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Abstract
On the reference tetrahedron K, we construct, for each £ € Ny, a right inverse for
the trace operator u +— (u, dpu, ..., 8,’§u)|3 k- The operator is stable as a mapping

from the trace space of WP (K) to W*P(K) for all p € (1,00) and s € (k +
1/p, 00). Moreover, if the data is the trace of a polynomial of degree N € Ny, then
the resulting lifting is a polynomial of degree N. One consequence of the analysis is
a novel characterization for the range of the trace operator.

Keywords Trace lifting - Polynomial extension - Polynomial lifting

Mathematics Subject Classification 46E35 - 65N30

1 Introduction

The numerical analysis of high-order finite element and spectral element methods
heavily rely on the existence of stable polynomial liftings—bounded operators map-
ping suitable piecewise polynomials on the boundary of the element to polynomials
defined over the entire element. A number of operators have been constructed on the
reference triangle and square, beginning with the pioneering work of Babuskaetal. [14,
15]. Their lifting maps H 5 (0 E) boundedly into H L(E), where E is either a suitable
reference triangle or square, with the additional property that if the datum is continu-
ous and its restriction to each edge is a polynomial of degree N > 0, then the lifting is
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a polynomial of degree N. Other constructions for continuous piecewise polynomials
on dE are stable from a discrete trace space to L2(E) [4], from L2(8 E) to H% (E)

[3], from W' ™3P (DE) to WP(E) for | < p < oo [45], and from W* ™7 (IE) to
WS-P(E) fors > 1 and 1 < p < oo [48]. Liftings for other types of traces are also
available; e.g. lifting the normal trace of H (div; E) [3], lifting the trace and normal
derivative simultaneously into H>(E) [2], and lifting an arbitrary number of normal
derivatives simultaneously into W*-?(E) [48].

Many of the above results have been extended to three space dimensions. Mufioz-
Sola [46] generalized the construction of Babuska et al. [14, 15] to the tetrahedron,
while Belgacem [16] gave a different construction for the cube using orthogonal poly-
nomials. Commuting lifting operators for the spaces appearing in the de Rham complex
on tetrahedra [30—32] and hexahedra [27] have also been constructed. These operators,
among others, have been used extensively in a priori error analysis [7, 15, 36, 39, 45,
46], a posteriori error analysis [22, 25, 26, 37], the analysis of preconditioners [4, 5,
8,9, 11, 14, 49], the analysis of sprectral element methods, particularly in weighted
Sobolev spaces [18-21], and in the stability analysis of mixed finite element meth-
ods [6, 13, 28, 29, 33, 43]. Nevertheless, two types of operators are notably missing
from the currently available results in three dimensions: (i) lifting operators stable in
LP-based Sobolev spaces, crucial in the analysis of high-order finite element methods
for nonlinear problems; and (ii) lifting operators for the simultaneous lifting of the
trace and normal derivative (and higher-order normal derivatives) which appear in
the analysis of fourth-order (and higher-order) problems and in the analysis of mixed
finite element methods for problems in electromagnetism and incompressible flow.

We address both of the above problems; namely, for each k& € Ny, we construct
a right inverse for the trace operator u +— (u, opu, ..., 8,’§u)|31< on the reference
tetrahedron K that is stable from the trace of W*-?(K) to W% ?(K) forall p € (1, o0)
and s € (k + 1/p, 0o). Additionally, if the data is the trace of a polynomial of degree
N € Ny, then the resulting lifting is a polynomial of degree N. A precise statement
appears at the end of Sect. 2, which also contains a characterization for the trace space
that appears to be novel and some potential applications of the results. These results
generalize our construction on the reference triangle [48] to the reference tetrahedron
and to Sobolev spaces with minimal regularity.

The remainder of the manuscript is organized as follows. In Sect. 3, we detail an
explicit construction of the lifting operator in a sequence of four steps, each consist-
ing of an intermediate single-face lifting operator. The remainder of the manuscript
is devoted to the analysis of the intermediate single-face operators: Sects. 4 and 5
characterize the continuity of a related operator defined on all of R, while Sect. 6
concludes with the proofs of the continuity properties of the intermediate operators.

2 The Traces of W*9(K) Functions and Statement of Main Result

We begin by reviewing the regularity properties of the traces of a function u defined
on a tetrahedron. Here, we will work in the setting of Sobolev spaces defined on an
open Lipschitz domain © € R?. Let s = m + o be a nonnegative real number with
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m € Ng and o € [0, 1). We denote by W*7(O), p € [1, 00), the standard fractional
Sobolev(-Slobodeckij) space [1] equipped with norm defined by

I o= Ik o+ .
5.p,0 Z n.p,0 0 otherwise,

n=1

m o V4 .
{Zlal—m |D U|U’p!0 ifo >0,

where the integer-valued seminorms and fractional seminorms are given by

v i » v(x) = v(y)|?
Y o= Z/w v@)|Pdx and |vl? = //coxo—lx—yl"f’+d dx dy,

la|=n

with the usual modification for p = co. When s = 0, the Sobolev space W97 (©)
coincides with the standard Lebesque space L? (0), and we denote the normby |- . .
We also require fractional Sobolev spaces defined on domain boundaries. Given a
ckl k e Np, (d — 1)-dimensional manifold I' € 90, the surface gradient Dr is
well-defined a.e. on I', and we define W*?(I'), 0 < s < k + 1, analogously (see e.g.
[47, §2.5.2]) with the norm

p B
|Dpv(x) — Dro(y)|”
I =D t/IDﬂ%dex+ > Z7 ﬂx—yPFL*1 dx dy,

1Bl<m |Bl=m /T

where the sums are over multi-indices 8 € Ng_l. The seminorms | - |5,  are defined
similarly.

2.1 Elementary Trace Results

When the domain is the reference tetrahedron K := {(x,y,z) € R :0 <
X,¥,2, X +y+z < 1} depicted in Fig. 1a, the space W"?(dK),0 < r < 1, may be
equipped with an equivalent norm that is more amenable to the analysis of traces. Let
[andI'j,1 <i < j <4, betwo faces of K and let y;; = y;; denote the shared edge
with vertices @ and b. Then, the vertices of I'; are denoted by a, b, and ¢;, while the
vertices of I'; are denoted by a, b, and c;. Since I'; and I'; are both triangles, there
exist unique affine mappings F;; : T — I'; and Fj; : T — I'; from the reference
triangle 7' := {(x, y) € R2:0 < x, v, X +y < 1}, labeled as in Fig. 1b, satisfying

F;;j(0,0) =a, F;;(1,0) = b, and F;;0,1) =c¢, (2.1a)
Fjl-(0,0):a, Fj,'(l,O):b, and Fj,'(o,l):Cj, (2.1b)

and we define the following norm:

! >IN f) ifrp =1
ij S s
WANY ok = Z IANE p, + 4 1=i<i=4
0 otherwise,
FoE"ﬂ
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as = €9
gg! 3
as = 0 Y2 a; = e;

(a) (b)

Fig. 1 Reference a tetrahedron and b triangle, where e; are the standard unit vectors. Note that the label
forI'y = {(x,y,2) € K : x +y +z = 1} is omitted in (a)

where f; denotes the restriction of f to I'; and If;.( f, g) is defined by the rule

dx
I(f. )= [ |foFij(x)—goFjix)"—. (2.2)
/ T x2
Thanks to Corollary B.2, [II-|ll, , ax is an equivalent norm on W"-7(3K); i.e.
I fllr.p.ox = p WEN, ok Y € WHPIK), (2.3)

and we shall use the two norms interchangeably with the common notation || - || p.ak -
Here, and in what follows, we use the standard notation a <. b to indicate a < Cb
where C is a constant depending only on ¢, and a ~, bifa <, band b <, a.

Now letu € WP(K),1 < p < oo, s =m+o0 > 1/p withm € Ny and
o € [0, 1) (so that the trace operator is well-defined), be a function defined on the
reference tetrahedron. The presence of edges and corners on the boundary of K limits
the regularity of the trace of u. Nevertheless, we can iteratively apply the standard
WS-P(K) trace theorem (e.g. [41, Theorem 3.1] or [42, p. 208 Theorem 1]): W* P (K)

1
embeds continuously into W'~ »'”(3K) for 1/p < s < 1+ 1/p. In particular, for
k € Np, the kth-order derivative tensor given by

k
(D u)iliz..jk = ax;l axiz e ax:'ku
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satisfies D¥Xu € Ws=%P(K) ¢ WtoP(K), 0 <k <m — 1, and D"u € WP (K);
thus, the traces satisfy

k -1 1
D ulsgx € W 7" (0K) f0r0§k<s—;,
1
D" lulyx e WP QK) ifm=>1landop < 1,
1
D™ulyx € W2 PP (3K) ifop > 1.

Additionally, the trace of Wm+%’2(R3), m > 1, on the plane R2 x {0} belongs to
W™2(R?) (seee.g. [1, Chapter 7] or [42, p. 20 Theorem 4]), and so standard arguments

show that the trace of W’”+%’2(K) on the face I';, | < i < 4, belongs to W™2(T)).
Thanks to the norm-equivalence (2.3), we arrive at the following conditions:

4
1
dDfulf <00 for0<k<s-——,
— p.li p
i=1
4 1
||Dm_1u||p < 0 if m > 1l and eitherop < lor(o,p)={=,2]),
~ 4o —2.p.T;
1=
4
Z”Dm”“f;_i o, < ifop > 1,
i=1 Pt

Z Ii[;.(Dmu,Dmu)<oo ifop =2.

1<i<j<4

2.4)

Remark 2.1 The case o p = 1 for p # 2, which is not included in conditions (2.4),
1

is beyond the scope of this paper since the trace of a w5 P(R3), m e N, function

on the plane R? x {0} belongs to a Besov space, which cannot be identified with an

integer-order Sobolev space [42, p. 20 Theorem 4].

When s > 2/p, we obtain additional conditions since the trace of a W* 7 (K)
function on the edge y;;, 1 < i < j < 4 is well-defined. This can be seen from
standard arguments owing to the fact that the trace of W* 7 (R?) on the line R x {0}?
is well-defined. In particular, the traces of the k-th derivative tensor, 0 < k < s —2/p,
onl;andI'j, 1 <i < j <4, must agree on the shared edge Vij:

2
D*ulr, (x) = DXulr;(x) forae.x € y;jandall0 <k <s5s— =, (2.5)
P
where (2.5) is to be interpreted in the trace sense.

2.2 Trace Operators

We now turn to the consequences of (2.4) and (2.5) for various trace operators.
FolCTM
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2.2.1 Zeroth-Order Operator

First consider the Oth-order “boundary-derivative” operator D? onl;, 1 <i <4,
defined formally by the rule

D%f):=f only. (2.6)

Then, (2.4) and (2.5) show that foru € W*?(K), (s, q) € Ay, where

1
Ak:z{(s,p)eR2:l<p<oo, (s—kp>1, ands——géZifp;éZ}, k € Np,
p

2.7)
the trace f = u|yg satisfies the following conditions:
1. WS_%"" regularity on each face:
0 s—i,p .
Di(fHew Ty, 1=<i=<4 (2.8)
2. Compatible traces along edges: For 1 <i < j < 4, there holds
DY lyy = DY)y =0 if sp > 2, (2.92)
I @7 (). DY) < o0 if sp = 2. (2.9b)

If (s — n)p = 2 for some n € N, then we obtain an additional condition since the
n-th derivative tensor satisfies Iip (D"u, D"u) < oo for1 <i < j < 4. To describe
this condition we define the following notation for a d-dimensional tensor S and vector
v eR3:

U®0 -S§:=8 and U®j -8 = Si1i2~~-idvilvi2"'vij’ 1<j<d.

In particular, for 1 <i < j < 4, denoting by t;; a unit vector tangent to y;;, we can
differentiate @?(u) and D(}(u) in the direction t;; to obtain the following identity.

"D (u)
oy,

ny0
"% (u)

=t®" . D"u|r. and
ij Ir; o

=" - D"ulr;.

Consequently, the trace f = u|yg also satisfies the following property:

3. Compatible tangential derivatives: For 1 <i < j <4 and n € N, there holds

P
Iij

0"0%w) "D
i TN o i —mp =2, (2.10)
ot e
J i
FoCT
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2.2.2 First-Order Operator

For (s, p) € Aj, we turn to the regularity of the trace of the gradient of u € W* 7 (K).
To this end, oneach face I';, 1 <i < 4,let {7, 1, T; 2} be orthonormal vectors tangent
to I'; and let n; denote the outward unit normal vector on I';. We define the 1st-order
“boundary-derivative” operator © ll onTl;, 1 <i <4, by therule

2

0
ol =Y L tem  onmy, @11
j=1 7

so that @} (1, Onu) = Dul|r,. Again applying (2.4) and (2.5), we obtain analogues of
(2.8) and (2.9) stated below in (2.13) and (2.14) with k = 0. However, if (s —2)p > 2,

then the second derivative tensor has matching traces on edges (i.e. (2.5) holds with
k = 2). In particular, for | <i < j < 4, we define the vectors

b;j :=t;; xn; and bj; :=t; xnj, (2.12)
where we recall that t;; is a unit vector tangent to y;;, so that on y;;, there holds

09!, opu) . 8Du _ *u _ 9Du 0D, dhw)
ab;; ' 8b;  abjaby,; Y aby b i

in the sense of traces. As a consequence, the operator © ll satisfies the additional con-
dition (2.15) below with n = 0 thanks to (2.4) and (2.5). Finally, we can differentiate
in the direction tangent to each edge to obtain the analogue of (2.10) stated in (2.14b)
and (2.15b) below. To summarize, the traces f = u|yjx and g = dnu|yx satisfy the
following for all (s, p) € A;:

1 ,
1. W75 regularity on each face:

Ol(f g e W TPy, 1<i<4. (2.13)

2. Compatible traces along edges: For 1 <i < j <4 and n € Ny, there holds

DL(f. Oy — DU @)y, =0 ifs-Dp>2 (2142
Dl (f.g) VD[, )

p ’ J : —

Lii ( i;tlnj , E)tfj < 00 if(s—n—1)p=2. (2.14b)

3. Compatible traces of higher derivatives along edges: For 1 < i < j < 4 and
n € Ny, there holds

D (£, IDL(f. 9
bji'M — ij'ﬁ =0 if (s —2)p > 2,
ob;; ob i
Yij Vij
(2.152)
Fol T
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a1l f, FIDL(f, g)
i (bji' ACAT -8 < if s —n—2)p=2.

3t;~1jab,‘j ) 8tfj.8bj,'
(2.15b)

Remark 2.2 For smooth enough functions, conditions (2.14a) and (2.15a) may be inter-
preted as the application of the vertex compatibility conditions for traces on the triangle
(see e.g. [48, egs. (2.11a) and (2.12a)]) at every point on the edge y;;.

2.2.3 mth-Order Operator

We now turn to the general case of the trace of the m-th derivative tensor of a function
u € W5P(K), where m > 2 and (s, p) € A,,. Given a collection of functions F =
(f 0 f 1., f™) defined on 0K, we define the m-th order “boundary-derivative”
operator @l’-” onl;, 1 <i <4, by therule

3011+a2f013
F) = )] ey Y. sH®ID @ ®pm) onli, (2.16)
weNy BITTL2 pemti@)

where the set 901; («) consists of the following mappings.
Mi(e) :={¢p: {1.2,....lal} > {tin, Tiom} st |97 (i pl =), j=1,2},

where we recall that {z; |, 7; 2} are orthonormal vectors tangent to I';. For notational
convenience, we set

DUF) =D F D, 0<i<m

Then, one may readily verify that ’D;-" (u, Ont, ..., 00u) = D"uonl;. Let fl = Brllu

on dK. As before, we obtain WP regularity of ©7"(F) (2.17) below on each
face thanks to (2.4) and the edge compatibility conditions (2.18) below with [ = 0
from (2.5).

