (akα − ak−1β)2.

Taking the positive square root on the both sides, the linear recurrence relation:

ak+1β = akα − ak−1β, a1 = β, a2 = α,

is solved by Eq. (3.2). A careful bookkeeping of the above procedure provides the
entries of LN . �
Theorem 3.5 Let α > 2β > 0 and let:

ρ = α +√α2 − (2β)2

2β
> 1.
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If:

N > n + logρ

⎛
⎝ρ − ρ−1

2ε
+
√(

ρ − ρ−1

2ε

)2
+ 1

⎞
⎠− 1,

then:

∥∥∥∥PnL − Pn

(
LN 0
0 0

)∥∥∥∥
2

< ε‖L‖2.

Proof We wish to invoke Lemma 3.1 with the Givens rotations from Lemma 3.4.
Then:

PnQ
�
NVb = PnG

�
1 · · ·G�

N−1βeN .

As Pn commutes with Gi for i < n:

‖PnQ�
NVb‖2 = ‖G�

1 · · ·G�
n−1PnG

�
n · · ·G�

N−1βeN‖2,
= ‖PnG�

n · · ·G�
N−1βeN‖2,

= ‖Vb‖2
N−n∏
k=1

|sN−k |.

Then, by Lemma 3.4:

N−n∏
k=1

|sN−k | =
N−n∏
k=1

√√√√
∑k

j=1 a
2
j∑k+1

j=1 a
2
j

,

=
√√√√ a21∑N−n+1

j=1 a2j
<

√
a21

a2N−n+1

,

= a1
aN−n+1

= ρ − ρ−1

ρN−n+1 − ρn−N−1 = ρ − ρ−1

2 sinh[(N − n + 1) log ρ] .

By our lower bound on N , we guarantee that ‖PnQ�
NVb‖2 < ε‖Vb‖2, and it follows

from Lemma (3.1) at the subsequent discussion that the first n × n principal section
of LN is 2-normwise close to the same principal section of L . �

Remark 3.6 Consider the Bernstein ellipse:

Eρ =
{
z ∈ C : z = ρeiθ + ρ−1e−iθ

2
, θ ∈ [0, 2π), ρ ≥ 1

}
.
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Then the real pole of r(x), or the root of v(x), is located at − α
2β , corresponding to

the Bernstein ellipse parameter ρ = α+
√

α2−(2β)2

2β . It is no surprise that the rate of
exponential convergence of the finite-dimensional sines to their asymptotic limits is
precisely equal to the logarithm of the Bernstein ellipse parameter. But we feel the
physical connection is important: the closer the pole, the slower the convergence of
finite-dimensional QL to the infinite-dimensional.

3.3.2 Reverse Cholesky Factorizations

Lemma 3.7 If α > 2|β|, the reverse Cholesky factorization of V is given by:

V =

⎛
⎜⎜⎝
ld lo

ld
. . .

. . .

⎞
⎟⎟⎠
⎛
⎜⎝
ld
lo ld

. . .
. . .

⎞
⎟⎠ ,

where:

ld =
√

α +√α2 − (2β)2

2
, and lo = β

√
2

α +√α2 − (2β)2
.

Proof On main diagonal entries, we find:

α = l2d + l2o = α +√α2 − (2β)2

2
+ 2β2

α +√α2 − (2β)2
,

which is true. On sub- and super-diagonal entries, it is also true that:

β = ldlo.

�
This lemma is an instance of the discrete Wiener–Hopf factorization [4, 6], which
describes aUL factorization of a Toeplitz operator resulting in Toeplitz factors where
all the work revolves around factoring the Toeplitz symbol.

As we may expect, the finite-dimensional reverse Cholesky factorization of a
Toeplitz matrix is more involved.

Lemma 3.8 If α > 2|β|, the reverse Cholesky factorization of VN is given by:

VN = L�
N LN ,

where:

(LN )N−k,N−k = √dk, and (LN )N−k,N−k−1 = β√
dk

, (3.9)
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and where:

dk = bk+1

bk
, (3.10)

where:

bk = 1√
α2 − (2β)2

⎡
⎣
(

α +√α2 − (2β)2

2

)k+1

−
(

2β2

α +√α2 − (2β)2

)k+1
⎤
⎦ . (3.11)

Proof By considering the product L�
N LN , we recover the off-diagonal relationship in

Eq. (3.9) and the nonlinear recurrence for the main diagonal:

(LN )2N−k−1,N−k−1 + β2

(LN )2N−k,N−k

=α, and (LN )N−k,N−k−1= β

(LN )N−k,N−k
.

