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Abstract
In this work, we study the problem of learning a partial differential equation (PDE)
from its solution data. PDEs of various types are used to illustrate how much the
solution data can reveal the PDE operator depending on the underlying operator and
initial data. A data-driven and data-adaptive approach based on local regression and
global consistency is proposed for stable PDE identification. Numerical experiments
are provided to verify our analysis and demonstrate the performance of the proposed
algorithms.

Keywords PDE learning · Elliptic differential operator · Parabolic PDE · Hyperbolic
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1 Introduction

Partial differential equations (PDE) have been used as a powerful tool in modeling,
studying, and predicting in science, engineering, and many real-world applications.
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Foundations of Computational Mathematics

Many of them are naturally time-dependent, i.e., modeling the dynamics of an
underlying system that is evolving in time, such as heat/diffusion equation, convec-
tion/transport equation, Schrödinger equation, Navier–Stokes equation. In particular,
a PDE can be an effective way to model the underlying dynamics or represent a map
from the initial input to the terminal output. Effectiveness comes from the fact that
while a PDE model typically does not have many terms, it can capture various physi-
cal laws, diverse mechanisms, and rich dynamics. Moreover, a PDE model is easy to
interpret and the parameters (coefficients) are meaningful.

In the past, most of these equations are derived from basic physical laws and
assumptions, such as Newton’s laws of motion [30], conservation laws [33], Fick’s
laws of diffusion [12], plus simplification/approximation to various extent. They have
been extremely successful in modeling and studying physical, biological, environ-
mental, and social systems and solving real-world problems. With the advance of
technologies, abundant data are available from measurements and observations in
many complex situations where the underlying model is not yet available or not accu-
rate enough. Whether one can learn a PDE model directly from measured or observed
data becomes an interesting question. Here, datamean the observed/measured solution
and its (numerically computed) derivatives, integrals, and other transformed/filtered
quantities.

Many methods have been proposed for PDE learning [7, 11, 17, 19, 22, 23, 27,
28, 31, 34, 38, 39, 42–44, 46, 48–50]. In general, there are two approaches. One is to
directly approximate the operator/mapping, i.e., u(t) → u(t + �t), learned/trained
from solution data. We call this approach differential operator approximation (DOA).
The approximation is restricted to a chosen finite-dimensional space such as on dis-
cretized meshes in the physical domain, or a transformed space, e.g., Fourier/Galerkin
space. In particular, several recent works proposed using various types of neural net-
works to approximate the operator/mapping [26–28, 48]. Although this approach is
general and flexible, it does not explicitly reconstruct the differential operator and
hence does not help to understand the underlying physics or laws. Also, it does not
take advantage of the compact parameterized form of a differential operator and hence
requires a large degree of freedom to represent the mapping. Moreover, it means
more data and more computational costs are required to train such a model. Another
approach is to approximate the underlying PDE using a combination of candidates
from a dictionary of basic differential operators and their functions. We call this
approach differential operator identification (DOI), which determines the explicit form
of differential operators. Since DOI uses terms from a predetermined dictionary (prior
knowledge) to approximate the underlying PDE, it involves much fewer degrees of
freedom, data, and computational cost compared to the previous approach. Moreover,
using the explicit form of differential operator allows approximation using local mea-
surements in space and time, which is more practical in real applications. Once found
it is also more helpful to understand the underlying physics or laws. Several models
and methods [7, 17, 23, 27, 28, 31, 34, 38, 39, 42–44] have been proposed along this
line. However, most of the previous works are focused on PDE identification with
constant coefficients, which has only a few unknowns. The problem is formulated as
a regression problem from a prescribed dictionary, e.g., polynomials of the solution
and its derivatives. Model selection by promoting sparsity may be applied. Typically
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single or multiple solutions to the PDE are sampled on a global and dense rectangular
grid in space and time (from t = 0) to identify a PDE model.

A common issue in most of the previous studies is that PDE learning is posed in
an ideally controlled setup in terms of both initial data and the number of solution
trajectories, which are as diverse and as many as one wants. Moreover, the solution
data are sampled on a uniform and dense grid in space and time, including t = 0.
In many real applications, one only has the chance to observe a phenomenon and
its dynamics once it happens, for examples, recording seismic waves [10], satellite
data of weather development [16], remote sensing of air pollution [5], etc. Either the
event does not happen often or when it happens next time, the environment and setup
are very different. This means that the observation data are the solution to a PDE
corresponding to one initial condition, i.e., a single trajectory. Moreover, one may
not afford if not impossible to measure or observe the data everywhere in space and
time (especially close to initial time). In other words, only one solution trajectory
with uncontrollable initial data measured by local sensors (for some time duration) at
certain locations after some time lapses may be available for PDE learning in practice.
In addition to these realities, heterogeneous environment or material properties require
PDE learningwith unknown coefficients varying in space and time,which is evenmore
challenging due to the coupling of the unknown functions with the solution data. Last
but not least, not all solution data should be used in PDE learning indifferently since
PDE solution may be locally degenerate, e.g., zero, or singular in certain regions in
space and time, which may lead to significant errors due to measurement noise and/or
numerical discretization errors.

In thiswork,wewill study a fewbasic questions in PDE learning using various types
of PDEmodels. In particular, we will characterize the data space, the dimension of the
space spanned by all snapshots of a solution trajectorywith certain tolerance, and show
how it is affected by the underlying PDE operator and initial data. This information
is of particular importance for DOA approaches. Since the operator approximation is
trained by snapshots along a trajectory, it means the operator can be possibly learned
only in this data space. Then we focus on the PDE identification problem using a
single trajectory. We first study the identifiability issue and then propose a data-driven
and data-adaptive approach for general PDEs with variable coefficients. The main
goal is to identify the PDE type correctly and robustly using a minimal amount of
local data. The required data are a few patches of local measurements that can resolve
the variation of the coefficients and the solution. Our proposed Consistent and Sparse
Local Regression (CaSLR) method finds a differential operator which is 1) globally
consistent, 2) built from as few terms as possible from the dictionary, and 3) a good
local fit to data using different linear combinations at different locations. Once the
PDE type is determined, a more accurate estimation of coefficients can be achieved by
using regression on (more refined) local measurements and/or proper regularization.
Numerical examples are used to verify our analysis and demonstrate the performance
of the proposed algorithms.

We note that our CaSLR method has some similarities to the method proposed
in [38] which uses group sparsity to enforce global consistency. However, [38] uses
solution data on a dense grid in space and time and restrained their exploration to PDEs
with coefficients varying either in space or in time, but not both. When the coefficients
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depend only on space, they propose to identify a constant coefficient PDE for each
time using the corresponding snapshot data in whole space, and they address the case
where coefficients depend only on time analogously. The CaSLR is different from
this previous work in several major aspects. First, our method identifies PDE with
coefficients varying both in space and time based on patches of local data. Second, a
different feature identification process that does not require additional thresholding is
used. We also provide an identification guarantee analysis.

In our theoretical analysis, we use linear evolution partial differential equations of
the following form as examples:

∂t u(x, t) = −Lu(x, t), (x, t) ∈ � × [0, T ],
u(x, 0) = u0(x).

