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Abstract
On the reference tetrahedron K , we construct, for each k ∈ N0, a right inverse for
the trace operator u �→ (u, ∂nu, . . . , ∂knu)|∂K . The operator is stable as a mapping
from the trace space of Ws,p(K ) to Ws,p(K ) for all p ∈ (1,∞) and s ∈ (k +
1/p,∞). Moreover, if the data is the trace of a polynomial of degree N ∈ N0, then
the resulting lifting is a polynomial of degree N . One consequence of the analysis is
a novel characterization for the range of the trace operator.

Keywords Trace lifting · Polynomial extension · Polynomial lifting

Mathematics Subject Classification 46E35 · 65N30

1 Introduction

The numerical analysis of high-order finite element and spectral element methods
heavily rely on the existence of stable polynomial liftings—bounded operators map-
ping suitable piecewise polynomials on the boundary of the element to polynomials
defined over the entire element. A number of operators have been constructed on the
reference triangle and square, beginningwith the pioneeringwork ofBabuška et al. [14,

15]. Their lifting maps H
1
2 (∂E) boundedly into H1(E), where E is either a suitable

reference triangle or square, with the additional property that if the datum is continu-
ous and its restriction to each edge is a polynomial of degree N ≥ 0, then the lifting is
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a polynomial of degree N . Other constructions for continuous piecewise polynomials

on ∂E are stable from a discrete trace space to L2(E) [4], from L2(∂E) to H
1
2 (E)

[3], from W 1− 1
p ,p

(∂E) to W 1,p(E) for 1 < p < ∞ [45], and from Ws− 1
p ,p

(∂E) to
Ws,p(E) for s ≥ 1 and 1 < p < ∞ [48]. Liftings for other types of traces are also
available; e.g. lifting the normal trace of H(div; E) [3], lifting the trace and normal
derivative simultaneously into H2(E) [2], and lifting an arbitrary number of normal
derivatives simultaneously into Ws,p(E) [48].

Many of the above results have been extended to three space dimensions. Muñoz-
Sola [46] generalized the construction of Babuška et al. [14, 15] to the tetrahedron,
while Belgacem [16] gave a different construction for the cube using orthogonal poly-
nomials. Commuting lifting operators for the spaces appearing in the deRhamcomplex
on tetrahedra [30–32] and hexahedra [27] have also been constructed. These operators,
among others, have been used extensively in a priori error analysis [7, 15, 36, 39, 45,
46], a posteriori error analysis [22, 25, 26, 37], the analysis of preconditioners [4, 5,
8, 9, 11, 14, 49], the analysis of sprectral element methods, particularly in weighted
Sobolev spaces [18–21], and in the stability analysis of mixed finite element meth-
ods [6, 13, 28, 29, 33, 43]. Nevertheless, two types of operators are notably missing
from the currently available results in three dimensions: (i) lifting operators stable in
L p-based Sobolev spaces, crucial in the analysis of high-order finite element methods
for nonlinear problems; and (ii) lifting operators for the simultaneous lifting of the
trace and normal derivative (and higher-order normal derivatives) which appear in
the analysis of fourth-order (and higher-order) problems and in the analysis of mixed
finite element methods for problems in electromagnetism and incompressible flow.

We address both of the above problems; namely, for each k ∈ N0, we construct
a right inverse for the trace operator u �→ (u, ∂nu, . . . , ∂knu)|∂K on the reference
tetrahedron K that is stable from the trace ofWs,p(K ) toWs,p(K ) for all p ∈ (1,∞)

and s ∈ (k + 1/p,∞). Additionally, if the data is the trace of a polynomial of degree
N ∈ N0, then the resulting lifting is a polynomial of degree N . A precise statement
appears at the end of Sect. 2, which also contains a characterization for the trace space
that appears to be novel and some potential applications of the results. These results
generalize our construction on the reference triangle [48] to the reference tetrahedron
and to Sobolev spaces with minimal regularity.

The remainder of the manuscript is organized as follows. In Sect. 3, we detail an
explicit construction of the lifting operator in a sequence of four steps, each consist-
ing of an intermediate single-face lifting operator. The remainder of the manuscript
is devoted to the analysis of the intermediate single-face operators: Sects. 4 and 5
characterize the continuity of a related operator defined on all of R3, while Sect. 6
concludes with the proofs of the continuity properties of the intermediate operators.

2 The Traces ofWs,q(K) Functions and Statement of Main Result

We begin by reviewing the regularity properties of the traces of a function u defined
on a tetrahedron. Here, we will work in the setting of Sobolev spaces defined on an
open Lipschitz domain O ⊆ R

d . Let s = m + σ be a nonnegative real number with
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m ∈ N0 and σ ∈ [0, 1). We denote by Ws,p(O), p ∈ [1,∞), the standard fractional
Sobolev(-Slobodeckij) space [1] equipped with norm defined by

‖v‖p
s,p,O :=

m∑

n=1

|v|pn,p,O +
{∑

|α|=m |Dαv|p
σ,p,O if σ > 0,

0 otherwise,

where the integer-valued seminorms and fractional seminorms are given by

|v|pn,p,O :=
∑

|α|=n

ˆ
O

|Dαv(x)|p dx and |v|p
σ,p,O :=

¨
O×O

|v(x) − v( y)|p
|x − y|σ p+d

dx d y,

with the usual modification for p = ∞. When s = 0, the Sobolev space W 0,p(O)

coincideswith the standardLebesque space L p(O), andwedenote the normby‖·‖p,O .
We also require fractional Sobolev spaces defined on domain boundaries. Given a
Ck,1, k ∈ N0, (d − 1)-dimensional manifold � ⊆ ∂O, the surface gradient D� is
well-defined a.e. on �, and we define Ws,p(�), 0 ≤ s ≤ k + 1, analogously (see e.g.
[47, §2.5.2]) with the norm

‖v‖p
s,p,� :=

∑

|β|≤m

ˆ
�

|Dβ
�v(x)|p dx +

∑

|β|=m

¨
�×�

|Dβ
�v(x) − Dβ

�v( y)|p
|x − y|σ p+d−1 dx d y,

where the sums are over multi-indices β ∈ N
d−1
0 . The seminorms | · |s,p,� are defined

similarly.

2.1 Elementary Trace Results

When the domain is the reference tetrahedron K := {(x, y, z) ∈ R
3 : 0 <

x, y, z, x + y + z < 1} depicted in Fig. 1a, the space Wr ,p(∂K ), 0 ≤ r < 1, may be
equipped with an equivalent norm that is more amenable to the analysis of traces. Let
�i and � j , 1 ≤ i < j ≤ 4, be two faces of K and let γi j = γ j i denote the shared edge
with vertices a and b. Then, the vertices of �i are denoted by a, b, and ci , while the
vertices of � j are denoted by a, b, and c j . Since �i and � j are both triangles, there
exist unique affine mappings Fi j : T → �i and F j i : T → � j from the reference
triangle T := {(x, y) ∈ R

2 : 0 < x, y, x + y < 1}, labeled as in Fig. 1b, satisfying

Fi j (0, 0) = a, Fi j (1, 0) = b, and Fi j (0, 1) = ci , (2.1a)

F j i (0, 0) = a, F j i (1, 0) = b, and F j i (0, 1) = c j , (2.1b)

and we define the following norm:

||| f |||pr ,p,∂K :=
4∑

i=1

‖ fi‖p
r ,p,�i

+
⎧
⎨

⎩

∑
1≤i< j≤4

I p
i j ( fi , f j ) if rp = 1,

0 otherwise,
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Fig. 1 Reference a tetrahedron and b triangle, where ei are the standard unit vectors. Note that the label
for �4 = {(x, y, z) ∈ K̄ : x + y + z = 1} is omitted in (a)

where fi denotes the restriction of f to �i and I p
i j ( f , g) is defined by the rule

I p
i j ( f , g) :=

ˆ
T

| f ◦ Fi j (x) − g ◦ F j i (x)|p dx
x2

. (2.2)

Thanks to Corollary B.2, |||·|||r ,p,∂K is an equivalent norm on Wr ,p(∂K ); i.e.

‖ f ‖r ,p,∂K ≈r ,p ||| f |||r ,p,∂K ∀ f ∈ Wr ,p(∂K ), (2.3)

and we shall use the two norms interchangeably with the common notation ‖ ·‖r ,p,∂K .
Here, and in what follows, we use the standard notation a �c b to indicate a ≤ Cb
where C is a constant depending only on c, and a ≈c b if a �c b and b �c a.

Now let u ∈ Ws,p(K ), 1 < p < ∞, s = m + σ > 1/p with m ∈ N0 and
σ ∈ [0, 1) (so that the trace operator is well-defined), be a function defined on the
reference tetrahedron. The presence of edges and corners on the boundary of K limits
the regularity of the trace of u. Nevertheless, we can iteratively apply the standard
Ws,p(K ) trace theorem (e.g. [41, Theorem 3.1] or [42, p. 208 Theorem 1]):Ws,p(K )

embeds continuously into Ws− 1
p ,p

(∂K ) for 1/p < s < 1 + 1/p. In particular, for
k ∈ N0, the kth-order derivative tensor given by

(Dku)i1i2...ik = ∂xi1
∂xi2

· · · ∂xik u
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satisfies Dku ∈ Ws−k,p(K ) ⊂ W 1+σ,p(K ), 0 ≤ k ≤ m − 1, and Dmu ∈ W σ,p(K );
thus, the traces satisfy

⎧
⎪⎪⎨

⎪⎪⎩

Dku|∂K ∈ W 1− 1
p ,p

(∂K ) for 0 ≤ k < s − 1
p ,

Dm−1u|∂K ∈ W 1+σ− 1
p ,p

(∂K ) if m ≥ 1 and σ p < 1,

Dmu|∂K ∈ W σ− 1
p ,p

(∂K ) if σ p > 1.

Additionally, the trace of Wm+ 1
2 ,2(R3), m ≥ 1, on the plane R

2 × {0} belongs to
Wm,2(R2) (see e.g. [1, Chapter 7] or [42, p. 20 Theorem 4]), and so standard arguments

show that the trace of Wm+ 1
2 ,2(K ) on the face �i , 1 ≤ i ≤ 4, belongs to Wm,2(�i ).

Thanks to the norm-equivalence (2.3), we arrive at the following conditions:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4∑

i=1

‖Dku‖pp,�i
< ∞ for 0 ≤ k < s − 1

p
,

4∑

i=1

‖Dm−1u‖p
1+σ− 1

p ,p,�i
< ∞ if m ≥ 1 and either σ p < 1 or (σ, p) =

(
1

2
, 2

)
,

4∑

i=1

‖Dmu‖p
σ− 1

p ,p,�i
< ∞ if σ p > 1,

∑

1≤i< j≤4

I p
i j (D

mu, Dmu) < ∞ if σ p = 2.

(2.4)

Remark 2.1 The case σ p = 1 for p �= 2, which is not included in conditions (2.4),

is beyond the scope of this paper since the trace of a Wm+ 1
p ,p

(R3), m ∈ N, function
on the plane R2 × {0} belongs to a Besov space, which cannot be identified with an
integer-order Sobolev space [42, p. 20 Theorem 4].

When s > 2/p, we obtain additional conditions since the trace of a Ws,p(K )

function on the edge γi j , 1 ≤ i < j ≤ 4 is well-defined. This can be seen from
standard arguments owing to the fact that the trace of Ws,p(R3) on the line R × {0}2
is well-defined. In particular, the traces of the k-th derivative tensor, 0 ≤ k < s−2/p,
on �i and � j , 1 ≤ i < j ≤ 4, must agree on the shared edge γi j :

Dku|�i (x) = Dku|� j (x) for a.e. x ∈ γi j and all 0 ≤ k < s − 2

p
, (2.5)

where (2.5) is to be interpreted in the trace sense.

2.2 Trace Operators

We now turn to the consequences of (2.4) and (2.5) for various trace operators.
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2.2.1 Zeroth-Order Operator

First consider the 0th-order “boundary-derivative” operator D0
i on �i , 1 ≤ i ≤ 4,

defined formally by the rule

D0
i ( f ) := f on �i . (2.6)

Then, (2.4) and (2.5) show that for u ∈ Ws,p(K ), (s, q) ∈ A0, where

Ak :=
{
(s, p) ∈ R

2 : 1 < p < ∞, (s − k)p > 1, and s − 1

p
/∈ Z if p �= 2

}
, k ∈ N0,

(2.7)

the trace f = u|∂K satisfies the following conditions:

1. Ws− 1
p ,p regularity on each face:

D0
i ( f ) ∈ Ws− 1

p ,p
(�i ), 1 ≤ i ≤ 4. (2.8)

2. Compatible traces along edges: For 1 ≤ i < j ≤ 4, there holds

D0
i ( f )|γi j − D0

j ( f )|γi j = 0 if sp > 2, (2.9a)

I p
i j (D

0
i ( f ),D

0
j ( f )) < ∞ if sp = 2. (2.9b)

If (s − n)p = 2 for some n ∈ N, then we obtain an additional condition since the
n-th derivative tensor satisfies I p

i j (D
nu, Dnu) < ∞ for 1 ≤ i < j ≤ 4. To describe

this condition we define the following notation for a d-dimensional tensor S and vector
v ∈ R

3:

v⊗0 · S := S and v⊗ j · S := Si1i2···idvi1vi2 · · · vi j , 1 ≤ j ≤ d.

In particular, for 1 ≤ i < j ≤ 4, denoting by ti j a unit vector tangent to γi j , we can
differentiate D0

i (u) and D0
j (u) in the direction ti j to obtain the following identity.

∂nD0
i (u)

∂tni j
= t⊗n

i j · Dnu|�i and
∂nD0

j (u)

∂tni j
= t⊗n

i j · Dnu|� j .

Consequently, the trace f = u|∂K also satisfies the following property:

3. Compatible tangential derivatives: For 1 ≤ i < j ≤ 4 and n ∈ N, there holds

I p
i j

(
∂nD0

i (u)

∂tni j
,
∂nD0

j (u)

∂tni j

)
< ∞ if (s − n)p = 2. (2.10)
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2.2.2 First-Order Operator

For (s, p) ∈ A1, we turn to the regularity of the trace of the gradient of u ∈ Ws,p(K ).
To this end, on each face �i , 1 ≤ i ≤ 4, let {τ i,1, τ i,2} be orthonormal vectors tangent
to �i and let ni denote the outward unit normal vector on �i . We define the 1st-order
“boundary-derivative” operator D1

i on �i , 1 ≤ i ≤ 4, by the rule

D1
i ( f , g) :=

2∑

j=1

∂ f

∂τ i, j
τ i, j + gni on �i , (2.11)

so that D1
i (u, ∂nu) = Du|�i . Again applying (2.4) and (2.5), we obtain analogues of

(2.8) and (2.9) stated below in (2.13) and (2.14) with k = 0. However, if (s−2)p > 2,
then the second derivative tensor has matching traces on edges (i.e. (2.5) holds with
k = 2). In particular, for 1 ≤ i < j ≤ 4, we define the vectors

bi j := ti j × ni and b j i := ti j × n j , (2.12)

where we recall that ti j is a unit vector tangent to γi j , so that on γi j , there holds

b j i · ∂D1
i (u, ∂nu)

∂bi j
= b j i · ∂Du

∂bi j
= ∂2u

∂bi j∂b j i
= bi j · ∂Du

∂b j i
= bi j · ∂D1

j (u, ∂nu)

∂b j i

in the sense of traces. As a consequence, the operatorD1
i satisfies the additional con-

dition (2.15) below with n = 0 thanks to (2.4) and (2.5). Finally, we can differentiate
in the direction tangent to each edge to obtain the analogue of (2.10) stated in (2.14b)
and (2.15b) below. To summarize, the traces f = u|∂K and g = ∂nu|∂K satisfy the
following for all (s, p) ∈ A1:

1. Ws−1− 1
p ,p regularity on each face:

D1
i ( f , g) ∈ Ws−1− 1

p ,p
(�i ), 1 ≤ i ≤ 4. (2.13)

2. Compatible traces along edges: For 1 ≤ i < j ≤ 4 and n ∈ N0, there holds

D1
i ( f , g)|γi j − D1

j ( f , g)|γi j = 0 if (s − 1)p > 2, (2.14a)

I p
i j

(
∂nD1

i ( f , g)

∂tni j
,
∂nD1

j ( f , g)

∂tni j

)
< ∞ if (s − n − 1)p = 2. (2.14b)

3. Compatible traces of higher derivatives along edges: For 1 ≤ i < j ≤ 4 and
n ∈ N0, there holds

b j i · ∂D1
i ( f , g)

∂bi j

∣∣∣∣∣
γi j

− bi j · ∂D1
j ( f , g)

∂b j i

∣∣∣∣∣
γi j

= 0 if (s − 2)p > 2,

(2.15a)
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I p
i j

(
b j i · ∂n+1D1

i ( f , g)

∂tni j∂bi j
,bi j · ∂n+1D1

j ( f , g)

∂tni j∂b j i

)
< ∞ if (s − n − 2)p = 2.

(2.15b)

Remark 2.2 For smooth enough functions, conditions (2.14a) and (2.15a)may be inter-
preted as the application of the vertex compatibility conditions for traces on the triangle
(see e.g. [48, eqs. (2.11a) and (2.12a)]) at every point on the edge γi j .

2.2.3 mth-Order Operator

We now turn to the general case of the trace of them-th derivative tensor of a function
u ∈ Ws,p(K ), where m ≥ 2 and (s, p) ∈ Am . Given a collection of functions F =
( f 0, f 1, . . . , f m) defined on ∂K , we define the m-th order “boundary-derivative”
operator Dm

i on �i , 1 ≤ i ≤ 4, by the rule

Dm
i (F) :=

∑

α∈N3
0|α|=m

∂α1+α2 f α3

∂τ
α1
i,1∂τ

α2
i,2

∑

φ∈Mi (α)

φ(1) ⊗ φ(2) ⊗ · · · ⊗ φ(m) on �i , (2.16)

where the set Mi (α) consists of the following mappings.

Mi (α) := {φ : {1, 2, . . . , |α|} → {τ i,1, τ i,2,ni } s.t. |φ−1(τ i, j )| = α j , j = 1, 2},

where we recall that {τ i,1, τ i,2} are orthonormal vectors tangent to �i . For notational
convenience, we set

Dl
i (F) := Dl

i ( f
0, f 1, . . . , f l), 0 ≤ l < m.

Then, one may readily verify thatDm
i (u, ∂nu, . . . , ∂mn u) = Dmu on �i . Let f l = ∂ lnu

on ∂K . As before, we obtain Ws−m− 1
p ,p regularity of Dm

i (F) (2.17) below on each
face thanks to (2.4) and the edge compatibility conditions (2.18) below with l = 0
from (2.5).

As was the case with the first-order operator, there are additional edge compatibility
conditions. In particular, if (s − m − l)p > 0 for some 1 ≤ l ≤ m, then (2.5) shows
that the (m + l)th derivative tensor has matching traces on edges. Some components
of the (m + l)th derivative tensor can be expressed in terms of Dm

l (F). In particular,
on the edge γi j , 1 ≤ i < j ≤ 4, there holds

b⊗l
j i · ∂ lDm

i (F)

∂bli j
= b⊗l

j i · ∂ l Dmu

∂bli j
= b⊗l

j i ·
(
b⊗l
i j · Dm+lu

)

= b⊗l
i j ·

(
b⊗l
j i · Dm+lu

)
= b⊗l

i j · ∂ l Dmu

∂blj i
= b⊗l

i j · ∂ lDm
j (F)

∂blj i
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in the sense of traces, where we used symmetry of the derivative tensor Dm+lu.We can
also differentiate in the direction tangent to each edge to obtain similar conditions.
Consequently, Dm

i (F) satisfies (2.18) below. In summary, for m ∈ N0, the traces
F = (u, ∂nu, . . . , ∂mn u) satisfy the following for all (s, p) ∈ Am :

1. Ws−m− 1
p ,p regularity on each face:

Dm
i (F) ∈ Ws−m− 1

p ,p
(�i ), 1 ≤ i ≤ 4, (2.17)

where D0
i , D

1
i , and Dl

i , l ≥ 2, are defined in (2.6), (2.11), and (2.16).
2. Compatible traces along edges: For 1 ≤ i < j ≤ 4 and 0 ≤ l ≤ m and n ∈ N0,

there holds

b⊗l
j i · ∂ lDm

i (F)

∂bli j

∣∣∣∣∣
γi j

− b⊗l
i j · ∂ lDm

j (F)

∂blj i

∣∣∣∣∣
γi j

= 0 if (s − m − l)p > 2,

(2.18a)

I p
i j

(
b⊗l
j i · ∂ l+nDm

i (F)

∂tni j∂b
l
i j

,b⊗l
i j · ∂ l+nDm

j (F)

∂tni j∂b
l
j i

)
< ∞ if (s − m − l − n)p = 2.

(2.18b)

Remark 2.3 Aswas the case in Remark 2.2, condition (2.18a) is simply the application
of the vertex compatibility conditions for traces on the triangle [48, eq. (7.2)] at every
point on the edge γi j , provided that u is smooth enough.

2.3 The Trace Theorem on a Tetrahedron

Motivated by the conditions derived in the previous section, we define trace spaces as
follows. Given a set of indices S ⊆ {1, 2, 3, 4} with |S| ≥ 1, let �S := ∪i∈S�i . We
define the trace space on part of the boundary Trs,pk (�S) for k ∈ N0 and (s, p) ∈ Ak

as follows.