As was the case with the first-order operator, there are additional edge compatibility
conditions. In particular, if (s —m — [)p > O for some 1 <[ < m, then (2.5) shows
that the (m + [)th derivative tensor has matching traces on edges. Some components
of the (m + [)th derivative tensor can be expressed in terms of ©}" (F). In particular,
on the edge y;j, 1 <i < j <4, there holds

1

b2l . 0D} (F) — b . MJ =p® . (b‘.&l : Dm+lu)

i ] i / 4 t
J ab;; ! by ! ’

I

3leI/t ol 0 @;n(F)

T !
ab’; Yo abl,

) ®l +1 _ Ll
=b® -(bﬁ D" u) =b¥ .

FoC'T
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in the sense of traces, where we used symmetry of the derivative tensor D"+ 1. We can
also differentiate in the direction tangent to each edge to obtain similar conditions.
Consequently, D" (F) satisfies (2.18) below. In summary, for m € Ny, the traces
F = (u, Onu, ..., dJu) satisfy the following for all (s, p) € A;,:

L
1. W™ %P regularity on each face:
1
OMF) e WTRP(T),  1<i<4, (2.17)

where D, D!, and ®!, 1 > 2, are defined in (2.6), (2.11), and (2.16).
2. Compatible traces along edges: For | <i < j <4and0 <[/ <m and n € Ny,
there holds

o DN (F)

lym
_ b®l . d ©J (F)
Ji ]
Bbij

9 =0 if(s—m—-0Dp>2,
) 8bljl ( )p

Yij Vij

(2.18a)
, @['GH”’D?"(F) @l'al+n®’}'(F)
S\ agebl TV ot ab!,

)<oo if(s—m—1—n)p=2.
(2.18b)

Remark 2.3 As was the case in Remark 2.2, condition (2.18a) is simply the application
of the vertex compatibility conditions for traces on the triangle [48, eq. (7.2)] at every
point on the edge y;;, provided that u is smooth enough.

2.3 The Trace Theorem on a Tetrahedron

Motivated by the conditions derived in the previous section, we define trace spaces as
follows. Given a set of indices S C {1, 2, 3,4} with |S| > 1, let I's := U;csT;. We
define the trace space on part of the boundary Tr;”(I's) for k € Ny and (s, p) € A
as follows.

Try"(Cs) o= {(F = (f° f', ..., f*) e LP(T)* ™! : For0 < m <k,
F satisfies (2.17) fori € S and
(2.18) fori, j € Swithi < j,0 <l <mandn € Ny},

FolCT
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equipped with the norm

k
WO s PO = D0 2 MY,

s—m—.p,Li
m=0ieS

Fokpy g TR\ .
If’.(b@l. i p¥. ! if(s—k—1—n)p=2,
+ 2 : 0 L T T A T T

i.jes |0 otherwise.
i<j

0<i<k

nEN()

Note that the sum in the definition contains only finitely many nonzero terms, and
hence is well defined. When S = {1, 2, 3,4}, we set Tr;”(0K) := Tr;”(I's) and
||.~ ||Tr';€-.1’, 9K = - ”".fri’p,l_‘s‘ The following trace theorem is a consequence of the
discussion in the previous section.

Theorem 2.4 Let S C {1,2,3,4}, k € Ny, and (s, p) € Ay be given. Then, for every
u € WP (K), the traces satisfy (u, ontt, . . ., 8§u)|r5 € Tr‘,i""(f‘g) and

k
G, Ontas - Bp) gy p g Shos.p [lls k- (2.19)

2.4 The Trace of Polynomials

Given N € Ny, let Py (K) denote the set of all polynomials of total degree at most
N, while P_y; := {0} for M > 0. If u € Py(K), thenu € W5P(K) forall s > 0
and p > 1. Consequently, for each k € Ngp and S C {1, 2, 3, 4}, the traces F =
(u, Onu, ..., a,’;u)|rs € Tr‘,i’p(l"s) for all (s, p) € Ag. In particular, s may be taken
to be arbitrarily large in (2.18a). Thus, the traces satisfy

" € Pnom(Th), 0<m<k, i€, (2.20a)
D (F)ly,; =D (F)ly;, 0O<m<k i,jeS8, i<},
(2.20b)
ADk(F Dk (F)
b%l'—’l() =b% . ——| 0<i<k i, jeS i<j.
oy, on’;

Vij Yij

(2.20¢)

Note that we have not included the integral condition (2.18b) in the list (2.20) above.
The following lemma shows that if a tuple of functions defined on K satisfy (2.20),
then (2.18b) is automatically satisfied.

Lemma2.5 LetS C{1,2,3,4}andk e Ng. If F : Tg — Rk+1 satisfies (2.20), then
F e Tri’p(FS)for all (s, p) € Ay.

FoC'T
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Proof Let (s, p) € Ay, 0 <1 < m < k, be given. Thanks to (2.20b) and (2.20c), the
difference

'DM(F) , 0'DI(F)
Hyj=b% ———0oF; -b¥ . —L—0F;. onT.i jes,
J1 ablj 1] ab”

vanishes on the edge y, of the reference triangle T and H;; has entries Py _,,—(T).

Thus, H;j = x2G;j, where G;; has entries in Py_;;—;—1(T). Consequently, for all
n € Ny, there holds

I+
I b®l al-&-n@;n(F) b®l d mDm(F) |8n H..@)V’E
G\T etabl Y atiabl ey X

- / 187 Gyj(x)|Pxd " dx,
T

which is finite since G;; has polynomial entries. The inclusion F' € Tr‘,i’p (I's) now
follows from (2.20). O

2.5 Statement of the Main Result

The aim of the current work is to construct a right inverse Ly of the operator

u +— (u,onu,..., 8§u)|31< for each k € Ny that is bounded from Tr‘,i’P(BK) into
W*P(K) for all (s, p) € Ay and preserves polynomials in the following sense: if
F = (f° ', ..., f%) is the trace of some degree N polynomial, then Ly (F) is a

polynomial of degree N. In particular, the main result is as follows.
Theorem 2.6 Let k € Ny. There exists a linear operator

U @K > L'(K)
(s,p)eAx

satisfying the following properties: for all (s, p) € A and F = (f°, f1, ..., 5 e
Tr, " (3K), Lk (F) € WSP(K),

WLx(Plax = f' 0<l<k, and |Le(F)ls.p.k Skos.p IF v ag-

Moreover, if F is a piecewise polynomial of degree N € Ny satisfying (2.20) with
S ={1,2,3,4}, then Li(F) € Py(K).

The construction of the lifting operator £y in Theorem 2.6 is the focus of the next
section, and the proof of Theorem 2.6 appears in Sect. 3.5. An immediate consequence
is the following characterization of the range of the trace operator.

Corollary 2.7 For each k € Ny, the operator u — (u, dpu, ..., 8I];u)|31< is surjective
from W5:P(K) onto Tr?{’p(aK)for all (s, p) € Ay.

FoE'ﬂ
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2.6 Potential Applications

Theorem 2.6 has many potential applications, particularly in the analysis of high-
order finite element methods. For brevity, we discuss three applications. Firstly, the
extension operator may be used analogously to the constructions in [7, 15, 45] to
establish optimal (with respect to mesh size and polynomial degree) a priori error
estimates for W* ”-conforming finite element spaces for all p € (1, 00) ands > 1/p.
Secondly, the lifting operator will be crucial to obtain bounds explicit in polynomial
degree for preconditioners for high-order finite element discretizations of fourth-order
(and higher-order) elliptic problems similar to H ! -stable extensions for second-order
problems in 2D and 3D [14, 49] and H 2_gstable extensions for fourth-order problems
in 2D [8]. Finally, in a similar vein to [6, 10, 13, 29, 43], the extension operator may
be helpful in constructing a polynomial-preserving right inverse of the curl operator
that preserves some trace properties (e.g. vanishing tangential trace, vanishing trace,
etc.) and in proving discrete Friedrichs inequalities. These results have applications
to the stability, convergence theory, and preconditioning of high-order discretizations
of mixed and parameter-dependent problems (see also e.g. [11, 28, 33]).

3 Construction of the Lifting Operator

The construction of the lifting operator L£;, k € Ny, proceeds face-by-face using
similar techniques to [46, 48]. The main idea is to perform a sequence of liftings and
corrections using a fundamental convolution operator (see e.g. [12, eq. (4.2)], [14],
[18], [19, p. 56, eq. (2.1)], [47, §2.5.5]) and subsequent modifications to it. Given a
nonnegative integer k € No, a smooth compactly supported function b € C°(T'), and

a function f : T — R, we define the operator E,EI] formally by the rule

(—2)*

&2 =

/b(y)f(x+zy)dy V(x,z) € K, 3.1
T

and we use the notation EIEH [+] when we want to make the dependence on b explicit.
Note thatfor (x, z) € Kand y € T,thereholdsx+zy € T,andso (3.1)is well-defined
fore.g. f € C*(T). For functions f : 'y — R we define

ey =M foar), where Jj(x):=(x,00 VxeT. (32)
3.1 Lifting from One Face

The first result concerns the interpolation and continuity properties of EIEI].

Lemma3.1 Let b € CX(T), k € Ny, and (s, p) € Ai. Then, for all f €
1

W TP (1)), there holds

mEM (e, = Sk ( / b(x)dx) f. 0<m<k, (3.3)
T

FoC'T
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and

1
16 s pe Sokesp 1 ity (3.4)

Moreover, if f € Py(I'1), N € Ny, then €,£1](f) € Pn+k(K).
The proof appears in Sect. 6.1. We now construct a lifting operator from I'y.

Lemma3.2 Letb € C°(T) with fT b(x)dx = 1 and k € Ny. We formally define the
following operators for F = (f°, f1,..., f& e LP(I)FFL:

c(ry = MY, (3.52)
LI Fy = eMrm —amelll (Fyr)), 1 <m<k. (3.5b)

Then, for all (s, p) € Ay and F € Try"(Ty), L) (F) is well-defined and there holds

L Py =" 0=m <k and NGNEspx Soks.p IF g -
(3.6)

Moreover, if f™ € Pn_n(I'1),0 <m <k, forsome N € Ny, then E,[(”(F) € Py (K).

Proof We proceed by induction on k. The case k = 0 follows immediately from
Lemma 3.1. Now assume that the lemma is true for some k € Ny and let (s, p) € Ag41

and F € Trz’f] (I'1) be as in the statement of the lemma. Then, we may apply the lemma

to F = O o fHe Tr',i’p(Fl) to conclude that for 0 < m < k and
0o ) _
oL (Byey = 7 0= m <k, and 1LY E) s px Soks.p IF g -

Thanks to the trace theorem (Theorem 2.4), there holds f**+! — 8§+1£,E1](F ), €
1
w1752y with

k+1 k+1 pl1], 7
”f - an Lk (F)”S—k—l—%,p,l"l ,Sb,k,s,p ||F||Tr}i¥rp1’rl’

and so (3.6) follows from Lemma 3.1. Additionally, if F satisfies ™ e Py_m(Ty),
0 <m < k+ 1, for some N € Ny, then F satisfies the same condition, where
the upper bound of m is restricted to k. Consequently, E,EI](F ) € Pny(K) and so
fr é),’f”[:,[(l](l’:")h1 € Py_k—1(I'1). Thus, £,E1J]FI(F) € Py (K) thanks to Lemma
3.1. O

3.2 Lifting from Two Faces

We now seek a lifting operator from I'; that has zero trace on I'y. The operator will
be a generalization of the form introduced in [46]. We first define an operator that lifts
EOE';W
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traces from I" and has zero trace on I';, and then define the lifting operator from I'y
in terms of this operator. To this end, denote by w; the barycentric coordinates of T
defined as follows.

wi(x):=x;, 1<i<2, and w3(x):=1—x;1—xp VxeT. 3.7

Given nonnegative integers k, r € Np, a smooth compactly supported function b €
C2°(T), and afunction f : T — R, we define the operator M,[(]]r formally by the rule

MU, 2) = e @y fix, 2)

(= b fx+2y) (3.8)
0 k! /T (x2 4+ zy2)" dy V(x,z)eKk.

Note that when r = 0, we have M,[:g) = 5,£1]. For functions f : I'j — R, we again

abuse notation and set /\/l,[(” (f) = M,El]r(f o Jp).

N
The presence of the weight ;" in the operator M,[Cll means that derivatives of
f :T'1 = Rup to order r have to vanish on edge yj; in an appropriate sense. To this
end, let s =m + o withm € Ngpando € [0,1) and 1 < p < oo. Given a face I},
1 < j <4, and € a subset of the edges of I';, we define the following subspaces of

W#$-P(T";) with vanishing traces on the edges in &:

1
WeP(T')) == {fe WSP(T;) : DE f|, = 0forall 0 < |B| <s—;andy ¢

and ¢l /1l . <0} (39)
where the norm on Wé’p (I";) is given by

|| dist(-, Uye@ y)*"Drr”in’Fj ifop=1and € # 0,
0 otherwise,

P . P
I, = A1, + {

and we recall that Dr is the surface gradient operator. When €& consists of only one
edge y, we set Wy'/(I'j) := Wg"(I'j) and Ml pr, = el fl - One can
readily verify that the spaces Wé’p (I'j) are Banach spaces and that the following
relations hold:

W@y = (YW@ and ¢l fly o, %p 3 I f s pr, - (3:10)
yee ye€

Given a subset of edges € of the reference triangle 7', we define the spaces Wé’p (T)
analogously.
The first result states the continuity properties of M,El]r
FoC T
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Lemma3.3 Letb € C°(T), k,r € Ny, and (s, p) € Ay. Then, for all

min{s—k—1

1 b
few T rrmynw,, 7T, there holds

200 MIL(O)Iry = Som ( / b(x)dx) fo 0=m<k (3.11a)
’ T
, 1
MU (), =0, O§j<min{r,s——}, (3.11b)
’ p
and

. 1
ifs <k+r+ -
Vlz”f”S—k—%,P,Fl ifs <k+r+ p’

(1]
”Mkr(f)”spl( <bkrsp
3 1y ) ~O, R FL S . :
“f”s_k_%’pyrl ifs>k+r+ 4.

(3.12)

Moreover, if f € Py(T'1), N € Ny, satisfies D{ﬂf|y12 =0for0 <1l <r—1, then
ML) € Py i (K).

The proof of Lemma 3.3 appears in Sect. 6.3. By mapping the other faces of K to I'y
and mapping K onto itself in an appropriate fashion, we may define operators corre-
sponding to these faces. In particular, we define the following operator corresponding
to I'p:

M (P x.2) = MPL(f 0T2) 0 Rin(x,2)  V(x.2) €K,

where J>(x) := (x1, 0, x2) and R2(x, z) := (x1, z, xp) forall (x,z) € K.
Thanks to the chain rule and the smoothness of the mappings J> and fRi2, the

continuity and interpolation properties of /\/l,[f]r follow immediately from Lemma 3.3.

Corollary3.4 Let b € C°(T), k,r € No, and (s, p) € Ax. Then, for all f €

min{s—k

g1 —5r),
WP (my) N Wy, 7" (1), there holds

ML ()Iry = St (/ b(x)dx) 1 0<m<k, (3.13a)
T
3jM[2] _ . . 1
h k,r(f)h“l =0, 0<j<minir,s— ; , (3.13b)
and

. 1
ifs<k+r+ -
pl ot ey s Skt

(2]
||Mk r(f)”sp K <bkrsp
s 5Py ~O, KT, S, . 1
Wity s > kr g

(3.14)

Moreover, if f € Py(IM), N € Ny, satisfies D{ﬂf|y12 =0for0 <l <r—1, then
ML) € Pyr(K).