(1.1)

To avoid the complication of different possible boundary conditions for different oper-
ator L in our study, we consider the periodic setup: � = T

d := R
d/(2πZ)d as the

d-torus. The time-independent linear differential operator L is parameterized by the
unknown coefficients {pα(x)}n|α|=0 ⊂ K(�;R),

L f (x) =
n∑

|α|=0

pα(x)∂α f (x), (1.2)

where K(�;R) is a certain set of real-valued periodic functions.

Remark 1.1 When one learns a PDE operator, a source term should not be part of the
unknown. Otherwise, there is no unique solution.

2 Data Space Spanned by Solution Trajectory

Asdiscussed before, a single solution trajectory, i.e., the solution u(x, t) corresponding
to an initial condition, is likelywhat one can observe in practice.Hence a basic question
in PDE learning from its solution is how large is the data space spanned by all snapshots
u(x, t), 0 ≤ t ≤ T < ∞, along a solution trajectory. In the DOA approach, snapshot
pairs (u(x, t), u(x, t + �t)) are typically used to train the approximation, which
implies that the action of the operator restricted to this data space can be observed. In
the following study, we characterize the information content of a solution trajectory
by estimating the least dimension of a linear space (in L2(�)) where all snapshots
u(·, t), 0 ≤ t ≤ T are ε close to in L2 norm. This characterization is dual to the
Kolmogorov n-width [24] of the solution trajectory as a family of functions in L2(�)

parameterized by time t .
As examples,weuse twodifferent types of operatorswhereL is, 1) a strongly elliptic

operator, and 2) a first-order hyperbolic operator, to show different behaviors. These
two types of operators are ubiquitous for physical models such as diffusion equation,
viscous Stokes flow, transport equation. Intuitively, whenL is the Laplace operator, the
solution stays close to a low-dimensional space since u(·, t), t > 0 is analytic in space
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due to the smoothing effect.We show in Theorem 2.8 that for a general elliptic operator
L, all snapshots of any single trajectory u(x, t), i.e., u(·, t), 0 < t < T , stay ε close to
a linear space of dimension at most of the order O(| log ε|2). This implies the intrinsic
difficulty in a direct approximation of the mapping, u(x, t) → u(x, t + �t) for small
�t , i.e., the generator, for a parabolic differential operator by a single trajectory since
the test function space spanned by all snapshots of a solution trajectory is very small.
On the other hand, if L is a first-order hyperbolic operator, the data space spanned by
all snapshots of a single trajectory stays ε close to linear space of dimension O(ε−γ ),
where γ depends on the regularity of the initial data.

2.1 Strongly Elliptic Operator

2.1.1 Preliminaries

Let X be a Banach space andA : X → X is a linear, densely defined, closed operator
with the spectral set sp(A) and the resolvent set ρ(A).

Definition 2.1 Let the sector region 
δ ⊂ C be


δ = {z ∈ C : | arg(z)| ≤ δ}, δ ∈ (0,
π

2
), (2.1)

We say the operator A is admissible if

‖(z − A)−1‖X→X ≤ M

1 + |z| for all z ∈ C/
δ, (2.2)

where M is a positive constant.

When the operator A is admissible, one can take a suitable contour integration along
C for the following Dunford-Cauchy integral

e−At = 1

2π i

∫

C
e−zt (z − A)−1dz, (2.3)

the evaluation of e−At then can be approximated through a well-designed quadrature
scheme on C. It has been shown in [29] that the approximation can have exponential
convergence. Similar results are found in [14, 15] as well. Such exponential conver-
gence also enables fast algorithms for solutions of (1.1), see [21].

Theorem 2.2 (Theorem 1, [29]) If the operator A is admissible, then there exists an
operator AN in the form of

AN (t) =
N∑

k=−N

cke
−zk t (zk − A)−1 (2.4)
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with constants ck, zk ∈ C and

‖e−At − AN (t)‖X→X = O(e−cN ) (2.5)

uniformly on the time interval [t0,�t0] with c = O(1/ log�).

It should be noticed that in (2.5) the exponent’s dependence on time is quite weak. By
a simple modification of the above theorem, we have tailored the following corollary
for later use.

Corollary 2.3 For t ∈ [t0, T ] that t0 = εκ , κ > 0, one can take N = CA(κ)| log ε|2
such that

‖e−At − AN (t)‖X→X ≤ ε (2.6)

for certain constant CA(κ) > 0 depending on A and κ .

2.1.2 Properties of Strongly Elliptic Operator

Assume L is a strongly elliptic operators of order n = 2m, that is, its principal part

(−1)n/2
∑

|α|=n

pα(x)ξα ≥ ν|ξ |n (2.7)

for some constant ν > 0 for all x ∈ �, ξ ∈ Z
d . Let the Hilbert space Hs(�)

Hs(�) :=
{
f ∈ L2(�) :

∑

ξ∈Zd

(1 + |ξ |s)2| f̂ (ξ)|2 < ∞
}
, (2.8)

we cite the following two classical lemmas [2, 32] for our case.

Lemma 2.4 There exist a constant C > 0 such that

‖u‖H2m (�) ≤ C
(‖Lu‖L2(�) + ‖u‖L2(�)

)
(2.9)

for all u ∈ H2m(�).

Lemma 2.5 Let L be a strongly elliptic operator of order n = 2m, then there exists
constants C, R > 0 and θ ∈ (0, π

2 ) that

‖u‖L2(�) ≤ C

|z| ‖(z + L)u‖L2(�) (2.10)

for all u ∈ H2m(�) and z ∈ C satisfying |z| ≥ R and θ − π < arg z < π − θ .

From Lemma 2.4, L is a closed operator and because the domain of L includes
all C∞(�) functions, therefore L is also densely defined. The following is a direct
corollary of Lemma 2.5.
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Corollary 2.6 Let L be a strongly elliptic operator of order n = 2m, then there exists
a positive constant μ > 0 such that L + μ is admissible.

Since the parameters {pα}n|α|=0 are real-valued, then the strongly elliptic operator
L permits a decomposition L = L0 + B such that L0 is a self-adjoint operator of
order n and B is a differential operator of order < n; therefore, the spectrum of L is
discrete, there are only a finite number of eigenvalues outside the sector 
δ and the
eigenfunctions may form a complete basis in L2(�) under certain circumstances [1,
8]. Let μ > 0 such that Lμ := L + μ is admissible, in the following we assume the
initial condition u0 ∈ L2(�) can be represented by eigenfunctions

u0(x) =
∞∑

k=1

ckφk(x), (2.11)

where {λk, φk}k≥1 are the eigenpairs ofLμ sorted by	λk in ascending order including
multiplicity. Furthermore, the eigenvalues {λk}k≥1 satisfy the growth rate 	λk =
O(kβ) with β = n/d [13].

Lemma 2.7 Let the eigenpairs of Lμ be {λk, φk}k≥1, then the solution of (1.1) can be
represented by

u(x, t) = eμt
∞∑

k=1

cke
−λk tφk(x), (2.12)

where the coefficients {ck}∞k=1 satisfy u0(x) =∑∞
k=1 ckφk(x).