Trs,pk (�S) := {F = ( f 0, f 1, . . . , f k) ∈ L p(�S)k+1 : For 0 ≤ m ≤ k,

F satisfies (2.17) for i ∈ S and

(2.18) for i, j ∈ S with i < j, 0 ≤ l ≤ m and n ∈ N0},

123



Foundations of Computational Mathematics

equipped with the norm

‖( f 0, f 1, . . . , f k)‖p
Trs,pk ,�S

:=
k∑

m=0

∑

i∈S
‖ f mi ‖p

s−m− 1
p ,p,�i

+
∑

i, j∈S
i< j

0≤l≤k
n∈N0

⎧
⎨

⎩
I p
i j

(
b⊗l
j i · ∂l+nDk

i (F)

∂tni j ∂b
l
i j

,b⊗l
i j · ∂l+nDk

j (F)

∂tni j ∂b
l
j i

)
if (s − k − l − n)p = 2,

0 otherwise.

Note that the sum in the definition contains only finitely many nonzero terms, and
hence is well defined. When S = {1, 2, 3, 4}, we set Trs,pk (∂K ) := Trs,pk (�S) and
‖ · ‖Trs,pk ,∂K := ‖ · ‖Trs,pk ,�S . The following trace theorem is a consequence of the
discussion in the previous section.

Theorem 2.4 Let S ⊆ {1, 2, 3, 4}, k ∈ N0, and (s, p) ∈ Ak be given. Then, for every
u ∈ Ws,p(K ), the traces satisfy (u, ∂nu, . . . , ∂knu)|�S ∈ Trs,pk (�S) and

‖(u, ∂nu, . . . , ∂knu)‖Trs,pk ,�S �k,s,p ‖u‖s,p,K . (2.19)

2.4 The Trace of Polynomials

Given N ∈ N0, let PN (K ) denote the set of all polynomials of total degree at most
N , while P−M := {0} for M > 0. If u ∈ PN (K ), then u ∈ Ws,p(K ) for all s ≥ 0
and p ≥ 1. Consequently, for each k ∈ N0 and S ⊆ {1, 2, 3, 4}, the traces F =
(u, ∂nu, . . . , ∂knu)|�S ∈ Trs,pk (�S) for all (s, p) ∈ Ak . In particular, s may be taken
to be arbitrarily large in (2.18a). Thus, the traces satisfy

f mi ∈ PN−m(�i ), 0 ≤ m ≤ k, i ∈ S, (2.20a)

Dm
i (F)|γi j = Dm

j (F)|γi j , 0 ≤ m ≤ k, i, j ∈ S, i < j,

(2.20b)

b⊗l
j i · ∂ lDk

i (F)

∂bli j

∣∣∣∣∣
γi j

= b⊗l
i j · ∂ lDk

j (F)

∂blj i

∣∣∣∣∣
γi j

, 0 ≤ l ≤ k, i, j ∈ S, i < j .

(2.20c)

Note that we have not included the integral condition (2.18b) in the list (2.20) above.
The following lemma shows that if a tuple of functions defined on ∂K satisfy (2.20),
then (2.18b) is automatically satisfied.

Lemma 2.5 Let S ⊆ {1, 2, 3, 4} and k ∈ N0. If F : �S → R
k+1 satisfies (2.20), then

F ∈ Trs,pk (�S) for all (s, p) ∈ Ak .
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Proof Let (s, p) ∈ Ak , 0 ≤ l ≤ m ≤ k, be given. Thanks to (2.20b) and (2.20c), the
difference

Hi j := b⊗l
j i · ∂ lDm

i (F)

∂bli j
◦ Fi j − b⊗l

i j · ∂ lDm
j (F)

∂blj i
◦ F j i , on T , i, j ∈ S,

vanishes on the edge γ2 of the reference triangle T and Hi j has entries PN−m−l(T ).
Thus, Hi j = x2Gi j , where Gi j has entries in PN−m−l−1(T ). Consequently, for all
n ∈ N0, there holds

I p
i j

(
b⊗l
j i · ∂ l+nDm

i (F)

∂tni j∂b
l
i j

,b⊗l
i j · ∂ l+nDm

j (F)

∂tni j∂b
l
j i

)
≈p

ˆ
T

|∂nx1Hi j (x)|p dx
x2

=
ˆ
T

|∂nx1Gi j (x)|px p−1
2 dx,

which is finite since Gi j has polynomial entries. The inclusion F ∈ Trs,pk (�S) now
follows from (2.20). ��

2.5 Statement of theMain Result

The aim of the current work is to construct a right inverse Lk of the operator
u �→ (u, ∂nu, . . . , ∂knu)|∂K for each k ∈ N0 that is bounded from Trs,pk (∂K ) into
Ws,p(K ) for all (s, p) ∈ Ak and preserves polynomials in the following sense: if
F = ( f 0, f 1, . . . , f k) is the trace of some degree N polynomial, then Lk(F) is a
polynomial of degree N . In particular, the main result is as follows.

Theorem 2.6 Let k ∈ N0. There exists a linear operator

Lk :
⋃

(s,p)∈Ak

Trs,pk (∂K ) → L1(K )

satisfying the following properties: for all (s, p) ∈ Ak and F = ( f 0, f 1, . . . , f k) ∈
Trs,pk (∂K ), Lk(F) ∈ Ws,p(K ),

∂ lnLk(F)|∂K = f l , 0 ≤ l ≤ k, and ‖Lk(F)‖s,p,K �k,s,p ‖F‖Trs,pk ,∂K .

Moreover, if F is a piecewise polynomial of degree N ∈ N0 satisfying (2.20) with
S = {1, 2, 3, 4}, then Lk(F) ∈ PN (K ).

The construction of the lifting operator Lk in Theorem 2.6 is the focus of the next
section, and the proof of Theorem 2.6 appears in Sect. 3.5. An immediate consequence
is the following characterization of the range of the trace operator.

Corollary 2.7 For each k ∈ N0, the operator u �→ (u, ∂nu, . . . , ∂knu)|∂K is surjective
from Ws,p(K ) onto Trs,pk (∂K ) for all (s, p) ∈ Ak .
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2.6 Potential Applications

Theorem 2.6 has many potential applications, particularly in the analysis of high-
order finite element methods. For brevity, we discuss three applications. Firstly, the
extension operator may be used analogously to the constructions in [7, 15, 45] to
establish optimal (with respect to mesh size and polynomial degree) a priori error
estimates forWs,p-conforming finite element spaces for all p ∈ (1,∞) and s > 1/p.
Secondly, the lifting operator will be crucial to obtain bounds explicit in polynomial
degree for preconditioners for high-order finite element discretizations of fourth-order
(and higher-order) elliptic problems similar to H1-stable extensions for second-order
problems in 2D and 3D [14, 49] and H2-stable extensions for fourth-order problems
in 2D [8]. Finally, in a similar vein to [6, 10, 13, 29, 43], the extension operator may
be helpful in constructing a polynomial-preserving right inverse of the curl operator
that preserves some trace properties (e.g. vanishing tangential trace, vanishing trace,
etc.) and in proving discrete Friedrichs inequalities. These results have applications
to the stability, convergence theory, and preconditioning of high-order discretizations
of mixed and parameter-dependent problems (see also e.g. [11, 28, 33]).

3 Construction of the Lifting Operator

The construction of the lifting operator Lk , k ∈ N0, proceeds face-by-face using
similar techniques to [46, 48]. The main idea is to perform a sequence of liftings and
corrections using a fundamental convolution operator (see e.g. [12, eq. (4.2)], [14],
[18], [19, p. 56, eq. (2.1)], [47, §2.5.5]) and subsequent modifications to it. Given a
nonnegative integer k ∈ N0, a smooth compactly supported function b ∈ C∞

c (T ), and
a function f : T → R, we define the operator E [1]

k formally by the rule

E [1]
k ( f )(x, z) := (−z)k

k!
ˆ
T
b( y) f (x + z y) d y ∀(x, z) ∈ K , (3.1)

and we use the notation E [1]
k [b] when we want to make the dependence on b explicit.

Note that for (x, z) ∈ K and y ∈ T , there holds x+z y ∈ T , and so (3.1) iswell-defined
for e.g. f ∈ C∞(T̄ ). For functions f : �1 → R we define

E [1]
k ( f ) := E [1]

k ( f ◦ I1), where I1(x) := (x, 0) ∀x ∈ T . (3.2)

3.1 Lifting fromOne Face

The first result concerns the interpolation and continuity properties of E [1]
k .

Lemma 3.1 Let b ∈ C∞
c (T ), k ∈ N0, and (s, p) ∈ Ak . Then, for all f ∈

Ws−k− 1
p ,p

(�1), there holds

∂mn E [1]
k ( f )|�1 = δmk

(ˆ
T
b(x) dx

)
f , 0 ≤ m ≤ k, (3.3)
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and

‖E [1]
k ( f )‖s,p,K �b,k,s,p ‖ f ‖s−k− 1

p ,p,�1
. (3.4)

Moreover, if f ∈ PN (�1), N ∈ N0, then E [1]
k ( f ) ∈ PN+k(K ).

The proof appears in Sect. 6.1. We now construct a lifting operator from �1.

Lemma 3.2 Let b ∈ C∞
c (T ) with

´
T b(x) dx = 1 and k ∈ N0. We formally define the

following operators for F = ( f 0, f 1, . . . , f k) ∈ L p(�1)
k+1:

L[1]
0 (F) := E [1]

0 ( f 0), (3.5a)

L[1]
m (F) := E [1]

m ( f m − ∂mn L[1]
m−1(F)|�1), 1 ≤ m ≤ k. (3.5b)

Then, for all (s, p) ∈ Ak and F ∈ Trs,pk (�1), L[1]
k (F) is well-defined and there holds

∂mn L[1]
k (F)|�1 = f m, 0 ≤ m ≤ k, and ‖L[1]

k (F)‖s,p,K �b,k,s,p ‖F‖Trs,pk ,�1
.

(3.6)

Moreover, if f m ∈ PN−m(�1), 0 ≤ m ≤ k, for some N ∈ N0, thenL[1]
k (F) ∈ PN (K ).

Proof We proceed by induction on k. The case k = 0 follows immediately from
Lemma 3.1. Now assume that the lemma is true for some k ∈ N0 and let (s, p) ∈ Ak+1
and F ∈ Trs,pk+1(�1) be as in the statement of the lemma. Then,wemay apply the lemma

to F̃ = ( f 0, f 1, . . . , f k) ∈ Trs,pk (�1) to conclude that for 0 ≤ m ≤ k and

∂mn L[1]
k (F̃)|�1 = f m, 0 ≤ m ≤ k, and ‖L[1]

k (F̃)‖s,p,K �b,k,s,p ‖F̃‖Trs,pk ,�1
.

Thanks to the trace theorem (Theorem 2.4), there holds f k+1 − ∂k+1
n L[1]

k (F)|�1 ∈
Ws−k−1− 1

p ,p
(�1) with

‖ f k+1 − ∂k+1
n L[1]

k (F̃)‖s−k−1− 1
p ,p,�1

�b,k,s,p ‖F‖Trs,pk+1,�1
,

and so (3.6) follows from Lemma 3.1. Additionally, if F satisfies f m ∈ PN−m(�1),
0 ≤ m ≤ k + 1, for some N ∈ N0, then F̃ satisfies the same condition, where
the upper bound of m is restricted to k. Consequently, L[1]

k (F̃) ∈ PN (K ) and so

f k+1 − ∂k+1
n L[1]

k (F̃)|�1 ∈ PN−k−1(�1). Thus, L[1]
k+1(F) ∈ PN (K ) thanks to Lemma

3.1. ��

3.2 Lifting fromTwo Faces

We now seek a lifting operator from �2 that has zero trace on �1. The operator will
be a generalization of the form introduced in [46]. We first define an operator that lifts
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traces from �1 and has zero trace on �2, and then define the lifting operator from �2
in terms of this operator. To this end, denote by ωi the barycentric coordinates of T
defined as follows.

ωi (x) := xi , 1 ≤ i ≤ 2, and ω3(x) := 1 − x1 − x2 ∀x ∈ T . (3.7)

Given nonnegative integers k, r ∈ N0, a smooth compactly supported function b ∈
C∞
c (T ), and a function f : T → R, we define the operatorM[1]

k,r formally by the rule

M[1]
k,r ( f )(x, z) := xr2E [1]

k (ω−r
2 f )(x, z)

= xr2
(−z)k

k!
ˆ
T

b( y) f (x + z y)
(x2 + zy2)r

d y ∀(x, z) ∈ K .
(3.8)

Note that when r = 0, we have M[1]
k,0 = E [1]

k . For functions f : �1 → R, we again

abuse notation and set M[1]
k,r ( f ) := M[1]

k,r ( f ◦ I1).

The presence of the weight ω−r
2 in the operator M[1]

k,r means that derivatives of
f : �1 → R up to order r have to vanish on edge γ12 in an appropriate sense. To this
end, let s = m + σ with m ∈ N0 and σ ∈ [0, 1) and 1 < p < ∞. Given a face � j ,
1 ≤ j ≤ 4, and E a subset of the edges of � j , we define the following subspaces of
Ws,p(� j ) with vanishing traces on the edges in E:

Ws,p
E (� j ) :=

{
f ∈ Ws,p(� j ) : Dβ

� f |γ = 0 for all 0 ≤ |β| < s − 1

p
and γ ∈ E

and ‖ f ‖E s,p,T < ∞
}

, (3.9)

where the norm on Ws,p
E (� j ) is given by

‖ f ‖p
E s,p,� j

:= ‖ f ‖p
s,p,� j

+
{

‖ dist(·,⋃γ∈E γ )−σ Dm
� f ‖p

p,� j
if σ p = 1 and E �= ∅,

0 otherwise,

and we recall that D� is the surface gradient operator. When E consists of only one
edge γ , we set Ws,p

γ (� j ) := Ws,p
E (� j ) and ‖ f ‖γ s,p,� j

:= ‖ f ‖E s,p,� j
. One can

readily verify that the spaces Ws,p
E (� j ) are Banach spaces and that the following

relations hold:

Ws,p
E (� j ) =

⋂

γ∈E
Ws,p

γ (� j ) and ‖ f ‖E s,p,� j
≈s,p

∑

γ∈E
‖ f ‖γ s,p,� j

. (3.10)

Given a subset of edges E of the reference triangle T , we define the spaces Ws,p
E (T )

analogously.
The first result states the continuity properties of M[1]

k,r .
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Lemma 3.3 Let b ∈ C∞
c (T ), k, r ∈ N0, and (s, p) ∈ Ak . Then, for all

f ∈ Ws−k− 1
p ,p

(�1) ∩ W
min{s−k− 1

p ,r},p
γ12 (�1), there holds

2∂mn M[1]
k,r ( f )|�1 = δkm

(ˆ
T
b(x) dx

)
f , 0 ≤ m ≤ k, (3.11a)

∂
j
nM[1]

k,r ( f )|�2 = 0, 0 ≤ j < min

{
r , s − 1

p

}
, (3.11b)

and

‖M[1]
k,r ( f )‖s,p,K �b,k,r ,s,p

⎧
⎨

⎩
‖ f ‖

γ12 s−k− 1
p ,p,�1

if s ≤ k + r + 1
p ,

‖ f ‖s−k− 1
p ,p,�1

if s > k + r + 1
p .

(3.12)

Moreover, if f ∈ PN (�1), N ∈ N0, satisfies Dl
� f |γ12 = 0 for 0 ≤ l ≤ r − 1, then

M[1]
k,r ( f ) ∈ PN+k(K ).

The proof of Lemma 3.3 appears in Sect. 6.3. By mapping the other faces of K to �1
and mapping K onto itself in an appropriate fashion, we may define operators corre-
sponding to these faces. In particular, we define the following operator corresponding
to �2:

M[2]
k,r ( f )(x, z) := M[1]

k,r ( f ◦ I2) ◦ R12(x, z) ∀(x, z) ∈ K ,

where I2(x) := (x1, 0, x2) and R12(x, z) := (x1, z, x2) for all (x, z) ∈ K .
Thanks to the chain rule and the smoothness of the mappings I2 and R12, the

continuity and interpolation properties ofM[2]
k,r follow immediately from Lemma 3.3.

Corollary 3.4 Let b ∈ C∞
c (T ), k, r ∈ N0, and (s, p) ∈ Ak . Then, for all f ∈

Ws−k− 1
p ,p

(�2) ∩ W
min{s−k− 1

p ,r},p
γ12 (�2), there holds

∂mn M[2]
k,r ( f )|�2 = δkm

(ˆ
T
b(x) dx

)
f , 0 ≤ m ≤ k, (3.13a)

∂
j
nM[2]

k,r ( f )|�1 = 0, 0 ≤ j < min

{
r , s − 1

p

}
, (3.13b)

and

‖M[2]
k,r ( f )‖s,p,K �b,k,r ,s,p

⎧
⎨

⎩
‖ f ‖

γ12 s−k− 1
p ,p,�2

if s ≤ k + r + 1
p ,

‖ f ‖s−k− 1
p ,p,�2

if s > k + r + 1
p .

(3.14)

Moreover, if f ∈ PN (�2), N ∈ N0, satisfies Dl
� f |γ12 = 0 for 0 ≤ l ≤ r − 1, then

M[2]
k,r ( f ) ∈ PN+k(K ).

123



Foundations of Computational Mathematics

3.2.1 Regularity of Partially Vanishing Traces

The operator M[2]
k,r lifts traces from �2 to K and has zero trace on �1, which are the

properties we desired to correct the traces of L[1]
k on �2. However,M[2]

k,r acts on func-

tions belonging to Ws−k− 1
p ,p

(�2) ∩ W
min{s−k− 1

p ,r},p
γ12 (�2) rather than just functions

inWs−k− 1
p ,p

(�2). The main result of this section characterizes one scenario in which

traces belong to the spaceWs−k− 1
p ,p

(�2)∩W
min{s−k− 1

p ,r},p
γ12 (�2), and fortunately, we

will encounter exactly this scenario in our construction.
We have the following result which characterizes the regularity of the restriction of

a trace F ∈ Trs,pk (�i ∪ � j ) to � j when F vanishes on �i and the first l components
of F vanish on � j .

Lemma 3.5 Let k ∈ N0, (s, p) ∈ Ak , 1 ≤ l ≤ k, and 1 ≤ i, j ≤ 4 with i �= j be
given. Suppose that F = ( f 0, f 1, . . . , f k) ∈ Trs,pk (�i ∪ � j ) satisfies

(i) F = (0, 0, . . . , 0) on �i ;
(ii) f mj = 0 on � j for 0 ≤ m ≤ l − 1.

Then, there holds f lj ∈ Ws−l− 1
p ,p

(� j ) ∩ W
min{s−l− 1

p ,k+1},p
γi j (� j ) and

∥∥∥ f lj

∥∥∥
γi j s−l− 1

p ,p,� j
�k,s,p ‖F‖Trs,pk ,�i∪� j

if s − l ≤ k + 1 + 1

p
, (3.15a)

‖ f lj‖s−l− 1
p ,p,� j

�k,s,p ‖F‖Trs,pk ,�i∪� j
if s − l > k + 1 + 1

p
. (3.15b)

Proof Without loss of generality, assume that i < j . We first show that for α ∈ N
2
0

there holds

∂ |α| f lj
∂tα1i j ∂bα2

j i

∣∣∣∣∣
γi j

≡ 0 0 ≤ |α| < min

{
s − l − 2

p
, k + 1

}
, (3.16)

where bi j and b j i are defined in (2.12).
Step 1: 0 ≤ α2 ≤ k − l and |α| < min{s − l − 2/p, k + 1}. Manipulating definitions
shows that

∂α1+rDl
j (F)

∂tα1i j ∂bri j
= b⊗r

i j · ∂α1Dl+r
j (F)

∂tα1i j
0 ≤ r ≤ k − l, (3.17)

and so there holds

∂ |α| f lj
∂tα1i j ∂bα2

j i

= n⊗l
j · ∂ |α|Dl

j (F)

∂tα1i j ∂bα2
j i

= n⊗l
j · b⊗α2

j i · ∂α1D
l+α2
j (F)

∂tα1i j
,
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and using that Dl+α2
i (F)|�i = 0 by (i) gives

∂ |α| f lj
∂tα1i j ∂bα2

j i

◦ F j i = n⊗l
j · b⊗α2

j i ·
(

∂α1D
l+α2
j (F)

∂tα1i j
◦ F j i − ∂α1D

l+α2
i (F)

∂tα1i j
◦ Fi j

)

(3.18)

on T . Equality (3.16) now follows from (2.18a).
Step 2: k − l + 1 ≤ α2 ≤ k and |α| < min{s − l − 2/p, k + 1}. The same arguments
as in Step 1 show that

∂ |α| f lj
∂tα1i j ∂bα2

j i

= n⊗l
j · b⊗k−l

j i · ∂ |α|−k+lDk
j (F)

∂tα1i j ∂bα2−k+l
j i

.