EOE';W
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3.2.1 Regularity of Partially Vanishing Traces

The operator M,Ez]r lifts traces from I'; to K and has zero trace on I'{, which are the

properties we desired to correct the traces of ﬁ,[cl] on I'>. However, ./\/l,[czlr acts on func-
. . s—k—1L p min{x—k—%,r},p . .
tions belonging to W (T N Wy, (I'2) rather than just functions

. -1 . . . . .. .
in W* »*P(I'5). The main result of this section characterizes one scenario in which

kL min{s—k—L .}
traces belong to the space W* = ()N Wy, r

will encounter exactly this scenario in our construction.

We have the following result which characterizes the regularity of the restriction of
atrace F € Try”(I'; UT;) to I'; when F vanishes on T'; and the first / components
of F' vanishon I';.

P (I'y), and fortunately, we

Lemma3.5 Letk € Ny, (s,p) € Ay, 1 <l <k, and1 <i,j <4dwithi # j be
given. Suppose that F = (f°, f', ..., 5 e Tr‘,i’p(r’,- U I'j) satisfies

i) F=(0,0,...,0)0onT;,
(ii) f;":OOnijorOsmfl—l.

-1 min{s—I—L k+1},p
Then, there holds f]l. eWw T rPTHn Wy, r (T'j) and

1
l. < F s,p ifs —1 <k 1 — 3153
Vij f/ S*l*%,P,rj Nk,S,[) ” ||Trk1,FiUFj l‘f = + + p, ( )

1

I .

1fills—i— 1 pr, Skos.p 1Fllger roor; ifs—1>k+1+ o (3.15b)

Proof Without loss of generality, assume that i < j. We first show that for o € N%
there holds

la] £1
B“fj
o o
8tij18bjf

2
0 O§|a|<min{s—l——,k+l}, (3.16)
Vij p
where b;; and b; are defined in (2.12).

Step1: 0 <oy <k —!and |o¢| < min{s —/ —2/p, k + 1}. Manipulating definitions
shows that

L) L, 1)

T _p® 0<r<k-—I, (3.17)
ot ob’; i ot}

and so there holds

a| £l o|!
okl f; o 0D

ay eyt
el e 0 B
J Jt

o
atijl

—_— = n° [ —
ot obs; a7 abS;

’
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and using that ©ﬁ+°‘2(F)|ri = 0 by (i) gives

ol 1 a1 gyl I+
uop.._n@.b@o@. Mopu_aal@i—az(m F::

a1 ji=1n; ji a ji a ij
atl.jl abjf I Btij1 atij‘

on T'. Equality (3.16) now follows from (2.18a).
Step2:k—[/+1 <oy <kand |¢| < min{s —] —2/p, k+ 1}. The same arguments
as in Step 1 show that

la| £l lo|—k+1 yk
aafj _ ®1.b®k—z.aa QJ(F)

N aner 1 ji I e
8tij 8bji Btij 3bj,-
By construction, there exist constants a; and a such thatn; = a1b;; + azbj;, and so

lal £l ! lor|—k+1gyk ! lot|+1—
I f; 0'* D5(F) AHTTD(F)

®r Rk—r ®r
ey = ) obl BT s = ) e b =
ot aply atg.lab‘;’;' Toos Y agan

for some suitable constants {c, }£:0' ForO<r <[l-—1, @;(F) = 0 by (ii), and so

ol £l ol
LS pet 9

le|—k+1 ek
I _p® . ®l,b®k—l_a QJ(F)
o o 1 o (0%
8tij1 8bjl? J atl.jlabjl.2

= b b T
9% b

loe| —k+1 gk

ol ’DJ.(F)>

_ ®k—ar k-l Qar—k+1
= byt by (bt/ o FT
ij ji

Applying (i) then gives the following identity on 7'

alel gt
J ®k— k—I
geign@ © Fii = by b
ij Ji
ol =HHDE(F) plel—k+pk(F
. (bf?az_kﬂ ’ o] a21k+l °© Fji - b%az_k-i_l ) o] azilfH) °© Fij :
8tij abﬂ 3t,~j ab,.j

(3.19)

Equality (3.16) then follows from (2.18a).
min{s—l—]l;,k+l}p

1
Step 3: f; € WS*’*E‘P(Fj)mWy,.j (I'j). Fors —2/p ¢ Z, the inclusion

-1 in{s—I—L k+1},
frew ™ wraynw, 77 (r) follows from (3.16), and (3.15a) and
(3.15b) are an immediate consequence of the definition of the || - ”Tr‘,:’”,l"iurj norm.
EOE';W
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Fors —2/p € Z, and |o| = min{s — [ — 2/p, k + 1}, there holds

p p

/ a'“'f,’» ) dx / ala‘fjl- Fo )dx (320)
x A ——a| o Fji(x)—, .
r; |0t} ob%? dist(x, yij) " Jr |0t ob%? T

. . ! min{s—l—i,k-i-l},p
and so the inclusion f; € Wy, r (I';) follows from (3.18), (3.19) and

(2.18b), while (3.15a) follows from the definition of the norm. O

3.2.2 Construction of Lifting

In the following lemma, we construct the lifting operator C}(Zl in the same fashion as
E,El] (3.5), replacing the use of 5,[,11] with M:[vi]kﬂ'

Lemma3.6 Let b € CX(T) with [;b(x)dx = 1, k € No, and S = {1, 2}. For
F=(f ', ..., % e LP(D U)K we formally define the following operators:

2Ry = £y + MEL (2 — 2Py, (3.212)

Lo (F) = L2 (P 4+ M=o e (P, l=m <k,
(3.21b)

LEVF) = L) (F). (3.21¢)

Then, for all (s, p) € Ay and F € Tri’p(l"g), E,Ez](F) is well-defined and there holds

2 . 2
WL BN, = £ 0=m <k, jeS, and 1L E)spx Soksp I1Fl g0 rg.

(3.22)

Moreover, if for some N € Ny, F satisfies (2.20), then C,[EJ(F) € Pyn(K).

Proof Let k € Ny, (s, p) € Ak, and f € Tr; " (S) be given.
Step 1: m = 0. Thanks to Lemma 3.2, the traces G = (go, gl, el gk) given by

g=fl—tlMP)Ir, 0<i<k 1<i<2,

satisfy the hypotheses of Lemma 3.5 with (i, j) = (1, 2) and/ = 1. Thanks to Lemma
3.5 and Corollary 3.4, M{'L, | (g9), and hence L) (F), is well-defined with
FolCT
u
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2 1
L2 P lsopk Soks.p I1LLE)lls.p.k
|9 -chm| s sk14d,
+ {r2 S*;,p,l“z P

19— L,E”(F)||k%’p’r2 ifs >k+1+1.
Applying (3.6) and (3.13a) gives
AL = fl. 0<i<k and LE)(F)r, = £,
and applying (3.6) and (3.15) gives
L) ..k Sbikos.p 1 llgger pg-

Moreover, if F satisfies (2.20) and for some N € Ny, then F € Tr;’(I's) by Lemma
2.5and E,E”(F) € Py (K) by Lemma 3.2. Thus, the trace G satisfies (2.20) for {i, j} <
{1,2}and G € Tr”(Tg) for all (s, p) € Ai. By Lemma 3.5, g9 € W;‘gl"’(m for
all p € (1,00), and so D{~g§)|y12 = 0 for 0 < I < k. Thanks to Corollary 3.4,
LENF) € Py(K).

Step 2: Induction on m. Assume that for some m such that0 <m < k — 1, E,[czln (F)
is well-defined and satisfies

L (P =l 0<i<k, oL (PIr,=f. 0<i=m,
(3.23)

and
2
1L F)ls.p & Sbks.p IF s g (3.24)

Additionally assume that if F satisfies (2.20) for {i, j} € {1, 2} and for some N € N,
then £} (F) € Py(K).
Thanks to (3.23), the traces G = (go, gl, el gk) given by

gl = fl -l (P, 0<l<k 1<i=<2,

,m

satisfy the hypotheses of Lemma 3.5 with (i, j) = (1,2) and [ = m + 1. Thanks
to Lemma 3.5 and Corollary 3.4, M%rl’kﬂ(ggﬁl), and hence E,[fl]nH(F) is well-
defined with
2
1LE) o (F)ls.pk Soks.p 1L (F)lls.p.k

2
B =l o|

1 ifs—m—1<k+1++,
4+ n —m—1—2.p,I2

+1 +1 pl2] ; 1
I = L (Pl gty ifs —m— 1> k4145,
FoCT
u o
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Applying (3.23) and (3.13a) gives (3.23) for m + 1, while applying (3.24) and (3.15)
gives (3.24) form + 1.

Moreover, if F satisfies (2.20) for some N € Ny, then E,[Cz’ln(F) € Py(K) by
assumption and so the trace G satisfies (2.20) and G € Tri’p (Tg) for all (s, p) € Ayg.
By Lemma 3.5, gg"H € W}]fl-gl’p(f‘g) for all p € (1, 00), and so D{ﬂggn+l|m = 0 for
0 < < k. Thanks to Corollary 3.4, LI’} | (F) € Py (K). O
3.3 Lifting from Three Faces

We continue in the spirit of the previous two sections and define another lifting operator
from I'; with vanishing traces on I'; and I'3. Given nonnegative integers k, r € Ny,
a smooth compactly supported function b € C°(T), and a function f : T — R, we

define the operator S,Ell formally by the rule

SN 2) = ) M (@iw) ™ f)(x. 2)

(—2) / b(y)f(x +2zy)
k' Jr (1 + z2y) (2 + 200))"

V(x,z) € K.
(3.25)

= (x1x2)"

Note that when r = 0, we have S,El(]) = €,£1]. For functions f : I'; — R, we again

abuse the notation and set S,E’li(f) = S,&lj (f oJ)).

We require one additional family of spaces with vanishing traces. Let s = m + o
withm € Npando € [0,1)and 1 < p < 0co. Givenr € N,afaceI';,1 < j <4,
and € a subset of the edges of I'j, we define the following subspaces of Wé’P TI;):

Wel(T)) = {f e W PN WP Iy o Nl < oo}, (3.26)

where the norm on Wéf (T";) is given by

P
e I FI0
. { AL o ifs <7,
= » )
AP, p s>,
. 5 3m—r+lD;‘—1f r .
dlSt(',Uyee)/) W 1fs>r, crp:l,@;é@,
Y p r;
o
0 otherwise,

where t,, is a unit-tangent vector on the edge y € €. For r = 0, we set W‘é’g T =
W*P(I";). When € consists of only one element y, we set ;2 (I';) := Wé:f(r‘j)
. . s,
and ]/,r”f”s,p,rj = @,r”f”s,p,rj' One can again verify that W@’f(r,-) are Banach
FoC'T
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spaces and that the following analogue of (3.10) holds:

Wel @) = (YWl @y and e Il o, ®sp Dyl fllspr, - 3:27)
ye€ ye€

The following result shows that the continuity of S,Ell can be characterized with
these spaces.

Lemma3.7 Let b € C°(T), k,r € Ny, (s, p) € Ak, and € = {y12, y13}. Then, for
s—k—1,
all f € Wg, ""(T)), there holds

oS, = S ( /T b(x)dx) £ 0=m=<k (3.282)
o4 ()i, =0, osj<min{r,s_l}, 2<i<3,
! (3.28b)

and
IS ls.p K Sbokros.p el Fl it (3.29)

Moreover, if f € Py(I'1), N € Ny, satisfies D{«f|y12 = D{~f|y13 =0for0<l <
r— 1, then Sp.)(f) € Pyyx(K).

The proof of Lemma 3.7 appears in Sect. 6.4. We define the analogous operator
associated to I'; as follows.

S,E’Sj(f)(x, 7) = S,E’lj(f 0J3) oR3(x,2) V(x,z) € K,

where J3(x) := (0, x2, x1) and R3(x, z) := (z, x2, x1) for all (x, z) € K. Thanks
to the chain rule and the smoothness of the mappings J3 and fR;3, the continuity and
interpolation properties of SE} follow immediately from Lemma 3.7.

Corollary3.8 Letb € CX°(T), k,r € Ny, (s, p) € Ak, and € = {y13, y23}. Then, for
‘—k—l,
all f € We, 7" (T'5), there holds

SN Flry = Stom ( / b(x)dx) fo 0=m<k (3.30a)
’ T
; 1
RSP (HIr =0, O§j<min{r,s——},1§i§2
’ p
(3.30b)
and
IS sk Sotrisr ¢ N1 pr, (3.31)
EOE';W
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Moreover; if f € Py(T'3), N € Ny, satisfies D} f|y;; = Df-flyy, = 0for0 <1 <
r— 1, then SN (f) € Pyyx(K).

We also have the following analogue of Lemma 3.5.

Lemma3.9 Letk € Ny, (s,p) € A, | <l <k,and1 <i,j <4 withi # j be
given. Suppose that F = (f°, f,..., 5 e Tri’p(l"i U I'}) satisfies

i) F=(0,0,...,0)onT;;
(ii) f;”:O()nijorOfmfl—l.

1
Then, there holds f € W k+’i p(Fj) and
! <ps 5.
yi,-,k+1H J s—l—%,p,l“j ~k.s,p ”F”Tfkp»FiUFj’ (3.32)
Proof The result follows from applying inequality (3.20) and identity (3.19). O

We now construct the lifting operator EE] in the same fashion as C,[E] (3.21),
replacing the use of M m.k With S,[n"’,]k.

Lemma3.10 Let b € CX(T) with [; b(x)dx = 1, k € Ny, and S = {1, 2, 3}. For

=(f9 Fl ..., Y e LP(T )1, we formally define the following operators:
LRVF) = L) + SPLL () - [2](F)|r3) (3.33a)
PPy =) (P 4 S =l (P, T=msk,
(3.33b)
LPNF) = LPLP). (3.33¢)

Then, for all (s, p) € Ay and F € Tri’p(l"g), there holds

3 . 3
WL Pl = £ 0<m<k jeS and 1L Elspx Spksp 1Fllgr pg-
(3.34)

Moreover, if F satisfies (2.20) and for some N € Ny, then E,[?](F) € Py (K).

Proof Let k € N, (s, p) € Ak, and f € Try”(I's) be given. Let € = {13, y23}.
Step 1: m = 0. Thanks to Lemma 3.6, the traces G = (go, gl, el g") given by

Dm0V (P, 0<i<k, 1<i<3,

satisfy the hypotheses of Lemma 3. 9w1th @, j) € {(1,3), (2, 3)} and/ = 1. Thanks to

(3.27) and Lemma 3.9, g3 € W@ X +1 (F3) Consequently, S, 0 k " 1(g ) is well-defined

by Corollary 3.8, and hence /3[3] (F) is well-defined with
FoE'ﬂ
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Bl g < 2l g i H 0_ pl2lp H
l k,O( )”x,p,K ~b.k,s,p Il k ( )”s,p,K Ehil f3 k (F) s—L1pr

Applying (3.22) and (3.30a) gives
WL P), =, 0=l<k 1=i<2, LGPl = £,
and applying (3.10), (3.22), and (3.15) gives
L) ..k Sbikos.p 1 llgger pg-

Moreover, if F satisfies (2.20) for some N € Ny, then L,[CZ](F ) € Py(K) by Lemma
3.6, and so the trace G satisfies (2.20) and G € Tr‘,i’p(l"s) for all (s, p) € A thanks

to Lemma 2.5. By (3.27) and Lemma 3.9, gg € WkH’p(Fg)forallp € (1, 00), and so
DLg31,; = Dhglly,, = 0for0 < I < k. Thanksto Corollary 3.8, L (F) € Py (K).

Step 2: Induction on m. Assume that for some m suchthat) <m <k —1, Ek%ln (F)
is well-defined and satisfies

onLE, (F)lr, = f, 0<l<k l=<i=<2, (3.35a)
L (P, = £, 0<l<m, (3.35b)

and
IC s, p & Soks.p IF I g (3.36)

Additionally assume that if F satisfies (2.20) for some N € Ny, then ﬁ w(F) €
Pn(K).
Thanks to (3.35), the traces G = (g°, g', ..., gX) given by

gl = fl =L (P, 0<l<k 1<i<3,

satisfy the hypotheses of Lemma 3.9 with (i, j) € {(1,3),(2,3)}and [ = m + 1.