The recurrence relation is linearized by the definitions of dk and bk , resulting in:

bk+2 − αbk+1 + β2bk = 0, b0 = 1, b1 = α.

This linear recurrence relation is solved by Eq. (3.11). �
We could replicate an analogous result to Theorem 3.5, but the estimation of

‖L�
N PnL−�

n Vb‖2 to invoke Lemma 3.2 is more technically complicated. Instead, we
will directly show that the n×n principal sections of L and LN are 2-normwise close,
provided that N is sufficiently large.

Theorem 3.9 Let α > 2β > 0 and let:

ρ = α +√α2 − (2β)2

2β
> 1.

If:

N > n + logρ

(
2

ε

√
β

α + 2β

)
− 1

2
,

then:
∥∥∥∥PnL − Pn

(
LN 0
0 0

)∥∥∥∥
2

< ε‖L‖2.
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Proof As a reverse Cholesky factor, it follows that:

‖L‖2 = √‖V ‖2 = √α + 2β.

The largest singular value of a matrix is bounded above by the maximum over all the
absolute row and column sums [47]. For our bidiagonal matrix, this means:

∥∥∥∥PnL − Pn

(
LN 0
0 0

)∥∥∥∥
2

≤ max

{
max
2≤k≤n

[|Lk,k − (LN )k,k | + |Lk,k−1 − (LN )k,k−1|
]
,

max
1≤k≤n

[|Lk,k − (LN )k,k | + |Lk+1,k − (LN )k+1,k |
]}

.

Since
√
dk is monotonically decreasing to ld , the absolute row sums are uniformly

larger than the absolute column sums and for n > 1, the maximum absolute row sum
is attained by the last row:

∥∥∥∥PnL − Pn

(
LN 0
0 0

)∥∥∥∥
2

≤ |Ln,n − (LN )n,n| + |Ln,n−1 − (LN )n,n−1|.

On the main diagonal, we have:

|ld −√dk | =
∣∣∣∣∣∣
√

βρ −
√

β
ρk+2 − ρ−k−2

ρk+1 − ρ−k−1

∣∣∣∣∣∣ ,

= √β

∣∣∣∣∣∣
√

ρ −
√

ρk+2 − ρ−k

ρk+1 − ρ−k−1 + ρ−k − ρ−k−2

ρk+1 − ρ−k−1

∣∣∣∣∣∣ ,

= √β

∣∣∣∣∣∣
√

ρ −
√

ρ + ρ−1−2k 1 − ρ−2

1 − ρ−2k−2

∣∣∣∣∣∣ .

Since |√x − √
x + y| <

√
y for x, y > 0, it follows that:

|ld −√dk | <
√

β

√
ρ−1−2k 1 − ρ−2

1 − ρ−2k−2 <
√

βρ−k− 1
2 .

On the sub-diagonal, we have the reciprocal difference:

∣∣∣∣lo − β√
dk

∣∣∣∣ =
∣∣∣∣∣
√

β

ρ
− β√

dk

∣∣∣∣∣ ,

= √β

∣∣∣∣∣∣
1√
ρ

− 1√
ρ + ρ−1−2k 1−ρ−2

1−ρ−2k−2

∣∣∣∣∣∣ ,
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This time, we use | 1√
x

− 1√
x+y

| <
√

y
x(x+y) <

√
y
x <

√
y for x > 1 and y > 0 to

find:

∣∣∣∣lo − β√
dk

∣∣∣∣ <
√

β

√
ρ−1−2k 1 − ρ−2

1 − ρ−2k−2 <
√

βρ−k− 1
2 .

Setting k = N − n, the inequality is attained. �
If β < 0, a similar analysis reveals the same exponential convergence of the finite
reverse Cholesky factor to its infinite-dimensional analogue.

4 Applications and Numerical Experiments

The free and open-source implementation of our algorithms is available in C at
FastTransforms [50]. Our numerical experiments are conducted on an iMac Pro
(Early 2018)with a 2.3GHz IntelXeonW-2191Bwith 128GB2.67GHzDDR4RAM.
The library is compiled with -Ofast -march=native optimization flags.

4.1 Rapid Modified Jacobi Synthesis and Analysis

Consider the rational Jacobi weight modification:

r(x; γ ) = x2 + (500γ )2

[(x − 1
2 )

2 + γ 2]2[(x + 3
4 )

2 + γ 2] .