By construction, there exist constants a1 and a2 such that n j = a1bi j + a2b j i , and so

∂ |α| f lj
∂tα1i j ∂bα2

j i

=
l∑

r=0

crb
⊗r
i j · b⊗k−r

ji · ∂ |α|−k+lDk
j (F)

∂tα1i j ∂b|α|−k+l
j i

=
l∑

r=0

crb
⊗r
i j · ∂ |α|+l−rDr

j (F)

∂tα1i j ∂bα2+l−r
ji

for some suitable constants {cr }lr=0. For 0 ≤ r ≤ l − 1, Dr
j (F) = 0 by (ii), and so

∂ |α| f lj
∂tα1i j ∂bα2

j i

= clb
⊗l
i j · ∂ |α|Dl

j (F)

∂tα1i j ∂bα2
j i

= clb
⊗l
i j · b⊗k−l

j i · ∂ |α|−k+lDk
j (F)

∂tα1i j ∂bα2−k+l
j i

= clb
⊗k−α2
i j · b⊗k−l

j i ·
(
b⊗α2−k+l
i j · ∂ |α|−k+lDk

j (F)

∂tα1i j ∂bα2−k+l
j i

)
.

Applying (i) then gives the following identity on T :

∂ |α| f lj
∂tα1i j ∂bα2

j i

◦ F j i = clb
⊗k−α2
i j · b⊗k−l

j i

·
(
b⊗α2−k+l
i j · ∂ |α|−k+lDk

j (F)

∂tα1i j ∂bα2−k+l
j i

◦ F j i − b⊗α2−k+l
j i · ∂ |α|−k+lDk

i (F)

∂tα1i j ∂bα2−k+l
i j

◦ Fi j

)
.

(3.19)

Equality (3.16) then follows from (2.18a).

Step 3: f lj ∈ Ws−l− 1
p ,p

(� j )∩W
min{s−l− 1

p ,k+1}p
γi j (� j ). For s−2/p /∈ Z, the inclusion

f lj ∈ Ws−l− 1
p ,p

(� j ) ∩ W
min{s−l− 1

p ,k+1},p
γi j (� j ) follows from (3.16), and (3.15a) and

(3.15b) are an immediate consequence of the definition of the ‖ · ‖Trs,pk ,�i∪� j
norm.
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For s − 2/p ∈ Z, and |α| = min{s − l − 2/p, k + 1}, there holds

ˆ
� j

∣∣∣∣∣
∂ |α| f lj

∂tα1i j ∂bα2
j i

(x)

∣∣∣∣∣

p
dx

dist(x, γi j )
≈p

ˆ
T

∣∣∣∣∣
∂ |α| f lj

∂tα1i j ∂bα2
j i

∣∣∣∣∣

p

◦ F j i (x)
dx
x2

, (3.20)

and so the inclusion f lj ∈ W
min{s−l− 1

p ,k+1},p
γi j (� j ) follows from (3.18), (3.19) and

(2.18b), while (3.15a) follows from the definition of the norm. ��

3.2.2 Construction of Lifting

In the following lemma, we construct the lifting operator L[2]
k in the same fashion as

L[1]
k (3.5), replacing the use of E [1]

m withM[2]
m,k+1.

Lemma 3.6 Let b ∈ C∞
c (T ) with

´
T b(x) dx = 1, k ∈ N0, and S = {1, 2}. For

F = ( f 0, f 1, . . . , f k) ∈ L p(�1∪�2)
k+1, we formally define the following operators:

L[2]
k,0(F) := L[1]

k (F) + M[2]
0,k+1( f

0
2 − L[1]

k (F)|�2), (3.21a)

L[2]
k,m(F) := L[2]

k,m−1(F) + M[2]
m,k+1( f

m
2 − ∂mn L[2]

k,m−1(F)|�2), 1 ≤ m ≤ k,
(3.21b)

L[2]
k (F) := L[2]

k,k(F). (3.21c)

Then, for all (s, p) ∈ Ak and F ∈ Trs,pk (�S), L[2]
k (F) is well-defined and there holds

∂mn L[2]
k (F)|� j = f mj , 0 ≤ m ≤ k, j ∈ S, and ‖L[2]

k (F)‖s,p,K �b,k,s,p ‖F‖Tr s,pk ,�S .

(3.22)

Moreover, if for some N ∈ N0, F satisfies (2.20), then L[2]
k (F) ∈ PN (K ).

Proof Let k ∈ N0, (s, p) ∈ Ak , and f ∈ Trs,pk (S) be given.
Step 1: m = 0. Thanks to Lemma 3.2, the traces G = (g0, g1, . . . , gk) given by

gli := f li − ∂nL[1]
k (F)|�i , 0 ≤ l ≤ k, 1 ≤ i ≤ 2,

satisfy the hypotheses of Lemma 3.5 with (i, j) = (1, 2) and l = 1. Thanks to Lemma
3.5 and Corollary 3.4, M[2]

0,k+1(g
0
2), and hence L[2]

k,0(F), is well-defined with
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‖L[2]
k,0(F)‖s,p,K �b,k,s,p ‖L[1]

k (F)‖s,p,K

+
⎧
⎨

⎩

∥∥∥ f 02 − L[1]
k (F)

∥∥∥
γ12 s− 1

p ,p,�2
if s ≤ k + 1 + 1

p ,

‖ f 02 − L[1]
k (F)‖s− 1

p ,p,�2
if s > k + 1 + 1

p .

Applying (3.6) and (3.13a) gives

∂ lnL[2]
k,0(F)|�1 = f l1, 0 ≤ l ≤ k, and L[2]

k,0(F)|�2 = f 02 ,

and applying (3.6) and (3.15) gives

‖L[2]
k,0(F)‖s,p,K �b,k,s,p ‖F‖Trs,pk ,�S .

Moreover, if F satisfies (2.20) and for some N ∈ N0, then F ∈ Trs,pk (�S) by Lemma

2.5 andL[1]
k (F) ∈ PN (K ) byLemma3.2. Thus, the traceG satisfies (2.20) for {i, j} ⊆

{1, 2} and G ∈ Trs,pk (�S) for all (s, p) ∈ Ak . By Lemma 3.5, g02 ∈ Wk+1,p
γ12 (�2) for

all p ∈ (1,∞), and so Dl
�g

0
2 |γ12 = 0 for 0 ≤ l ≤ k. Thanks to Corollary 3.4,

L[2]
k,0(F) ∈ PN (K ).

Step 2: Induction on m. Assume that for some m such that 0 ≤ m ≤ k − 1, L[2]
k,m(F)

is well-defined and satisfies

∂ lnL[2]
k,m(F)|�1 = f l1, 0 ≤ l ≤ k, ∂ lnL[2]

k,m(F)|�2 = f l2, 0 ≤ l ≤ m,

(3.23)

and

‖L[2]
k,m(F)‖s,p,K �b,k,s,p ‖F‖Trs,pk ,�S . (3.24)

Additionally assume that if F satisfies (2.20) for {i, j} ⊆ {1, 2} and for some N ∈ N0,
then L[2]

k,m(F) ∈ PN (K ).

Thanks to (3.23), the traces G = (g0, g1, . . . , gk) given by

gli := f li − ∂ lnL[2]
k,m(F)|�i , 0 ≤ l ≤ k, 1 ≤ i ≤ 2,

satisfy the hypotheses of Lemma 3.5 with (i, j) = (1, 2) and l = m + 1. Thanks
to Lemma 3.5 and Corollary 3.4, M[2]

m+1,k+1(g
m+1
2 ), and hence L[2]

k,m+1(F) is well-
defined with

‖L[2]
k,m+1(F)‖s,p,K �b,k,s,p ‖L[2]

k,m(F)‖s,p,K

+
⎧
⎨

⎩

∥∥∥ f m+1
2 − ∂m+1

n L[2]
k,m(F)

∥∥∥
γ12 s−m−1− 1

p ,p,�2
if s − m − 1 ≤ k + 1 + 1

p ,

‖ f m+1
2 − ∂m+1

n L[2]
k,m(F)‖s−m−1− 1

p ,p,�2
if s − m − 1 > k + 1 + 1

p .
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Applying (3.23) and (3.13a) gives (3.23) for m + 1, while applying (3.24) and (3.15)
gives (3.24) for m + 1.

Moreover, if F satisfies (2.20) for some N ∈ N0, then L[2]
k,m(F) ∈ PN (K ) by

assumption and so the trace G satisfies (2.20) and G ∈ Trs,pk (�S) for all (s, p) ∈ Ak .

By Lemma 3.5, gm+1
2 ∈ Wk+1,p

γ12 (�2) for all p ∈ (1,∞), and so Dl
�g

m+1
2 |γ12 = 0 for

0 ≤ l ≤ k. Thanks to Corollary 3.4, L[2]
k,m+1(F) ∈ PN (K ). ��

3.3 Lifting fromThree Faces

Wecontinue in the spirit of the previous two sections and define another lifting operator
from �1 with vanishing traces on �2 and �3. Given nonnegative integers k, r ∈ N0,
a smooth compactly supported function b ∈ C∞

c (T ), and a function f : T → R, we
define the operator S[1]

k,r formally by the rule

S[1]
k,r ( f )(x, z) := (x1x2)

rE [1]
k ((ω1ω2)

−r f )(x, z)

= (x1x2)
r (−z)k

k!
ˆ
T

b( y) f (x + z y)
((x1 + zy1)(x2 + zy2))r

d y ∀(x, z) ∈ K .

(3.25)

Note that when r = 0, we have S[1]
k,0 = E [1]

k . For functions f : �1 → R, we again

abuse the notation and set S[1]
k,r ( f ) := S[1]

k,r ( f ◦ I1).
We require one additional family of spaces with vanishing traces. Let s = m + σ

with m ∈ N0 and σ ∈ [0, 1) and 1 < p < ∞. Given r ∈ N, a face � j , 1 ≤ j ≤ 4,
and E a subset of the edges of � j , we define the following subspaces of Ws,p

E (� j ):

Ws,p
E,r (� j ) :=

{
f ∈ Ws,p(� j ) ∩ Wmin{s,r},p

E (� j ) : ‖ f ‖E,r s,p,T < ∞
}

, (3.26)

where the norm on Ws,p
E,r (� j ) is given by

‖ f ‖p
E,r s,p,� j

:=
{

‖ f ‖p
E s,p,T if s ≤ r ,

‖ f ‖p
s,p,T if s > r ,

+

⎧
⎪⎨

⎪⎩

∥∥∥∥dist(·,
⋃

γ∈E γ )−σ ∂m−r+1Dr−1
� f

∂tm−r+1
γ

∥∥∥∥
p

p,� j

if s > r , σ p = 1,E �= ∅,

0 otherwise,

where tγ is a unit-tangent vector on the edge γ ∈ E. For r = 0, we set Ws,p
E,0 (� j ) :=

Ws,p(� j ). When E consists of only one element γ , we set Ws,p
γ,r (� j ) := Ws,p

E,r (� j )

and ‖ f ‖γ,r s,p,� j
:= ‖ f ‖E,r s,p,� j

. One can again verify that Ws,p
E,r (� j ) are Banach
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spaces and that the following analogue of (3.10) holds:

Ws,p
E,r (� j ) =

⋂

γ∈E
Ws,p

γ,r (� j ) and ‖ f ‖E,r s,p,� j
≈s,p

∑

γ∈E
‖ f ‖γ,r s,p,� j

. (3.27)

The following result shows that the continuity of S[1]
k,r can be characterized with

these spaces.

Lemma 3.7 Let b ∈ C∞
c (T ), k, r ∈ N0, (s, p) ∈ Ak , and E = {γ12, γ13}. Then, for

all f ∈ W
s−k− 1

p ,p

E,r (�1), there holds

∂mn S[1]
k,r ( f )|�1 = δkm

(ˆ
T
b(x) dx

)
f , 0 ≤ m ≤ k, (3.28a)

∂
j
nS[1]

k,r ( f )|�i = 0, 0 ≤ j < min

{
r , s − 1

p

}
, 2 ≤ i ≤ 3,

(3.28b)

and

‖S[1]
k,r ( f )‖s,p,K �b,k,r ,s,p ‖ f ‖

E,r s−k− 1
p ,p,�1

. (3.29)

Moreover, if f ∈ PN (�1), N ∈ N0, satisfies Dl
� f |γ12 = Dl

� f |γ13 = 0 for 0 ≤ l ≤
r − 1, then S[1]

k,r ( f ) ∈ PN+k(K ).

The proof of Lemma 3.7 appears in Sect. 6.4. We define the analogous operator
associated to �3 as follows.

S[3]
k,r ( f )(x, z) := S[1]

k,r ( f ◦ I3) ◦ R13(x, z) ∀(x, z) ∈ K ,

where I3(x) := (0, x2, x1) and R13(x, z) := (z, x2, x1) for all (x, z) ∈ K . Thanks
to the chain rule and the smoothness of the mappings I3 and R13, the continuity and
interpolation properties of S[3]

k,r follow immediately from Lemma 3.7.

Corollary 3.8 Let b ∈ C∞
c (T ), k, r ∈ N0, (s, p) ∈ Ak , and E = {γ13, γ23}. Then, for

all f ∈ W
s−k− 1

p ,p

E,r (�3), there holds

∂mn S[3]
k,r ( f )|�3 = δkm

(ˆ
T
b(x) dx

)
f , 0 ≤ m ≤ k, (3.30a)

∂
j
nS[3]

k,r ( f )|�i = 0, 0 ≤ j < min

{
r , s − 1

p

}
, 1 ≤ i ≤ 2

(3.30b)

and

‖S[3]
k,r ( f )‖s,p,K �b,k,r ,s,p ‖ f ‖

E,r s−k− 1
p ,p,�3

. (3.31)
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Moreover, if f ∈ PN (�3), N ∈ N0, satisfies Dl
� f |γ13 = Dl

� f |γ23 = 0 for 0 ≤ l ≤
r − 1, then S[3]

k,r ( f ) ∈ PN+k(K ).

We also have the following analogue of Lemma 3.5.

Lemma 3.9 Let k ∈ N0, (s, p) ∈ Ak , 1 ≤ l ≤ k, and 1 ≤ i, j ≤ 4 with i �= j be
given. Suppose that F = ( f 0, f 1, . . . , f k) ∈ Trs,pk (�i ∪ � j ) satisfies

(i) F = (0, 0, . . . , 0) on �i ;
(ii) f mj = 0 on � j for 0 ≤ m ≤ l − 1.

Then, there holds f lj ∈ W
s−l− 1

p ,p

γi j ,k+1 (� j ) and

∥∥∥ f lj

∥∥∥
γi j ,k+1 s−l− 1

p ,p,� j
�k,s,p ‖F‖Trs,pk ,�i∪� j

. (3.32)

Proof The result follows from applying inequality (3.20) and identity (3.19). ��
We now construct the lifting operator L[3]

k in the same fashion as L[2]
k (3.21),

replacing the use of M[2]
m,k with S[3]

m,k .

Lemma 3.10 Let b ∈ C∞
c (T ) with

´
T b(x) dx = 1, k ∈ N0, and S = {1, 2, 3}. For

F = ( f 0, f 1, . . . , f k) ∈ L p(�S)k+1, we formally define the following operators:

L[3]
k,0(F) := L[2]

k (F) + S[3]
0,k+1( f

0
3 − L[2]

k (F)|�3), (3.33a)

L[3]
k,m(F) := L[3]

k,m−1(F) + S[3]
m,k+1( f

m
3 − ∂mn L[3]

k,m−1(F)|�3), 1 ≤ m ≤ k,
(3.33b)

L[3]
k (F) := L[3]

k,k(F). (3.33c)

Then, for all (s, p) ∈ Ak and F ∈ Trs,pk (�S), there holds

∂mn L[3]
k (F)|� j = f mj , 0 ≤ m ≤ k, j ∈ S, and ‖L[3]

k (F)‖s,p,K �b,k,s,p ‖F‖Trs,pk ,�S .

(3.34)

Moreover, if F satisfies (2.20) and for some N ∈ N0, then L[3]
k (F) ∈ PN (K ).

Proof Let k ∈ N0, (s, p) ∈ Ak , and f ∈ Trs,pk (�S) be given. Let E = {γ13, γ23}.
Step 1: m = 0. Thanks to Lemma 3.6, the traces G = (g0, g1, . . . , gk) given by

gli := f li − ∂nL[2]
k (F)|�i , 0 ≤ l ≤ k, 1 ≤ i ≤ 3,

satisfy the hypotheses of Lemma 3.9 with (i, j) ∈ {(1, 3), (2, 3)} and l = 1. Thanks to

(3.27) and Lemma 3.9, g03 ∈ W
s− 1

p ,p

E,k+1 (�3). Consequently, S[3]
0,k+1(g

0
3) is well-defined

by Corollary 3.8, and hence L[3]
k,0(F) is well-defined with
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‖L[3]
k,0(F)‖s,p,K �b,k,s,p ‖L[2]

k (F)‖s,p,K +
∥∥∥ f 03 − L[2]

k (F)

∥∥∥
E,k+1 s− 1

p ,p,�3
.

Applying (3.22) and (3.30a) gives

∂ lnL[3]
k,0(F)|�i = f li , 0 ≤ l ≤ k, 1 ≤ i ≤ 2, L[3]

k,0(F)|�3 = f 03 ,

and applying (3.10), (3.22), and (3.15) gives

‖L[3]
k,0(F)‖s,p,K �b,k,s,p ‖F‖Trs,pk ,�S .

Moreover, if F satisfies (2.20) for some N ∈ N0, then L[2]
k (F) ∈ PN (K ) by Lemma

3.6, and so the trace G satisfies (2.20) and G ∈ Trs,pk (�S) for all (s, p) ∈ Ak thanks

to Lemma 2.5. By (3.27) and Lemma 3.9, g03 ∈ Wk+1,p
E (�3) for all p ∈ (1,∞), and so

Dl
�g

0
3 |γ13 = Dl

�g
0
3 |γ23 = 0 for 0 ≤ l ≤ k. Thanks toCorollary 3.8,L[3]

k,0(F) ∈ PN (K ).

Step 2: Induction on m. Assume that for some m such that 0 ≤ m ≤ k − 1, L[3]
k,m(F)

is well-defined and satisfies

∂ lnL[3]
k,m(F)|�i = f li , 0 ≤ l ≤ k, 1 ≤ i ≤ 2, (3.35a)

∂ lnL[3]
k,m(F)|�3 = f l3, 0 ≤ l ≤ m, (3.35b)

and

‖L[3]
k,m(F)‖s,p,K �b,k,s,p ‖F‖Trs,pk ,�S . (3.36)

Additionally assume that if F satisfies (2.20) for some N ∈ N0, then L[3]
k,m(F) ∈

PN (K ).
Thanks to (3.35), the traces G = (g0, g1, . . . , gk) given by

gli := f li − ∂ lnL[3]
k,m(F)|�i , 0 ≤ l ≤ k, 1 ≤ i ≤ 3,

satisfy the hypotheses of Lemma 3.9 with (i, j) ∈ {(1, 3), (2, 3)} and l = m + 1.

Thanks to (3.27) and Lemma 3.9, there holds gm+1
3 ∈ W

s−m−1− 1
p ,p

E,k+1 (�3). Conse-

quently, S[3]
m+1,k+1(g

m+1
3 ) is well-defined by Corollary 3.8, and hence L[3]

k,m+1(F) is
well-defined with

‖L[3]
k,m+1(F)‖s,p,K �b,k,s,p ‖L[3]

k,m(F)‖s,p,K
+

∥∥∥ f m+1
3 − ∂m+1

n L[3]
k,m(F)

∥∥∥
E,k+1 s−m−1− 1

p ,p,�3
.

Applying (3.35) and (3.30a) gives (3.35) form + 1, while applying (3.27), (3.36), and
(3.32) gives (3.36) for m + 1.
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Moreover, if F satisfies (2.20) for some N ∈ N0, then L[3]
k,m(F) ∈ PN (K ) by

assumption and so the trace G satisfies (2.20) and G ∈ Trs,pk (�S) for all (s, p) ∈ Ak

thanks to Lemma 2.5. By (3.10) and Lemma 3.5, gm+1
3 ∈ Wk+1,p

E (�3) for all p ∈
(1,∞), and so Dl

�g
m+1
3 |γ13 = Dl

�g
m+1
3 |γ23 = 0 for 0 ≤ l ≤ k. Thanks to Corollary

3.8, L[3]
k,m+1(F) ∈ PN (K ). ��

3.4 Lifting from Four Faces

To complete the construction of the lifting operator from the entire boundary, we
define one final single face lifting operator from �1 that vanishes on the remaining
faces. Given nonnegative integers k, r ∈ N0, a smooth compactly supported function
b ∈ C∞

c (T ), and a function f : T → R, we define the operator R[1]
k,r formally by the

rule

R[1]
k,r ( f )(x, z)

:= (x1x2(1 − x1 − x2 − z))rE [1]
k ((ω1ω2ω3)

−r f )(x, z)

= (x1x2(1 − x1 − x2 − z))r
(−z)k

k!
ˆ
T

b( y) f (w) d y
(ω1ω2ω3)r (w)

∣∣∣∣
w=x+z y

∀(x, z) ∈ K .

(3.37)

Note that when r = 0, we have R[1]
k,r = E [1]

k . For functions f : �1 → R, we again

abuse notation and setR[1]
k,r ( f ) := R[1]

k,r ( f ◦I1). The weighted spacesWs,p
E,r (�1) again

play a role in the continuity of R[1]
k,r as the following result shows.