—m—1-1,
Thanks to (3 27) and Lemma 3.9, there holds g”’+l € We il p(F3) Conse-
quently, SB

oLk 1 (g'”‘“) is well-defined by Corollary 3.8, and hence s ((F) is
well-defined with

k,m+

3
1LE)  (F)lsopk Soks.p 1LEL (F)lls.pok
1 1,03
| et — o) )

| .
@k—i—l s—m—l—ﬁ,p,rg

Applying (3.35) and (3.30a) gives (3.35) for m + 1, while applying (3.27), (3.36), and
(3.32) gives (3.36) for m + 1.

FoE"ﬂ
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Moreover, if F satisfies (2.20) for some N € Ny, then 5[3] (F) € Pn(K) by
assumption and so the trace G satisfies (2.20) and G € Trk P (Fg) for all (s, p) € Ag
thanks to Lemma 2.5. By (3.10) and Lemma 3.5, gm+l € WkJrl "P(I'3) for all p €
(1, 00), and so Drg3 |yH = D% '"+1|y23 =0for0 <!/ < k Thanks to Corollary
3.8, L0 L (F) € Py(K). O

3.4 Lifting from Four Faces

To complete the construction of the lifting operator from the entire boundary, we
define one final single face lifting operator from I'; that vanishes on the remaining
faces. Given nonnegative integers k, r € Ny, a smooth compactly supported function

b € C*(T), and a function f : T — R, we define the operator R,El]r formally by the
rule

RiLA(x. 2)
= (xx2(l —x1 —x2 — 2)" EN (@1ww3) ™ f)(x, 2)

(—2)k / b(y)f(w)dy
T

k! (w1wrw3)" (w)

V(x,z) € K.
w=x+zy

= (xx2(l —x1 —x2 —2))"

(3.37)

Note that when r = 0, we have R,Ell =& [ For functions f:T1 — R, we again

abuse notation and set R“] (f) = R ( fo3J1). The weighted spaces Wcs P again

play a role in the continuity of R“] as the following result shows.

Lemma3.11 Letb € CSO(T), k,r € Ny, (s, p) € Ay, and € = {y12, ¥13, Y14}. Then,
s—k—1,

forall f € Wé\r b p(Fl), there holds

MR ()Iry = Sm </ b(x)dx) f, 0<m <k, (3.382)
’ T
: 1
WRL (Pl =0, 05j<min{r,s——}, 2<i<4,
’ p
(3.38b)
and

RN s.p & Sokrsp g NI, (3.39)

;,P»Fl

Moreover, if f € Py(I'1), N € Ny, satisfies D{ﬂf|ar1 =0for0 <l <r—1,then

1
RIL(F) € Puyr(K).
FoE'ﬂ
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The proof of Lemma 3.11 appears in Sect. 6.5. The analogous operator associated to
I'y is given by

R 2 =3 R (FoT) o Riux.2)  Vix,2) €K,

where J4(x) = (x1,x2, 1 —x1 — x2) and Ry4(x,2) = (x1,x2, 1 —x1 —xp — 2)
for all (x, z) € K. Thanks to the chain rule and the smoothness of the mappings J4
and R4, the continuity and interpolation properties of T\’,}fl follow immediately from
Lemma 3.11.

Corollary 3.12 Let b € CSO(T), k,r € No, (s, p) € Ak, and € = {y14, V24, y34}.
s—k—1,
Then, for all f € W;r P p(F4), there holds

MR Py = Siom (/T b(x)dx) f, 0<m<k, (3.40a)
WRIL(HIn, =0, 0§j<min{r,s—l},1§i§3
! (3.40b)

and
IREL () spok Sbokrs.p el Fl s (3.41)

Moreover, if f € Py(I's), N € Ny, satisfies D{«f|31~4 =0for0 <l <r—1,then
REL(F) € Puyr(K).

Finally, we construct the lifting operator E,[:‘] in the same fashion as E,[S] (3.33),

replacing the use of S,[;’]k 41 With Rij)]k i1

Lemma3.13 Let b € CX*(T) with [;b(x)dx = 1 and k € No. For F =
(fO, 1, .0 8 e LP(OK)*HY, we formally define the following operators:

LEE) = LIE) + R ) = L7y, (3.422)

ol (Fy = L8 () + R =g (P, 1=m<k,
(3.42b)

LF) = L (F). (3.42¢)

Then, for all (s, p) € Ax and F € Tr'" (3K), there holds

4 4
oL (E)ox = " 0=m <k, and 1L F)sp.k Shksp IF s ok
(3.43)

Moreover, if F satisfies (2.20) for some N € Ny, then £,[{4](F) € Py (K).
EOE';W
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Proof Let k € Ny, (s,p) € Ak, and f € Tr;”(3K) be given and set ¢ :=

N4, v24, y3a}.
Step 1: m = 0. Thanks to Lemma 3.10, the traces G = (g°, g', ..., g) given by

= fl =l P, 0<i<k 1<i<4,

satisfies the hypotheses of Lemma 3.9 with (i, ]) e{(1,4),2,4),3,4}and !l = 1.

Thanks to (3.27) and Lemma 3.9, g4 € W@ k+1 (F4) Consequently, R04}(+1(g4) is
well-defined by Corollary 3.12, and hence Ek,o(F ) is well-defined with

4 3 F + ‘C ’
l l[c,g)(F)”s,p,K Shokos.p ”‘Cl[c ]( Mis.p.x ‘f‘? ][C ]( )HS 2
r - 4

¢ k+1 ‘
Applying (3.34) and (3.40a) gives

AL P =fl, 0<l<k 1<i<3 LI =f7
and applying (3.27), (3.34), and (3.32) gives

[4]
||£k,0(F)||s,p,K Sh,k,s,p ”FHTr’,:”’,aK'

Moreover, if F' satisfies (2.20) for some N € Ny, then EE](F ) € Py(K) by Lemma
3.6, and so the trace G satisfies (2.20) and G € Trz’p(a K) for all (s, p) € Ay thanks

to Lemma 2.5. By (3.27) and Lemma 3.9, g € Wa ™" (I'y) for all p € (1, 00), and
so DLgQlar, = 0for 0 < I < k. Thanks to Corollary 3.12, L'} (F) € Py (K).

Step 2: Induction on m. Assume that for some 0 < m < k — 1, E,[fln(F ) is well-
defined and satisfies

ILin ()lr, = £}, 0<i<k 1<i=<3, (3.442)
0Ly (Flry = fi 0<l<m, (3.44b)

and
1L (F)lls.p.k Sbksp 1F e o (3.45)

Additionally assume that if F satisfies (2.20) for some N € Ny, then E,[j}n(F ) €
Pn(K).
Thanks to (3.44), the traces G = (g°, g!, ..., g¥) given by

L= fl—olel (P, 0<i<k 1<i<4,

satisfies the hypotheses of Lemma 3.9 with (i, j) € {(1 4), (2 4),(3,4)}and | =

1 L
m + 1. Thanks to (3.27) and Lemma 3.9, gf(‘ e Wes k+1
Fol:rﬂ
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Rgﬂrl’kﬂ(gzﬁl) is well-defined by Corollary 3.12, and hence E,[:lnﬂ(F) is well-

defined with

4 4
LK) ()l Soks.p 1C5 (F) s, p.k

-]

+ . .
€ k+1 —m—l—];,p,F4

Applying (3.44) and (3.40a) gives (3.44) for m + 1, while applying (3.27), (3.45), and
(3.32) gives (3.45) for m + 1.

Moreover, if F satisfies (2.20) for some N € Ny, then £,[31n(F) € Pn(K) by
assumption and so the trace G satisfies (2.20) and G € Tr‘,i’p (0K) for all (s, p) €
Ay thanks to Lemma 2.5. By (3.27) and Lemma 3.9, gTH € W]é+l’p(r‘4) for all
p € (1,00), and so D%g:{'“lam = 0 for 0 < [ < k. Thanks to Corollary 3.12,
L (F) e Py(K). O

3.5 Proof of Theorem 2.6

Letb € C2°(T) be any smooth function satisfying fT b(x)dx = 1. Then, L := £[4],
where E,[f] is defined in (3.42) satisfies the desired properties thanks to Lemma 3.13.
m}

4 Whole Space Operators

In this section, we examine the continuity properties of the following operators, which
are the whole space extensions of the lifting operators S,EI] (3.1): Given k € Ny,
x € CP[R),and b € C (R?) and a function f : R*> — R, we define the lifting
operator & by the rule

E(f)x,2) = x () /]R O +zydy V(x, o) € RZxR.  (4.1)

We use the notation f:'k[x, b] when we want to make the dependence on x and b
explicit. The advantage of working with the operator & is that we shall capitalize on
the abundance of equivalent W*7(U)-norms when U is all of R? or the half-space
]Rfl|r = R?1 x (0, 00),d > 1. In particular, we recall the following norm-equivalence
on WHP(U),0 <s < 1,1 < p <oo,withU = RY or R‘i (see e.g. [44, Theorems
6.38 & 6.61]):

d o
P A |f(x +1e) — f(x0)]” 5p
IFID oy Ms.pa Z;/O /U e dedt VfeWHPU). 4.2)
i=
The main result of this section is the following analogue of Lemma 3.1.
EOE';W
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Theorem 4.1 Let x € C°(R) withsupp x € (=2,2), b € C?O(Rz) with suppb C T,
and k € Ny be given. Then, for (s, p) € Ay U (k + %, 2), there holds

~ —k—l,
€5 p 3 Sobikos.p IIfIIS_k_%,,,,Rz Vfew TRl ®Y. (4.3)
The proof of Theorem 4.1 appears in Sect. 4.3.

4.1 Continuity of Eo

We begin by recording the particular case of Theorem 4.1 with k£ = 0, which follows
from the same arguments as in the proof of [44, Theorem 9.21].

Lemma4.2 Let x € C°(R) with supp x € (—=2,2) and b € CSO(RZ) with suppb C
T. Then, for1 < p <oocand1/p <s < 1, there holds

~ 1
10wt Sbsp If -1 2 V€W 7P (R?). 4.4)

When p = 2, the above result is also true for s = 1/2 as the following lemma
shows.

Lemma4.3 Let x € C°(R) withsupp x € (—=2,2) and b € CSO(Rz) with supp b C
T. Then, there holds

10NN 2py Sxo Iflwe VF € L2®?). 4.5)
Proof By density, it suffices to consider f € C2°(R?). For k € Ny define
g(x,z) =2 /Rz b(y)f(x +zy)dy, (x,2) € R®. (4.6)
Step 1: H!/ Z(Ri) bound for gj. Thanks to (4.2), there holds
2 * 2 2
8011 5 g3 %/0 180(+ D] 5 podz + /Rz 180, Y 5, d¥ = L+ Do

We now follow the steps in the proof of [18, Theorem 2.2]. Let * denote the Fourier
transform with respect to the x-variable. Then,

~ 7 s 2 _ [~ B E A2
I /O/Rzm o€, )P d& dz /O/RZW 1b(E2) (&) d& dz

= [ (1116615 5. ) 1 7P at,

@ Springer |04
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where we used the following convolution identity for z > 0:

go(x,2) = /]RZ 219( )f(y) dy = %o(&.2) = b(E2) f(£). 4.7

Similarly, there holds

~ 26,915 = h(E)|? P a2
L~ /]R2 18 (&, )|%,2,R+ dg§ /]RZ |b(& )|%,2,]R+|f(§)| dé.
Thanks to a change of variables, we obtain

€1+ 1G5 g, + 6@ , ;< sup (|$| Ib(El@)5 -, + |13<|s|w->|;2,R+)

weS?
= sup |b(@")|} 1 ,
2Ry
weS?
which is finite since b is a Schwartz function, and so |g0| 2R3 So 1 f o g2-

Step 2: H'/2(R3) bound on & (f). Fori = 1,2, there holds

dx dz dr

/°° / 1E0(f)(x +te;, z) — Eo(f)(x, 2)|?
R%

t2

o0
lgo(x + te;, 2) — go(x, 2)|
=/O /}R% Ix () ’ 2 dx dzdr < [ fllyge.
1

where we used (4.2) and step 1. Thanks to the relation

1Eo()x,z+1) —E (N, DI S Ix(z+ ) |go(x, 2+ 1) — golx, 1)
+Hix @+ — x@go(x, 2)),

we obtain

00 c _ ¢ 2
/ / IE0(f)(x, z+1) — E(f(x, 2)] dx dz di
R3

t2

0o 2
Ix(z+1) — x(2)]
Sl ooy + [ [ ) HOE, gy, P dx dz
¥

Now, applying Hardy’s inequality [40, Theorem 327] gives

2

00 . 2 00 z+t
/0 I)((ertz2 x| dt:/o (;/ X/(r)dr> dr
Z

2

© /1 t 2
= [7(; [roroar) asicerons,
o \7Jo

FoE'ﬂ
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and so

00 t) — 2
/ / XEHD = XOF o x, )P dr dede
0o JrR: !

S / Ix' ¢+ 258, |g0Cx, 2)I* dx dz
R3 ’

3
2 ? 2
< ”X/HZ’R*/O /RZ 1go(x, 2)|” dx dz.

Applying Young’s inequality to the convolution form of go, (4.7) then gives

2
/0 /R lgo(x, 2)I* dx dz < 20IBII; pa I F15 g2

Inequality (4.5) now follows on collecting results and applying (4.2). O

We shall also need the stability of the lifting of the derivative of a smooth function.

Lemma4.4 Let x € CX(R) and b € CX(R?). For 1 < p < 00, there holds
2
> 1€0@ Ny g3 Sxbp 11 pr2 V€ CO(R?). (4.8)
i=1

Proof Let1 < p < oo, f € C2°(R?), and i € {1, 2}. Integrating by parts gives

80N, = 1) [ b0I@ NG +andy =52 [ ba (£ +zpldy

_ _&/Rz(aib)(y)f(x +zy)dy.

Z

Since b € C° (R2), there holds fR(aib)(y) dy; =0, and so

fx+z(y —yie) — f(x +zy) d
y.
z

Eo@ f)(x,2) = x(2) /R @ib)(y)

Applying Holder’s inequality, we obtain

‘f(x+z(y—yiei))—f(x+zy) P d
y.

1800 )0, 1P Sy / 13i (D) ()] _
R2 YiZ

FoC'T
e,
@ Springer |03



Foundations of Computational Mathematics

Integrating over Ri then gives

1803 NI 22

p

+z(y —vyie))) — f(x +zy) dy dx dz

yiz

=8y, &) — f&+ yize)

B e
R} yiZ

i / @B )] 'f o
RS

p
dydxdz

t=y;z ) i te: 14
2 ||8ib||1’Rz/z RAS A LI TS

T

Inequality (4.8) now follows from summing over i and applying (4.2). O

4.2 Continuity of 8~k

We now show how the continuity of the operator & canbe used to deduce the continuity
of & for k € Ny. We begin with a partial result.