We expand the corresponding orthonormal polynomials, q(α,β)
n (x; γ ), in Jacobi poly-

nomials with the same parameters. Then, by a Jacobi–Chebyshev transform [42], we
further convert to first-kind Chebyshev polynomials, and rapidly synthesize the mod-
ified polynomials (and expansions) on a Chebyshev grid via the fast inverse discrete
cosine transform (iDCT) [20]. This entire procedure requires:

O
⎛
⎝n + logρ

⎡
⎣ρ − ρ−1

2ε
+
√(

ρ − ρ−1

2ε

)2
+ 1

⎤
⎦
⎞
⎠

︸ ︷︷ ︸
rational modification by Theorem

3.5

+O(n log n log ε−1)︸ ︷︷ ︸
Jacobi−Chebyshev

+O(n log n)︸ ︷︷ ︸
iDCT

,

flops, where ρ = ρ(γ ) is the smallest Bernstein ellipse parameter for the four distinct
poles of r(x; γ ). The left panel of Fig. 1 illustrates one such polynomial and Szegő’s
corresponding asymptotic envelope [57, Theorem 12.1.4].

With the connection problem in hand, we may also modify the Jacobi matrices
for the construction of modified Gaussian quadrature rules. The right panel of Fig. 1
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Fig. 1 Left: synthesis of q(−0.25,−0.75)
500 (x; γ = 0.0001) on a Chebyshev grid with the Szegő envelope.

Right: the nodes of the 30-point modified Gaussian quadrature rule with (α, β) = (−0.25,−0.75)

Fig. 2 Conversion of a degree-n expansion in modified Jacobi polynomials q(−0.25,−0.75)
n (x; γ = 0.01)

with standard normally distributed pseudorandom coefficients to Jacobi polynomials with the same param-
eters. Left: 2-norm and ∞-norm relative error in the forward and backward transformation. Right:
precomputation and execution time as well as a complexity estimate based on Theorem 3.5

illustrates how the 30-point rule is modified for 10−4 < γ < 102; in particular, we
note that some nodes converge toward the projection of the poles of r(x; γ ) on the real
axis as γ → 0 and are dispersed by the appearance of roots of r(x; γ ) near origin.

Figure 2 illustrates the relative error and calculation times when working with
degree-n modified Jacobi polynomials. The left panel shows that the method is
numerically stable. Notably in the right panel, the complexity of the factorization
closely matches the result of Theorem 3.5 for the simple pole modifying second-kind
Chebyshev polynomials. This complexity includes a relatively large overhead at small
degrees as N � n such that it may accurately compute 2-normwise nearby approxi-
mations to finite sections of the orthogonal and lower triangular factors of V . With the
precomputation in hand, the execution times appear to produce relatively clean and
predictable complexity plots.

4.2 Modified Laguerre Polynomials

As alluded to in Sect. 2.1, it would be impossible for a Laguerre polynomial series
approximating r(x) = x

x+γ
to also well-approximate the infinite matrix r(XP ). By the
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Fig. 3 Conversion of a degree-n expansion in modified generalized Laguerre polynomials q(0.25)
n (x; γ =

0.1) with standard normally distributed pseudorandom coefficients to generalized Laguerre polynomi-
als with the same parameter. Left: 2-norm and ∞-norm relative error in the forward and backward
transformation. Right: precomputation and execution time as well as a complexity estimate inspired by
Theorem 3.5

logical rational approximation, it is straightforward to consider the rationally modified
Laguerre polynomials. Figure3 illustrates the relative error and calculation times for
transforming to and from these modified generalized Laguerre polynomials.

Notice that the relative error in forward-backward transformations appears to grow
linearly with the truncation degree, which is markedly different from the asymptoti-
cally bounded relative error in the modified Jacobi polynomial transforms.We suspect
this is due to the linear growth in the condition numbers ofU and V that nearly cancel
in V−1U and this inherent instability in the representation of a rational function as
the quotient of two polynomials in particular on unbounded domains. We propose an
avenue of future research that may address this issue in Sect. 5.