Lemma 3.11 Let b ∈ C∞
c (T ), k, r ∈ N0, (s, p) ∈ Ak , and E = {γ12, γ13, γ14}. Then,

for all f ∈ W
s−k− 1

p ,p

E,r (�1), there holds

∂mn R[1]
k,r ( f )|�1 = δkm

(ˆ
T
b(x) dx

)
f , 0 ≤ m ≤ k, (3.38a)

∂
j
nR[1]

k,r ( f )|�i = 0, 0 ≤ j < min

{
r , s − 1

p

}
, 2 ≤ i ≤ 4,

(3.38b)

and

‖R[1]
k,r ( f )‖s,p,K �b,k,r ,s,p ‖ f ‖

E,r s−k− 1
p ,p,�1

. (3.39)

Moreover, if f ∈ PN (�1), N ∈ N0, satisfies Dl
� f |∂�1 = 0 for 0 ≤ l ≤ r − 1, then

R[1]
k,r ( f ) ∈ PN+k(K ).
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The proof of Lemma 3.11 appears in Sect. 6.5. The analogous operator associated to
�4 is given by

R[4]
k,r ( f )(x, z) := 3− k

2R[1]
k,r ( f ◦ I4) ◦ R14(x, z) ∀(x, z) ∈ K ,

where I4(x) := (x1, x2, 1 − x1 − x2) and R14(x, z) := (x1, x2, 1 − x1 − x2 − z)
for all (x, z) ∈ K . Thanks to the chain rule and the smoothness of the mappings I4
andR14, the continuity and interpolation properties ofR[4]

k,r follow immediately from
Lemma 3.11.

Corollary 3.12 Let b ∈ C∞
c (T ), k, r ∈ N0, (s, p) ∈ Ak , and E = {γ14, γ24, γ34}.

Then, for all f ∈ W
s−k− 1

p ,p

E,r (�4), there holds

∂mn R[4]
k,r ( f )|�4 = δkm

(ˆ
T
b(x) dx

)
f , 0 ≤ m ≤ k, (3.40a)

∂
j
nR[4]

k,r ( f )|�i = 0, 0 ≤ j < min

{
r , s − 1

p

}
, 1 ≤ i ≤ 3

(3.40b)

and

‖R[4]
k,r ( f )‖s,p,K �b,k,r ,s,p ‖ f ‖

E,r s−k− 1
p ,p,�4

. (3.41)

Moreover, if f ∈ PN (�4), N ∈ N0, satisfies Dl
� f |∂�4 = 0 for 0 ≤ l ≤ r − 1, then

R[4]
k,r ( f ) ∈ PN+k(K ).

Finally, we construct the lifting operator L[4]
k in the same fashion as L[3]

k (3.33),

replacing the use of S[3]
m,k+1 withR[4]

m,k+1.

Lemma 3.13 Let b ∈ C∞
c (T ) with

´
T b(x) dx = 1 and k ∈ N0. For F =

( f 0, f 1, . . . , f k) ∈ L p(∂K )k+1, we formally define the following operators:

L[4]
k,0(F) := L[3]

k (F) + R[4]
0,k+1( f

0
4 − L[3]

k (F)|�4), (3.42a)

L[4]
k,m(F) := L[4]

k,m−1(F) + R[4]
m,k+1( f

m
4 − ∂mn L[4]

k,m−1(F)|�4), 1 ≤ m ≤ k,
(3.42b)

L[4]
k (F) := L[4]

k,k(F). (3.42c)

Then, for all (s, p) ∈ Ak and F ∈ Trs,pk (∂K ), there holds

∂mn L[4]
k (F)|∂K = f m, 0 ≤ m ≤ k, and ‖L[4]

k (F)‖s,p,K �b,k,s,p ‖F‖Trs,pk ,∂K .

(3.43)

Moreover, if F satisfies (2.20) for some N ∈ N0, then L[4]
k (F) ∈ PN (K ).
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Proof Let k ∈ N0, (s, p) ∈ Ak , and f ∈ Trs,pk (∂K ) be given and set E :=
{γ14, γ24, γ34}.
Step 1: m = 0. Thanks to Lemma 3.10, the traces G = (g0, g1, . . . , gk) given by

gli := f li − ∂nL[3]
k (F)|�i , 0 ≤ l ≤ k, 1 ≤ i ≤ 4,

satisfies the hypotheses of Lemma 3.9 with (i, j) ∈ {(1, 4), (2, 4), (3, 4)} and l = 1.

Thanks to (3.27) and Lemma 3.9, g04 ∈ W
s− 1

p ,p

E,k+1 (�4). Consequently, R[4]
0,k+1(g

0
4) is

well-defined by Corollary 3.12, and hence L[4]
k,0(F) is well-defined with

‖L[4]
k,0(F)‖s,p,K �b,k,s,p ‖L[3]

k (F)‖s,p,K +
∥∥∥ f 04 − L[3]

k (F)

∥∥∥
E,k+1 s− 1

p ,p,�4
.

Applying (3.34) and (3.40a) gives

∂ lnL[4]
k,0(F)|�i = f li , 0 ≤ l ≤ k, 1 ≤ i ≤ 3, L[4]

k,0(F)|�3 = f 04 ,

and applying (3.27), (3.34), and (3.32) gives

‖L[4]
k,0(F)‖s,p,K �b,k,s,p ‖F‖Trs,pk ,∂K .

Moreover, if F satisfies (2.20) for some N ∈ N0, then L[3]
k (F) ∈ PN (K ) by Lemma

3.6, and so the trace G satisfies (2.20) and G ∈ Trs,pk (∂K ) for all (s, p) ∈ Ak thanks

to Lemma 2.5. By (3.27) and Lemma 3.9, g04 ∈ Wk+1,p
E (�4) for all p ∈ (1,∞), and

so Dl
�g

0
4 |∂�4 = 0 for 0 ≤ l ≤ k. Thanks to Corollary 3.12, L[4]

k,0(F) ∈ PN (K ).

Step 2: Induction on m. Assume that for some 0 ≤ m ≤ k − 1, L[4]
k,m(F) is well-

defined and satisfies

∂ lnL[4]
k,m(F)|�i = f li , 0 ≤ l ≤ k, 1 ≤ i ≤ 3, (3.44a)

∂ lnL[4]
k,m(F)|�4 = f l4, 0 ≤ l ≤ m, (3.44b)

and

‖L[4]
k,m(F)‖s,p,K �b,k,s,p ‖F‖Trs,pk ,∂K . (3.45)

Additionally assume that if F satisfies (2.20) for some N ∈ N0, then L[4]
k,m(F) ∈

PN (K ).
Thanks to (3.44), the traces G = (g0, g1, . . . , gk) given by

gli := f li − ∂ lnL[4]
k,m(F)|�i , 0 ≤ l ≤ k, 1 ≤ i ≤ 4,

satisfies the hypotheses of Lemma 3.9 with (i, j) ∈ {(1, 4), (2, 4), (3, 4)} and l =
m + 1. Thanks to (3.27) and Lemma 3.9, gm+1

4 ∈ W
s−m−1− 1

p ,p

E,k+1 (�4). Consequently,
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R[4]
m+1,k+1(g

m+1
4 ) is well-defined by Corollary 3.12, and hence L[4]

k,m+1(F) is well-
defined with

‖L[4]
k,m+1(F)‖s,p,K �b,k,s,p ‖L[4]

k,m(F)‖s,p,K
+

∥∥∥ f m+1
4 − ∂m+1

n L[4]
k,m(F)

∥∥∥
E,k+1 s−m−1− 1

p ,p,�4
.

Applying (3.44) and (3.40a) gives (3.44) form + 1, while applying (3.27), (3.45), and
(3.32) gives (3.45) for m + 1.

Moreover, if F satisfies (2.20) for some N ∈ N0, then L[4]
k,m(F) ∈ PN (K ) by

assumption and so the trace G satisfies (2.20) and G ∈ Trs,pk (∂K ) for all (s, p) ∈
Ak thanks to Lemma 2.5. By (3.27) and Lemma 3.9, gm+1

4 ∈ Wk+1,p
E (�4) for all

p ∈ (1,∞), and so Dl
�g

m+1
4 |∂�4 = 0 for 0 ≤ l ≤ k. Thanks to Corollary 3.12,

L[4]
k,m+1(F) ∈ PN (K ). ��

3.5 Proof of Theorem 2.6

Let b ∈ C∞
c (T ) be any smooth function satisfying

´
T b(x) dx = 1. Then,Lk := L[4]

k ,

where L[4]
k is defined in (3.42) satisfies the desired properties thanks to Lemma 3.13.

��

4 Whole Space Operators

In this section, we examine the continuity properties of the following operators, which
are the whole space extensions of the lifting operators E [1]

k (3.1): Given k ∈ N0,
χ ∈ C∞

c (R), and b ∈ C∞
c (R2) and a function f : R2 → R, we define the lifting

operator Ẽk by the rule

Ẽk( f )(x, z) := χ(z)zk
ˆ
R2

b( y) f (x + z y) d y ∀(x, z) ∈ R
2 × R. (4.1)

We use the notation Ẽk[χ, b] when we want to make the dependence on χ and b
explicit. The advantage of working with the operator Ẽk is that we shall capitalize on
the abundance of equivalent Ws,p(U )-norms when U is all of Rd or the half-space
R
d+ = R

d−1 × (0,∞), d > 1. In particular, we recall the following norm-equivalence
on Ws,p(U ), 0 < s < 1, 1 < p < ∞, with U = R

d or Rd+ (see e.g. [44, Theorems
6.38 & 6.61]):

| f |ps,p,U ≈s,p,d

d∑

i=1

ˆ ∞

0

ˆ
U

| f (x + tei ) − f (x)|p
t1+sp

dx dt ∀ f ∈ Ws,p(U ). (4.2)

The main result of this section is the following analogue of Lemma 3.1.
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Theorem 4.1 Let χ ∈ C∞
c (R) with suppχ ∈ (−2, 2), b ∈ C∞

c (R2) with supp b ⊂ T ,
and k ∈ N0 be given. Then, for (s, p) ∈ Ak ∪ (k + 1

2 , 2), there holds

‖Ẽk( f )‖s,p,R3+ �χ,b,k,s,p ‖ f ‖s−k− 1
p ,p,R2 ∀ f ∈ Ws−k− 1

p ,p
(R2). (4.3)

The proof of Theorem 4.1 appears in Sect. 4.3.

4.1 Continuity of Ẽ0

We begin by recording the particular case of Theorem 4.1 with k = 0, which follows
from the same arguments as in the proof of [44, Theorem 9.21].

Lemma 4.2 Let χ ∈ C∞
c (R) with suppχ ∈ (−2, 2) and b ∈ C∞

c (R2) with supp b ⊂
T . Then, for 1 < p < ∞ and 1/p < s < 1, there holds

‖Ẽ0( f )‖s,p,R3+ �χ,b,s,p ‖ f ‖s− 1
p ,p,R2 ∀ f ∈ Ws− 1

p ,p
(R2). (4.4)

When p = 2, the above result is also true for s = 1/2 as the following lemma
shows.

Lemma 4.3 Let χ ∈ C∞
c (R) with suppχ ∈ (−2, 2) and b ∈ C∞

c (R2) with supp b ⊂
T . Then, there holds

‖Ẽ0( f )‖ 1
2 ,2,R3+ �χ,b ‖ f ‖2,R2 ∀ f ∈ L2(R2). (4.5)

Proof By density, it suffices to consider f ∈ C∞
c (R2). For k ∈ N0 define

gk(x, z) := zk
ˆ
R2

b( y) f (x + z y) d y, (x, z) ∈ R
3. (4.6)

Step 1: H1/2(R3+) bound for g0. Thanks to (4.2), there holds

|g0|21
2 ,2,R3+

≈
ˆ ∞

0
|g0(·, z)|21

2 ,2,R2 dz +
ˆ
R2

|g0(x, ·)|21
2 ,2,R+

dx =: I1 + I2.

We now follow the steps in the proof of [18, Theorem 2.2]. Let ·̂ denote the Fourier
transform with respect to the x-variable. Then,

I1 ≈
ˆ ∞

0

ˆ
R2

|ξ | · |ĝ0(ξ , z)|2 dξ dz =
ˆ ∞

0

ˆ
R2

|ξ | · |b̂(ξ z) f̂ (ξ)|2 dξ dz

=
ˆ
R2

(
|ξ | · ‖b̂(ξ ·)‖22,R+

)
| f̂ (ξ)|2 dξ ,
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where we used the following convolution identity for z > 0:

g0(x, z) =
ˆ
R2

z−2b

(
y − x
z

)
f ( y) d y �⇒ ĝ0(ξ , z) = b̂(ξ z) f̂ (ξ). (4.7)

Similarly, there holds

I2 ≈
ˆ
R2

|ĝ(ξ , ·)|21
2 ,2,R+

dξ =
ˆ
R2

|b̂(ξ ·)|21
2 ,2,R+

| f̂ (ξ)|2 dξ .

Thanks to a change of variables, we obtain

|ξ | · ‖b̂(ξ ·)‖22,R+ + |b̂(ξ ·)|21
2 ,2,R+

≤ sup
ω∈S2

(
|ξ | · ‖b̂(|ξ |ω·)‖22,R+ + |b̂(|ξ |ω·)|21

2 ,2,R+

)

= sup
ω∈S2

‖b̂(ω·)‖21
2 ,2,R+

,

which is finite since b̂ is a Schwartz function, and so |g0| 1
2 ,2,R3+ �b ‖ f ‖2,R2 .

Step 2: H1/2(R3+) bound on Ẽ0( f ). For i = 1, 2, there holds

ˆ ∞

0

ˆ
R
3+

|Ẽ0( f )(x + tei , z) − Ẽ0( f )(x, z)|2
t2

dx dz dt

=
ˆ ∞

0

ˆ
R
3+

|χ(z)|2 |g0(x + tei , z) − g0(x, z)|2
t2

dx dz dt �χ,b ‖ f ‖2,R2 .

where we used (4.2) and step 1. Thanks to the relation

|Ẽ0( f )(x, z + t) − Ẽ0( f )(x, z)|2 � |χ(z + t)|2|g0(x, z + t) − g0(x, t)|2
+|χ(z + t) − χ(z)|2|g0(x, z)|2,

we obtain

ˆ ∞

0

ˆ
R
3+

|Ẽ0( f )(x, z + t) − Ẽ0( f )(x, z)|2
t2

dx dz dt

� ‖χ‖2∞,R+|g0|21
2 ,2,R3+

+
ˆ ∞

0

ˆ
R
3+

|χ(z + t) − χ(z)|2
t2

|g0(x, z)|2 dx dz dt .

Now, applying Hardy’s inequality [40, Theorem 327] gives

ˆ ∞

0

|χ(z + t) − χ(z)|2
t2

dt =
ˆ ∞

0

(
1

t

ˆ z+t

z
χ ′(r) dr

)2

dt

=
ˆ ∞

0

(
1

t

ˆ t

0
χ ′(r + z) dr

)2

dt � ‖χ ′(· + z)‖22,R+ ,
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and so

ˆ ∞

0

ˆ
R
3+

|χ(z + t) − χ(z)|2
t2

|g0(x, z)|2 dx dz dt

�
ˆ
R
3+

‖χ ′(· + z)‖22,R+|g0(x, z)|2 dx dz

≤ ‖χ ′‖22,R+

ˆ 2

0

ˆ
R2

|g0(x, z)|2 dx dz.

Applying Young’s inequality to the convolution form of g0, (4.7) then gives

ˆ 2

0

ˆ
R2

|g0(x, z)|2 dx dz ≤ 2‖b‖21,R2‖ f ‖22,R2 .

Inequality (4.5) now follows on collecting results and applying (4.2). ��
We shall also need the stability of the lifting of the derivative of a smooth function.

Lemma 4.4 Let χ ∈ C∞
c (R) and b ∈ C∞

c (R2). For 1 < p < ∞, there holds

2∑

i=1

‖Ẽ0(∂i f )‖p,R3+ �χ,b,p ‖ f ‖1− 1
p ,p,R2 ∀ f ∈ C∞

c (R2). (4.8)

Proof Let 1 < p < ∞, f ∈ C∞
c (R2), and i ∈ {1, 2}. Integrating by parts gives

Ẽ0(∂i f )(x, z) = χ(z)
ˆ
R2

b( y)(∂i f )(x + z y) d y = χ(z)

z

ˆ
R2

b( y)∂yi { f (x + z y)} d y

= −χ(z)

z

ˆ
R2

(∂i b)( y) f (x + z y) d y.

Since b ∈ C∞
c (R2), there holds

´
R
(∂i b)( y) dyi = 0, and so

Ẽ0(∂i f )(x, z) = χ(z)
ˆ
R2

(∂i b)( y)
f (x + z( y − yi ei )) − f (x + z y)

z
d y.

Applying Hölder’s inequality, we obtain

|Ẽ0(∂i f )(x, z)|p �χ,b,p

ˆ
R2

|yi (∂i b)( y)|
∣∣∣∣
f (x + z( y − yi ei )) − f (x + z y)

yi z

∣∣∣∣
p

d y.
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Integrating over R3+ then gives

‖Ẽ0(∂i f )‖p
p,R3+

�χ,b,p

ˆ
R
5+

|yi (∂i b)( y)|
∣∣∣∣
f (x + z( y − yi ei )) − f (x + z y)

yi z

∣∣∣∣
p

d y dx dz

x̃ j=x j+(1−δi j )y j z=
ˆ
R
5+

|yi (∂i b)( y)|
∣∣∣∣
f (x̃) − f (x̃ + yi zei )

yi z

∣∣∣∣
p

d y dx̃ dz

t=yi z
� ‖∂i b‖1,R2

ˆ
R
3+

| f (x̃) − f (x̃ + tei )|p
t p

dx̃ dt .

Inequality (4.8) now follows from summing over i and applying (4.2). ��

4.2 Continuity of Ẽk

Wenowshowhow the continuity of the operator Ẽ0 can be used to deduce the continuity
of Ẽk for k ∈ N0. We begin with a partial result.

Lemma 4.5 Let χ ∈ C∞
c (R) and b ∈ C∞

c (R2) be as in Theorem 4.1 and k ∈ N0 be
given. Then, for 1 < p < ∞, there holds

‖Ẽk( f )‖p,R3+ �χ,b,k,p ‖ f ‖p,R2 ∀ f ∈ C∞
c (R2), (4.9)

and for 1/p < s < 1 or (s, p) = ( 12 , 2), there holds

‖Ẽk( f )‖s,p,R3+ �χ,b,k,s,p ‖ f ‖s− 1
p ,p,R2 ∀ f ∈ C∞

c (R2). (4.10)

Proof Let k ∈ N0, 1 < p < ∞, and f ∈ C∞
c (R2). Since the function χ̃ := zkχ ∈

C∞
c (R) with supp χ̃ = suppχ , we have Ẽk[χ, b]( f ) = Ẽ0[χ̃ , b]( f ). Consequently,

it suffices to prove (4.9) and (4.10) in the case k = 0. To this end, we apply Jensen’s
inequality to the identity (4.7) to obtain

‖Ẽ0( f )‖p
p,R3+

≤ ‖ f ‖p
p,R2

ˆ
R

|χ(z)|p
(ˆ

R2

∣∣∣∣z
−2b

(
x
z

)∣∣∣∣ dx
)p

dz

= ‖ f ‖p
p,R2‖b‖p

1,R2‖χ(z)‖p
1,R,

and (4.9) follows. Inequality (4.10) for 1/p < s < 1 is an immediate consequence of
(4.4), while the case (s, p) = ( 12 , 2) follows from Lemma 4.3. ��

For more precise results, we shall show the effect of taking partial derivatives of
Ẽk( f ) on the index k and on the function f . To this end, we recall an integration-by-
parts formula for tensors. Given two d-dimensional tensors S and T , let S : T denote
the usual tensor contraction

S : T := Si1i2···id Ti1i2···id ,
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where we are using Einstein summation notation. Given a d-dimensional tensor S with
d ≥ 0 and k ≥ 0, let DkS denote the k-th derivative tensor of S:

(DkS)i1i2···id+k := ∂id+1∂id+2 · · · ∂id+k Si1i2···id ,

and let div S denote the (d − 1)-dimensional tensor given by

(div S)i1i2···id−1 := ∂ j Si1i2···id−1 j ,

while divk S, 0 ≤ k ≤ d, denotes k applications of div to S. With this notation, we
have the following integration by parts formula for symmetric, smooth, compactly
supported tensors S and T of dimension d and 0 ≤ k ≤ d, respectively:

ˆ
R2

S : Dd−kT dx = (−1)d−k
ˆ
R2

divd−k S : T dx.

With this notation in hand,wehave the following identity that shows that the derivatives
of Ẽk( f ) are linear combinations of liftings of derivatives of f .

Lemma 4.6 Let χ ∈ C∞
c (R), b ∈ C∞

c (R2), and k ∈ N0 be given. For all α ∈ N
3
0 and

f ∈ C∞
c (R2), there holds

Dα Ẽk( f )(x, z)

×
α3∑

i=0

χi (z)z
max{k+i−|α|,0}

ˆ
R2

Bkiα( y) : (Dmax{|α|−k−i,0} f )(x + z y) d y

(4.11)

for suitable χi ∈ C∞
c (R) and max{|α| − i − k, 0}-dimensional tensors Bkiα with

entries in C∞
c (R2).