Lemma4.5 Let x € CX(R) and b € CSO(RZ) be as in Theorem 4.1 and k € Ny be
given. Then, for 1 < p < 00, there holds

1€y 3 Sxbkop Iflpr2 Y € CER), (4.9)
andfor1/p <s < 1lor(s,p) = (%, 2), there holds

1€ s p s Suibkos.p 1fll-1 e VfeCPR?. (4.10)

Proof Letk € Ng,1 < p < o0, and f € CSO(RZ). Since the function ¥ := zFx €
C2°(R) with supp ¥ = supp x, we have &[x, b1(f) = &lx, b1(f). Consequently,
it suffices to prove (4.9) and (4.10) in the case k = 0. To this end, we apply Jensen’s

inequality to the identity (4.7) to obtain
P
27%b <£> ‘ dx> dz
<

107 5y = IIfIIZ,Rz/RIX(Z)I”</RZ

= 112 a1 ol X @1

and (4.9) follows. Inequality (4.10) for 1/p < s < 1 is an immediate consequence of
(4.4), while the case (s, p) = (%, 2) follows from Lemma 4.3. O

For more precise results, we shall show the effect of taking partial derivatives of
Ex( f) on the index k and on the function f. To this end, we recall an integration-by-
parts formula for tensors. Given two d-dimensional tensors S and 7', let S : T denote
the usual tensor contraction

ST = Sijiyig Tiyig-ig
FoC M
H A
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where we are using Einstein summation notation. Given a d-dimensional tensor S with
d > 0and k > 0, let D¥S denote the k-th derivative tensor of S:

(DkS)i1i2~~id+k = iy Oigyn +* Oigyy Sivin-ig»
and let div S denote the (d — 1)-dimensional tensor given by
(div 8)ijigeig_y = 0jSijin-ig_yj>
while divk S, 0 < k < d, denotes k applications of div to S. With this notation, we

have the following integration by parts formula for symmetric, smooth, compactly
supported tensors S and T of dimension d and 0 < k < d, respectively:

/S:Dd_dex:(—l)d_k/ div?i %S : T dx.
R2 R2

With this notation in hand, we have the following identity that shows that the derivatives
of & (f) are linear combinations of liftings of derivatives of f.

Lemma4.6 Let x € C°(R), b € C* (R?), and k € Ny be given. For all a € Ng and
f € CX(R?), there holds

D &(f)(x.2)
a3

X ) Xi ()Ml 0) / Bia(y) : (D™XI00) £y (x4 2y) dy
i=0 R?

.11

for suitable x; € CX(R) and max{|a| — i — k, O}-dimensional tensors Byiy with
entries in C2° (R?).

Proof Let f € CX*° (R?) and let g be defined as in (4.6). For integers m > k, there
holds

k
0 gk, 2) = ) cim? /Rz b(Y)(D" T f)(x +zy) : y=" 7 dy
j=0
k . .
=2 cwni /Rz(b(y)y@”") - DY (D" ) (x + 2y} dy
j=0

k
= [ A e div T iy ) e 0+ 2 dy
=0

: /IR Bun(y): (D" )+ 2) dy,

@ Springer
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where ¢y, are suitable constants, y®" is the tensor product of n copies of y, and D,
denotes the derivative operator with respect to y. For 0 < m < k, there holds

m
0 gu(x.2) = ) cun;2 /Rz b(Y)(D" I f)x +2y) 1y dy
=0

I
WE

S /]R Y ) DY+ 2] dy
=0

~
Il

= /R i —i(—l)m*fckmj div" /(b y®" T b f(x +zy)dy
j=0
ko /R Bin(y) ¢ flx+ ) dy.
Consequently, there holds
8" gr(x, 2) = gmextiomd) /]R Bin(y) - (DA (x4 2y)dy Vm € No.

Now let 8 € N(Q) with |8| > k. Then, there holds

DEgi(x,2) =2 /]R i b(y)(DP f)(x 4+ zy)dy = /]R i b(y)DE{(DPP f)(x + zy)} dy

= (-1 /R (D)) (DF P f)(x +2y) dy = /]R B ) +zy)dy.

where Df = Bfl' 3)’?22 and B € Ng is any fixed multi-index such that | B| = k and
B—Be N%. Similar arguments show that for g € N(z) with |B| < k, there holds

D gi(x. 2) = (~1)FIE- 18 / (D)) flx +2) dy
R

—. —IBI /2 Big(y) f(x +zy)dy.
R
Collecting results, for any o € Ng, there holds
D% gy (x, z) = ZMtlelO) / Bio(y) 1 (D™ R0 £y (x4 2y) dy
R2

for suitable max{|«| —k, O}-dimensional tensors By, with entries in C2° (R?). Equality
(4.11) now follows from the product rule. O

FolCT
H_ A
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4.3 Proof of Theorem 4.1

Letk € No, 1 < p < o0, and f € C®(R?). Fora € N3, (4.11) gives

ID“E ()l p s < > Emax(iti—tat,0) X+ Drig1 (D Pl e
0<i<a3z
peNz
|B|l=max{la|—k—i,0}
(4.12)

where x; € C2°(R) and byip € C° (IR?) are suitable functions depending on x and b
respectively and 0 < o < 1.
Step 1: L? bounds on derivatives. For k +i — || > 0 (so that |3| = 0), (4.9) gives

| Emaxk-+i—lal,04[Xi » brip1(DP Dlprs

= 1€k+i-tal i rip) (N g3 Sxbkop 111 g2

For k +i — |o| < O (so that || > k and |B| > 1), there exists j € {1, 2} such that
Bj > 1, and so we apply (4.8) to obtain

|€olxi brig1(DF ), g3
= €0l xi, bripl(d; DP ¢ PNy rs Sxbkp ”Dﬁfejful—;pyﬂ%z

= ||f|||a|,k,i,%’p’R2'
Consequently, for all f € C2° (Rz), there holds
Ve p s Sy 1yt pgee m€ et LE+2,0). @13)

By density, (4.13) holds for all f € W"—k=1/P.P(R?),

Step 2: The case s > k + 1. Inequality (4.3) for real s > k + 1 with (s, p) € Ax
follows from (4.13) using a standard interpolation argument.

Step 3: The case k + 1/p < s <k + 1. Fors = k 4+ o, where 1/p <o < 1 or
(o, p) = (1/2,2), we take |o| = k in (4.12) and apply (4.10) to obtain

EHls pry = D €K bigd (Dl pms Sevkops 1ot g

O0<i<as

which completes the proof. O

5 Weighted LP Continuity of Whole-Space Operators

In the previous section in Theorem 4.1, we established that the lifting operators & are

continuous from W5 —%=1/p.P(R2) to W“”’(Ri) provided that s > k + 1/p. We now
Elol:;ﬂ

@ Springer Lﬁjog



Foundations of Computational Mathematics

turn to the stability of the operator & with respect to lower-order Sobolev spaces. In
particular, we seek to obtain bounds on ||£‘k(f)||571,,,@1 for0 <s < k+ 1/p, where
O = (0, oo)3 D K is the first octant. It turns out that one suitable space for the lifted
function f is a weighted L? space. Let Q1 = (0, 00)> D T denote the first quadrant
and let p € L>(Q)) be a weight function that satisfying p > 0 almost everywhere.
Then, for 1 < p < oo, define

LP(Qy; pdx) := {f measurable : /

Qi

Lf )P p(x)dx < oo}. (5.1)

The weight that will appear in our estimates are powers of w1 (3.7) extended to all of
R? by

w1(x) = min{x;, 1}  Vx € R2. (5.2)

In particular, the main result of this section is as follows.

Theorem 5.1 Let x € C°(R) and b € Cé?o(Rz) be as in Theorem 4.1 and k € Nq be
given. For 1 < p <ooand(0 <s <k + 1/p, there holds

1

~ *+k—s 1 e —.
1E(H ls.p.0r Sabksp lof  Fllpo,  VF € LP(Q1. 0 7 dx). (53)

The proof proceeds in several steps and appears in Sect. 5.3.

5.1 Auxiliary Results

We begin by recording a number of technical lemmas. Throughout the rest of the
section we use the notation f,, fdx := 0|7 [, fdx.

Lemma5.2 For1l < p <ooand 0 < h < oo, there holds

00 x+h
/ ][ F()dy
0 X

Proof The result follows on applying Holder’s inequality and changing the order of
integration:

|1 X+h
/0 'E/ f(y)ydy

P 00
dx < hP~! / | f(x)|Pdx VY f measurable. (5.4)
0

p 00 x+h
dr < hP—Z/ / F )P dy
0 x

) h ry ooy
_ - (/ / +/ / )If(y)l”dxdy-
0 0 h y—h

m}

FolCT
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Lemma5.3 Letl < p <00,0<s < 1,and0 < a < oo. Then, there holds

|f &) = FODIP / 1—s 1
o —dxdy 55 XUOP oy Pdx Y f e Wil (0, a)).
/(0,a)2 |.X _ y|1+sp S, P 0.0) loc
(5.5)
Proof The proof follows the same arguments as those used in the proof of [44, Theorem

1.28], which considers the case a = co. The full details are given below.
By symmetry, there holds

lf(x) — fnIP a ra|fx)— f(y)P
/<o,a>z RS / / Td d

=2, | | 0w

Performing a change of variable and applying Hardy’s inequality [44, Theorem 1.3],

we obtain
pd :[_));] a—y 1 X , dT P d~
< - T +7)|—
x < /O REe /Olf(y JI— )

“ 1
/y (x — y)1+sp
LR
~ 5P ) Fl+G6=Dp

x=ity 1 /“ | £/ (x)|P
y

dxdy

dx

sP m
Thus,
JRREACES IRty Ly T
©Oap |x—ylttsp T y (x=yre=bp Y
_ 2 (e [T 1 e
=5 Jo OV Jy Gy D

2 a
= —/ AP 1) P,
sP(L=s5)p Jo

which completes the proof. O

Lemma54 Letl < p <ooand0 <s < 1/p. Forall f € L?(Qy; “)1 P dx), there
holds

X1tz px2tz
/Ql/ / / 2+Splf(y)ll’ dyrdyrdzdx <, ||a)1 f||p o 506
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Proof Applying (5.4) and using that 0 < z < 2 gives

o0 rx2+Z X1+2 o0 rx1+z
/ ][ ( / If(y)l”dy1> dysdxz <, / / 1 O, x)1? dyy da.
0 p) X1 0 X1

Moreover, there holds

X1+z
/ // 1+Sp|f(y1,X2)|pdy1dzdx1
X142 1
=L o xz>|P/ i dedvidn
yi—X1

X142
<o / / (1 — 31~ 1f G, 3P dyp doy
0 X1

2 Y1 [e%e] 1
- (/ / +/ / ) O = xl)isplf()’la x2)|p dx; dy;
0 Jo 2 yi—2

o0
<o / min{y1, 2} | £ (y1. x2)|” dy1.
0

The result now follows on integrating over 0 < x» < o0. O

Lemma5.5 Let x € C(R)andb € C°°(R2) be as in Theorem4.1 and 1 < p < oo.
Letk e Noand f € LP(Qy; a)1+ P dx). For0 <t < 2, there holds

t
/ / lgk(x, )17 dx dz Spok p / minf{xy, ()P Foo) P dx,  (5.7)
0 JOQ, Q)

where gy is defined in (4.6).

Proof Letk € Ng,1 < p < oo,and f € LP(Qy; a)}—’_kp dx) be given. Let z € (0, 1).
Then, forx € Q; and y € (0, 1)2, there holds z < min{x; + zy1, t}/y1, and so

e (x, 2)] < /0 mingx1 + 2y, 1y b ILF e + 23] dy
(0,1)2

u=x+zy [Xx2+z pxi+z X
ka][ ][ minuy, 1)1 f )| duy dus.

Integrating over x, € (0, co) and applying (5.4) to the function

B X142
Fu; x1,2) = ][ &Y f ()| duy,  where @ () := min{uy, 1}*
X

1
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and using that 0 < z < 7 < 2 gives

00 o] X2+2 14
/ |gk(x,z)|”dxzs/ (f f(uz;xl,Z)de) dxs
0 0 X2
00 X1+z2 14
52”"/ (7[ |<cb’ff)(u1,xz)|du1) dx,.
0 X1

Hardy’s inequality [40, Theorem 327] then shows that, for 0 < x» < oo, there holds

t X1+2 K v=x147 X1+t
/()(f |<w1f>(u1,xz)|du1) d;'=4 / (][ @K )y, xz)ldu1> dv
xq

X1+t &
Sp / [(@7] /), x2)|? dv,
X

1

and so

t o0 o0 X1+t ‘
/ / g (x, 217 dx2 dz Spsp / / 1@ F) (v, x2)1P dv dxa.
0 JO 0 X1

Integrating over x; and changing the order of integration gives

t X1+
/0 / |8k (x, 2)|7 dx dz <bkp/ / (@K ) (v, x2)|P dvdx
- / (/ / +/ / > |(L~u]ff)(u’ x2)|? dxy dvdxs
0 0 J0 t v—t

< [ o) gl vt
Qi
which completes the proof. O

5.2 Continuity of Eo

In this section, we prove Theorem 5.1 in the case k = 0. We will utilize the following
equivalent norm on W* 7 (Oy).

Lemma 5.6 Forall p € (1,00), s € (0, 1), and f € WSP(O)), there holds

3 1
+t1 - ])
117, 0, ~ sp||f||pol+z/o/o'f(x SO e 68
i=1 1

Proof Let f € WS-P(O;). Thanks to [44, Theorem 6.38], there holds

3 e
|f(x +1e) — f(x)|P
|f|3 .2.01 s,p Z~/0 /(91 t1+sp dx dt’
i=1
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and (5.8) now follows on noting that

3

* |f(x +1e;) — f(x)|P
>/ /O L2 dxdr Sop If12 o
i=1 1

m}

We now estimate each term in (5.8). The first result deals with terms involving
translations in the first two coordinate directions.

Lemma5.7 Let y € CX°(R) andb € CSO(R2) be as in Theorem4.1. For1 < p < oo,
0<s<1/p,and1 <i <2, there holds

1
dx dZdt<xbsp”w1 f”pQ1

(5.9)

t1+sp

/1/ 1E0(f)(x +te;, 2) — Eo(f)(x, 2|7
Oy

forall f e CX(Q)).

Proof Let1 < p < 00,0 <5 < 1/p,and f € C°(Q) be given. Let go(-, -) be as
in (4.6) with k = O and let g(x, z, t) := go(x + te;, 2) — go(x, 2).
Step 1. Let 1 <i < 2. We will show that

1g(x, z, )|P
/ / / ey 4xdzdr Shsp Ilw1 fllp o (5.10)

We begin by decomposing the above integral into two terms:

1g(x, z, )P

/ / / tl-Hp dx dzdt
1g(x, z, )P o |
(/ / Ll / / /Ql) Z‘I'HP dx dzdr =: At+B,.

Part (a): A;.Let0 <t < 1. Then, f(- +te;) — f(-) € LP(Q}, w1 dx) and
gx,z, 1) = /Q b(y) [f(x +zy+1e) — f(x+zy)]d
1

Integrating (5.7) over 0 < t < 1 then gives

/ / If(ertez)Ier If(x)lp
A Sb.p min{xp, dr dx.

tl+sp

For i = 1, there holds

oo rl Xy=x1+t bpee
/ /f‘”’lf(x+re1>|"dfdxl = // 1P| f (&, x2)|P d de
o Jo 0 Je
FoE'ﬂ
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1 % o
B (/ / +/ / )tSp|f(i1,X2)|Pdt dx;
0 Jo Lo

o0
.~ 1—s ~ -
§s,p/ min{xy, 1} 7P| f (X1, x2) |7 dX.
0

On the other hand, note that for any 0 < u < oo and f (x) = f(x +uey), there holds

/ / min{xy, 1}t~ TP F(x)|P dr dx;

(/ / / /) —YP|f(x)|l’dtdx1+/ / =P 4| F o) |P dit dixy

ss,p/o min{xl,l}l—”’|f<x)|1’dx1+/O 7% — Dy | F )l dag

o0
< / min{xy, 1 7P| F(xq, x2 + u)|P dx;.
0

1_
The bound A; Sps,p lwf f ||§ o, how follows on performing a change of variables
and collecting results.
Part (b): B;. Using identity (4.7), we obtain

Bz t) =2 2/ [b <u> —b(%)}f(y)dy
—3/R2f<ab>( )f(y)drdy

Writing z7218;b| = (z72|9;b|)!~1/P(z72|8;b|)!/7 and applying Holder’s inequality

gives
p—1
lg(xzt)l”<<// 2|8b|< >d dr)
<=L |8b|( ) 1o ayar
P!
S o [ 1 (22 ) oy

Integrating over x gives

x=x+re; tP 1
| e znpr S t,,+2// L |ab|< )If(y)lpdydxdr
Qi 2 Qi
<o [ [ (25 irorayas
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X1tz xX2+z2
Zp+2 / / / [f(»IF dysdy; dx.
Integrating over z and ¢, we obtain
tA=s)p—1 X142z  rxo+z
Nb‘"/ / T2 /Q / / | f(»)|” dy, dy; dx dz d¢
1 X
p(1=s)p-1 X1+ paote
=/ / Zp+2 / / / [ f )P dyy dy; dx de dz
X1tz x2+2
P dy,dy; dzd
p(l—s) /Ql/ / / 2+W,|f(y)| y2dy; dzdx.