Theorem 2.8 Suppose Lμ is admissible that the spectrum sits in the interior of the
sector 
δ and the coefficients in (2.12) decay as |ck | ≤ θk−γ , θ > 0, γ > 1, then
there exists a linear space V ⊂ L2(�) of dimension CL(κ)| log ε|2 such that

‖u(·, t) − PV u(·, t)‖ ≤ Cε‖u0‖, ∀t ∈ [0, T ]. (2.13)

where PV is the projection operator onto V and C = C(θ, γ ). The constant CL(κ) is
chosen from Corollary 2.3 and κ = O(β/(γ − 1)).

Proof Without loss of generality, we assume that ‖u0‖ = 1. Let uM be the truncated
series from Lemma 2.7,

uM (x, t) = eμt
M∑

k=1

cke
−λk tφk(x), (2.14)

then

‖u(·, t) − uM (·, t)‖L2(�) ≤ θeμt M
1−γ

γ − 1
e−	λM+1t ≤ θeμt M

1−γ

γ − 1
e−	λMt .
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Let q ∈ N such that 	λq > μ, we denote Mε = q + ε1/(1−γ ), L = | log ε| and define
the following approximation

wε(x, t) =
Mε∑

k=1

ck

L∑

l=0

(−1)l
(λk − μ)l t l

l! φk(x)

=
L∑

l=0

t l
( Mε∑

k=1

ck(−1)l
(λk − μ)l

l! φk(x)

)
,

(2.15)

then for each t , wε sits in the linear space

V1 = span

{ Mε∑

k=1

ck(−1)l
(λk − μ)l

l! φk(x), l = 0, . . . , L

}
.

For t ∈ [0, 1
Cδ	λMε

], Cδ = 1 + tan |δ| since the spectrum is included in the sector
region, we have

|λk − μ|t ≤
√|	λk − μ|2 + |�λk |2

Cδ	λMε

≤
√|	λk − μ|2 + tan2 |δ||	λk |2

Cδ	λMε

≤
√|	λMε |2 + tan2 |δ||	λMε |2

Cδ	λMε

< 1

(2.16)

for k = 1, . . . , Mε, then by the error estimate of Taylor expansion on [0, 1
(1+δ)	λMε

],

‖uMε (x, t) − wε(x, t)‖ = ‖
Mε∑

k=1

ckφk(x)
∞∑

l=L+1

(−1)l
(λk − μ)l t l

l! ‖

≤
( Mε∑

k=1

|ck |
)

1

(L + 1)!

≤ θ

γ − 1
4e−(L+1) ≤ 4θ

γ − 1
ε.

(2.17)

which implies

‖u(x, t) − PV1u(x, t)‖ ≤ ‖u(x, t) − uMε (x, t)‖ + ‖uMε (x, t) − wε(x, t)‖
≤ 5θ

γ − 1
ε.

(2.18)

On the interval [ 1
(1+δ)	λMε

, T ], since	λMε = O(Mβ
ε ), we take κ = log(λMε )/| log ε|

= O(β/(γ − 1)), then by Corollary 2.3, there exists a linear space V2 of dimension
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CL(κ)| log ε|2, i.e., spanned by (zk − A)−1u0, k = 1, . . . , N = CL(κ)| log ε|2, such
that

‖u(x, t) − PV2u(x, t)‖ ≤ ε, (2.19)

Now we define V = V1 ∪ V2, then dim V ≤ dim V1 + dim V2 = O(| log ε|2) and

‖u(x, t) − PV u(x, t)‖ ≤
(
5θ

1

γ − 1
+ 1

)
ε, ∀t ∈ [0, T ]. (2.20)

�
Remark 2.9 If the elliptic operator Lμ in Theorem 2.8 has eigenfunctions that form
an orthonormal basis, e.g., a self-adjoint elliptic operator, the statement is still true for
|ck | ≤ θk−γ for some θ > 0, γ > 1

2 .

Following Lemma 2.10 shows that, for a self-adjoint elliptic operator L, even if
multiple trajectories are available, the data space stays ε close to the space spanned by
the first O((τ−1| log ε|)d/n) eigenfunctions of L after certain τ > 0. This poses two
difficulties for the direct operator approximation approach. First, unless diverse initial
data u(x, 0) can be used and the corresponding solution u(x, t) can be observed at
t � 1, an accurate approximation of the mapping is not possible. Second, although all
solution trajectories stay close to a low-dimensional space spanned by a few leading
eigenfunctions of L, it is not known a priori unless in the special case of constant
coefficients and simple geometry.

Lemma 2.10 If L is a self-adjoint strongly elliptic operator, then there exists a linear
space V ⊂ L2(�) such that for any solution data u(x, t) to the equation

∂t u = −Lu (2.21)

with initial condition u0 ∈ L2(�),

min
f ∈V ‖ f (x) − u(x, t)‖L2(�) ≤ ε‖u0‖L2(�), ∀t ∈ [τ, T ] (2.22)

where dim V = O((τ−1| log ε|)d/n).

Proof Let φ1, φ2, . . . be the eigenfunctions of L, which forms an orthonormal basis
for L2(�), with eigenvalues λ1, λ2, . . . and V = span{φ1, . . . , φM } is the subspace
formed by the first M eigenfunctions of L. For each t ∈ [τ, T ],

min
f ∈V ‖ f (x) − u(x, t)‖L2(�) ≤ ‖eμt

∞∑

k=M+1

cke
−λk tφk(x)‖L2(�)

≤ e(−λM+1+μ)τ‖u0‖L2(�).

(2.23)

We select M such that e(−λM+1+μ)τ ≤ ε, then λM+1 ≥ | log ε|
τ

+ μ. From the growth
rate that λk ∼ O(kn/d), we see M = O((τ−1| log ε|)d/n) would suffice. �
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2.2 Hyperbolic PDE

Next, we show that the behavior of solution trajectory for hyperbolic PDEs can be
quite different. The data space spanned by snapshots of a single solution trajectory
depends on the regularity of the initial data and can be quite rich. We use the following
first-order hyperbolic PDE defined on a torus x ∈ � = [0, 2π ]d with the periodic
condition and t ∈ [0, T ] as an example

∂t u(x, t) + c(x) · ∇u(x, t) = 0
u(x, 0) = u0(x).