For generalized Laguerre series, a parabola co-axial with the x-axis opening to the
right with focus the origin and vertex chosen to maximize the region of analyticity is
the analogue of a Bernstein ellipse for Jacobi series [56]. For the simple pole of r(x)
at x = −γ , the corresponding parabola is y2 = 4γ (x + γ ), and generalized Laguerre
series converge root-exponentially at the rate O(e−2

√
γ n) as n → ∞. From this rate,

we include in Fig. 3 a graph estimating the complexity of the precomputation based
on this region of analyticity.
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4.3 An Orthonormal Basis for L2(R)

Consider the problem of finding an orthonormal basis, F(x) =
( f0(x) f1(x) f2(x) · · · ), for L2(R) with algebraic decay:

∫ ∞

−∞
fm(x) fn(x) dx = δm,n, | fn(x)| = �(x−α), x → ±∞,

for some 1
2 < α < ∞. Llewellyn Smith andLuca [53] use the rationalmap x = t

1 − t2
to transform the problem to one on (−1, 1), where orthonormality reads:

∫ 1

−1
fm(x(t)) fn(x(t))

1 + t2

(1 − t2)2
dt = δm,n .

Define qn(t) to be orthonormal polynomials in L2([−1, 1], (1 + t2)dt). Of course,
they are connected to the normalized Legendre polynomials by P(t) = Q(t)R where
R is the upper-triangular Cholesky factor of I + X2

P . It follows that:

fn(x) = (1 − t2)qn(t) = 2√
1 + 4x2 + 1

qn

(
2x√

1 + 4x2 + 1

)
.

An important property of an orthonormal basis on L2(R) is that differentiation,D, is a
skew-adjoint linear operator. When evolving time-dependent partial differential equa-
tions numerically, if the discretization of this operator is also skew-adjoint and sparse
for any principal finite section, then fast methods exist for its spectral decomposition
[28], and the time evolution is stable.

We will now show that given the eigenvalue problem:

Du(x) = λu(x), lim
x→±∞ u(x) = 0,

there is a skew-definite and banded discretization in the orthonormal basis F(x):

DF(x)U = F(x)DU = F(x)U,

R�DRV = R�RV,

and U = RV .
By changing coordinates:

D =
∫
R

F(x)�DF(x) dx =
∫ 1

−1
(1 − t2)Q(t)�D

[
(1 − t2)Q(t)

]
dt,

and the connection problem congruence transformation:

R�DR =
∫ 1

−1
(1 − t2)P(t)�D

[
(1 − t2)P(t)

]
dt,
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uncovers banded sparsity on the right-hand side, by orthogonality of Legendre polyno-
mials. Legendre polynomials are an instance of Jacobi polynomials, and by classical
connections we find two formulæ for the right-hand side that also show the skew
symmetry:

R�DR = (I − X2
P )(−DP ′

P )�RP ′
P = (RP ′

P )�DP ′
P (I − X2

P ).

Another useful property for any basis is a uniform pointwise bound. We can show
that:

| fn(x)| <

√
2

π

2
7
4

(1 + 4x2)
3
8

, ∀x ∈ R.

By using line (1) in Table 1, (1+ t2)Q(t) = P(t)R�, and noting that by symmetry R
is banded with only two nontrivial bands:

| fn(x)| = |(1 − t2)qn(t)|,
≤ |(1 − t2)(1 + t2)qn(t)|,
= |(1 − t2)(pn(t)Rn,n + pn+2(t)Rn,n+2)|.

Recall the sharpened Bernstein inequality [2]:

(1 − x2)
1
4 |Pn(x)| <

√
2

π

1√
n + 1

2

, x ∈ [−1, 1].

Then, since pn(t) are the orthonormal Legendre polynomials:

| fn(x)| ≤ |(1 − t2)
3
4 |
[
|(1 − t2)

1
4 pn(t)||Rn,n| + |(1 − t2)

1
4 pn+2(t)||Rn,n+2|

]
,

< |(1 − t2)
3
4 |
√

2

π

(|Rn,n| + |Rn,n+2|
)
.

Now:

|Rn,n| + |Rn,n+2| = ‖R�en‖1 ≤ √
2‖R�en‖2 ≤ √

2‖R�‖2,
= √

2
√

‖R�R‖2 = 2, since ‖R�R‖2 = sup
t∈[−1,1]

|1 + t2| = 2.