Applying (5.6), we obtain B; Spsp ||a)l f ||p o which completes the proof of
(5.10).

Step 2. Since supp x C B(0, 2), there holds

B

| < <
[E0(f)(x +1€;,2) — En(N)(x, )P
//(91 T dx dzds
P
/// x@P B drdedr Sy, /Q mingxy, 1) £ (x) dx,
1
which completes the proof. O

The next result deals with the term involving a translation in the z-direction.

Lemma5.8 Let x € C°(R) andb € C*° (R?) be as in Theorem 4.1. For 1 < p < oo
and 0 < s < 1/p, there holds

L), 2+ 1) — Eo(f)(x, )P »
/ /O 1E0(f)(x, z :1)+sp 0N AP dzdr gy llo? f”p o, (5.11)
1

Sforall f € CX(Qy).

Proof Let1 < p < 00,0 <s < 1/p,and f € C°(Q) be given. Let go(-, -) be
defined as in (4.6).

Step 1. We will first show that

12 N
lgo(x,z +1) — go(x,2)|? )
/0 /o o) 1+sp dx dzds Spsp oy f”p,QI' (5.12)

Applying (5.5) gives

1 2 2
x,z+1)— golx,2)|? _
// 180¢ tl)ﬂpgo( ) dzdts/ 2P go(x, D)IP dz. (5.13)
0 0 0
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Applying identity (4.7), we obtain

0.80(x.2) = / o, {zzb (u)} F(y)dy
R? z
- —/ {2z3b (u> +2z7*Db (u) Sy — x)} f(y)dyr dy.
R2 Z Z

For y € (x1, x1 + 2) X (x2, x2 4 2), there holds

2273 (u> +z7*Db (g) “(y—x)

Z

<p 22,

where we used that b and Db are uniformly bounded. Since suppb C (0, 1)%, we
obtain

2 1 2 x2+z X1tz
/ 2179710, g0(x, )| dz Sp / / / |f (»)dy; dya dz.
0 0 X2 1

ZZ+SP

Inequality (5.12) now follows on integrating (5.13) over x € Q; and applying (5.6).
Step 2. For0 <t <2 and x € Q, we add and subtract x (z + t)go(x, t) to obtain

1E0(f)(x, z+1) — Eo(f)(x, 2P Sp lx@+D1P1g0(x, 24+ 1) — go(x, D)|P
+Hix@+1) — x@I71g0(x, 2)|7.

For the first term, we use that supp x € (—2, 2) and apply (5.12) to obtain

1
lgo(x, z4+1) — go(x, )|?
/0 /(91 Ix(z+ )P prE dx dz dr

L2 | _ P 1_
go(x,z+1) — go(x,1)] N
Sx,p/o /0 /Ql R dedzdr Spsp oy [, o,

For the second term, we again use that supp x € (—2,2) as well as the assumption
0<s<1/p:

1
Ix(z+1) — x@I? »
X, dx dz dr
/0/01 T lgo(x, 2)I Z
1 2 1 z+t

L[ Ll

0 Jo Jo, 1" 1),

1 2
5“’/ / / 117977 g0 (x, 2)|P dx dz dr
0 Jo JOu

2
5&17// lgo(x, z)|P dx dz.
0 JO

Inequality (5.11) now follows from (5.7). O
FoC'T
: H_h
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We now obtain Theorem 5.1 in the case k = 0.

Lemma5.9 Let x € C°(R) andb € C*° (R?) be as in Theorem 4.1. For 1 < p < oo
and 0 < s < 1/p, there holds

1

& »s 1—s
1€0(Olls,p.01 Sxbksp lof  fllpo Y €LP(Quo Fdx).  (5.14)

Proof The case s = 0 follows on taking + = 2 in (5.7) and using the fact that
||50(f)||p,01 Sx.p 12150, x(0,2), Where g is defined in (4.6). The case 0 < s < 1/p
follows from the norm equivalence (5.8), the bounds (5.9) and (5.11), and the density
of C2(Oy) in LP (O, 0, " dx). 0

5.3 Proof of Theorem 5.1

Letk e Ng, 1 < p < o0.

Step 1: s = 0. Taking ¢+ = 2 in (5.7) and using the fact that ||é~‘k(f)||1!,,(9l Sxip
llgkll p, 0, x(0,2), Where g is defined in (4.6), we obtain (5.3) in the case s = 0.
Step2:5 € {1,2,...,k}. Let f € C2°(Qy). Applying (4.11) with |a| < k, we obtain

ID°Ec(lop.0r = Y WksitallXi- bri)(Pllo.p.0; (5.15)

0<i<az

where x; € C°(R) and by; € C° (R?) are suitable functions depending on x and b
respectively and 0 < o < 1. Applying (5.3) with s = O then gives

1
~ —+k—s
|5k(f)|s,p,(91 S)(,b,k,x,p ”wlp f”p,Qly

where we used that k + i — || > k — m for 0 < i < «3. By density, (5.3) holds for
se€{0,1,...,k}.

Step 3: 0 < s < k. This case follows from interpolating Step 2 (see e.g. [23, Theorem
14.2.3] and [17, Theorem 5.4.1]).

Stepd:k <s <k+1/p.Letoc =s —ksothat0 < o < 1/p. Setting yiry(z) :=
Kti=lely, e €¢(Qy) so that supp Fixe € (—2,2) and applying (5.15) and (5.14)
then gives

- - 1_4
ID*E(Dllopor = Y ol Fikar bril(H)llo.p.0r Sybkop lof  fllp.oy-

0<i<a3

Inequality (5.3) now follows. O

6 Continuity of Fundamental Operators

In this section, we prove the continuity and interpolation properties of the four funda-
mental operators &' defined in (3.1), M}] defined in (3.8), Si.} defined in (3.25),
FoL g
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and R[ ] defined in (3.37). We begin with the properties of & (11 which rely on the
results of Sect. 4. Then, in Sect. 6.2, we show that the four fundamental operators
are continuous from Welghted L? spaces (5 1) to WP (K) for small s, which will be

useful for the analysis of /\/l kors S,E 2, and R - This section concludes with the proofs
of Lemmas 3.3, 3.7 and 3.11.

6.1 Proof of Lemma 3.1

Step 1: Continuity (3.4). Let b denote the extension by zero of b to R? and let x €
1

CX(R)with x = lon(—1, 1)andsupp x € (—2,2).Let f € Ws_k_F’p(T) be given

and let f denote a bounded extension f to R? satisfying || fll, , r2 Ss.p Wflls.p.15

see e.g. [34]. Thanks to the identity

(=DF
|

E(f) = E(Hlx,bI(f) onK, (6.1)

where Ej is defined in (4.1), inequality (3.4) immediately follows from (4.3) and the
smoothness of the mapping J; defined in (3.2).

Step 2: Trace property (3.3). Direct computation shows that (3.3) holds.

Step 3: Polynomial preservation. If f € Py(I"1), N € Ny, then direct inspection
reveals that 51£]](f) € Pnyi(K). O

6.2 Weighted Continuity

We begin with the continuity of €,£]].

Lemma6.1 Let b € C°(T), k € No, 1 < p < o0, and0 < s < k+ 1/p or
(s,p) = (k—i—%, 2). Then, forallty, t2, t3 € [0, 00) such thatt\+t,+t3 = k—s+1/p,
there holds

16 D lls.p ke Soksp o) @S el flpr VS € LP(T: (@] o0l dx). (6.2)

where w; are defined in (3.7).

Proof Lett =k —s+1/p.

Step 1: 1o = 13 = 0. Let b denote the extension by zero of b to R2 and let
x € C(R) with x = 1on(—1,1) and supp x € (—2,2). Let f € C°(T) be given
and let f denote the extension by zero of f to R?. Thanks to the identity (6.1), (6.2)
with tp, = t3 = 0 follows from (5.3), where we recall that w; is extended to R? by
(5.2), and a standard density argument. The case (s, p) = (k + %, 2) follows from a
similar argument using (4.3).

Step 2: t; = 13 = 0. We define transformations §; : 7 — T and &; : K — K as
follows:

F1(x) :== (x2,x1) and &q(x,z):=(x2,x1,2) (x,2) € K. (6.3)

Fo C 'ﬂ
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Then, a change of variable shows that 51£]](f) o®| = SIEI][b o §1](f o F1), and so

1 1
IEM s px = 1) 0 Bills,px Sootsp 104 (f 0 FDIpr = b fllp.7,

where we applied Step 1 in the middle inequality.

Step 3: 13 = 0. Applying Steps 1 and 2 and interpolating between L7 (T wllp dx) and
LP(T; a);‘"dx) (see e.g. [17, Theorem 5.4.1]) then gives (6.2).

Step 4: 11 = to = 0. We define transformations §, : 7T — T and &, : K — K as
follows:

F2(x) := (x2,1 —x1 —x2) and
Ba(x,2) =1 —x1 —x2—2,x1,2) (x,2) € K. (6.4)

A change of variables then gives S,E”(f) o0®y = SIEI][b o §21(f o F2), and so

1 1
IEM O px SHEM ) 0 Bally pk Sokrp I (F o FDNpr = s fllp1s

where we applied Step 1 in the middle inequality.

Step 5: General case. Applying Steps 3 and 4 and interpolating between
LP(T, (a)l a)2 2)Pdx) with ri,rp € Ry with r; +rp = ¢ and LP(T; w;pdx) (see
e.g. [17, Theorem 5.4.1]) gives (6.2). O

We now turn to the continuity of M,E”r

Lemma6.2 Let b € CX(T), k,r e No, 1 < p <00, and0 <s < k+1/p or
(s,p) = (k—i—%, 2). Then, forallty, t2, t3 € [0, 00) such thatt\+t,+t3 = k—s+1/p,
there holds

||M[1] (Ps.pk Spkrsp o) 0305 fllpr Vf € LP(T; () 03 0f)? dx),
(6.5)

where w; are defined in (3.7).

Proof Let0 <s <k+1/por(s, p) = (k+ %, 2). We proceed by induction on r. The
case r = 0 follows from (6.2), so assume that (6.5) holds for some r € Ny. Direction
computation gives

M (P ) = MU (e 2)

L (=2)F / f(x+zy) ( x2 >
= b —1)d
27 T ) (x2 +2y2)" \x2 + 2y Y
, (—)kFt f(x+zy)
=x— / »2b(y)

BT (x2 + zyp)"*1
= (k+ DM, [wabl(y ! ), 2),
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which leads to the following identity

MU () = ke + DM oabl@r ' f) + ML (). (6.6)

Consequently, there holds

ML (Dlls.pok < G+ DIMEL  [w2b1@5 " Pllsopk + IMEL N pok -
Applying (6.5) with 11 =1, 1o = t» + | and 13 = 13 gives

1 t
||Mk+1 r[CUZb (wz DIlis, p.K S,bk r,s,p ”w] w; 3f”p T = ”0)1 wz w33f”p,T,

1 t .
and so IIMU_H(f)HS,,,,K Shokorosp ||a)1 a)2 Jw3 fllp,r» which completes the
proof. O

It will be convenient to define a three-parameter version of S,Ell as follows:

Sit o (Hx. ) =2l g 0 Y0y x, 2) 6.7
fork, r,q € Np. This three-parameter version satisfies the same continuity properties
as M and MY

k k,r

Lemma6.3 Letb € C°(T), k,r,q € No, 1 < p <o00,and0 <s <k+1/por
(s,p) = (k—i—%, 2). Then, forallty, tr, t3 € [0, 00) such thatt\+t,+t3 = k—s+1/p,
there holds

ISE)  (Ollsp & Sokrgsp lOF @30S Flpr Y € LP(T; (@] 0F )P dx),
(6.8)
where w; are defined in (3.7).

Proof 1Let0 <s <k+1/por(s,p) = (k+ %, 2). We proceed by induction on g.
The case ¢ = 0 follows from (6.5), so assume that (6.8) holds for some g € Ny. Direct
computation gives

k,q+1(f)(x 7) — k,q(f)(x z)

_ 9 r(—z)k/ [ +2zy) ( X _1)

—R T Tb(y)(xl+Zyl)q(x2+Zy2)r X1+ 2z dy
g (—2)F! fx+zy)

= —/ylb(y)

x X
2 h (x1 + 2y (x2 4 zy2)"
= (k+ DS, Jo1bl@;! . 2),

which leads to the following identity

S () =k + DS, bl )+ S ). (6.9)
FoE'ﬂ
@Sprmger U_.:|0j



Foundations of Computational Mathematics

Consequently, there holds

IS 1 (Dlls.pk < K+ DISEY L Tl Hllspx + 1ML (Hlls.p.x
Applying (6.8) with 1y = 1 + 1, 70 = £ and 13 = 13 gives

1] 11—-1 t
||S]£+1 r q[a)1b](a)1 f)”s p.K <bk NN ”w - wzzw;f”p T = ”0)1 0)2 a)33f”p,T,

t
and so ||Squ+1(f)”r p.K Sbqu s,p ||CU1 wzw;f”pT O

6.3 Proof of Lemma 3.3

Step 1: Continuity (3.12). We first show that (3.12) holds with I'; replaced by T and
y12 replaced by y», where we recall that the edges of T are labeled as in Fig. 1b: For all

1 s—k P min{s— 7l,r},p
k,r € Ny, (s, p) € Ay U{(k+ 3 2)},and f € W (TYNW,, (T),
there holds
I fll2.7 if (s, p) = (k + 3,2),

1 1 1 < 1
”MI[C,l(f)”x,p,K Sb,k,r,x,p y2||f”s—k—%,p,T ifk+ 14 <§5= k +r+ p’

1 1
”f”s—k—}),p,T ifs>k+r+ —.
(6.10)

We proceed by induction on r. The case r = 0 follows from (3.4) and (6.2), so
assume that (6.10) holds for some r € Ny and all k € Ny and (s, p) € Ai. Letk € Ny,

1 s—k—1.p in{s—k—-—.r+1},p .
(s, p) € AyU{(k+5,2)},and f € W P’ (T)DW (T) be given.
Thanks to (6.6), there holds

ML (D) llspok < G+ DIMEY T02b1@3 P)lls.pok + IMEPlls.p.k-

Part(a): k+ 1/p <s <k + 1+ 1/p. Thanks to Theorem A.3, there holds a);] fe
LP(T; oS TP dx) and (A.9) and (A.7) give

H—l+l

_ 4L
ooy S o =Ny flpr ks IFIL

Consequently, we apply (6.5) to obtain

ol

k
—1
”Mk—H r[wa](wz f)”s,p,l( ,Sb,k,r,s,p ”wz f”p T Nk s,p y2”f”s—k—l,p,T .
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Part (b): k+1+1/p <s <k+r 4+ 1+ 1/p. Theorem A.3 shows thata)z_lf €

s—k—l—%,p

W,, (T) and (6.10) and (A.8) then give

1 —1 —1
”MI[H]rl r[(UZb](wz f)”s,p,K Sb,k,r,s,p sz f 1
’ V2 s—k—=1—2.p.T

< .
Sesr Mt

Part (¢): s > kK +r + 1 + 1/p. Thanks to Theorem A.3, there holds a)z_lf €
o f—1—L
w1 Py N W/, (T), and so we apply (6.10) and (A.7) to obtain

1 —1 —1
||Mk+1,r[w2b](w2 f)”s,p,K Sb,k,r,s,p ”wz f”s—k—l—%,p,T ,Sk,s,p ”f”x—k—%,p,T'

Inequality (6.10) for  + 1 now follows from the triangle inequality. The smoothness
of the mapping J; defined in (3.2) then gives (3.12).