(2.24)

Define the following two correlation functions in space and time of a solution trajec-
tory,

K (x, y) :=
∫ T

0
u(x, s)u(y, s)ds, (x, y) ∈ � × �,

G(s, t) :=
∫

�

u(x, t)u(x, s)dx, (s, t) ∈ [0, T ] × [0, T ],
(2.25)

where K (x, y) and G(s, t) define two symmetric semi-positive compact integral
operators on L2(�) and L2[0, T ], respectively. They have the same non-negative
eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λ j ≥ . . . with λ j → 0 as j → ∞. Their normalized
eigenfunctions form an orthonormal basis in L2(�) and L2[0, T ]. Define V k

K and V k
G

to be the linear space spanned by their k leading eigenfunctions of K (x, y) andG(s, t),
respectively, which provides the best k-dimensional linear spaces that approximate the
family of functions u(·, t) (in L2(�)) and u(x, ·) (in L2([0, T ])). We have

∫ T

0
‖u(·, t) − PVk

K
u(·, t)‖2L2(�)

dt =
∫

�

‖u(x, ·) − PVk
G
u(x, ·)‖2L2[0,T ]dx

=
∞∑

j=k+1

λ j , (2.26)

where PVk
K
and PVk

G
denote the projection operator to V k

K ⊂ L2(�) and V k
G ⊂

L2[0, T ].
Below we show an upper bound for the dimension of the best linear subspace

in L2(�) that can approximate all snapshots of a single trajectory to ε tolerance in
L2(� × [0, T ]).
Lemma 2.11 Let c(x) ∈ C p(�) be a velocity field and u0 ∈ C p(�), then there exists
a subspace V ⊂ L2(�) of dimension o(ε−2/p) that

√∫ T

0
‖PV u(·, t) − u(·, t)‖2

L2(�)
dt ≤ ε (2.27)
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Proof From (2.26), the linear space spanned by the leading k eigenfunctions of the
compact operator induced by the kernel function K (x, y) is the best approximation of
the family of functions u(·, t) and satisfies

∫ T

0
‖u(·, t) − PVk

K
u(·, t)‖2L2(�)

dt =
∞∑

j=k+1

λ j , (2.28)

whereλ j is the eigenvalues of the compact operator inducedbykernel function K (x, y)
or G(s, t) defined in (2.25).

Let Z(t; x) solve the ODE
Ż(t; x) = −c(Z(t; x)), Z(0; x) = x . (2.29)

Since c(x) ∈ C p(�), then the solution Z(t; x) ∈ C p[0, T ], The solution to hyperbolic
PDE (2.24) is u(x, t) = u0(Z(t; x)), therefore the correlation

G(s, t) :=
∫

�

u(x, t)u(x, s)dx =
∫

�

u0(Z(s; x))u0(Z(t; x))dx . (2.30)

Since G(s, t) ∈ C p([0, T ]2), its eigenvalue decay follows λn = o(n−(p+1)) [35, 36].
Therefore

∞∑

j=k+1

λ j = o(k−p). (2.31)

which completes the proof. �
Remark 2.12 For hyperbolic PDE, the trajectory of a solution corresponding to initial
data with less regularity contains more information about the underlying differential
operator. For example, when the initial data u0(x) with ‖u0‖2 = 1 have a compact
support of size h. As the support size h goes to zero, the correlation between two
snapshots at two times separated by O(h) is zero assuming the magnitude of the
velocity field c(x) isO(1). Hence the dimension of the data space spanned by a single
trajectory with any fixed tolerance is at least O(h−1). On the other hand, if c(x) is
analytic, the dimension of the data space spanned by a single trajectory corresponding
to an analytic initial datawith tolerance εwould becomeO(| log ε|d). However, the low
regularity of the solution u(x, t) can cause large discretization errors in the numerical
approximation of derivatives of the solution which leads to poor PDE identification.
If initial condition design is part of the PDE learning process, it should be a function
with its spatial and Fourier support as large as possible while being resolved by the
measurement and computation resolution.

Remark 2.13 Now we use an example to give a lower bound for the dimension of the
best linear subspace in L2(�) that can approximate all snapshots of a single trajectory
to ε tolerance. Let c(x) be the unit vector parallel to x1 axis, T = 2π , u0(x) =∑∞

n=1
√
an cos nx1 with 0 < an = o(n−2(p+1)), then ∂

p
x1u0 ∈ C(�), u(x, t) =

u0(x1 − t). Assume s > t > 0,
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G(s, t) =
∫

�

u(x, t)u(x, s)dx

= (2π)d−1
∞∑

n=1

∫ 2π

0
an cos nx1 cos n(x1 − |s − t |)dx1

= 1

2
(2π)d

∞∑

n=1

an cos(n(s − t)).

(2.32)

The eigenvalues of G(s, t) on interval [0, 2π ] are π
2 (2π)dan with multiplicity of two.

Hence we have

∫ 2π

0
‖u(·, t) − PVk

K
u(·, t)‖2L2(�)

dt =
∞∑

j=k+1

λ j = o(k−2p−1). (2.33)

Sincemax0≤t≤2π ‖u(·, t)−PVk
K
u(·, t)‖L2(�) ≥

√
1
2π

∫ 2π
0 ‖u(·, t)−PVk

K
u(·, t)‖2

L2(�)
dt ,

we see that the dimension of the best linear subspace in L2(�) that can approximate
all snapshots of a single trajectory with this chosen initial condition u0 to ε tolerance

has to be of order O(ε−1/(p+ 1
2 )).

Remark 2.14 For a hyperbolic operator with multiple trajectories, unlike the case for
elliptic operator stated by Lemma 2.10, the solution data space on an interval [0, T ]
is as rich as the solution data space on [τ, T + τ ] due to the diffeomorphism induced
by the flow X in (2.29).

The above study shows two possible challenges for a DOA approach in practice:
1) limited data space to train the approximation if the underlying differential operator
is compressive or smoothing, such as an elliptic operator, or 2) a large number of
parameters and a large amount of data as well as an expensive training process are
required to approximate a differential operator, such as a hyperbolic operator, with
rich trajectory dynamics.

2.3 Numerical Examples

Here we use a few numerical examples to corroborate our analysis above of the dimen-
sion estimates of the space spanned by all snapshots along a single solution trajectory
for different types of PDEs.

First, we show how the dimension of the data space corresponding to a single
solution trajectory depends on the PDE operator.

I. Transport equation.

ut (x, t) = 4ux (x, t), (x, t) ∈ [−8, 8) × (0, 5]
u(−8, t) = u(8, t), t ∈ (0, 5]

u(x, 0) =
{
exp(− 1

1−x2
) x ∈ (−1, 1)

0, otherwise.

(2.34)

123



Foundations of Computational Mathematics

Fig. 1 Singular value distribution of the solution matrix u jk = u(x j , tk ) restricted to the first half and the
second half of the time interval of (a) transport equation (2.34); b diffusion equation (2.35). The indices
annotated in the figures indicate the numbers of singular values that are greater than 10−3. In both cases,
Tmax = 5 is the maximal observation time

II. Heat equation.

ut (x, t) = 4uxx (x, t), (x, t) ∈ [−8, 8) × (0, 5]
u(−8, t) = u(8, t), ux (−8, t) = ux (8, t), t ∈ (0, 5]

u(x, 0) =
{
exp(− 1

1−x2
) x ∈ (−1, 1)

0, otherwise.

(2.35)

Taking the maximal time T = 5, we split the observation into two phases: the early
phase t ∈ [0, 2.5) and the late phase t ∈ (2.5, 5]. Within each phase, we compute the
singular values of the solution matrix u jk = u(x j , tk) sampled on the space-time grid
with grid size �x = 16/500 and �t = 5/5000. In Fig. 1, (a) shows the singular value
distribution of the solution space for transport equation (2.34), and (b) shows that for
heat equation (2.35). We see that the data space spanned by a single solution trajectory
of a hyperbolic operator has a significantly larger dimension than that of a parabolic
operator. Also, we see that the dimension of the data space at a later time interval does
not decrease for a hyperbolic PDE, whereas it decreases considerably for a parabolic
PDE.