Proof Let f ∈ C∞
c (R2) and let gk be defined as in (4.6). For integers m ≥ k, there

holds

∂mz gk(x, z) =
k∑

j=0

ckmj z
k− j

ˆ
R2

b( y)(Dm− j f )(x + z y) : y⊗m− j d y

=
k∑

j=0

ckmj

ˆ
R2

(b( y) y⊗m− j ) : Dk− j
y {(Dm−k f )(x + z y)} d y

=
ˆ
R2

⎧
⎨

⎩

k∑

j=0

(−1)k− j ckmj div
k− j (b( y) y⊗m− j )

⎫
⎬

⎭ : (Dm−k f )(x + z y) d y

=:
ˆ
R2

Bkm( y) : (Dm−k f )(x + z y) d y,
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where ckmj are suitable constants, y⊗n is the tensor product of n copies of y, and D y
denotes the derivative operator with respect to y. For 0 ≤ m < k, there holds

∂mz gk(x, z) =
m∑

j=0

ckmj z
k− j

ˆ
R2

b( y)(Dm− j f )(x + z y) : y⊗m− j d y

=
m∑

j=0

ckmj z
k−m

ˆ
R2

(b( y) y⊗m− j ) : Dm− j
y { f (x + z y)} d y

= zk−m
ˆ
R2

⎧
⎨

⎩−
m∑

j=0

(−1)m− j ckmj div
m− j (b( y) y⊗m− j )

⎫
⎬

⎭ : f (x + z y) d y

=: zk−m
ˆ
R2

Bkm( y) : f (x + z y) d y.

Consequently, there holds

∂mz gk(x, z) = zmax{k−m,0}
ˆ
R2

Bkm( y) : (Dmax{m−k,0} f )(x + z y) d y ∀m ∈ N0.

Now let β ∈ N
2
0 with |β| ≥ k. Then, there holds

Dβ
x gk(x, z) = zk

ˆ
R2

b( y)(Dβ f )(x + z y) d y =
ˆ
R2

b( y)Dβ̃
y {(Dβ−β̃ f )(x + z y)} d y

= (−1)|β̃|
ˆ
R2

(Dβ̃b)( y)(Dβ−β̃ f )(x + z y) d y =:
ˆ
R2

Bkβ( y)(Dβ−β̃ f )(x + z y) d y,

where Dβ
x := ∂

β1
x1 ∂

β2
x2 and β̃ ∈ N

2
0 is any fixed multi-index such that |β̃| = k and

β − β̃ ∈ N
2
0. Similar arguments show that for β ∈ N

2
0 with |β| < k, there holds

Dβ
x gk(x, z) = (−1)|β|zk−|β|

ˆ
R2

(Dβb)( y) f (x + z y) d y

=: zk−|β|
ˆ
R2

Bkβ( y) f (x + z y) d y.

Collecting results, for any α ∈ N
3
0, there holds

Dαgk(x, z) = zmax{k−|α|,0}
ˆ
R2

Bkα( y) : (Dmax{|α|−k,0} f )(x + z y) d y

for suitablemax{|α|−k, 0}-dimensional tensors Bkα with entries inC∞
c (R2). Equality

(4.11) now follows from the product rule. ��
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4.3 Proof of Theorem 4.1

Let k ∈ N0, 1 < p < ∞, and f ∈ C∞
c (R2). For α ∈ N

3
0, (4.11) gives

‖Dα Ẽk( f )‖σ,p,R3+ ≤
∑

0≤i≤α3
β∈N2

0|β|=max{|α|−k−i,0}

‖Ẽmax{k+i−|α|,0}[χi , bkiβ ](Dβ f )‖σ,p,R3+ ,

(4.12)

where χi ∈ C∞
c (R) and bkiβ ∈ C∞

c (R2) are suitable functions depending on χ and b
respectively and 0 ≤ σ < 1.
Step 1: L p bounds on derivatives. For k + i − |α| ≥ 0 (so that |β| = 0), (4.9) gives

‖Ẽmax{k+i−|α|,0}[χi , bkiβ ](Dβ f )‖p,R3+

= ‖Ẽk+i−|α|[χi , bkiβ ]( f )‖p,R3+ �χ,b,k,p ‖ f ‖p,R2 .

For k + i − |α| < 0 (so that |α| ≥ k and |β| ≥ 1), there exists j ∈ {1, 2} such that
β j ≥ 1, and so we apply (4.8) to obtain

‖Ẽ0[χi , bkiβ ](Dβ f )‖p,R3+

= ‖Ẽ0[χi , bkiβ ](∂ j D
β−e j f )‖p,R3+ �χ,b,k,p ‖Dβ−e j f ‖1− 1

p ,p,R2

≤ ‖ f ‖|α|−k−i− 1
p ,p,R2 .

Consequently, for all f ∈ C∞
c (R2), there holds

‖Ẽk( f )‖m,p,R3+ �χ,b,k,m,p ‖ f ‖m−k− 1
p ,p,R2 , m ∈ {k + 1, k + 2, . . .}. (4.13)

By density, (4.13) holds for all f ∈ Wm−k−1/p,p(R2).
Step 2: The case s ≥ k + 1. Inequality (4.3) for real s ≥ k + 1 with (s, p) ∈ Ak

follows from (4.13) using a standard interpolation argument.
Step 3: The case k + 1/p ≤ s < k + 1. For s = k + σ , where 1/p < σ < 1 or
(σ, p) = (1/2, 2), we take |α| = k in (4.12) and apply (4.10) to obtain

|Ẽk( f )|s,p,R3+ ≤
∑

0≤i≤α3

‖Ẽi [χi , bkiβ ]( f )‖σ,p,R3+ �χ,b,k,p,s ‖ f ‖σ− 1
p ,p,R2 ,

which completes the proof. ��

5 Weighted Lp Continuity of Whole-Space Operators

In the previous section in Theorem 4.1, we established that the lifting operators Ẽk are
continuous from Ws−k−1/p,p(R2) to Ws,p(R3+) provided that s > k + 1/p. We now
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turn to the stability of the operator Ẽk with respect to lower-order Sobolev spaces. In
particular, we seek to obtain bounds on ‖Ẽk( f )‖s,p,O1 for 0 ≤ s < k + 1/p, where
O1 := (0,∞)3 ⊃ K is the first octant. It turns out that one suitable space for the lifted
function f is a weighted L p space. Let Q1 = (0,∞)2 ⊃ T denote the first quadrant
and let ρ ∈ L∞(Q1) be a weight function that satisfying ρ > 0 almost everywhere.
Then, for 1 < p < ∞, define

L p(Q1; ρ dx) :=
{
f measurable :

ˆ
Q1

| f (x)|pρ(x) dx < ∞
}

. (5.1)

The weight that will appear in our estimates are powers of ω1 (3.7) extended to all of
R
2 by

ω1(x) = min{x1, 1} ∀x ∈ R
2. (5.2)

In particular, the main result of this section is as follows.

Theorem 5.1 Let χ ∈ C∞
c (R) and b ∈ C∞

c (R2) be as in Theorem 4.1 and k ∈ N0 be
given. For 1 < p < ∞ and 0 ≤ s < k + 1/p, there holds

‖Ẽk( f )‖s,p,O1 �χ,b,k,s,p ‖ω
1
p +k−s

1 f ‖p,Q1 ∀ f ∈ L p(Q1, ω
1+(k−s)p
1 dx). (5.3)

The proof proceeds in several steps and appears in Sect. 5.3.

5.1 Auxiliary Results

We begin by recording a number of technical lemmas. Throughout the rest of the
section we use the notation

ffl
O f dx := |O|−1

´
O f dx.

Lemma 5.2 For 1 ≤ p < ∞ and 0 < h < ∞, there holds

ˆ ∞

0

∣∣∣∣
 x+h

x
f (y) dy

∣∣∣∣
p

dx ≤ h p−1
ˆ ∞

0
| f (x)|pdx ∀ f measurable. (5.4)

Proof The result follows on applying Hölder’s inequality and changing the order of
integration:

ˆ ∞

0

∣∣∣∣
1

h

ˆ x+h

x
f (y) dy

∣∣∣∣
p

dx ≤ h p−2
ˆ ∞

0

ˆ x+h

x
| f (y)|p dy

= h p−2
(ˆ h

0

ˆ y

0
+
ˆ ∞

h

ˆ y

y−h

)
| f (y)|pdx dy.

��
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Lemma 5.3 Let 1 < p < ∞, 0 < s < 1, and 0 ≤ a ≤ ∞. Then, there holds

ˆ
(0,a)2

| f (x) − f (y)|p
|x − y|1+sp

dx dy �s,p

ˆ
(0,a)

x (1−s)p| f ′(x)|pdx ∀ f ∈ W 1,p
loc ((0, a)).

(5.5)

Proof The proof follows the same arguments as those used in the proof of [44, Theorem
1.28], which considers the case a = ∞. The full details are given below.

By symmetry, there holds

ˆ
(0,a)2

| f (x) − f (y)|p
|x − y|1+sp

dx dy = 2
ˆ a

0

ˆ a

y

| f (x) − f (y)|p
(x − y)1+sp

dx dy

= 2
ˆ a

0

ˆ a

y

1

(x − y)1+sp

∣∣∣∣
ˆ x

y
f ′(t) dt

∣∣∣∣
p

dx dy.

Performing a change of variable and applying Hardy’s inequality [44, Theorem 1.3],
we obtain

ˆ a

y

1

(x − y)1+sp

∣∣∣∣
ˆ x

y
f ′(t) dt

∣∣∣∣
p

dx

x̃=x−y
τ=t−y≤

ˆ a−y

0

1

x̃1+sp

(ˆ x̃

0
|τ f ′(y + τ)| dτ

τ

)p

dx̃

≤ 1

s p

ˆ a−y

0

| f ′(y + x̃)|p
x̃1+(s−1)p

dx̃

x=x̃+y= 1

s p

ˆ a

y

| f ′(x)|p
(x − y)1+(s−1)p

dx .

Thus,

ˆ
(0,a)2

| f (x) − f (y)|p
|x − y|1+sp

dx dy ≤ 2

s p

ˆ a

0

ˆ a

y

| f ′(x)|p
(x − y)1+(s−1)p

dx dy

= 2

s p

ˆ a

0
| f ′(x)|p

ˆ x

0

1

(x − y)1+(s−1)p
dydx

= 2

s p(1 − s)p

ˆ a

0
x (1−s)p| f ′(x)|pdx,

which completes the proof. ��

Lemma 5.4 Let 1 < p < ∞ and 0 < s < 1/p. For all f ∈ L p(Q1;ω
1−sp
1 dx), there

holds

ˆ
Q1

ˆ 2

0

ˆ x1+z

x1

ˆ x2+z

x2

1

z2+sp
| f ( y)|p dy2 dy1 dz dx �s,p ‖ω

1
p −s

1 f ‖p
p,Q1

. (5.6)
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Proof Applying (5.4) and using that 0 < z < 2 gives

ˆ ∞

0

 x2+z

x2

(ˆ x1+z

x1
| f ( y)|p dy1

)
dy2 dx2 �p

ˆ ∞

0

ˆ x1+z

x1
| f (y1, x2)|p dy1 dx2.

Moreover, there holds

ˆ ∞

0

ˆ 2

0

ˆ x1+z

x1

1

z1+sp
| f (y1, x2)|p dy1 dz dx1

=
ˆ ∞

0

ˆ x1+2

x1
| f (y1, x2)|p

ˆ 2

y1−x1

1

z1+sp
dz dy1 dx1

�s,p

ˆ ∞

0

ˆ x1+2

x1
(y1 − x1)

−sp| f (y1, x2)|p dy1 dx1

=
(ˆ 2

0

ˆ y1

0
+
ˆ ∞

2

ˆ y1

y1−2

)
(y1 − x1)

−sp| f (y1, x2)|p dx1 dy1

�s,p

ˆ ∞

0
min{y1, 2}1−sp| f (y1, x2)|p dy1.

The result now follows on integrating over 0 < x2 < ∞. ��
Lemma 5.5 Let χ ∈ C∞

c (R) and b ∈ C∞
c (R2) be as in Theorem 4.1 and 1 < p < ∞.

Let k ∈ N0 and f ∈ L p(Q1;ω
1+kp
1 dx). For 0 < t < 2, there holds

ˆ t

0

ˆ
Q1

|gk(x, z)|p dx dz �b,k,p

ˆ
Q1

min{x1, t}1+kp| f (x)|p dx, (5.7)

where gk is defined in (4.6).

Proof Let k ∈ N0, 1 < p < ∞, and f ∈ L p(Q1;ω
1+kp
1 dx) be given. Let z ∈ (0, t).

Then, for x ∈ Q1 and y ∈ (0, 1)2, there holds z ≤ min{x1 + zy1, t}/y1, and so

|gk(x, z)| ≤
ˆ

(0,1)2
min{x1 + zy1, t}k |y−k

1 b( y)|| f (x + z y)| d y
u=x+z y
�b,k

 x2+z

x2

 x1+z

x1
min{u1, t}k | f (u)| du1 du2.

Integrating over x2 ∈ (0,∞) and applying (5.4) to the function

f̃ (u2; x1, z) =
 x1+z

x1
|ω̃k

1 f (u)| du1, where ω̃1(u) := min{u1, t}k
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and using that 0 < z < t < 2 gives

ˆ ∞

0
|gk(x, z)|p dx2 ≤

ˆ ∞

0

( x2+z

x2
f̃ (u2; x1, z) du2

)p

dx2

≤ 2p−1
ˆ ∞

0

( x1+z

x1
|(ω̃k

1 f )(u1, x2)| du1
)p

dx2.

Hardy’s inequality [40, Theorem 327] then shows that, for 0 < x2 < ∞, there holds

ˆ t

0

( x1+z

x1
|(ω̃k

1 f )(u1, x2)| du1
)p

dz
v=x1+z=

ˆ x1+t

x1

( v

x1
|(ω̃k

1 f )(u1, x2)| du1
)p

dv

�p

ˆ x1+t

x1
|(ω̃k

1 f )(v, x2)|p dv,

and so

ˆ t

0

ˆ ∞

0
|gk(x, z)|p dx2 dz �b,k,p

ˆ ∞

0

ˆ x1+t

x1
|(ω̃k

1 f )(v, x2)|p dv dx2.

Integrating over x1 and changing the order of integration gives

ˆ t

0

ˆ
Q1

|gk(x, z)|p dx dz �b,k,p

ˆ
Q1

ˆ x1+t

x1
|(ω̃k

1 f )(v, x2)|p dv dx

=
ˆ ∞

0

(ˆ t

0

ˆ v

0
+
ˆ ∞

t

ˆ v

v−t

)
|(ω̃k

1 f )(v, x2)|p dx1 dv dx2

≤
ˆ
Q1

ω̃1(v, x2)
1+kp| f (v, x2)|p dv dx2,

which completes the proof. ��

5.2 Continuity of Ẽ0

In this section, we prove Theorem 5.1 in the case k = 0. We will utilize the following
equivalent norm on Ws,p(O1).

Lemma 5.6 For all p ∈ (1,∞), s ∈ (0, 1), and f ∈ Ws,p(O1), there holds

‖ f ‖p
s,p,O1

≈s,p ‖ f ‖p
p,O1

+
3∑

i=1

ˆ 1

0

ˆ
O1

| f (x + tei ) − f (x)|p
t1+sp

dx dt . (5.8)

Proof Let f ∈ Ws,p(O1). Thanks to [44, Theorem 6.38], there holds

| f |ps,p,O1
≈s,p

3∑

i=1

ˆ ∞

0

ˆ
O1

| f (x + tei ) − f (x)|p
t1+sp

dx dt,
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and (5.8) now follows on noting that

3∑

i=1

ˆ ∞

1

ˆ
O1

| f (x + tei ) − f (x)|p
t1+sp

dx dt �s,p ‖ f ‖p
p,O1

.

��
We now estimate each term in (5.8). The first result deals with terms involving

translations in the first two coordinate directions.

Lemma 5.7 Let χ ∈ C∞
c (R) and b ∈ C∞

c (R2) be as in Theorem 4.1. For 1 < p < ∞,
0 < s < 1/p, and 1 ≤ i ≤ 2, there holds

ˆ 1

0

ˆ
O1

|Ẽ0( f )(x + tei , z) − Ẽ0( f )(x, z)|p
t1+sp

dx dz dt �χ,b,s,p ‖ω
1
p −s

1 f ‖p
p,Q1

(5.9)

for all f ∈ C∞
c (Q1).

Proof Let 1 < p < ∞, 0 < s < 1/p, and f ∈ C∞
c (Q1) be given. Let g0(·, ·) be as

in (4.6) with k = 0 and let g̃(x, z, t) := g0(x + tei , z) − g0(x, z).
Step 1. Let 1 ≤ i ≤ 2. We will show that

ˆ 1

0

ˆ 2

0

ˆ
Q1

|g̃(x, z, t)|p
t1+sp

dx dz dt �b,s,p ‖ω
1
p −s

1 f ‖p
p,Q1

. (5.10)

We begin by decomposing the above integral into two terms:

ˆ 1

0

ˆ 2

0

ˆ
Q1

|g̃(x, z, t)|p
t1+sp

dx dz dt

=
(ˆ 1

0

ˆ t

0

ˆ
Q1

+
ˆ 1

0

ˆ 2

t

ˆ
Q1

) |g̃(x, z, t)|p
t1+sp

dx dz dt =: Ai + Bi .

Part (a): Ai . Let 0 < t < 1. Then, f (· + tei ) − f (·) ∈ L p(Q1, ω1 dx) and

g̃(x, z, t) =
ˆ
Q1

b( y)
[
f (x + z y + tei ) − f (x + z y)

]
d y.

Integrating (5.7) over 0 < t < 1 then gives

Ai �b,p

ˆ
Q1

ˆ 1

0
min{x1, t} | f (x + tei )|p + | f (x)|p

t1+sp
dt dx.

For i = 1, there holds

ˆ ∞

0

ˆ 1

0
t−sp| f (x + te1)|p dt dx1x̃1=x1+t=

ˆ 1

0

ˆ ∞

t
t−sp| f (x̃1, x2)|p dx̃1 dt
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=
(ˆ 1

0

ˆ x̃1

0
+
ˆ ∞

1

ˆ 1

0

)
t−sp| f (x̃1, x2)|p dt dx̃1

�s,p

ˆ ∞

0
min{x̃1, 1}1−sp| f (x̃1, x2)|p dx̃1.

On the other hand, note that for any 0 ≤ u < ∞ and f̃ (x) = f (x + ue2), there holds

ˆ ∞
0

ˆ 1

0
min{x1, t}t−(1+sp)| f̃ (x)|p dt dx1

=
(ˆ 1

0

ˆ x1

0
+
ˆ ∞
1

ˆ 1

0

)
t−sp| f̃ (x)|p dt dx1 +

ˆ 1

0

ˆ 1

x1
t−(1+sp)x1| f̃ (x)|p dt dx1

�s,p

ˆ ∞
0

min{x1, 1}1−sp| f̃ (x)|p dx1 +
ˆ 1

0
(x−sp

1 − 1)x1| f̃ (x)|p dx1

�
ˆ ∞
0

min{x1, 1}1−sp| f (x1, x2 + u)|p dx1.

The bound Ai �b,s,p ‖ω
1
p −s

1 f ‖p
p,Q1

now follows on performing a change of variables
and collecting results.
Part (b): Bi . Using identity (4.7), we obtain

g̃(x, z, t) = z−2
ˆ
R2

[
b

(
y − x − tei

z

)
− b

(
y − x
z

)]
f ( y) d y

= −z−3
ˆ
R2

ˆ t

0
(∂i b)

(
y − x − rei

z

)
f ( y) dr d y.

Writing z−2|∂i b| = (z−2|∂i b|)1−1/p(z−2|∂i b|)1/p and applying Hölder’s inequality
gives

|g̃(x, z, t)|p ≤
(ˆ t

0

ˆ
R2

1

z2
|∂i b|

(
y − x − rei

z

)
d y dr

)p−1

× 1

z p+2

ˆ t

0

ˆ
R2

|∂i b|
(
y − x − rei

z

)
| f ( y)|p d y dr

�b,p
t p−1

z p+2

ˆ t

0

ˆ
R2

|∂i b|
(
y − x − rei

z

)
| f ( y)|p d y dr .

Integrating over x gives

ˆ
Q1

|g̃(x, z, t)|p dxx̃=x+rei≤ t p−1

z p+2

ˆ t

0

ˆ
Q1

ˆ
R2

|∂i b|
(
y − x̃
z

)
| f ( y)|p d y dx̃ dr

≤ t p

z p+2

ˆ
Q1

ˆ
R2

|∂i b|
(
y − x̃
z

)
| f ( y)|p d y dx̃
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�b
t p

z p+2

ˆ
Q1

ˆ x1+z

x1

ˆ x2+z

x2
| f ( y)|p dy2 dy1 dx.

Integrating over z and t , we obtain

Bi �b,p

ˆ 1

0

ˆ 2

t

t (1−s)p−1

z p+2

ˆ
Q1

ˆ x1+z

x1

ˆ x2+z

x2
| f ( y)|p dy2 dy1 dx dz dt

=
ˆ 2

0

ˆ z

0

t (1−s)p−1

z p+2

ˆ
Q1

ˆ x1+z

x1

ˆ x2+z

x2
| f ( y)|p dy2 dy1 dx dt dz

= 1

p(1 − s)

ˆ
Q1

ˆ 2

0

ˆ x1+z

x1

ˆ x2+z

x2

1

z2+sp
| f ( y)|p dy2 dy1 dz dx.

Applying (5.6), we obtain Bi �b,s,p ‖ω
1
p −s

1 f ‖p
p,Q1

, which completes the proof of
(5.10).
Step 2. Since suppχ ⊂ B(0, 2), there holds

ˆ 1

0

ˆ
O1

|Ẽ0( f )(x + tei , z) − Ẽ0( f )(x, z)|p
t1+sp

dx dz dt

=
ˆ 1

0

ˆ 2

0

ˆ
Q1

|χ(z)|p |g̃(x, z, t)|p
t1+sp

dx dz dt �χ,b,s,p

ˆ
Q1

min{x1, 1}1−sp f (x) dx,

which completes the proof. ��
The next result deals with the term involving a translation in the z-direction.