Step 2: Trace properties (3.11a) and (3.11b). Direct computation shows that (3.11a)
and (3.11b) hold.

Step 3: Polynomial preservation. Suppose that f € Py(['1), N € Ny, satisfies
D{-fly12 =0for0 </ <r—1.Then, f oJ; = w,g for some g € Py_,(T), and so
M,[({]r(f) = xgé'lgl](g) € Pn+k(K) thanks to Lemma 3.1. O

6.4 Proof of Lemma 3.7

Step 1: Continuity (3.29). We first show that the following analogue of (3.29) holds:
Letb € C°(T), k,r € Ny, (s, p) € Ax U {(k +1/2,2)}, and € = {yy, »}. For all

s—k—1p
feWg, " (T),there holds

I fll2,r if (s, p) = (k + 3,2),

[1] <
”Sk’r(f)”s,p,l( ~b.k,r.s,p . r”f”s,k, otherwise. (611)

We proceed by induction on r. The case r = 0 follows from (3.4) and (6.2). Now
let r € Ny be given, and assume that (6.11) holds for all k € Ny and (s, p) €
A U{k+1/2,2)}.

Letk € No, (s, p) € Ay U{(k+1/2,2)}, and f € W,
applying (6.6) and (6.9) gives

—k—
1

1
pyp(T) be given. Then,
St = k4 DS ekl H+ S0

=" (k+ DML ol T+ ML @ )

=" [k + Dk + ML, w10l oyl p)

— 1 —r = —
+ MU o1b)@ T+ MY bl 0y )+ MY @),
Elo C ;ﬂ
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where S 1s defined in (6.7), and so

S (H =+ Dk + 2)8,&22 Jw1b](@1w2) ™! f)
+(k+ 1)( L Loblo] ) + S ,[wzb](wz_lf)) +8M.

Consequently, we obtain

2
IS (D llsopok S ISEL P spox + Y ISEY 0Bl @7 Hls.pk 612
i=l1 .

+ IS, lor1wab](@102) ™! Plls.p.k

Part (a). We first consider the terms ||$,£Jgl Lo (w_lf)||s pk»1 <i < 2. For

k+1/p <s < k+141/p, Theorem A.3 shows thatw ' f € L?(T; (k SEOPHL gy
and (A.9) and (A.8) gives

) 1
k73+1+p

1
—1 _ v —
e o Flpr =Ny Flpr Sk M1 = el 1y

for 1 <i < 2. Applying (6.8) then gives

IS, 0Bl llspk Sokrsp g Il 1 pr  1=i=2 (613)
. E
k—1—
Now lets > k + 1 + 1/p. Corollary A.4 shows that w;” f € W; (T) and

(A.11) then gives

< .
s—k—l—%,p,T ~Sk.s,p.r €,r+l||f”s7k7%,p,T

Inequality (6.13) then follows from (6. ll)

Part (b). We now turn to the term ||$k+2 r[a)la)zb]((a)lwz)_lf)||x,p,1<. Assume
first that k + 1/p < s < k+ 1 4 1/p. Theorem A.3 shows that (wjw)~ ' f €
LP(T; o' 0™ SEDPH vy and (A.9) and (A.8) give

k—s+1 + —1 -1 <
||a)1w2 a)l (©5) f”p,T ~k,s,p ellflls_k_%j = @,r+1”f”s—k—% T

Applying (6.8) then gives

1 _
IS¢ 010261 (@107 Nlspk Sokrsp gl 170 (614

FoE'ﬂ
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Now assume thatk+141/p < s < k+2+1/p. Thanks to Corollary A.4, a)2_1f €

—k—1-1,
W;I,r+l r p(T) and so Theorem A.3 gives (wjw;) "' f € LP(T; » (k ST gy ).

Inequalities (A.11b) and (A.8) then give

k— v+2+7

-1 -1
lor ooy flpr St |os'

<
s—k—l—[%,T ~k,s,p @yr+]||f||kk7% T

Applying (6.8) then gives (6.14).
Now assume that s > k + 2 4 1/p. Two applications of Corollary A.4 show that

—k—2—L,
(@)~ f € Wy,  ”"(T)and (A.11b) and (3.27) give

-1
o] f

ety o

Sk,s,p,r

s7k727%,T Yir sfkflfl yz r+1 sfkflfi,

<
Skos.p.r (WAl i A1
Py r 1 s—k—ﬁ, 2. r+1 s—k—

<
~k,s,p G,r+1”f”sfk71l T

Applying (6.11) then gives (6.14). Inequality (6.11) for r + 1 now follows from the
triangle inequality, (6.13), and (6.14). The smoothness of the mapping J; defined in
(3.2) then gives (3.29).

Step 2: Trace properties (3.28a) and (3.28b). Direct computation shows that (3.28a)
and (3.28b) hold.

Step 3: Polynomial preservation. Suppose that f € Py(I"1), N € Ny, satisfies
DL fly, = DL fly, = 0for0 <1 <r —1.Then, f oJ; = (w1w)" g for some

g € Pn—2-(T), and so S,E’ll(f) = (xlxz)’cf,El](g) € Pn+k(K) thanks to Lemma 3.1.
m}

6.5 Proof of Lemma 3.11

Step 1: Continuity (3.39). We first show that the following analogue of (3.39) holds:
Forb € C°(T), k,r € Ny, (s, p) € A, and € = {yy, y2, y3}, there holds

1 s—k—l,p
IR (Dlls.pk Sbkrsp e M1, VFEWe, "D, (6.15)

Part (a): Variants of S,Elﬂ We begin with a brief aside. Let €;; = {y;, y;} for 1 <
i < j < 3. Formally define the following analogue of S,E]E (3.25):

SN (e, 2) = (1= xy = x2 = ) EMN (@1w3) 7 f)(x, 2)
=St o F2)(f 0 §2) 0 Ba(x. 2), (x.2) €K,

where §, and &, are defined in (6.4). Note that for any s > 0 and r € Ny, there
holds f € Wg " (T) if and only if f o F> € W (T). Thanks to Lemma 3.7, for

12,7
FoE'ﬂ
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beCX(T), k,r € Ny, (s, p) € Ag, there holds

1
11,13 —5:P
ISEE D P ls.pk Sokras.p @B,rllflls_k_%ﬂ Vf e W@H L 7T, (6.16)

where we used that [|flipr ~ip If © Sallpr and ¢ L fll, 7 ~ep
¢, rIlf 082l , - Analogous arguments show that the operator

SV (), 2) 1= (a1 = x1 — x2 — ) EM (@2003) " f)(x, 2)
=S/ boF (f oy e ®, (x.2) (x.2) e K

satisfies the following for b € C°(T), k, r € Ny, (s, p) € Ag:

k—1

11,(23 pP
ISLF Dl Sokrissp e M1 VS € We, "), 6.17)

Part (b): Key identity for R,El]r Thanks to Lemma C.1, there holds

1 1 Carf ca2f ca3f
RI(f) = Groa(l = xp —x2 — )" Zé’,@( e+ —ww T —an a3>
' @ @) W) @3 Wy~ 03
aeNg
Cljfk
|a|>2
l (lj) ll(ij) (i) ol11,G))
= Y M Z(A ) Z (d @ N+ sy (w;!f)),
I<i<j<3 n=0
where A; := x1, Ay == x0, A3 ;=1 —x1 —xp — 2z, m(i, ]) is the lone element of

(1,2, 3)\{i, j}, d(”) and d(] " are suitable constants, and Sg. 1] 1. S[l]

l
Letb € CX(T), k,r € Ny, (s, p) € A, and [ € W (T) be given. For
any n € Ny and real + > 0, the mapping g > w!'g is contlnuous from Wep (T)

to Wl P . (T). Similarly, for any a € No, the mapping g — A“‘A zk3 g is continuous
from WS P (K) to WP (K). Consequently, (6.15) follows from the triangle inequality,
(3.10), (3.29), (6.16), and (6.17). The smoothness of the mapping J; (3.2) then gives
(3.39).
Step 2: Trace properties (3.38a) and (3.38b). Direct computation shows that (3.38a)
and (3.38b) hold.
Step 3: Polynomial preservation. Suppose that f € Py (I'1), N € Ny, satisfies
D{-flaT =0for0 <l <r—1.Then, foJ; = (wiwrw3)" g forsome g € Py_3,(T),
and so R,[i]r(f) = (x1x2(1 — x1 — x2 — z))’E,El](g) € Pn+k(K) thanks to Lemma
3.1. O
FolCTM
u O
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Appendix A: Properties of Spaces with Vanishing Traces

In this section, we show that smooth functions with vanishing traces are dense in the
space Wé’p (T) (3.9) and that functions in Wéf (T) (3.26) satisfy a Hardy inequality.

Appendix A.1 A Density Result

We begin with a density result for the spaces Wé’p (T) defined in Sect. 3.2.

LemmaA.1 Let € C {y1, y2, y3} and define

Co(T) =1 € Co(T) : U y Nsupp¢ = @
yee

Forl < p <ooand(0 < s < 00, the space CgO(T) is dense in Wé’p(T).

Proof Let € C {y|, 2, y3}and 1 < p < oo be given.

Step 1: 0 < s < 1/p. The space C2°(T) € CZ(T) is dense in WP (T) = W (T)
(see e.g. [38, Theorem 1.4.5.2]).

Step2:s > 1/pand € = {y;}. Lets = m + o withm € Ng and o € [0, 1), and
let f € Wé’p (T). For n € N, we construct a partition of unity on 7 as follows. Let

{a; }1.321 denote the vertices of T labeled counterclockwise as in Fig. 1b and define the
following sets:

1
Uy :=yx €T :dist(x, dT) > —}
2n

j J, 3 - ) )
Ui—1y(n—1)+) ZU]@ =B <ai+2 + ;ti, E) NT,1<j<n-1,1=<i<3,

3 _
Usp—3+k == B <ak, —) NT,1<k<3,
4n

where we use the notation B(x, r) to denote the ball of radius r centered at x. By
construction, 7 C U?io U;, and so there exists a partition of unity {¢; € C°U;) :
0 < i < 3n} satisfying

3n
> ¢i=1 and [[D*illcry Skn*. 0 <i <3n, VkeN.
i=0

We denote f; ;= ¢; f forO <i <3n—3andsetV; :=U;NT for0 <i < 3n.
Let {8,}?263 be arbitrary positive constants. The construction proceeds in several
parts.
Elol:;ﬂ
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Part (a). The function fy := ¢q f satisfies
[ 1
D' folau, = 0, 0<l<s——,
p
1 .
Il dist(-, 30) ™" D™ foll p.ty Smp 17 " 1 f llm,ptty < 00 ifop=1.
By [38, Theorem 1.4.5.2], there exists a ¢ € CZ°(Up) satistying

Il dist(-, alo) 7 D™ (fo — Yo)llp.uy fop =1,

do = llfo— + i
0 = l1fo — Volls. p.ts {0 otherwise.

Since f € W*P(T), we apply the same argumentto f; :=¢; fonV;, 1 <i <n—1,
to show that there exists a ¢; € C2°(V;) satisfying

I dist(-, dV)~7 D" (fi = ¥)llp,v; ifop =1,
0 otherwise.

8 = ILfi = Yills,p,vi + {

Part (b). Forn <i < 3n—2, f € W5P(V;), and so there exists a p; € COO(]_/i)
satistying || f —pills, p,v; < 8;n" 12 thanks to [38, Theorem 1.4.5.2]. Then, the function
Vi = ¢; p; satisfies

”fl - wi”s,p,V,— Ss,p ||¢i||m,oo,v,- “f — Pi ”m,p,Vi

m
+ Y ID'$ D" (f = p)lop.vi Ss.p B
=0

where we used [44, Theorem 6.3] to conclude that

_ 1— _
1D'$: D" (f = o) llop. v Ssop 1D il S D BN, 3, 1D (F = i)l pas

+ D' Billoo v ID™ 7 (f = i) llo.p.vs
<.

Moreover, when o p = 1, we have
w7 D" (fi = Yi)llpv, Sp n® ID™ (fi = Vi)l p,v, Ss.p Si-
Part (¢). For 3n — 1 < i < 3n, we will show that
lim | fills,p,v, =0 andifop =1, lim [lw;” D" fill,y, =0. (A.1)
n—00 ) n— 00
Thanks to [44, Theorem 6.3], there holds
m J m
fillspvr Sop D Y 1D Gilloo v IDT Fllpvs + Y 11D Billoo i ID™ ! Fllop. v,
j=01=0 =0

FolCT
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m
) 1- [+1 -l
+ Z 1D il 55 D 92, 3, 1D Fllp g

NSPZZn 1D £l +Z( S s

j=01=0

—1
+ 1 10" Flo ) -
Similar computations show that for o p = 1, there holds
m
oy D™ fill v, Ss.p D0 Iy D™ £l
Jj=0
Since V; N y1 # @, Poincaré’s inequality gives

ID" fllpv: Srp 0 S ID" flopy, 0<r <m,

and so || fills, p,v; Ss.p D™ flo,p,v;- Moreover, if o p = 1, then D" f e Wé’p(Vi)
for 1 < j < m, and so [24, Theorem 5.2], [35, Theorem 3.2], and a standard scaling
argument give

- —j 1 1 1 1
lwy 7 D" fllpy, S0 Moy D™ fllpw, Spn” HID™" T flLy,
Ss,p n JlD fla,p,v,-,
andso [, D™ fillp.v, Ss.p D™ flo,p,v;- Equality (A.1) now follows from that fact

that |[D" fl, , v, — 0asn — oosince |V;| — Oasn — oo.
Part (d). Let € > 0 be given. First, choose n large enough so that

3n 3 B .
s> Z I fills,p.vi + Yits il 7 DEfillpy, ifop=1,
2 i=3n—1 o 0 otherwise.

Then, for {§; }3" ~2 chosen sufficiently small, we construct ; as above so that

€
27 0 otherwise.

3n-2 an . .
L1 lor? DM (fi = Yillpy, ifop =1,
>Z”fi_wi”spv,~+{zl 3n—1 1 i i)llp
=0

Let v; denote the extension of 1/; by zero to T\U;, 0 < i < 3n —2 and set ¥ j = 0for
3n — 1 < j < 3n. Then, &i € Cgo(T), and the function Y = Z?io 1]/‘1' then satisfies
Y € C&(T) and

el f =¥l 1 < Z 1fi = Wills.p.vs

Fo C 'ﬂ
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N {Z?io lor D" (fi = ¥l ifop=1,
0 otherwise,

S,s, p €
which shows that C3°(T) is dense in Wé’p(T)
Step 3: € = {2} or € = {y3}. If € = {2}, the density of C;5(T) in Wy, P(T)
follows from the fact that f € W;Z’p (T) if and only if f o 32 € W),1 (T), where
32_1 (x1,x2) = (1 —x1 —x2, x1) is the inverse of §, defined in (6.4). The case € = {y3}
follows from similar arguments using the mapping .
Step 4: |¢| = 2. Now let € = {y|, y2}. The density of CZ(T) in Wy (T) may
be shown using a similar construction to the case € = {y;}. In particular, we apply
the construction of Step 1 Part (a) for 0 < i < 2n — 2 and i = 3n, Part (b) for
2n — 1 <i <3n — 3, Part (c) for 3n — 2 <i < 3n — 1, and proceed analogously as
in Part (d). The remaining cases for |&| = 2 are proved along similar lines.
Step 5: € = {y1, 12, y3}. This case is a restatement of [38, Lemma 1.4.5.2]. O

Appendix B.2 Hardy Inequalities

First, we construct a bounded averaging operator.