Now we test the following PDEs with variable coefficients over a time-space grid
with widths �x = 16/500 and �t = 5/5000.

I’. Transport equation.

ut (x, t) =
(
2 + cos

(πx

8

))
ux (x, t), (x, t) ∈ [−8, 8) × (0, 5]

u(−8, t) = u(8, t), t ∈ (0, 5]
u(x, 0) = sin

(πx

8

)
.

(2.36)

II’. Heat equation.

ut (x, t) =
(
2 + cos

(πx

8

))
uxx (x, t), (x, t) ∈ [−8, 8) × (0, 5]

u(−8, t) = u(8, t), ux (−8, t) = ux (8, t), t ∈ (0, 5]
u(x, 0) = sin

(πx

8

)
.

(2.37)
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Fig. 2 Singular value distribution of the solution matrix u jk = u(x j , tk ) restricted to the first half and the
second half of the time interval of (a) transport equation (2.36); (b) diffusion equation (2.37). In both cases,
Tmax = 5 is the maximal observation time

The results are shown in Fig. 2. For the transport equationwith constant coefficients,
since the initial condition contains only a single sinusoidal mode, the whole solution
trajectory contains this single mode with a phase shift and hence lives in a two-
dimensional space. For the heat equation with constant coefficients, the whole solution
trajectory contains this single mode with a decaying magnitude, which lives in a one-
dimensional space. However, the variable coefficients “pump” various modes into
the solution trajectory. We see the dimension of the data space of a single solution
trajectory behaves similarly to the counterpart with constant coefficients except that
the variation of the coefficient in the diffusion equation keeps pumping in modes into
the solution and slows down the decay of the singular values in a later time interval.

Finally, we show how the dimension of the solution data space of a single solution
trajectory depends on the initial data. We use two types of initial data. One is initial
data with compact support with different regularities. The other one is using initial
data that contain a different number of Fourier modes with random amplitude for each
mode. For initial data with different regularity, we consider

usquare(x, 0) =

⎧
⎪⎨

⎪⎩

1, x ∈ [−4, 0],
−1, x ∈ (0, 4],
0, otherwise

(2.38)

and uhat(x, 0) = G(usquare(x, 0)), uint(x, 0) = G(uhat(x, 0)), whereG is themapping:

G f (x) :=
∫ x

−8
f̃ (s)ds, f̃ (x) =

⎧
⎪⎨

⎪⎩

f (2x + 4) x ∈ [−4, 0],
− f (−2x − 4) x ∈ (0, 4],
0 otherwise.

(2.39)

And for the random initial data, we consider

u(x, 0) = a0 + √
2

M∑

j=1

(
a j cos

(
π j x

L

)
+ b j sin

(
π j x

L

))
, x ∈ [−8, 8). (2.40)

Here M is the total number of Fourier modes in the initial data and the amplitudes
a0, a j , b j ∼ N (0, 1/(2M + 1)), j = 1, 2, . . . , M .
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Fig. 3 Singular value distribution of the solution matrix u jk = u(x j , tk ) for compact supported initial data
with different regularities (2.38) and (2.39) for a transport equation (2.34) in log− log plot; b diffusion
equation (2.35) in log ε plot

For initial data with different regularities, we show the percentage of dominant
singular values, λ > ε, for different threshold ε > 0 in Fig. 3. Figure3a shows the
percentage in a log-log plot of the exact solution matrix u jk = u(x j , tk) sampled on
the space-time grid for the transport equation with constant speed (2.34). As shown
by the argument in Lemma 2.11, the less regular the initial data is, the faster the
two solution snapshots decorrelate in time and hence the larger the space spanned
by the solution trajectory for the transport equation. For the tested initial data given
by (2.38) and (2.39), according to the example given inRemark 2.13, the corresponding
singular values of the solution matrix decay at an algebraic rate λn = O(n−p−1) with
p = 0, 1, 2, which is verified by the numerical result shown in Fig. 3a. Figure3b shows
the percentage of dominant singular values in terms of log ε for the heat equation with
constant conductivity (2.35). Due to exponential decay in time for all eigenmodes
in the initial data, the singular value of the solution matrix decays very quickly for
all cases, i.e., the space spanned by all snapshots along a single solution trajectory is
small for the diffusion equation. As shown by Theorem 2.8, the growth cannot bemore
than | log ε|2. Actually, the numerical results suggest the growth is c| log ε|, where c
depends on the regularity of the initial data. The smoother the initial data, the smaller
the c is.

Figure 4 shows the percentage of dominant singular values for solutions
of (2.34), (2.36), (2.35), and (2.37)with random initial data constructed as in (2.40).We
see that the more Fourier modes the initial data contain, the larger the space spanned
by the solution trajectory, while the growth rate for the diffusion equation is much
slower than that of the transport equation. Also, variable coefficients can introduce
Fourier modes into the solution and hence increase the space spanned by the solution
trajectory. The increment is more significant when initial data contain fewer Fourier
modes.

3 PDE Identification from a Single Solution Trajectory

In this section, we study PDE identification problem based on a combination of can-
didates from a dictionary of basic differential operators and their functions using a
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Fig. 4 Singular value distribution of the solution matrix u jk = u(x j , tk )with random initial functions with
a varying number of modes for a transport equations (constant coef. (2.34); variable coef. (2.36)); b heat
equations (constant coef. (2.35); variable coef. (2.37)). In both figures, the y-axes denote the percentage of
dominant singular values (λn > 1 × 10−3). Each plot is the average of 20 experiments

single trajectory. We first focus on the basic question of identifiability and stability.
We then propose a data-driven and data-adaptive computational model based on local
regression and global consistency for PDE identification with variable coefficients.

Identifying a differential operator L of form (1.1) from its solution data u(x, t)
can be formulated in the following weak form: Choose a filter function ψ(x) and use
integration by part (in a weak sense if needed),

〈∂t u(x, t), ψ(x)〉 = −
〈

n∑

|α|=0

pα(x)∂αu(x, t), ψ(x)

〉

= −
〈

n∑

|α|=0

(−1)|α|∂α(pα(x)ψ(x)), u(x, t)

〉

= − 〈L∗ψ(x), u(x, t)
〉
, (3.1)

where L∗ is the formal adjoint of L. The left-hand side of weak formulation (3.1),
denoted by h(t), can be computed from the trajectory data and identification of L can
be cast in a Galerkin formulation

〈L∗ψ, u(·, t)〉 = −h(t). (3.2)

It shows that the information of a differential operator L is projected to the space
spanned by snapshots of solution trajectory u(·, t) through its operation on the filter
function ψ(x). For example, if L is a differential operator with constant coefficients
and one choosesψ(x; y) = δ(x− y), the PDE identification problem becomes a linear
regression problem using the solution and its derivatives sampled at different locations
in space and time, which has been the main study in the literature.