Lemma 5.8 Let χ ∈ C∞
c (R) and b ∈ C∞

c (R2) be as in Theorem 4.1. For 1 < p < ∞
and 0 < s < 1/p, there holds

ˆ 1

0

ˆ
O1

|Ẽ0( f )(x, z + t) − Ẽ0( f )(x, z)|p
t1+sp

dx dz dt �χ,b,s,p ‖ω
1
p−s

1 f ‖p
p,Q1

(5.11)

for all f ∈ C∞
c (Q1).

Proof Let 1 < p < ∞, 0 < s < 1/p, and f ∈ C∞
c (Q1) be given. Let g0(·, ·) be

defined as in (4.6).
Step 1. We will first show that

ˆ 1

0

ˆ 2

0

ˆ
Q

|g0(x, z + t) − g0(x, z)|p
t1+sp

dx dz dt �b,s,p ‖ω
1
p −s

1 f ‖p
p,Q1

. (5.12)

Applying (5.5) gives

ˆ 1

0

ˆ 2

0

|g0(x, z + t) − g0(x, z)|p
t1+sp

dz dt ≤
ˆ 2

0
z(1−s)p|∂zg0(x, z)|p dz. (5.13)
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Applying identity (4.7), we obtain

∂zg0(x, z) =
ˆ
R2

∂z

{
z−2b

(
y − x
z

)}
f ( y) d y

= −
ˆ
R2

{
2z−3b

(
y − x
z

)
+ z−4Db

(
y − x
z

)
· ( y − x)

}
f ( y) dy1 dy2.

For y ∈ (x1, x1 + z) × (x2, x2 + z), there holds

∣∣∣∣2z
−3b

(
y − x
z

)
+ z−4Db

(
y − x
z

)
· ( y − x)

∣∣∣∣ �b z−3,

where we used that b and Db are uniformly bounded. Since supp b ⊂ (0, 1)2, we
obtain

ˆ 2

0
z(1−s)p|∂zg0(x, z)| dz �b

ˆ 2

0

1

z2+sp

ˆ x2+z

x2

ˆ x1+z

x1
| f ( y)| dy1 dy2 dz.

Inequality (5.12) now follows on integrating (5.13) over x ∈ Q1 and applying (5.6).
Step 2. For 0 < t < 2 and x ∈ Q1, we add and subtract χ(z + t)g0(x, t) to obtain

|Ẽ0( f )(x, z + t) − Ẽ0( f )(x, z)|p �p |χ(z + t)|p|g0(x, z + t) − g0(x, t)|p
+|χ(z + t) − χ(z)|p|g0(x, z)|p.

For the first term, we use that suppχ ∈ (−2, 2) and apply (5.12) to obtain

ˆ 1

0

ˆ
O1

|χ(z + t)|p |g0(x, z + t) − g0(x, t)|p
t1+sp

dx dz dt

�χ,p

ˆ 1

0

ˆ 2

0

ˆ
Q1

|g0(x, z + t) − g0(x, t)|p
t1+sp

dx dz dt �b,s,p ‖ω
1
p −s

1 f ‖p
p,Q1

.

For the second term, we again use that suppχ ∈ (−2, 2) as well as the assumption
0 < s < 1/p:

ˆ 1

0

ˆ
O1

|χ(z + t) − χ(z)|p
t1+sp

|g0(x, z)|p dx dz dt

=
ˆ 1

0

ˆ 2

0

ˆ
Q1

1

t1+sp

∣∣∣∣
ˆ z+t

z
χ ′(r) dr

∣∣∣∣
p

|g0(x, z)|p dx dz dt

�χ,p

ˆ 1

0

ˆ 2

0

ˆ
Q1

t (1−s)p−1|g0(x, z)|p dx dz dt

�s,p

ˆ 2

0

ˆ
Q1

|g0(x, z)|p dx dz.

Inequality (5.11) now follows from (5.7). ��
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We now obtain Theorem 5.1 in the case k = 0.

Lemma 5.9 Let χ ∈ C∞
c (R) and b ∈ C∞

c (R2) be as in Theorem 4.1. For 1 < p < ∞
and 0 ≤ s < 1/p, there holds

‖Ẽ0( f )‖s,p,O1 �χ,b,k,s,p ‖ω
1
p −s

1 f ‖p,Q1 ∀ f ∈ L p(Q1, ω
1−sp
1 dx). (5.14)

Proof The case s = 0 follows on taking t = 2 in (5.7) and using the fact that
‖Ẽ0( f )‖p,O1 �χ,p ‖g‖p,Q1×(0,2), where g is defined in (4.6). The case 0 < s < 1/p
follows from the norm equivalence (5.8), the bounds (5.9) and (5.11), and the density
of C∞

c (O1) in L p(O1, ω
1−sp
1 dx). ��

5.3 Proof of Theorem 5.1

Let k ∈ N0, 1 < p < ∞.
Step 1: s = 0. Taking t = 2 in (5.7) and using the fact that ‖Ẽk( f )‖p,O1 �χ,p

‖gk‖p,Q1×(0,2), where gk is defined in (4.6), we obtain (5.3) in the case s = 0.
Step 2: s ∈ {1, 2, . . . , k}. Let f ∈ C∞

c (Q1). Applying (4.11) with |α| ≤ k, we obtain

‖Dα Ẽk( f )‖σ,p,O1 ≤
∑

0≤i≤α3

‖Ẽk+i−|α|[χi , bki ]( f )‖σ,p,O1 , (5.15)

where χi ∈ C∞
c (R) and bki ∈ C∞

c (R2) are suitable functions depending on χ and b
respectively and 0 ≤ σ < 1. Applying (5.3) with s = 0 then gives

|Ẽk( f )|s,p,O1 �χ,b,k,s,p ‖ω
1
p +k−s

1 f ‖p,Q1 ,

where we used that k + i − |α| ≥ k − m for 0 ≤ i ≤ α3. By density, (5.3) holds for
s ∈ {0, 1, . . . , k}.
Step 3: 0 ≤ s ≤ k. This case follows from interpolating Step 2 (see e.g. [23, Theorem
14.2.3] and [17, Theorem 5.4.1]).
Step 4: k < s < k + 1/p. Let σ = s − k so that 0 < σ < 1/p. Setting χ̃ikα(z) :=
zk+i−|α|χi ∈ C∞c (Q1) so that supp χ̃ikα ∈ (−2, 2) and applying (5.15) and (5.14)
then gives

‖Dα Ẽk( f )‖σ,p,O1 ≤
∑

0≤i≤α3

‖Ẽ0[χ̃ikα, bki ]( f )‖σ,p,O1 �χ,b,k,σ,p ‖ω
1
p −σ

1 f ‖p,Q1 .

Inequality (5.3) now follows. ��

6 Continuity of Fundamental Operators

In this section, we prove the continuity and interpolation properties of the four funda-
mental operators E [1]

k defined in (3.1), M[1]
k,r defined in (3.8), S[1]

k,r defined in (3.25),
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and R[1]
k,r defined in (3.37). We begin with the properties of E [1]

k , which rely on the
results of Sect. 4. Then, in Sect. 6.2, we show that the four fundamental operators
are continuous from weighted L p spaces (5.1) to Ws,p(K ) for small s, which will be
useful for the analysis ofM[1]

k,r , S[1]
k,r , andR[1]

k,r . This section concludes with the proofs
of Lemmas 3.3, 3.7 and 3.11.

6.1 Proof of Lemma 3.1

Step 1: Continuity (3.4). Let b̃ denote the extension by zero of b to R
2 and let χ ∈

C∞
c (R)withχ ≡ 1 on (−1, 1) and suppχ ∈ (−2, 2). Let f ∈ Ws−k− 1

p ,p
(T ) be given

and let f̃ denote a bounded extension f to R
2 satisfying ‖ f̃ ‖s,p,R2 �s,p ‖ f ‖s,p,T ;

see e.g. [34]. Thanks to the identity

Ek( f ) = (−1)k

k! Ẽk( f )[χ, b̃]( f ) on K , (6.1)

where Ẽk is defined in (4.1), inequality (3.4) immediately follows from (4.3) and the
smoothness of the mapping I1 defined in (3.2).
Step 2: Trace property (3.3). Direct computation shows that (3.3) holds.
Step 3: Polynomial preservation. If f ∈ PN (�1), N ∈ N0, then direct inspection
reveals that E [1]

k ( f ) ∈ PN+k(K ). ��

6.2 Weighted Continuity

We begin with the continuity of E [1]
k .

Lemma 6.1 Let b ∈ C∞
c (T ), k ∈ N0, 1 < p < ∞, and 0 ≤ s < k + 1/p or

(s, p) = (k+ 1
2 , 2). Then, for all t1, t2, t3 ∈ [0,∞) such that t1+t2+t3 = k−s+1/p,

there holds

‖E [1]
k ( f )‖s,p,K �b,k,s,p ‖ωt1

1 ω
t2
2 ω

t3
3 f ‖p,T ∀ f ∈ L p(T ; (ω

t1
1 ω

t2
2 ω

t3
3 )p dx), (6.2)

where ωi are defined in (3.7).

Proof Let t = k − s + 1/p.
Step 1: t2 = t3 = 0. Let b̃ denote the extension by zero of b to R

2 and let
χ ∈ C∞

c (R) with χ ≡ 1 on (−1, 1) and suppχ ∈ (−2, 2). Let f ∈ C∞
c (T ) be given

and let f̃ denote the extension by zero of f to R
2. Thanks to the identity (6.1), (6.2)

with t2 = t3 = 0 follows from (5.3), where we recall that ω1 is extended to R
2 by

(5.2), and a standard density argument. The case (s, p) = (k + 1
2 , 2) follows from a

similar argument using (4.3).
Step 2: t1 = t3 = 0. We define transformations F1 : T → T and G1 : K → K as

follows:

F1(x) := (x2, x1) and G1(x, z) := (x2, x1, z) (x, z) ∈ K . (6.3)
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Then, a change of variable shows that E [1]
k ( f ) ◦ G1 = E [1]

k [b ◦ F1]( f ◦ F1), and so

‖E [1]
k ( f )‖s,p,K = ‖E [1]

k ( f ) ◦ G1‖s,p,K �b,k,s,p ‖ωt
1( f ◦ F1)‖p,T = ‖ωt

2 f ‖p,T ,

where we applied Step 1 in the middle inequality.
Step 3: t3 = 0. Applying Steps 1 and 2 and interpolating between L p(T ;ω

tp
1 dx) and

L p(T ;ω
tp
2 dx) (see e.g. [17, Theorem 5.4.1]) then gives (6.2).

Step 4: t1 = t2 = 0. We define transformations F2 : T → T and G2 : K → K as
follows:

F2(x) := (x2, 1 − x1 − x2) and

G2(x, z) := (1 − x1 − x2 − z, x1, z) (x, z) ∈ K . (6.4)

A change of variables then gives E [1]
k ( f ) ◦ G2 = E [1]

k [b ◦ F2]( f ◦ F2), and so

‖E [1]
k ( f )‖t,p,K � ‖E [1]

k ( f ) ◦ G2‖t,p,K �b,k,t,p ‖ωt
1( f ◦ F2)‖p,T = ‖ωt

3 f ‖p,T ,

where we applied Step 1 in the middle inequality.
Step 5: General case. Applying Steps 3 and 4 and interpolating between
L p(T ; (ω

r1
1 ω

r2
2 )pdx) with r1, r2 ∈ R+ with r1 + r2 = t and L p(T ;ω

tp
3 dx) (see

e.g. [17, Theorem 5.4.1]) gives (6.2). ��
We now turn to the continuity of M[1]

k,r .

Lemma 6.2 Let b ∈ C∞
c (T ), k, r ∈ N0, 1 < p < ∞, and 0 ≤ s < k + 1/p or

(s, p) = (k+ 1
2 , 2). Then, for all t1, t2, t3 ∈ [0,∞) such that t1+t2+t3 = k−s+1/p,

there holds

‖M[1]
k,r ( f )‖s,p,K �b,k,r ,s,p ‖ωt1

1 ω
t2
2 ω

t3
3 f ‖p,T ∀ f ∈ L p(T ; (ω

t1
1 ω

t2
2 ω

t3
3 )p dx),

(6.5)

where ωi are defined in (3.7).

Proof Let 0 ≤ s < k+1/p or (s, p) = (k+ 1
2 , 2). We proceed by induction on r . The

case r = 0 follows from (6.2), so assume that (6.5) holds for some r ∈ N0. Direction
computation gives

M[1]
k,r+1( f )(x, z) − M[1]

k,r ( f )(x, z)

= xr2
(−z)k

k!
ˆ
T
b( y)

f (x + z y)
(x2 + zy2)r

(
x2

x2 + zy2
− 1

)
d y

= xr2
(−z)k+1

k!
ˆ
T
y2b( y)

f (x + z y)
(x2 + zy2)r+1 d y

= (k + 1)M[1]
k+1,r [ω2b](ω−1

2 f )(x, z),
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which leads to the following identity

M[1]
k,r+1( f ) = (k + 1)M[1]

k+1,r [ω2b](ω−1
2 f ) + M[1]

k,r ( f ). (6.6)

Consequently, there holds

‖M[1]
k,r+1( f )‖s,p,K ≤ (k + 1)‖M[1]

k+1,r [ω2b](ω−1
2 f )‖s,p,K + ‖M[1]

k,r ( f )‖s,p,K .

Applying (6.5) with τ1 = t1, τ2 = t2 + 1 and τ3 = t3 gives

‖M[1]
k+1,r [ω2b](ω−1

2 f )‖s,p,K �b,k,r ,s,p ‖ωτ1
1 ω

τ2−1
2 ω

τ3
3 f ‖p,T = ‖ωt1

1 ω
t2
2 ω

t3
3 f ‖p,T ,

and so ‖M[1]
k,r+1( f )‖s,p,K �b,k,r ,s,p ‖ωt1

1 ω
t2
2 ω

t3
3 f ‖p,T , which completes the

proof. ��
It will be convenient to define a three-parameter version of S[1]

k,r as follows:

S[1]
k,r ,q( f )(x, z) := xq1 x

r
2E [1]

k (ω
−q
1 ω−r

2 f )(x, z) (6.7)

for k, r , q ∈ N0. This three-parameter version satisfies the same continuity properties
as E [1]

k and M[1]
k,r .

Lemma 6.3 Let b ∈ C∞
c (T ), k, r , q ∈ N0, 1 < p < ∞, and 0 ≤ s < k + 1/p or

(s, p) = (k+ 1
2 , 2). Then, for all t1, t2, t3 ∈ [0,∞) such that t1+t2+t3 = k−s+1/p,

there holds

‖S[1]
k,r ,q( f )‖s,p,K �b,k,r ,q,s,p ‖ωt1

1 ω
t2
2 ω

t3
3 f ‖p,T ∀ f ∈ L p(T ; (ω

t1
1 ω

t2
2 ω

t3
3 )p dx),

(6.8)

where ωi are defined in (3.7).

Proof Let 0 ≤ s < k + 1/p or (s, p) = (k + 1
2 , 2). We proceed by induction on q.

The case q = 0 follows from (6.5), so assume that (6.8) holds for some q ∈ N0. Direct
computation gives

S[1]
k,r ,q+1( f )(x, z) − S[1]

k,r ,q( f )(x, z)

= xq1 x
r
2
(−z)k

k!
ˆ
T
b( y)

f (x + z y)
(x1 + zy1)q(x2 + zy2)r

(
x1

x1 + zy1
− 1

)
d y

= xq1 x
r
2
(−z)k+1

k!
ˆ
T
y1b( y)

f (x + z y)
(x1 + zy1)q+1(x2 + zy2)r

d y

= (k + 1)S[1]
k+1,r ,q [ω1b](ω−1

1 f )(x, z),

which leads to the following identity

S[1]
k,r ,q+1( f ) = (k + 1)S[1]

k+1,r ,q [ω1b](ω−1
1 f ) + S[1]

k,r ,q( f ). (6.9)
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Consequently, there holds

‖S[1]
k,r ,q+1( f )‖s,p,K ≤ (k + 1)‖S[1]

k+1,r ,q [ω1b](ω−1
1 f )‖s,p,K + ‖M[1]

k,r ,q( f )‖s,p,K .

Applying (6.8) with τ1 = t1 + 1, τ2 = t2 and τ3 = t3 gives

‖S[1]
k+1,r ,q [ω1b](ω−1

1 f )‖s,p,K �b,k,r ,q,s,p ‖ωτ1−1
1 ω

τ2
2 ω

τ3
3 f ‖p,T = ‖ωt1

1 ω
t2
2 ω

t3
3 f ‖p,T ,

and so ‖S[1]
k,r ,q+1( f )‖s,p,K �b,k,r ,q,s,p ‖ωt1

1 ω
t2
2 ω

t3
3 f ‖p,T . ��

6.3 Proof of Lemma 3.3

Step 1: Continuity (3.12). We first show that (3.12) holds with �1 replaced by T and
γ12 replaced by γ2, where we recall that the edges of T are labeled as in Fig. 1b: For all

k, r ∈ N0, (s, p) ∈ Ak ∪{(k+ 1
2 , 2)}, and f ∈ Ws−k− 1

p ,p
(T )∩W

min{s−k− 1
p ,r},p

γ2 (T ),
there holds

‖M[1]
k,r ( f )‖s,p,K �b,k,r ,s,p

⎧
⎪⎪⎨

⎪⎪⎩

‖ f ‖2,T if (s, p) = (k + 1
2 , 2),

‖ f ‖
γ2 s−k− 1

p ,p,T
if k + 1

p < s ≤ k + r + 1
p ,

‖ f ‖s−k− 1
p ,p,T if s > k + r + 1

p .

(6.10)

We proceed by induction on r . The case r = 0 follows from (3.4) and (6.2), so
assume that (6.10) holds for some r ∈ N0 and all k ∈ N0 and (s, p) ∈ Ak . Let k ∈ N0,

(s, p) ∈ Ak ∪{(k+ 1
2 , 2)}, and f ∈ Ws−k− 1

p ,p
(T )∩W

min{s−k− 1
p ,r+1},p

γ2 (T ) be given.
Thanks to (6.6), there holds

‖M[1]
k,r+1( f )‖s,p,K ≤ (k + 1)‖M[1]

k+1,r [ω2b](ω−1
2 f )‖s,p,K + ‖M[1]

k,r ( f )‖s,p,K .

Part (a): k + 1/p ≤ s ≤ k + 1 + 1/p. Thanks to Theorem A.3, there holds ω−1
2 f ∈

L p(T ;ω
(k−s+1)p+1
2 dx) and (A.9) and (A.7) give

‖ωk−s+1+ 1
p

2 ω−1
2 f ‖p,T = ‖ωk−s+ 1

p
2 f ‖p,T �k,s,p ‖ f ‖

γ2 s−k− 1
p ,T

.

Consequently, we apply (6.5) to obtain

‖M[1]
k+1,r [ω2b](ω−1

2 f )‖s,p,K �b,k,r ,s,p ‖ωk−s+ 1
p

2 f ‖p,T �k,s,p ‖ f ‖
γ2 s−k− 1

p ,p,T
.
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Part (b): k + 1 + 1/p < s ≤ k + r + 1 + 1/p. Theorem A.3 shows that ω−1
2 f ∈

W
s−k−1− 1

p ,p
γ2 (T ) and (6.10) and (A.8) then give

‖M[1]
k+1,r [ω2b](ω−1

2 f )‖s,p,K �b,k,r ,s,p

∥∥∥ω−1
2 f

∥∥∥
γ2 s−k−1− 1

p ,p,T

�k,s,p ‖ f ‖
γ2 s−k− 1

p ,p,T
.

Part (c): s > k + r + 1 + 1/p. Thanks to Theorem A.3, there holds ω−1
2 f ∈

Ws−k−1− 1
p ,p

(T ) ∩ Wr
γ2

(T ), and so we apply (6.10) and (A.7) to obtain

‖M[1]
k+1,r [ω2b](ω−1

2 f )‖s,p,K �b,k,r ,s,p ‖ω−1
2 f ‖s−k−1− 1

p ,p,T �k,s,p ‖ f ‖s−k− 1
p ,p,T .

Inequality (6.10) for r + 1 now follows from the triangle inequality. The smoothness
of the mapping I1 defined in (3.2) then gives (3.12).
Step 2: Trace properties (3.11a) and (3.11b). Direct computation shows that (3.11a)
and (3.11b) hold.
Step 3: Polynomial preservation. Suppose that f ∈ PN (�1), N ∈ N0, satisfies
Dl

� f |γ12 = 0 for 0 ≤ l ≤ r − 1. Then, f ◦ I1 = ωr
2g for some g ∈ PN−r (T ), and so

M[1]
k,r ( f ) = xr2E [1]

k (g) ∈ PN+k(K ) thanks to Lemma 3.1. ��

6.4 Proof of Lemma 3.7

Step 1: Continuity (3.29). We first show that the following analogue of (3.29) holds:
Let b ∈ C∞

c (T ), k, r ∈ N0, (s, p) ∈ Ak ∪ {(k + 1/2, 2)}, and E = {γ1, γ2}. For all
f ∈ W

s−k− 1
p ,p

E,r (T ), there holds

‖S[1]
k,r ( f )‖s,p,K �b,k,r ,s,p

⎧
⎨

⎩
‖ f ‖2,T if (s, p) = (k + 1

2 , 2),

‖ f ‖
E,r s−k− 1

p ,p,T
otherwise. (6.11)

We proceed by induction on r . The case r = 0 follows from (3.4) and (6.2). Now
let r ∈ N0 be given, and assume that (6.11) holds for all k ∈ N0 and (s, p) ∈
Ak ∪ {(k + 1/2, 2)}.