Lemma A.2 There exists a linear operator 'H satisfying the following properties:
(i) H1 maps C(T) boundedly into C(T), and there holds

1 X1 1
Hi(f)x) = X_l/() f(u, x)du =/0 fluxy,xo)du  VxeT. (A2)

(ii) H1 maps W p(T) boundedly into WS p(T) and for all p € (1,00), s € [0, 00),
r € Ny, and QE e {d, {m}, {y1, 1} In partlcular

e O 7 Sopir erlFllpr Ve Wul(T). (A3

Proof Step 1: Continuity on C(T). Let f € C(T) and define H,(f) by (A.2).
Elementary arguments show that 7 (f) € C(T) with H1 (@) loo.T < 1@illoo.T-
Step 2: Extension to W p(T) when € = (). Let f € C®(T) and 1 < p < oo. For

o€ N%, there holds

X1

1 1
DYH(f)(x) =/0 u' (D* f)(uxy, x2) du = W/o u® (D f)(u, x2) du,
X
1 (A.4)

and so H(f) € C°°(T). Moreover, Hardy’s inequality [40, Theorem 327] gives

o » 1 1—x2
ID"Hi (DIl 7 =
0 Jo

p
dxy dxp

e
—/ | D f (u, x2)| du
X1.Jo

FoE'ﬂ
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p P 1 1—x2
5(;) L[ sl an ax.

Consequently, we obtain
IH (Olls.p.r Ss.p 1 fllspr Vf € C(T), s € No.

Since C°(T) is dense in W*P(T) [38, Theorem 1.4.5.2], H; can be continuously
extended to a linear operator from W*?(T) into W5-?(T) for s € Ny. The case for
non-integer s € (0, 0co) follows from interpolation.

Step 3: Inequality (A.3) when € = {y;}. The case r = 0 follows from Step 2, so
let r € N. Assume first the s < r and let f € C "(T). Equation A.4 shows that
Hi(f) € C;7(T). Moreover, fors =m+1/p,m € No, we apply Hardy’s inequality
[40, Theorem 327] to obtain

1—x2 X1 p
Ile”D“‘Hl(f)ll,,T_// < / —IID“f(u,xz)ldu> dx dry
X1 ur

< (L> oo, pD“fII (A5)
p—1

for all « € Ny with |a| = m. Thus, y1||H1(f)”s,p,T Ss.p y1||f||s,p,T for all f €
C;jf(T). By density (Lemma A.1), 7{; maps W;;{’,(T) boundedly into W;;f’r(T) for
all p e (1,00)and s € [0, r].

Now let s > r and f € W, /.(T). Step 2 and the arguments above show that
Hi(f) € WSP(T) N Wy, P(T), and so Hi(f) € Wy,l.(T) if s — 1/p ¢ Z with
J,]’,||7"l1_(f)IIS’P’T Ss.p yl,r”f”s,p,T' Now let s = m 4 1/p for some m € N. Then,
f € C(T) and thanks to Step 1 and (A.5), we have

7% am—r—lDr—lHl(f)

L am—r—1 nr—1
~Lgmor=lpr=ly
@ gyl

X2

S @ axm—r—l
2

~P
r.T

p.T

Consequently, H(f) € Wy, 5.(T) and (A.3) holds when & = {y;}.

Step 4: Inequality (A.3) when € = {yy, y»}. Againletr € N. Assume first thats < r.
As above, Hi(f) € C&Z(T) forany f € C°(T) by (A4), and fors = m + 1/p,
m € Np, Hardy’s inequality [40, Theorem 327] gives

—X2 X1 P
lleoy ”D“Hl(f)ll,,f _/ / (;/0 ID“f(M,m)Idu) dxp dxz

p p o
< <F> lw, " D fly, (A.6)

for all « € Ny with |a| = m. Inequality (A.3) now follows from Step 2 and (3.10). By

density, H1 maps W@ P(T) boundedly into W (K) forall p € (1, 00) ands € [0, r].
Fol:'ﬂ
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Now let s > r and f € Wy7(T). Arguing analogously as in Step 3, we have

Hi(f) € Wel(T)ifs — 4 ¢ Zwith ¢ IH1(Oly 7 Ss.p ¢, 11, - Moreover,
(A.6) gives

w7% 8m—r—lDr—1H1(f) - 7% am—r—lDr—lf
2 axm—r—l ~P 2 8xm_r_1
1 p.T 1 p.T
Consequently, 1 (f) € W (T) and (A.3) holds when € = {y1, y2}. O

Finally, we state and prove various versions of Hardy’s inequality.

TheoremA3 Let 1l < p <ocoand @ # € C {y|, y»}. For0 <s < ooandi € {1, 2}
such that y; € €, the mapping f +— wl-_]f is bounded (i) WST1-P(T) N Wé’p(T) to
WSP(T), and (ii) ng+ LP Ty 1o Wy " (T), and there holds

_ 1,
I, Flls,pr Sop 13 flls o7 Ve W TP (T) n WP (D), (A7)
P

—1 s+1.p
o't Ser it e vrew . (A8)

Additionally, for 0 < s < 1 and i € {1,2}, the mapping f +— ;" f is bounded
W)fl.’p(T) to LP(T), and there holds

107 Fllpr So.p I f s pr VS € WEP(T). (A.9)

Proof Let1 < p < oo be given.
Step 1: Inequalities (A.7) and (A.8) when € € {{y1}, {y1, y2}}. Thanks to the funda-
mental theorem of calculus, there holds

X
fx)= /0 01 /), x2)du = x1H1(01 f) VxeT,Vf e C)ff(T). (A.10)

By density (Lemma A.1), (A.10) holds fora.e.x € T forall f € Wé’p(T).LemmaA.Z
and (A.10) then show that the mapping f +— a)i_l f is bounded (i) from WS+1-7(T) N
Wé’p(T) to WP (T), and (ii) from Wé“’p(T) to W’ (T) provided that y; € €.
Inequalities (A.7) and (A.8) now follow from (A.3) and (A.10).

Step 2: Inequalities (A.7) and (A.8) when & = {2}. Note that f € WsTL.P(T) N
Wy (T) if and only if g := f o §1 € WSTLP(T) N Wy ”(T) and f € Wi (T) if
and only if g € W;l‘" 1(T), where § is defined in (6.3). Inequalities (A.7) and (A.8)
then follow from Step 1.

Step 3: Inequality (A.9) withi = 1. Now let 0 < s < 1. For sp = 1, (A.9) follows
immediately from the definition of the norm. In the case sp < 1, the proof of Theorem

FolCT
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1.4.4.4 in [38] gives
o fllpr < I1distC, 8T fllp.r Sop 1fllspr = I fllspr  Yf € WiP(T).

Finally, let sp > 1 and let f € Wy;”(T) be given. We denote by f € W*P(T)
any extension of f to R? satisfying ”f”s,p,Rz Ssop Wflls,p,7 (see e.g. [34] or [44,
Theorem 8.4]). Thanks to Theorem 6.79, inequality (6.58), and Remark 6.80 of [44],
there holds

N y s
|f (x1,%2) = £(0, x2)I” F
/ / 5P dxpdxi Ssp |f|f,p,R+xR'
0 JR X

Since fl,, = f|y1 = 0, we obtain

oy fllpr = loy*(f — FO, Dlpr <l (f = £O, DR, xr

Ss,p |f|s,p,R+ xR

and so |0y * fllp.7 Ss.p | flls, p, 7, which completes the proof of (A.9) fori = 1.
Step 4: Inequality (A.9) with i = 2. This can be reduced to the case i = 1 using
similar arguments as in Step 2 using the mapping §; defined in (6.3). O

CorollaryA4 Let 1 < p <o00,0<s <o00,1<i <2 andry,r € Ngwithr; > 1.
Then, for all f € W3, P(T) N WP (T), there holds 7' f € Wb _(T) N
W;Jprj (T) and

—1

w;

(A.11a)

BN o B 7] PR TP

[EL] Bl 9
-1

@;

S v 0 flg e < 3 Il . (AdLD)

Viir $.p

wherel < j <2, j#Ii.

Proof Let f € W;trll’f;l(T) N W)f;r rlip (T) be given. By definition, there holds 3; f €
Wy, 0 (T) N Wy, (T) since t,, = [0, 1]7. Thanks to identity (A.10), which was
shown in the proof of Theorem A.3 to hold for all f € W)},’p (T), the result fori = 1
follows from Lemma A.2. The case i = 2 can be reduced to the case i = 1 using
similar arguments as in the proof of Theorem A.3 using the mapping §1 (6.3). O

Appendix B: Equivalent Boundary Norm

We begin with a result that states necessary and sufficient conditions for a function
defined on two faces I'; UT'; C 0K to belong to W*:P(I'; UT;).

LemmaB.1 LetO<s <1, 1<p<oo,andl <i < j<4 Then, f e LP(I';UT))
satisfies f € W*P(['; UT;) if and only if

Elol:;ﬂ
@ Springer Lﬁjog



Foundations of Computational Mathematics

1) fi e WHP(I'y) and fj € WP (L),
(i) if s > 1/p, then fi|y,~j = fj|yij" and
(iii) if's = 1/p. then I} (f, f) < oo,

where Il-l;(~, -) is defined in (2.2). Additionally,

WA o, o WENE o ror, o= WL o, + 1AL
T g ifsp =1,
0 otherwise.

Proof Let0 <s < 1,1 < p <oo,and1 <i < j <4 be given.
Step 1: [ € WHP(I'; UT;) == (i-iii). Assume first that f € WSP(I; UT)).
Condition (i) follows from the definition of the norms, and in particular, || f; || i o T
I f; ||Y 2T = ||f||Y UL .If s > 1/p, then the trace theorem shows that f has a
well- deﬁned trace on y;;, and so (ii) holds.

We now show that condition (iii) is satisfied. There holds

e =y~ (F; x) — F (01 e)’ + (F; @) + F; (9] - e2)?

forall (x,y) e I'; xI'j,where F;; : T — I';and Fj; : T — T'; are defined in (2.1),
and so

| fi(x) — fj()’)lp
// x 2 dydx

", —_ f. P
/ / [ fi(x) = fi(»)I __dydx
-1 -1 -1 spE2
(B.1)

CFG @) = FR 001 e? + (F @0+ F7 o] e)?] 2

0’) oF — fioF;i(|P
va // | fi tj(u) fj jz(v)l dv du

ey — o2

where u, := (u1, —u»). Now let s = 1/p. Applying the triangle inequality in con-
junction with the above inequality, we obtain

/ o Fy) = fi o Fil 4 o, o

P
s dx Sp 17 ror-

Assume, for the moment, that the following holds.
X2
B(x) :=/ ————=dyz1 VxeT. (B.2)
T lx, —yl

Then, we obtain the following bound for Iilj’. (fi, fj) defined in (2.2):

o F, o F
s [ [ O gy e <, 1010,
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Fig.2 Annular regions of integration (red) in the proof of (B.2), where Z := (z1, z2/2) and &t := (u1, up/2)
(Color figure online)

Thus, f satisfies (iii) and we have shown that for all f € W*#(I'; U I";) there holds

1 lls.pursory Zs.p Wl p o (B.3)

We now turn to the proof of (B.2). First note that B is well-defined on the half plane
Ri = {x € R? : x5 > 0} and is a continuous function with B(x) > 0 forx € RZ, and
so it suffices to show (B.2) for x € T with x, < 1/4. Let (p, 0) € [0, 00) x [0, 27)
denote polar coordinates centered at x, and let Ay denote the following annulus
centered at x, (pictured in Fig.2):

—cos_l(%) <0< Zp ifx; <

<0 < %+Cosf1 (%) if x1 >

a y€R2:3%<p<2x2,
=

T
2
yeRZ:%<p<2x2,%

Then, one may readily verify that A, C T, and so

X2

{2\ [ 1 (2
B(x) > ——=—dy = xpcos = —dp = - -cos Z).
4, 1xr—yP? 3) [ p2 6 3

2
which completes the proof of (B.2).

Step 2: (i-iii)) = f € W%P(I'; UT";). Now assume that f € L”(I'; UT;) satisfies
(i—iii). Thanks to the triangle inequality, there holds

// |fi°Fij(x)_fj0Fji()’)|pdydx
)T

|x, — y|sp+2
< |ﬁ°Fij(x)_fj°Fji(x)|pd dx
~5S, P r)r |xr_y|sp+2 y
|fjoFji(x)— fjoF(yl
+/T/T |x—y|s1’+2 dydx. (B.4)
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where we used that |x, — y| > |[x — y|. To bound the second term, we perform a
simple change of variables.

\fj o Fji(x)—fj o F;;(»IP \f,(x) fimip
=TTy g
T [x—ylsp+2 TIF; L) —F7 () lsr+2

Sop WAL, o,

For the first term, there holds

dy dy * dp 2 _gp
o2 = v _ ylspt2 2 PRy Rl R
T X, — yI’? R2\B(x,,x2) lx, — y|*P x» P 4 sp

forall x € T, and so

// |fi°Fij(x)_fj°Fji(x)|pd ax < /Iflonj(x) fjonl(x)|P

lx, — ylsp+2 x7

Thanks to conditions (ii)-(iii), the function g = fio F;; — f o F j; belongs to W;z’p (T)
and applying (A.8) and the triangle inequality gives

/ |flOFlj(x) fjonl(x)l

7 x Sop LAY p.TUT;
X

and so

// |ﬁ°Fij(x)—fj0Fji()’)|pd

|xr _ ylsp+2 yd NS P |||f|||s ,p, ;UL

Then, the reverse inequality of (B.3) immediately follows from (B.1), and so f €
W#-P(I"; UT ) and the result follows. O

Onnoting that f € W*?(dK)ifandonlyif f € LP(dK) and f|r,ur; € WHP(T';U
['j)forall1 <i < j < 4since

| fi(x) — finIP N
k= 2 // llx—yl‘i”r2 dyde~p 3, 1 pror,

1<i,j<4 1<i<j<4

the following result is an immediate consequence of Lemma B.1.
CorollaryB.2 Let 0 < s < land 1 < p < oo. Then, f € LP(0K) satisfies f €
WS-P(dK) if and only if
@) fie WHP(Ty) for1 <i <4;
(1) if s > 1/p, then fily,; = fjly,; forall1 <i < j <4; and
(iii) ifs = 1/p, then Il.‘;’.(ﬁ, fj) <ooforalll <i < j <4
Additionally, (2.3) holds.
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Appendix C: Partial Fractions Decomposition

Lemma C.1 Forall B € Ng with |B| > 2, there holds

1 Ccl,l Ca,2 Ca’:; .
Bi P B > < + 7+ ) inT, (C.1)

o0 V0 0P
o) w5’ wy wend 1 @ 1 @3 h W3

aj<pj
le|>2

where {cq, ;} are suitable positive constants.

Proof We proceed by induction on |S]. The case || = 2 is trivially true. Assume
that (C.1) holds for all 8 € N with [8] = r > 2. Let € N} with |8] = r + L. If
Bj = 0 for some j € {1, 2, 3}, then (C.1) is trivially true, so assume that 8; > 0 for
1 < j < 3. Then,

1 1 1
B B P3 U Bi-1 P13l
W] Wy~ w3 @I2W3 @t wyt Wy

1 1 1 1
wiw) w1w3 wrw3 wxlglflwzﬂzflwg_gfl
1 1 1

+ + .
w/i?l wzﬁzwéﬁfl w/131 wnglwéh w{]] 71&)520)3/33

By assumption, each of the three terms above is of the form (C.1), which completes
the proof. O
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