Remark 3.1 Theorem 2.8 shows that when L is a strongly elliptic operator, a single
trajectory of the solution stays ε close in L2 norm to a linear space of dimensions
of at most O(| log ε|2). It implies the eigenvalues of the compact operator induced
by the correlation function between two snapshots G(t, s) = ∫

�
u(x, t)u(x, s)dx has

at least an exponential decay as λk = O(e−c
√
k). This implies that, when Galerkin
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formulation (3.1) is discretized and many snapshots along a single trajectory are used
as the test functions, the eigenvalues of the resulting linear system also have a fast
decay and hence are ill-conditioned, which will affect both accuracy and stability of
the identification problem.

3.1 PDE Identification with Constant Coefficient

For PDE identification with constant coefficients, one can transform it into the Fourier
domain and show that the underlying differential operator L can be identified by one
trajectory at two different instants if and only if the solution contains enough Fourier
modes.

Defining the Fourier transform of u with respect to the space variable as

û(ζ, t) = (2π)−d/2
∫

�

e−iζ ·xu(x, t) dx,

the PDE ∂t u = Lu is converted to an ODE for each frequency ζ ∈ Z
d ,

∂t û(ζ, t) = −(2π)−d/2
n∑

|α|=0

pα(iζ )α û(ζ, t) (3.3)

whose solution is

û(ζ, t) = û(0, ζ ) exp

⎛

⎝−(2π)−d/2
n∑

|α|=0

pα(iζ )αt

⎞

⎠ . (3.4)

Suppose there is a ζ ∈ R
d such that û(0, ζ ) �= 0, then for any t2 > t1 > 0, we have

û(ζ, t2)

û(ζ, t1)
= exp

⎛

⎝−(2π)−d/2
n∑

|α| even
pα(iζ )α(t2 − t1)

⎞

⎠

exp

⎛

⎝−(2π)−d/2
n∑

|α| odd
pα(iζ )α(t2 − t1)

⎞

⎠ .

By denoting cα = pαi |α| when |α| is even, and cα = pαi |α|−1 when |α| is odd, we
associate the (ζ, t) pair with the following decoupled system

(2π)d/2

t2 − t1
log

(∣∣∣∣
û(ζ, t2)

û(ζ, t1)

∣∣∣∣

)
= −

∑

|α|≤n, |α| even
cαζ α, (3.5)

(2π)d/2

t2 − t1
Arg

(
û(ζ, t2)

û(ζ, t1)

)
= −

∑

|α|≤n, |α| odd
cαζ α . (3.6)
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It is thus clear that, given a single solution u(x, t) corresponding to an initial data
u(0, t), the underlying constant coefficient PDE is identifiable, i.e., there exists a
unique set of parameters pα such that ∂t u = −Lu if and only if (3.5) and (3.6) admit
unique solutions for cα , which are coefficients of two polynomials. If t2 − t1 > 0 is
small enough, the phase ambiguity in (3.6) is removed. Hence one can apply standard
polynomial regression results to this problem in the spectral domain.

Theorem 3.2 Let Q = {ζ ∈ Z
d : û0(ζ ) �= 0}, then if

|Q| ≥ max

⎛

⎜⎝
� n
2 �∑

k=0

(
2k + d − 1

d − 1

)
,

� n−1
2 �∑

k=0

(
2k + d

d − 1

)
⎞

⎟⎠

and Q is not located on an algebraic polynomial hypersurface of degree ≤ n consists
of only even-order terms or odd-order terms, then the parameters pα are uniquely
determined by the solution at two instants u(x, t2), u(x, t1) if |t2− t1| is small enough.

Proof Choose Fourier modes ζk ∈ Q, k = 1, 2, . . . , K ≥ max
(∑� n

2 �
k=0

(2k+d−1
d−1

)
,

∑� n−1
2 �

k=0

(2k+d
d−1

))
and t2 > t1 ≥ 0, (3.5) and (3.6) imply

(2π)d/2ye = −Aece , cTe = (c0, c2, . . . , c2�n/2�) , (3.7)

(2π)d/2yo = −Aoco , cTo = (c1, c3, . . . , c2�(n−1)/2�+1) , (3.8)

respectively, where

(ye)k = 1

t2 − t1
log(|̂u(ζk, t2, )/û(ζk, t1)|), (Ae)kα = ζ α

k , α even , |α| ≤ n

and

(y0)k = 1

t2 − t1
Arg(̂u(ζk, t2)/û(ζk, t1)), (Ao)kα = ζ α

k , α odd , |α| ≤ n

By the assumption, Ae and Ao are both of full ranks. Hence pα can be determined
uniquely. �
Remark 3.3 Theorem 4.4 in Sect. 4.2 states that actually there exist solution data on
a local patch (in space and time) that can identify PDE with constant coefficients by
local regression if the solution has enough Fourier modes.

Determining a differential operator L in the spectral domain requires observing the
solution globally in space. In reality, it may be more practical to observe the solution
merely by local sensors. In other words, one can approximate the filter function in (3.1)

123



Foundations of Computational Mathematics

by the delta function sampled at certain points (xk, tk), k = 1, 2, . . . , K in space and
time and identify the PDE through the following least-squares problem

argmin
p

‖Fp − ut‖22 (3.9)

where F is called the feature matrix defined by a set of basic partial differential
operators, a linear combination of which can form L, acted on the observed solution
at sampled locations (tk, xk), p represents the unknown coefficient vector, and

ut = [ut (x1, t1), ut (x2, t2), · · · , ut (xK , tK )]T .

For example, in one dimension d = 1, the feature matrix

F =
⎡

⎢⎣
u(x1, t1) ux (x1, t1) uxx (x1, t1) · · · u(n)

x (x1, t1)
...

...
...

...
...

u(xK , tK ) ux (xK , tK ) uxx (xK , tK ) · · · u(n)
x (xK , tK )

⎤

⎥⎦

Assume the solution and its derivatives are sampled on an equally spaced grid xk ,
k = 1, . . . , K , at a single observation time tk ≡ τ ,

F =
⎡

⎢⎣
u(x1, τ ) ux (x1, τ ) uxx (x1, τ ) · · · u(n)

x (x1, τ )
...

...
...

...
...

u(xK , τ ) ux (xK , τ ) uxx (xK , τ ) · · · u(n)
x (xK , τ )

⎤

⎥⎦ ,

Since the discrete Fourier transform (DFT) matrix is unitary, the singular values of F
are identical to its discrete Fourier transform

F̂ =
⎡

⎢⎣
û(ζ1, 0)W (ζ1, τ ) (iζ1)̂u(ζ1, 0))W (ζ1, τ ) · · · (iζ1)nû(ζ1, 0))W (ζ1, τ )

...
...

...
...

û(ζK , 0)W (ζK , τ ) (iζK )̂u(ζK , 0)W (ζK , τ ) · · · (iζK )nû(ζK , 0)W (ζK , τ )

⎤

⎥⎦

(3.10)

where û is the discrete Fourier transform of u and

W (ζk, τ ) = exp

(
−(2π)−1/2

n∑

α=0

pα(iζk)
ατ

)
, ζk = k, k = 1, 2, . . . , K .