Let k ∈ N0, (s, p) ∈ Ak ∪ {(k + 1/2, 2)}, and f ∈ W
s−k− 1

p ,p

E,r+1 (T ) be given. Then,
applying (6.6) and (6.9) gives

S[1]
k,r+1( f ) = (k + 1)S[1]

k+1,r+1,r [ω1b](ω−1
1 f ) + S[1]

k,r+1,r ( f )

= xr
(
(k + 1)M[1]

k+1,r+1[ω1b](ω−(r+1)
1 f ) + M[1]

k,r+1(ω
−r
1 f )

)

= xr
[
(k + 1)(k + 2)M[1]

k+2,r [ω1ω2b](ω−(r+1)
1 ω−1

2 f )

+ M[1]
k+1,r [ω1b](ω−(r+1)

1 f ) + M[1]
k+1,r [ω2b](ω−r

1 ω−1
2 f ) + M[1]

k+1,r (ω
−r
1 f )

]
,
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where S[1]
k,r ,q is defined in (6.7), and so

S[1]
k,r+1( f ) = (k + 1)(k + 2)S[1]

k+2,r [ω1ω2b]((ω1ω2)
−1 f )

+ (k + 1)
(
S[1]
k+1,r [ω1b](ω−1

1 f ) + S[1]
k+1,r [ω2b](ω−1

2 f )
)

+ S[1]
k,r ( f ).

Consequently, we obtain

‖S[1]
k,r+1( f )‖s,p,K �k ‖S[1]

k,r ( f )‖s,p,K +
2∑

i=1

‖S[1]
k+1,r [ωi b](ω−1

i f )‖s,p,K

+ ‖S[1]
k+2,r [ω1ω2b]((ω1ω2)

−1 f )‖s,p,K
(6.12)

Part (a). We first consider the terms ‖S[1]
k+1,r [ωi b](ω−1

i f )‖s,p,K , 1 ≤ i ≤ 2. For

k+1/p ≤ s ≤ k+1+1/p, TheoremA.3 shows thatω−1
i f ∈ L p(T ;ω

(k−s+1)p+1
i dx)

and (A.9) and (A.8) gives

‖ωk−s+1+ 1
p

i ω−1
i f ‖p,T = ‖ωk−s+ 1

p
i f ‖p,T �k,s,p ‖ f ‖

E s−k− 1
p ,T

= ‖ f ‖
E,r+1 s−k− 1

p ,T

for 1 ≤ i ≤ 2. Applying (6.8) then gives

‖S[1]
k+1,r [ωi b](ω−1

i f )‖s,p,K �b,k,r ,s,p ‖ f ‖
E,r+1 s−k− 1

p ,T
, 1 ≤ i ≤ 2. (6.13)

Now let s > k + 1 + 1/p. Corollary A.4 shows that ω−1
i f ∈ W

s−k−1− 1
p ,p

E,r (T ) and
(A.11) then gives

∥∥∥ω−1
i f

∥∥∥
E,r s−k−1− 1

p ,p,T
�k,s,p,r ‖ f ‖

E,r+1 s−k− 1
p ,p,T

.

Inequality (6.13) then follows from (6.11).
Part (b). We now turn to the term ‖S[1]

k+2,r [ω1ω2b]((ω1ω2)
−1 f )‖s,p,K . Assume

first that k + 1/p ≤ s ≤ k + 1 + 1/p. Theorem A.3 shows that (ω1ω2)
−1 f ∈

L p(T ;ω
p
1 ω

(k−s+1)p+1
2 dx), and (A.9) and (A.8) give

‖ω1ω
k−s+1+ 1

p
2 ω−1

1 ω−1
2 f ‖p,T �k,s,p ‖ f ‖

E s−k− 1
p ,T

= ‖ f ‖
E,r+1 s−k− 1

p ,T
.

Applying (6.8) then gives

‖S[1]
k+2,r [ω1ω2b]((ω1ω2)

−1 f )‖s,p,K �b,k,r ,s,p ‖ f ‖
E,r+1 s−k− 1

p ,T
. (6.14)
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Now assume that k+1+1/p < s ≤ k+2+1/p. Thanks to Corollary A.4,ω−1
2 f ∈

W
s−k−1− 1

p ,p

γ1,r+1 (T ), and so Theorem A.3 gives (ω1ω2)
−1 f ∈ L p(T ;ω

(k−s+2)p+1
1 dx).

Inequalities (A.11b) and (A.8) then give

‖ωk−s+2+ 1
p

1 ω−1
1 ω−1

2 f ‖p,T �k,s,p

∥∥∥ω−1
2 f

∥∥∥
E,r s−k−1− 1

p ,T
�k,s,p ‖ f ‖

E,r+1 s−k− 1
p ,T

.

Applying (6.8) then gives (6.14).
Now assume that s > k + 2 + 1/p. Two applications of Corollary A.4 show that

(ω1ω2)
−1 f ∈ W

s−k−2− 1
p ,p

E,r (T ) and (A.11b) and (3.27) give

∥∥∥(ω1ω2)
−1 f

∥∥∥
E,r s−k−2− 1

p ,T
�k,s,p,r

∥∥∥ω−1
1 f

∥∥∥
γ1,r s−k−1− 1

p ,T
+

∥∥∥ω−1
1 f

∥∥∥
γ2,r+1 s−k−1− 1

p ,T

�k,s,p,r ‖ f ‖
γ1,r+1 s−k− 1

p ,T
+ ‖ f ‖

γ2,r+1 s−k− 1
p ,T

�k,s,p ‖ f ‖
E,r+1 s−k− 1

p ,T
.

Applying (6.11) then gives (6.14). Inequality (6.11) for r + 1 now follows from the
triangle inequality, (6.13), and (6.14). The smoothness of the mapping I1 defined in
(3.2) then gives (3.29).
Step 2: Trace properties (3.28a) and (3.28b). Direct computation shows that (3.28a)
and (3.28b) hold.
Step 3: Polynomial preservation. Suppose that f ∈ PN (�1), N ∈ N0, satisfies
Dl

� f |γ12 = Dl
� f |γ13 = 0 for 0 ≤ l ≤ r − 1. Then, f ◦ I1 = (ω1ω2)

r g for some

g ∈ PN−2r (T ), and so S[1]
k,r ( f ) = (x1x2)rE [1]

k (g) ∈ PN+k(K ) thanks to Lemma 3.1.
��

6.5 Proof of Lemma 3.11

Step 1: Continuity (3.39). We first show that the following analogue of (3.39) holds:
For b ∈ C∞

c (T ), k, r ∈ N0, (s, p) ∈ Ak , and E = {γ1, γ2, γ3}, there holds

‖R[1]
k,r ( f )‖s,p,K �b,k,r ,s,p ‖ f ‖

E,r s−k− 1
p ,p,T

∀ f ∈ W
s−k− 1

p ,p

E,r (T ). (6.15)

Part (a): Variants of S[1]
k,r . We begin with a brief aside. Let Ei j = {γi , γ j } for 1 ≤

i < j ≤ 3. Formally define the following analogue of S[1]
k,r (3.25):

S[1],(13)
k,r ( f )(x, z) := (x1(1 − x1 − x2 − z))rE [1]

k ((ω1ω3)
−r f )(x, z)

= S[1]
k,r [b ◦ F2]( f ◦ F2) ◦ G2(x, z), (x, z)∈K ,

where F2 and G2 are defined in (6.4). Note that for any s ≥ 0 and r ∈ N0, there
holds f ∈ Ws,p

E13,r
(T ) if and only if f ◦ F2 ∈ Ws,p

E12,r
(T ). Thanks to Lemma 3.7, for
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b ∈ C∞
c (T ), k, r ∈ N0, (s, p) ∈ Ak , there holds

‖S[1],(13)
k,r ( f )‖s,p,K �b,k,r ,s,p ‖ f ‖

E13,r s−k− 1
p ,p,T

∀ f ∈ W
s−k− 1

p ,p

E13,r
(T ), (6.16)

where we used that ‖ f ‖t,p,T ≈t,p ‖ f ◦ F2‖t,p,T and ‖ f ‖E13,r t,p,T ≈t,p
‖ f ◦ F2‖E12,r t,p,T . Analogous arguments show that the operator

S[1],(23)
k,r ( f )(x, z) := (x2(1 − x1 − x2 − z))rE [1]

k ((ω2ω3)
−r f )(x, z)

= S[1]
k,r [b ◦ F−1

2 ]( f ◦ F−1
2 ) ◦ G−1

2 (x, z) (x, z) ∈ K

satisfies the following for b ∈ C∞
c (T ), k, r ∈ N0, (s, p) ∈ Ak :

‖S[1],(23)
k,r ( f )‖s,p,K �b,k,r ,s,p ‖ f ‖

E23,r s−k− 1
p ,p,T

∀ f ∈ W
s−k− 1

p ,p

E23,r
(T ). (6.17)

Part (b): Key identity for R[1]
k,r . Thanks to Lemma C.1, there holds

R[1]
k,r ( f ) = (x1x2(1 − x1 − x2 − z))r

∑

α∈N3
0

α j≤k
|α|≥2

E [1]
k

(
cα,1 f

ω
α1
1 ω

α2
2

+ cα,2 f

ω
α1
1 ω

α3
3

+ cα,3 f

ω
α2
2 ω

α3
3

)

=
∑

1≤i< j≤3

λrm(i, j)

r∑

l=1

(λiλ j )
r−l

l∑

n=0

(
d(i j)
ln S[1],(i j)

k,l (ωn
i f )+d( j i)

ln S[1],(i j)
k,l (ωn

j f )
)

,

where λ1 := x1, λ2 := x2, λ3 := 1 − x1 − x2 − z, m(i, j) is the lone element of
{1, 2, 3}\{i, j}, d(i j)

ln and d( j i)
ln are suitable constants, and S[1],(12)

k,r := S[1]
k,r .

Let b ∈ C∞
c (T ), k, r ∈ N0, (s, p) ∈ Ak , and f ∈ W

s−k− 1
p ,p

E,r (T ) be given. For

any n ∈ N0 and real t ≥ 0, the mapping g �→ ωn
i g is continuous from Wt,p

E,r (T )

to Wt,p
E,r (T ). Similarly, for any α ∈ N

3
0, the mapping g �→ λ

α1
1 λ

α2
2 λ

α3
3 g is continuous

fromWs,p(K ) toWs,p(K ). Consequently, (6.15) follows from the triangle inequality,
(3.10), (3.29), (6.16), and (6.17). The smoothness of the mapping I1 (3.2) then gives
(3.39).
Step 2: Trace properties (3.38a) and (3.38b). Direct computation shows that (3.38a)
and (3.38b) hold.
Step 3: Polynomial preservation. Suppose that f ∈ PN (�1), N ∈ N0, satisfies
Dl

� f |∂T = 0 for 0 ≤ l ≤ r−1. Then, f ◦I1 = (ω1ω2ω3)
r g for some g ∈ PN−3r (T ),

and so R[1]
k,r ( f ) = (x1x2(1 − x1 − x2 − z))rE [1]

k (g) ∈ PN+k(K ) thanks to Lemma
3.1. ��
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Appendix A: Properties of Spaces with Vanishing Traces

In this section, we show that smooth functions with vanishing traces are dense in the
space Ws,p

E (T ) (3.9) and that functions in Ws,p
E,r (T ) (3.26) satisfy a Hardy inequality.

Appendix A.1 A Density Result

We begin with a density result for the spaces Ws,p
E (T ) defined in Sect. 3.2.

Lemma A.1 Let E ⊆ {γ1, γ2, γ3} and define

C∞
E (T ) :=

⎧
⎨

⎩φ ∈ C∞(T̄ ) :
⋃

γ∈E
γ ∩ suppφ = ∅

⎫
⎬

⎭ .

For 1 < p < ∞ and 0 ≤ s < ∞, the space C∞
E (T ) is dense in Ws,p

E (T ).

Proof Let E ⊆ {γ1, γ2, γ3} and 1 < p < ∞ be given.
Step 1: 0 ≤ s < 1/p. The space C∞

c (T ) ⊆ C∞
E (T ) is dense in Ws,p(T ) = Ws,p

E (T )

(see e.g. [38, Theorem 1.4.5.2]).
Step 2: s ≥ 1/p and E = {γ1}. Let s = m + σ with m ∈ N0 and σ ∈ [0, 1), and
let f ∈ Ws,p

E (T ). For n ∈ N, we construct a partition of unity on T as follows. Let
{ai }3i=1 denote the vertices of T labeled counterclockwise as in Fig. 1b and define the
following sets:

U0 :=
{
x ∈ T : dist(x, ∂T ) >

1

2n

}
,

U(i−1)(n−1)+ j = U (i)
j := B

(
ai+2 + j

n
ti ,

3

4n

)
∩ T̄ , 1 ≤ j ≤ n − 1, 1 ≤ i ≤ 3,

U3n−3+k := B

(
ak,

3

4n

)
∩ T̄ , 1 ≤ k ≤ 3,

where we use the notation B(x, r) to denote the ball of radius r centered at x. By
construction, T ⊂ ⋃3n

i=0 Ui , and so there exists a partition of unity {φi ∈ C∞
c (Ui ) :

0 ≤ i ≤ 3n} satisfying

3n∑

i=0

φi = 1 and ‖Dkφi‖∞,Ui �k n
k, 0 ≤ i ≤ 3n, ∀k ∈ N0.

We denote fi := φi f for 0 ≤ i ≤ 3n − 3 and set Vi := Ui ∩ T for 0 ≤ i ≤ 3n.
Let {δi }3n−3

i=0 be arbitrary positive constants. The construction proceeds in several
parts.
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Part (a). The function f0 := φ0 f satisfies

Dl f0|∂U0 = 0, 0 ≤ l < s − 1

p
,

‖ dist(·, ∂U0)
−σ Dm f0‖p,U0 �m,p n

1
p +m‖ f ‖m,p,U0 < ∞ if σ p = 1.

By [38, Theorem 1.4.5.2], there exists a ψ0 ∈ C∞
c (U0) satisfying

δ0 ≥ ‖ f0 − ψ0‖s,p,U0 +
{

‖ dist(·, ∂U0)
−σ Dm( f0 − ψ0)‖p,U0 if σ p = 1,

0 otherwise.

Since f ∈ Ws,p(T ), we apply the same argument to fi := φi f on Vi , 1 ≤ i ≤ n − 1,
to show that there exists a ψi ∈ C∞

c (Vi ) satisfying

δi ≥ ‖ fi − ψi‖s,p,Vi +
{

‖ dist(·, ∂Vi )
−σ Dm( fi − ψi )‖p,Vi if σ p = 1,

0 otherwise.

Part (b). For n ≤ i ≤ 3n − 2, f ∈ Ws,p(Vi ), and so there exists a ρi ∈ C∞(V̄i )

satisfying ‖ f −ρi‖s,p,Vi ≤ δi nm+2 thanks to [38, Theorem1.4.5.2]. Then, the function
ψi := φiρi satisfies

‖ fi − ψi‖s,p,Vi �s,p ‖φi‖m,∞,Vi ‖ f − ρi‖m,p,Vi

+
m∑

l=0

‖Dlφi D
m−l( f − ρi )‖σ,p,Vi �s,p δi ,

where we used [44, Theorem 6.3] to conclude that

‖Dlφi D
m−l( f − ρi )‖σ,p,Vi �s,p ‖Dlφi‖1−σ

∞,Vi
‖Dl+1φi‖σ

∞,Vi
‖Dm−l( f − ρi )‖p,Ui

+ ‖Dlφi‖∞,Vi ‖Dm−l( f − ρi )‖σ,p,Vi

≤ δi .

Moreover, when σ p = 1, we have

‖ω−σ
1 Dm( fi − ψi )‖p,Vi �p nσ ‖Dm( fi − ψi )‖p,Vi �s,p δi .

Part (c). For 3n − 1 ≤ i ≤ 3n, we will show that

lim
n→∞ ‖ fi‖s,p,Vi = 0 and if σ p = 1, lim

n→∞ ‖ω−σ
1 Dm fi‖p,Vi = 0. (A.1)

Thanks to [44, Theorem 6.3], there holds

‖ fi‖s,p,Vi �s,p

m∑

j=0

j∑

l=0

‖Dlφi‖∞,Vi ‖D j−l f ‖p,Vi +
m∑

l=0

‖Dlφi‖∞,Vi ‖Dm−l f ‖σ,p,Vi
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+
m∑

l=0

‖Dlφi‖1−σ
∞,Vi

‖Dl+1φi‖σ
∞,Vi

‖Dm−l f ‖p,Ui

�s,p

m∑

j=0

j∑

l=0

nl‖D j−l f ‖p,Vi +
m∑

l=0

(
nl+σ ‖Dm−l f ‖p,Ui

+ nl‖Dm−l f ‖σ,p,Vi

)
.

Similar computations show that for σ p = 1, there holds

‖ω−σ
1 Dm fi‖p,Vi �s,p

m∑

j=0

n j‖ω−σ
1 Dm− j f ‖p,Vi .

Since Vi ∩ γ1 �= ∅, Poincaré’s inequality gives

‖Dr f ‖p,Vi �r ,p n−(s−r)|Dm f |σ,p,Vi 0 ≤ r ≤ m,

and so ‖ fi‖s,p,Vi �s,p |Dm f |σ,p,Vi . Moreover, if σ p = 1, then Dm− j f ∈ W 1,p
E (Vi )

for 1 ≤ j ≤ m, and so [24, Theorem 5.2], [35, Theorem 3.2], and a standard scaling
argument give

‖ω−σ
1 Dm− j f ‖p,Vi � nσ−1‖ω−1

1 Dm− j f ‖p,Vi �p nσ−1‖Dm− j+1 f ‖p,Vi

�s,p n− j |Dm f |σ,p,Vi ,

and so ‖ω−σ
1 Dm fi‖p,Vi �s,p |Dm f |σ,p,Vi . Equality (A.1) now follows from that fact

that |Dm f |σ,p,Vi → 0 as n → ∞ since |Vi | → 0 as n → ∞.
Part (d). Let ε > 0 be given. First, choose n large enough so that

ε

2
≥

3n∑

i=3n−1

‖ fi‖s,p,Vi +
{∑3n

i=3n−1 ‖ω−σ
1 Dk fi‖p,Vi if σ p = 1,

0 otherwise.

Then, for {δi }3n−2
i=0 chosen sufficiently small, we construct ψi as above so that

ε

2
≥

3n−2∑

i=0

‖ fi − ψi‖s,p,Vi +
{∑3n

i=3n−1 ‖ω−σ
1 Dm( fi − ψi )‖p,Vi if σ p = 1,

0 otherwise.

Let ψ̃i denote the extension of ψi by zero to T \Ui , 0 ≤ i ≤ 3n−2 and set ψ̃ j ≡ 0 for
3n − 1 ≤ j ≤ 3n. Then, ψ̃i ∈ C∞

E (T ), and the function ψ = ∑3n
i=0 ψ̃i then satisfies

ψ ∈ C∞
E (T ) and

‖ f − ψ‖E s,p,T ≤
3n∑

i=0

‖ fi − ψi‖s,p,Vi
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+
{∑3n

i=0 ‖ω−σ
1 Dm( fi − ψi )‖p,Vi if σ p = 1,

0 otherwise,

�s,p ε,

which shows that C∞
E (T ) is dense in Ws,p

E (T ).
Step 3: E = {γ2} or E = {γ3}. If E = {γ2}, the density of C∞

γ2
(T ) in Ws,p

γ2 (T )

follows from the fact that f ∈ Ws,p
γ2 (T ) if and only if f ◦ F−1

2 ∈ Ws,p
γ1 (T ), where

F−1
2 (x1, x2) = (1−x1−x2, x1) is the inverse ofF2 defined in (6.4). The caseE = {γ3}

follows from similar arguments using the mapping F2.
Step 4: |E| = 2. Now let E = {γ1, γ2}. The density of C∞

E (T ) in Ws,p
E (T ) may

be shown using a similar construction to the case E = {γ1}. In particular, we apply
the construction of Step 1 Part (a) for 0 ≤ i ≤ 2n − 2 and i = 3n, Part (b) for
2n − 1 ≤ i ≤ 3n − 3, Part (c) for 3n − 2 ≤ i ≤ 3n − 1, and proceed analogously as
in Part (d). The remaining cases for |E| = 2 are proved along similar lines.
Step 5: E = {γ1, γ2, γ3}. This case is a restatement of [38, Lemma 1.4.5.2]. ��

Appendix B.2 Hardy Inequalities

First, we construct a bounded averaging operator.