4.4 Orthogonal Polynomials on an Annulus

Consider Pt,(α,β,γ )
n (x) to be orthonormal polynomials in L2([−1, 1], (1 − x)α(1 +

x)β(t+x)γ dx), for parameter values {t > 1, α, β > −1, γ ∈ R}∪{t = 1, α, β+γ >

−1}. If γ ∈ Z, then (t + x)γ is either polynomial or rational and our algorithms to
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connect Pt,(α,β,γ )(x) to the Jacobi polynomials P(α,β)(x) are immediately applicable.
For γ ∈ R\Z and t > 1, (t + x)γ may be well-approximated by polynomials and
rationals alike.

Real orthonormal annulus polynomials in:

L2({(r , θ) : ρ < r < 1, 0 < θ < 2π}, r2γ+1(r2 − ρ2)α(1 − r2)β dr dθ),

are:

Zρ,(α,β,γ )

�,m (r , θ) =√
2

(
2

1 − ρ2

) |m|+α+β+γ+1
2

r |m|P
1+ρ2

1−ρ2
,(β,α,|m|+γ )

�−|m|
2

(
2r2 − 1 − ρ2

1 − ρ2

)

×
√
2 − δm,0

2π

{
cos(mθ) for m ≥ 0,
sin(|m|θ) for m < 0.

For the purposes of synthesis and analysis on tensor-product grids on the annulus, we
convert these polynomials to a direct sum of tensor-product bases through a sequence
of orthogonal transformations, a generalization that has the same structure as Zernike
polynomial transforms [42, 50]. These are computed by considering that decrementing
the order m in steps of 2 requires the computation of line (2) in Table 1:

(t + x)Pt,(α,β,γ+m+2)(x) = Pt,(α,β,γ+m)(x)Qt,(α,β,γ+m)

t,(α,β,γ+m+2).

Moreover, the similarity transformation between the Jacobi matrices for
Pt,(α,β,γ+m)(x) and Pt,(α,β,γ+m+2)(x) requires the upper-triangular factor in line (2)
in Table 1:

Pt,(α,β,γ+m)(x) = Pt,(α,β,γ+m+2)(x)Rt,(α,β,γ+m+2)
t,(α,β,γ+m) ,

enabling:

Xt,(α,β,γ+m+2) = Rt,(α,β,γ+m+2)
t,(α,β,γ+m) Xt,(α,β,γ+m)(R

t,(α,β,γ+m+2)
t,(α,β,γ+m) )−1.

Both factors may be computed simultaneously from:

t I + Xt,(α,β,γ+m) = Qt,(α,β,γ+m)

t,(α,β,γ+m+2)R
t,(α,β,γ+m+2)
t,(α,β,γ+m) .

4.5 Orthogonal Polynomials on a Spherical Band

For multi-indices t and α, consider P t,(α)
n (x) to be orthonormal polynomials in:

L2([−1, 1], (t1 − x)α1(1 − x)α2(1 + x)α3(t2 + x)α4dx).

On a spherical band:

S
2
θ = {(θ, ϕ) : 0 < θ1 < θ < θ2 < π, 0 < ϕ < 2π},
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with weight:

wθ ,(α)(θ) = (2 sin2 θ
2 )α1(cos θ1 − cos θ)α2(cos θ − cos θ2)

α3(2 cos2 θ
2 )α4 ,

real orthonormal spherical band polynomials in L2(S2θ , w
θ ,(α)(θ) sin θ dθ dϕ) are:

Y θ ,(α)
�,m (θ, ϕ) =

(
2

cos θ1 − cos θ2

) |α|+2|m|+1
2

sin|m|θ

× P
t,(α|m|)
�−|m|

(
2 cos θ − cos θ1 − cos θ2

cos θ1 − cos θ2

)

×
√
2 − δm,0

2π

{
cos(mθ) for m ≥ 0,
sin(|m|θ) for m < 0,

where:

t = (t1, t2)
� =
(
2 − cos θ1 − cos θ2

cos θ1 − cos θ2
,
2 + cos θ1 + cos θ2

cos θ1 − cos θ2

)�
,

and αm = (α1 + m, α2, α3, α4 + m)� and |α| = α1 + α2 + α3 + α4.
For the purposes of synthesis and analysis on tensor-product grids on the spherical

band, we convert these polynomials to a direct sum of tensor-product bases through a
sequence of orthogonal transformations, a generalization that has the same structure
as spherical harmonic transforms [50, 51]. These are computed by considering that
decrementing the orderm in steps of 2 requires the computation of line (2) in Table 1:

(t1 − x)(t2 + x)Pt,(αm+2)(x) = Pt,(αm )(x)Q t,(αm )
t,(αm+2)

.