The matrix F̂ can be factorized as

F̂ = �V,

where � is a K × K diagonal matrix with �kk = û(ζk, 0)W (ζk, τ ) and V is the
Vandermonde matrix withVk j = (iζk) j , k = 1, 2, . . . , K , j = 0, 1, 2, . . . , n. We can
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see that the PDE identification problem using pointwise information is a little different
from a polynomial regression problem. In addition to the Vandermonde matrix V,
we see that initial/input data u0 and sampling can also affect the conditioning of
F. Let λ = max1≤k≤K |�kk |, λ = min1≤k≤K |�kk | and σ = max0≤ j≤n |σ j |, σ =
min0≤ j≤n |σ j |, where σ j are eigenvalues of the corresponding Vandermonde matrix.
Assume K = n + 1, denote L j (ζ ) = ∑n

k=0 = ξ jk(iζ )k to be the Lagrange basis
polynomials, i.e., L j (ζk) = δ jk and ξ j = [ξ j0, ξ j1, . . . , ξ jn]T . We have Vξ j = e j ,
where e j is the canonical basis in R

n+1, and σ−1 ≤ ‖ξ j‖ ≤ σ−1. On the other
hand, let ω j , j = 0, 1, . . . , n be the eigenvalues of F̂ and ω = max0≤ j≤n |ω j |, ω =
min0≤ j≤n |ω j |. We have λ = min0≤ j≤n ‖F̂ξ j‖, λ = max0≤ j≤n ‖F̂ξ j‖, which implies

ω ≥ λσ and ω ≤ λσ , and hence ω
ω

≥ λσ
λσ

. For example, Fmay become ill-conditioned
if

(1) Fourier modes with small amplitudes in the initial/input data are involved;
(2) the differential operator L is elliptic and the solution is sampled at a large time

(due to the exponential decay of |W (ζk, τ )| in time).

In general, using the solution data at all points on a rectangular grid in space and
time, which most existing methods are based on, may be too costly or not practical in
real applications. In particular, for PDEs with constant coefficients, it is unnecessary.
Moreover, it may not be a good strategy for PDE identification even if the data are
available. For example, at certain sampling locations, the solution may be degenerate,
e.g., (nearly) zero in a neighborhood, which is then sensitive to noise, or becomes
singular, which can lead to large numerical errors. However, we do not know what
type of PDE or initial data a priori, so the sampling strategy and PDE identification
method should be data-driven and data-adapted.

3.2 PDE Identification with Variable Coefficients Using a Single Trajectory

For the identification of time-dependent PDEs with coefficients varying in space,
the unknowns are (coefficient) functions, which means 1) the regression problems
at different spatial locations are different; 2) the variations of the coefficients are
intertwined with the solution in both frequency and physical domains.

In the following, we will start with an identifiability and stability study. Then we
propose a computational model for PDE identification with variable coefficients that
enforces both local regression and global pattern consistency. The main goal is to
identify a consistent differential operator that is built fromas few terms as possible from
the library that can fit observed data well locally by using different linear combinations
at different locations. Once the PDE type is determined, a more accurate estimation
of coefficients can be achieved by independent local regression and/or appropriate
regularization.

3.3 Identifiability with a Single Trajectory

In this section, we focus on the question that whether or not a single solution trajectory
u(x, t) can determine the underlying differential operator from a given library, i.e.,
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identifiability of the differential operatorL. In the sequel, we first introduce the general
statement in parallel to the identifiability statement for PDEwith constant coefficients,
which states if there are enough Fourier modes in the initial data and one can observe a
single trajectory at two different instants, one can recover those constant coefficients.
For PDEs with variable coefficients, one has to recover these unknown functions.
Hence more Fourier modes in the initial data and more snapshots along the trajectory
depending on the order of the differential operators and space dimensions are needed
for identifiability.

Theorem 3.4 Let m = (n+d
d

)
. For any given x ∈ �, the parameters pα(x) can be

recovered if and only if one can find m instants t1, . . . , tm that the matrix A = (Ak,α)

is non-singular where Ak,α := ∂αu(x, tk).

Proof This is directly from the following linear system of pα(x),

n∑

|α|=0

pα(x)∂αu(x, tk) = −ut (x, tk), k = 1, 2, . . . ,m. (3.11)

�
Consider the limiting case that t1, . . . , tm → 0. One can then take k-th derivatives

of the solution in time at t = 0. The above lemma becomes the requirement that
the matrix S := (Sk,α), k = 1, 2, . . . ,m with Sk,α := ∂αLk−1u0(x) is non-singular
almost everywhere. In the following, we show that if the initial condition is randomly
generated, then S is almost surely non-singular if the parameters pα are sufficiently
smooth. In the following, we denote the diagonal multi-indices set Dn by

Dn := {α = (α1, . . . , αd) | |α| = n and there exists 1 ≤ j ≤ d such that α j = n}.

Theorem 3.5 Assume the coefficients pα ∈ Cmn(�) and let the initial condition u0 be
generated by

u0(x) =
r∑

j=1

w j e
iζ j ·x (3.12)

where r >
(mn+d

d

)
and the vectors ζ j ∈ Z

d are not on an algebraic hypersur-
face of degree mn and the weights w j are random variables that w j ∼ U[a j , b j ]
with a j < b j . Denote P the induced probability measure on � ×∏m

j=1[a j , b j ]. If∑
α∈Dn

|pα(x)|2 �= 0 almost everywhere in �, then the matrix S is non-singular
P-almost surely.

Proof Let x ′ ∈ � be a fixed point that
∑

Dn
|pα(x ′)|2 �= 0. Notice that

the probability P[S is non-singular] = 1 − P[det S = 0], since Sk,α(x ′) =∑r
j=1 w j∂

αLk−1eiζ j ·x |x=x ′ , the determinant det(S) can be written in the following
form
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∑

|β|=m

Fβ({∂γ pα(x ′)}; {ζ j })ei(β1ζ1+···+βr ζr )·x ′
w

β1
1 w

β2
2 · · ·wβr

r = 0, (3.13)

where β = (β1, β2, . . . , βr ) and each Fβ is a polynomial of ∂γ pα(x) with |α| ≤ n,
|γ | ≤ (m − 1)n, and the degree of the polynomial is at most m − 1, each coefficient
of the polynomial is uniquely determined by a polynomial in terms of ζ j , 1 ≤ j ≤ r .