Lemma A.2 There exists a linear operator H1 satisfying the following properties:

(i) H1 maps C(T̄ ) boundedly into C(T̄ ), and there holds

H1( f )(x) = 1

x1

ˆ x1

0
f (u, x2) du =

ˆ 1

0
f (ux1, x2) du ∀x ∈ T . (A.2)

(ii) H1 maps W
s,p
E,r (T ) boundedly into Ws,p

E,r (T ) and for all p ∈ (1,∞), s ∈ [0,∞),
r ∈ N0, and E ∈ {∅, {γ1}, {γ1, γ2}}. In particular,

‖H1( f )‖E,r s,p,T �s,p,r ‖ f ‖E,r s,p,T ∀ f ∈ Ws,p
E,r (T ). (A.3)

Proof Step 1: Continuity on C(T̄ ). Let f ∈ C(T̄ ) and define H1( f ) by (A.2).
Elementary arguments show that H1( f ) ∈ C(T̄ ) with ‖H1(φi )‖∞,T ≤ ‖φi‖∞,T .
Step 2: Extension to Ws,p

E,r (T ) when E = ∅. Let f ∈ C∞(T̄ ) and 1 < p < ∞. For

α ∈ N
2
0, there holds

DαH1( f )(x) =
ˆ 1

0
uα1(Dα f )(ux1, x2) du = 1

xα1+1
1

ˆ x1

0
uα1(Dα f )(u, x2) du,

(A.4)

and soH1( f ) ∈ C∞(T̄ ). Moreover, Hardy’s inequality [40, Theorem 327] gives

‖DαH1( f )‖p
p,T ≤

ˆ 1

0

ˆ 1−x2

0

∣∣∣∣
1

x1

ˆ x1

0
|Dα f (u, x2)| du

∣∣∣∣
p

dx1 dx2
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≤
(

p

p − 1

)p ˆ 1

0

ˆ 1−x2

0
|Dα f (x1, x2)|p dx1 dx2.

Consequently, we obtain

‖H1( f )‖s,p,T �s,p ‖ f ‖s,p,T ∀ f ∈ C∞(T̄ ), s ∈ N0.

Since C∞(T̄ ) is dense in Ws,p(T ) [38, Theorem 1.4.5.2], H1 can be continuously
extended to a linear operator from Ws,p(T ) into Ws,p(T ) for s ∈ N0. The case for
non-integer s ∈ (0,∞) follows from interpolation.
Step 3: Inequality (A.3) when E = {γ1}. The case r = 0 follows from Step 2, so
let r ∈ N. Assume first the s ≤ r and let f ∈ C∞

γ1
(T ). EquationA.4 shows that

H1( f ) ∈ C∞
γ1

(T ). Moreover, for s = m + 1/p, m ∈ N0, we apply Hardy’s inequality
[40, Theorem 327] to obtain

‖ω− 1
p

1 DαH1( f )‖p
p,T ≤

ˆ 1

0

ˆ 1−x2

0

(
1

x1

ˆ x1

0

1

u
1
p

|Dα f (u, x2)| du
)p

dx1 dx2

≤
(

p

p − 1

)p

‖ω− 1
p

1 Dα f ‖p
p,T (A.5)

for all α ∈ N0 with |α| = m. Thus, ‖H1( f )‖γ1 s,p,T �s,p ‖ f ‖γ1 s,p,T for all f ∈
C∞

γ1
(T ). By density (Lemma A.1), H1 maps Ws,p

γ1,r (T ) boundedly into Ws,p
γ1,r (T ) for

all p ∈ (1,∞) and s ∈ [0, r ].
Now let s > r and f ∈ Ws,p

γ1,r (T ). Step 2 and the arguments above show that
H1( f ) ∈ Ws,p(T ) ∩ Wr ,p

γ1 (T ), and so H1( f ) ∈ Ws,p
γ1,r (T ) if s − 1/p /∈ Z with

‖H1( f )‖γ1,r s,p,T �s,p ‖ f ‖γ1,r s,p,T . Now let s = m + 1/p for some m ∈ N. Then,

f ∈ C(T̄ ) and thanks to Step 1 and (A.5), we have

∥∥∥∥∥ω
− 1

p
1

∂m−r−1Dr−1H1( f )

∂xm−r−1
2

∥∥∥∥∥
p,T

�p

∥∥∥∥∥ω
− 1

p
1

∂m−r−1Dr−1 f

∂xm−r−1
2

∥∥∥∥∥
p,T

.

Consequently, H1( f ) ∈ Ws,p
γ1,r (T ) and (A.3) holds when E = {γ1}.

Step 4: Inequality (A.3)whenE = {γ1, γ2}. Again let r ∈ N. Assume first that s ≤ r .
As above, H1( f ) ∈ C∞

E (T ) for any f ∈ C∞
E (T ) by (A.4), and for s = m + 1/p,

m ∈ N0, Hardy’s inequality [40, Theorem 327] gives

‖ω− 1
p

2 DαH1( f )‖p
p,T ≤

ˆ 1

0

1

x2

ˆ 1−x2

0

(
1

x1

ˆ x1

0
|Dα f (u, x2)| du

)p

dx1 dx2

≤
(

p

p − 1

)p

‖ω− 1
p

2 Dα f ‖p
p,T (A.6)

for all α ∈ N0 with |α| = m. Inequality (A.3) now follows from Step 2 and (3.10). By
density,H1 mapsWs,p

E,r (T ) boundedly intoWs,p
E,r (K ) for all p ∈ (1,∞) and s ∈ [0, r ].
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Now let s > r and f ∈ Ws,p
E,r (T ). Arguing analogously as in Step 3, we have

H1( f ) ∈ Ws,p
E,r (T ) if s− 1

p /∈ Zwith ‖H1( f )‖E,r s,p,T �s,p ‖ f ‖E,r s,p,T . Moreover,
(A.6) gives

∥∥∥∥∥ω
− 1

p
2

∂m−r−1Dr−1H1( f )

∂xm−r−1
1

∥∥∥∥∥
p,T

�p

∥∥∥∥∥ω
− 1

p
2

∂m−r−1Dr−1 f

∂xm−r−1
1

∥∥∥∥∥
p,T

.

Consequently, H1( f ) ∈ Ws,p
E,r (T ) and (A.3) holds when E = {γ1, γ2}. ��

Finally, we state and prove various versions of Hardy’s inequality.

Theorem A.3 Let 1 < p < ∞ and ∅ �= E ⊆ {γ1, γ2}. For 0 ≤ s < ∞ and i ∈ {1, 2}
such that γi ∈ E, the mapping f �→ ω−1

i f is bounded (i) Ws+1,p(T ) ∩ W 1,p
E (T ) to

Ws,p(T ), and (ii) Ws+1,p
E (T ) to Ws,p

E (T ), and there holds

‖ω−1
i f ‖s,p,T �s,p ‖∂i f ‖s,p,T ∀ f ∈ Ws+1,p(T ) ∩ W 1,p

E (T ), (A.7)

∥∥∥ω−1
i f

∥∥∥
E s,p,T

�s,p ‖∂i f ‖E s,p,T ∀ f ∈ Ws+1,p
E (T ). (A.8)

Additionally, for 0 ≤ s < 1 and i ∈ {1, 2}, the mapping f �→ ω−s
i f is bounded

Ws,p
γi (T ) to L p(T ), and there holds

‖ω−s
i f ‖p,T �s,p ‖ f ‖γi s,p,T ∀ f ∈ Ws,p

γi
(T ). (A.9)

Proof Let 1 < p < ∞ be given.
Step 1: Inequalities (A.7) and (A.8) when E ∈ {{γ1}, {γ1, γ2}}. Thanks to the funda-
mental theorem of calculus, there holds

f (x) =
ˆ x1

0
(∂1 f )(u, x2) du = x1H1(∂1 f ) ∀x ∈ T , ∀ f ∈ C∞

γ1
(T ). (A.10)

By density (LemmaA.1), (A.10) holds for a.e. x ∈ T for all f ∈ W 1,p
E (T ). LemmaA.2

and (A.10) then show that the mapping f �→ ω−1
i f is bounded (i) fromWs+1,p(T )∩

W 1,p
E (T ) to Ws,p(T ), and (ii) from Ws+1,p

E (T ) to Ws,p
E (T ) provided that γi ∈ E.

Inequalities (A.7) and (A.8) now follow from (A.3) and (A.10).
Step 2: Inequalities (A.7) and (A.8) when E = {2}. Note that f ∈ Ws+1,p(T ) ∩
W 1,p

γ2 (T ) if and only if g := f ◦ F1 ∈ Ws+1,p(T ) ∩ W 1,p
γ1 (T ) and f ∈ Ws+1

γ2
(T ) if

and only if g ∈ Ws+1
γ1

(T ), where F1 is defined in (6.3). Inequalities (A.7) and (A.8)
then follow from Step 1.
Step 3: Inequality (A.9) with i = 1. Now let 0 ≤ s < 1. For sp = 1, (A.9) follows
immediately from the definition of the norm. In the case sp < 1, the proof of Theorem
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1.4.4.4 in [38] gives

‖ω−s
i f ‖p,T ≤ ‖ dist(·, ∂T )−s f ‖p,T �s,p ‖ f ‖s,p,T = ‖ f ‖γ1 s,p,T ∀ f ∈ Ws,p

γ1
(T ).

Finally, let sp > 1 and let f ∈ Ws,p
γ1 (T ) be given. We denote by f̃ ∈ Ws,p(T )

any extension of f to R
2 satisfying ‖ f̃ ‖s,p,R2 �s,p ‖ f ‖s,p,T (see e.g. [34] or [44,

Theorem 8.4]). Thanks to Theorem 6.79, inequality (6.58), and Remark 6.80 of [44],
there holds

ˆ ∞

0

ˆ
R

| f̃ (x1, x2) − f̃ (0, x2)|p
xsp1

dx2 dx1 �s,p | f̃ |ps,p,R+×R
.

Since f |γ1 = f̃ |γ1 = 0, we obtain

‖ω−s
1 f ‖p,T = ‖ω−s

1 ( f̃ − f̃ (0, ·))‖p,T ≤ ‖ω−s
1 ( f̃ − f̃ (0, ·))‖p,R+×R

�s,p | f̃ |s,p,R+×R,

and so ‖ω−s
1 f ‖p,T �s,p ‖ f ‖s,p,T , which completes the proof of (A.9) for i = 1.

Step 4: Inequality (A.9) with i = 2. This can be reduced to the case i = 1 using
similar arguments as in Step 2 using the mapping F1 defined in (6.3). ��
Corollary A.4 Let 1 < p < ∞, 0 ≤ s < ∞, 1 ≤ i ≤ 2, and r1, r2 ∈ N0 with ri ≥ 1.
Then, for all f ∈ Ws+1,p

γ1,r1 (T ) ∩ Ws+1,p
γ2,r2 (T ), there holds ω−1

i f ∈ Ws,p
γi ,ri−1(T ) ∩

Ws,p
γ j ,r j (T ) and

∥∥∥ω−1
i f

∥∥∥
γi ,ri−1 s,p,T

�s,p,r1,r2 ‖∂i f ‖γi ,ri−1 s,p,T ≤ ‖ f ‖γi ,ri s+1,p,T , (A.11a)
∥∥∥ω−1

i f
∥∥∥

γ j ,r j s,p
�s,p,r1,r2 ‖∂i f ‖γ j ,r j s,p,T ≤ ‖ f ‖γ j ,r j s+1,p,T , (A.11b)

where 1 ≤ j ≤ 2, j �= i .

Proof Let f ∈ Ws+1,p
γ1,r1+1(T ) ∩ Ws+1,p

γ2,r2 (T ) be given. By definition, there holds ∂1 f ∈
Ws,p

γ1,r1(T ) ∩ Ws,p
γ2,r2(T ) since tγ2 = [0, 1]T . Thanks to identity (A.10), which was

shown in the proof of Theorem A.3 to hold for all f ∈ W 1,p
γ1 (T ), the result for i = 1

follows from Lemma A.2. The case i = 2 can be reduced to the case i = 1 using
similar arguments as in the proof of Theorem A.3 using the mapping F1 (6.3). ��

Appendix B: Equivalent Boundary Norm

We begin with a result that states necessary and sufficient conditions for a function
defined on two faces �i ∪ � j ⊂ ∂K to belong to Ws,p(�i ∪ � j ).

Lemma B.1 Let 0 ≤ s < 1, 1 < p < ∞, and 1 ≤ i < j ≤ 4. Then, f ∈ L p(�i ∪ � j )

satisfies f ∈ Ws,p(�i ∪ � j ) if and only if
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(i) fi ∈ Ws,p(�i ) and f j ∈ Ws,p(� j );
(ii) if s > 1/p, then fi |γi j = f j |γi j ; and
(iii) if s = 1/p, then I pi j ( fi , f j ) < ∞,

where I p
i j (·, ·) is defined in (2.2). Additionally,

‖ f ‖p
s,p,�i∪� j

≈s,p ||| f |||ps,p,�i∪� j
:= ‖ fi‖p

s,p,�i
+ ‖ f j‖p

s,p,� j

+
{I p

i j ( fi , f j ) if sp = 1,
0 otherwise.

Proof Let 0 ≤ s < 1, 1 < p < ∞, and 1 ≤ i < j ≤ 4 be given.
Step 1: f ∈ Ws,p(�i ∪ � j ) �⇒ (i–iii). Assume first that f ∈ Ws,p(�i ∪ � j ).
Condition (i) follows from the definition of the norms, and in particular, ‖ fi‖p

s,p,�i
+

‖ f j‖p
s,p,� j

≤ ‖ f ‖p
s,p,�i∪� j

. If s > 1/p, then the trace theorem shows that f has a
well-defined trace on γi j , and so (ii) holds.

We now show that condition (iii) is satisfied. There holds

|x − y|2 ≈ ([F−1
i j (x) − F−1

j i ( y)] · e1)2 + ([F−1
i j (x) + F−1

j i ( y)] · e2)2

for all (x, y) ∈ �i ×� j , where Fi j : T → �i and F j i : T → � j are defined in (2.1),
and so

ˆ
�i

ˆ
� j

| fi (x) − f j ( y)|p
|x − y|sp+2 d y dx

≈s,p

ˆ
�i

ˆ
� j

| fi (x) − f j ( y)|p

|([F−1
i j (x) − F−1

j i ( y)] · e1)2 + ([F−1
i j (x) + F−1

j i ( y)] · e2)2|
sp+2
2

d y dx

u=F−1
i j (x)

v=F−1
j i ( y)

≈s,p

ˆ
T

ˆ
T

| fi ◦ Fi j (u) − f j ◦ F j i (v)|p
|ur − v|sp+2 dv du,

(B.1)

where ur := (u1,−u2). Now let s = 1/p. Applying the triangle inequality in con-
junction with the above inequality, we obtain

ˆ
T

ˆ
T

| fi ◦ Fi j (x) − f j ◦ F j i (x)|p
|xr − y|3 d y dx �p ‖ f ‖p

s,p,�i∪� j
.

Assume, for the moment, that the following holds.

B(x) :=
ˆ
T

x2
|xr − y|3 d y � 1 ∀x ∈ T . (B.2)

Then, we obtain the following bound for I pi j ( fi , f j ) defined in (2.2):

I pi j ( fi , f j ) �
ˆ
T

ˆ
T

| fi ◦ Fi j (x) − f j ◦ F j i (x)|p
|xr − y|3 d y dx �p ‖ f ‖p

s,p,�.
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Fig. 2 Annular regions of integration (red) in the proof of (B.2), where z̃ := (z1, z2/2) and ũ := (u1, u2/2)
(Color figure online)

Thus, f satisfies (iii) and we have shown that for all f ∈ Ws,p(�i ∪ � j ) there holds

‖ f ‖s,p,�i∪� j �s,p ||| f |||s,p,�i∪� j
. (B.3)

We now turn to the proof of (B.2). First note that B is well-defined on the half plane
R
2+ = {x ∈ R

2 : x2 > 0} and is a continuous function with B(x) > 0 for x ∈ R
2+, and

so it suffices to show (B.2) for x ∈ T with x2 < 1/4. Let (ρ, θ) ∈ [0,∞) × [0, 2π)

denote polar coordinates centered at xr and let Ax denote the following annulus
centered at xr (pictured in Fig. 2):

Ax =
⎧
⎨

⎩

{
y ∈ R

2 : 3x2
2 < ρ < 2x2, π

2 − cos−1
( 2
3

)
< θ < π

2

}
if x1 ≤ 1

2 ,{
y ∈ R

2 : 3x2
2 < ρ < 2x2, π

2 < θ < π
2 + cos−1

( 2
3

)}
if x1 > 1

2 .

Then, one may readily verify that Ax ⊂ T , and so

B(x) ≥
ˆ
Ax

x2
|xr − y|3 d y = x2 cos

−1
(
2

3

) ˆ 2x2

3x2
2

1

ρ2 dρ = 1

6
· cos−1

(
2

3

)
,

which completes the proof of (B.2).
Step 2: (i–iii) �⇒ f ∈ Ws,p(�i ∪� j ). Now assume that f ∈ L p(�i ∪� j ) satisfies
(i–iii). Thanks to the triangle inequality, there holds

ˆ
T

ˆ
T

| fi ◦ Fi j (x) − f j ◦ F j i ( y)|p
|xr − y|sp+2 d y dx

�s,p

ˆ
T

ˆ
T

| fi ◦ Fi j (x) − f j ◦ F j i (x)|p
|xr − y|sp+2 d y dx

+
ˆ
T

ˆ
T

| f j ◦ F j i (x) − f j ◦ F j i ( y)|p
|x − y|sp+2 d y dx. (B.4)

123



Foundations of Computational Mathematics

where we used that |xr − y| ≥ |x − y|. To bound the second term, we perform a
simple change of variables.

ˆ
T

ˆ
T

| f j ◦ F j i (x)− f j ◦ F j i ( y)|p
|x− y|sp+2 d y dx �s,p

ˆ
T

ˆ
T

| f j (x)− f j ( y)|p
|F−1

j i (x)−F−1
j i ( y)|sp+2

d y dx

�s,p ||| f |||ps,p,�i∪� j
.

For the first term, there holds

ˆ
T

d y
|xr − y|sp+2 ≤

ˆ
R2\B(xr ,x2)

d y
|xr − y|sp+2 = 2π

ˆ ∞

x2

dρ

ρsp+1 = 2π

sp
x−sp
2 ,

for all x ∈ T , and so

ˆ
T

ˆ
T

| fi ◦ Fi j (x) − f j ◦ F j i (x)|p
|xr − y|sp+2 d y dx �s,p

ˆ
T

| fi ◦ Fi j (x) − f j ◦ F j i (x)|p
xsp2

dx.

Thanks to conditions (ii)-(iii), the function g = fi ◦Fi j − f j ◦F j i belongs toW
s,p
γ2 (T )

and applying (A.8) and the triangle inequality gives

ˆ
T

| fi ◦ Fi j (x) − f j ◦ F j i (x)|p
xsp2

dx �s,p ||| f |||ps,p,�i∪� j

and so
ˆ
T

ˆ
T

| fi ◦ Fi j (x) − f j ◦ F j i ( y)|p
|xr − y|sp+2 d y dx �s,p ||| f |||ps,p,�i∪� j

.

Then, the reverse inequality of (B.3) immediately follows from (B.1), and so f ∈
Ws,p(�i ∪ � j ) and the result follows. ��

Onnoting that f ∈ Ws,p(∂K ) if and only if f ∈ L p(∂K ) and f |�i∪� j ∈ Ws,p(�i∪
� j ) for all 1 ≤ i < j ≤ 4 since

| f |ps,p,∂K =
∑

1≤i, j≤4

ˆ
�i

ˆ
� j

| fi (x) − f j ( y)|p
|x − y|sp+2 d y dx ≈s,p

∑

1≤i< j≤4

| f |ps,p,�i∪� j
,

the following result is an immediate consequence of Lemma B.1.

Corollary B.2 Let 0 ≤ s < 1 and 1 < p < ∞. Then, f ∈ L p(∂K ) satisfies f ∈
Ws,p(∂K ) if and only if

(i) fi ∈ Ws,p(�i ) for 1 ≤ i ≤ 4;
(ii) if s > 1/p, then fi |γi j = f j |γi j for all 1 ≤ i < j ≤ 4; and
(iii) if s = 1/p, then I pi j ( fi , f j ) < ∞ for all 1 ≤ i < j ≤ 4.

Additionally, (2.3) holds.
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Appendix C: Partial Fractions Decomposition

Lemma C.1 For all β ∈ N
3
0 with |β| ≥ 2, there holds

1

ω
β1
1 ω

β2
2 ω

β3
3

=
∑

α∈N3
0

α j≤β j
|α|≥2

(
cα,1

ω
α1
1 ω

α2
2

+ cα,2

ω
α1
1 ω

α3
3

+ cα,3

ω
α2
2 ω

α3
3

)
in T , (C.1)

where {cα, j } are suitable positive constants.
Proof We proceed by induction on |β|. The case |β| = 2 is trivially true. Assume
that (C.1) holds for all β ∈ N

3
0 with |β| = r ≥ 2. Let β ∈ N

3
0 with |β| = r + 1. If

β j = 0 for some j ∈ {1, 2, 3}, then (C.1) is trivially true, so assume that β j > 0 for
1 ≤ j ≤ 3. Then,

1

ω
β1
1 ω

β2
2 ω

β3
3

= 1

ω1ω2ω3
· 1

ω
β1−1
1 ω

β2−1
2 ω

β3−1
3

=
(

1

ω1ω2
+ 1

ω1ω3
+ 1

ω2ω3

)
1

ω
β1−1
1 ω

β2−1
2 ω

β3−1
3

= 1

ω
β1
1 ω

β2
2 ω

β3−1
3

+ 1

ω
β1
1 ω

β2−1
2 ω

β3
3

+ 1

ω
β1−1
1 ω

β2
2 ω

β3
3

.

By assumption, each of the three terms above is of the form (C.1), which completes
the proof. ��
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