Moreover, the similarity transformation between the Jacobi matrices for Pt,(αm )(x)
and Pt,(αm+2)(x) requires the upper-triangular factor in line (2) in Table 1:

Pt,(αm )(x) = Pt,(αm+2)(x)R t,(αm+2)

t,(αm ) ,

enabling:

X t,(αm+2) = R t,(αm+2)

t,(αm ) X t,(αm )(R
t,(αm+2)

t,(αm ) )−1.

Both factors may be computed simultaneously from:

(t1 I − X t,(αm ))(t2 I + X t,(αm )) = Q t,(αm )
t,(αm+2)

R t,(αm+2)

t,(αm ) .

Remark 4.1 The orthogonal structures of an annular sector and a spherical quadrangle
follow naturally by replacing the Fourier modes with orthonormal polynomials on an
arc.
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5 Conclusions and Future Directions

A straightforward generalization of this work is to develop efficient algorithms in
the multivariate setting. The Koornwinder construction [32] provides bivariate ana-
logues of the classical orthogonal polynomials, and other multivariate orthogonal
polynomials are known in greater than two dimensions [13]. Bivariate polynomial
and rational measure modifications can extend these polynomials to new and more
interesting measures, where polynomial modifications result in banded-block-banded
matrices: block-banded matrices whose blocks are also banded. A challenge is to
explore improving the complexity of banded-block-banded matrix factorizations. In
higher dimensions, symmetric Jacobi matrices of Koornwinder-like constructions are
tridiagonal-block-banded [33, 64, 65]; hence, the “bandwidths” of polynomial weight
modifications grows with the degree, resulting in an O(n4) Cholesky factorization
with O(n3) nonzero entries in two dimensions. These complexities stand in contrast
to the linear complexities in the univariate setting.

Another logical extension is to consider the full semi-classical setting, where the
weight function w(x) satisfies a first-order linear homogeneous differential equation
with polynomial coefficients a(x) and b(x):

D(aw) = bw.

In this Pearson differential Eq. (2.4), the restrictions on the polynomial degrees are
removed. Interesting connections between semi-classical orthogonal polynomials and
the Painlevé transcendents [36] have been discovered.While this casemay not exhibit a
visible sparsity in the connection problem, such as bandedness, it would beworthwhile
exploring methods to formulate the connection coefficients as solutions to matrix
equations.

Compared with previous approaches to rational measure modifications [29, 49, 61],
where the polynomials are factored as a product of degree-1 or 2 polynomials, our
infinite-dimensional matrix factorizations leave u(x) and v(x) whole. This allows the
more numerically stable use of orthogonal polynomial expansions of these variable
coefficients, avoids the potentially unstable computation of their roots, and solves
the connection problem in one step. Representing rational functions as a ratio of
polynomials is no panacea. For example, the Newman rational [39] approximating |x |
creates numerator and denominator polynomials with large dynamic ranges. Hence,
by orthogonal polynomial expansion, absolutely small negative parts of v(XP ) are
introduced numerically that lead to the nonexistence of QL and reverse Cholesky
factorizations. This example and others inducing Froissart doublets have led to the
construction of an even more stable representation of rational functions that has been
used to develop the so-called AAA algorithm [38]. In AAA, a rational function is
represented as a ratio of rationals:

r(x) =
∑n

k=0
wk fk
x−xk∑n

k=0
wk

x−xk

.
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This definition is augmented by limx→xk r(x) = fk and the constants xk and wk are
the parameters at one’s disposal to range over all type-(n, n) rational functions. In
AAA, the support points xk are greedily chosen from among a set of user-supplied
sample points in the approximation domain. Consequently, both the numerator and
denominator rationals have singularities on the approximation domain that cancel but
which are a problem when considering (approximately) evaluating r(XP). A partial
fraction decomposition could reveal the poles as distinct from the support points and
the connection coefficients may be recovered by Cholesky factorization of a sum of
invertible symmetric tridiagonal matrices [62, § 7.2.1].

A final avenue of future work is to investigate the structure of the connection
coefficients with piecewise-defined polynomial and rational measure modifications.
Relatedly, we note that O(n2) algorithms exist [14] to construct Jacobi matrices for
sums of weight functions. It remains to be seen whether or not these connection
problems may be solved in reduced complexities for sums of weight functions. Here,
we do not anticipate linear complexity; rather, we suspect quasi-optimal complexities
based on hierarchical factorizations of the connection problem.
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