It is clear that the set of wi , i = 1, 2, . . . , r that satisfy (3.13) has measure zero
in
∏r

j=1[a j , b j ] unless all of the coefficients Fβ = 0 at x ′ ∈ �. If the later is true,
it means det(S) = 0 at x ′ ∈ � for any w j ∈ [a j , b j ], j = 1, . . . , r . Let the matrix

S j := (S j
k,α), where S j

k,α = ∂αLk−1eiζ j ·x |x=x ′ and we denote the linear functional
f j : Cm×m → C, j = 1, 2, . . . , r by

f j (X) := trace(XS j ). (3.14)

In the following, we show that
⋂r

j=1 ker f j �= {0}. By Lemma 3.9 of [37], if⋂r
j=1 ker f j = {0}, then any linear functional f on C

m×m can be written as linear
combination

f (X) =
r∑

j=1

w j trace(XS j ) = trace(X
r∑

j=1

w j S
j ). (3.15)

However, if we take a full rank matrix B ∈ C
m×m and define f̃ (X) = trace(XB),

then B can be represented by B = ∑r
j=1 w j S j , which violates the condition that

det(
∑r

j=1 w j S j ) = 0. Hence there exists a nonzero matrix c = (ck,α) ∈ C
m×m such

that

∑

|α|≤n

m∑

k=1

ck,α∂αLk−1eiζ j ·x |x=x ′ = 0, 1 ≤ j ≤ r . (3.16)

The differential operator L′ := ∑|α|≤n
∑m

k=1 ck,α∂αLk−1 is uniquely determined by
the derivatives ∂γ pα and has the order of at most mn. Without loss of generality, we
denote L′ by

L′ :=
mn∑

|γ |=0

qγ (x)∂γ . (3.17)

We first showL′ is non-trivial. Let 1 ≤ m′ ≤ m be the largest index that cm′,α′ �= 0 for
some α′, then according to the assumption, almost everywhere in�, at least one of the
leading-order terms cm′,α′ pm

′−1
α (x)∂(m′−1)α+α′

for certain α ∈ Dn in cm′,α′∂α′Lm′−1

is nonzero. In the next, we denote (iζ )γ :=∏d
k=1(iζk)

γk , where ζ = (ζ1, . . . , ζd) and
γ = (γ1, . . . , γd). Since r >

(mn+d
d

)
and the vectors ζ j ∈ Z

d , 1 ≤ j ≤ r are not
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located on an algebraic polynomial hypersurface of degree ≤ mn, then the equation

L′eiζ j ·x |x=x ′ =
⎛

⎝
mn∑

|γ |=0

qγ (x ′)(iζ j )γ
⎞

⎠ eiζ j ·x ′ = 0, 1 ≤ j ≤ r (3.18)

implies
∑mn

|γ |=0 qγ (x ′)(iζ j )γ = 0 which gives a contradiction. �

3.3.1 Ergodic Orbits

In the following, we consider the solution to (2.24) with infinite observation time
T = ∞. The previous dimensionality analysis of the solution space would not work
due to the non-compactness. For the sake of simplicity, we assume c(x) is measure-
preserving and has no singular points, that is

∇ · c(x) = 0, |c(x)| �= 0. (3.19)

For dimension d = 2, the ergodic properties of the measure-preserving dynamic
system

Ẋ(t) = c(X), X(0) = x0 (3.20)

on torus have been studied by [3, 40, 47]. Let

(a1, a2) = 1

|�|
∫

�

c(x)dx,

it has been proved that if a1/a2 is irrational, then the flow X(t) is ergodic and can be
regarded as a rectilinear flow on a two-dimensional Euclidean torus by some suitable
choice of coordinate change. The dynamics on a high-dimensional torus are studied
by [25, 41].

Theorem 3.6 ([40]) For d = 2, every orbit of (3.20) is ergodic if and only if a1, a2 are
linearly independent with respect to integral coefficients.

Theorem 3.7 ([41]) For d ≥ 3 and assume every orbit of (3.20) is Lyapunov stable
in both directions in time, then every orbit is ergodic if and only if a1, a2, . . . , ad are
linearly independent with respect to integral coefficients.

Using the ergodic property,we canderive the following simple corollary to characterize
the solution data by tracking the locally unique value in time.

Corollary 3.8 Let u0 ∈ C1(�), suppose every orbit of (3.20) is ergodic and there exists
a point x0 ∈ � such that for any y ∈ �, dist(y, x0) ∈ (0, δ), u0(y) �= u0(x0), then
c(x) is uniquely determined from u(x, t), t ∈ [0,∞).

123



Foundations of Computational Mathematics

Proof Let X(t) be the orbit

Ẋ(t) = c(X), X(0) = x0. (3.21)

Then c(X(t)) is uniquely determined by tracing the location of the local unique value
u0(x0). By the ergodic property of X(t) and continuity of c(x), for any z ∈ � one can
find a sequence X(t j ) → z, j → ∞, which reconstructs c(z) = lim j→∞ c(X(t j )). �

3.4 Possible Instability for Identification of Elliptic Operator

In this section, we study the stability issue for PDE identification and use the elliptic
operator as an example to show possible instability. First, we show local instability
when one has a short observation time for a single trajectory. Suppose each coefficient
pα is sufficiently smooth, we consider a small perturbation pα(x) → pα(x)+μ fα(x)
that |μ| � 1, then the Frechét derivative w(x, t) = ∂μu(x, t) satisfies the equation

∂tw(x, t) = −
n∑

|α|=0

pα(x)∂αw(x, t) +
n∑

|α|=0

fα(x)∂αu(x, t),

w(x, 0) = 0.

(3.22)

When L = ∑n
|α|=0 pα(x)∂α is a dissipative operator, there exists a constant c > 0

such that

‖w(x, t)‖2L2(�×[0,T ]) ≤ c‖
n∑

|α|=0

fα(x)∂αu(x, t)‖2L2(�×[0,T ])

= c
∑

0≤|α|,|β|≤n

∫

�

(∫ T

0
∂αu(x, t)∂βu(x, t)dt

)
fα(x) fβ(x)dx .

(3.23)

Define the functions Kαβ(x) by

Kαβ(x) :=
∫ T

0
∂αu(x, t)∂βu(x, t)dt (3.24)

and denote the normalized set F = {{ fα}n|α|=0 ⊂ Cn(�;R) | ∑α ‖ fα‖2
L2(�)

= 1},
then the local instability amounts to find the minimum

min
fα∈F

∑

0≤|α|,|β|≤n

∫

�

Kαβ(x) fα(x) fβ(x)dx (3.25)
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where K (x) = (Kαβ(x)) is a positive definite matrix for each x ∈ �. Given any fixed
x ∈ �,

min
fα(x)

∑

0≤|α|,|β|≤n

Kαβ(x) fα(x) fβ(x) = λm(x)
n∑

|α|=0

| fα(x)|2, (3.26)

where m = (n+d
d

)
and λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0 are the eigenvalues of Kαβ(x), the

equality holds when f = ( fα(x)) is the eigenvector of K (x) for λm . Therefore

min
fα∈F ‖w‖2L2(�×[0,T ]) ≤ c

∫

�

λm(x)
n∑

|α|=0

| fα(x)|2dx = c
∫

�

λm(x)dx . (3.27)

It should be noted that if ∂αu are continuous, then Kαβ(x) varies continuously; there-
fore, λm(x) is also a continuous function over �. On the other hand, use Taylor
expansion for short time that T � 1, the matrix entries of K are

Kαβ(x) =
m−1∑

k=0

T k+1

(k + 1)! (−1)k
(

k∑

l=0

(
k

l

)
∂αLlu0(x)∂

βLk−lu0(x)

)
+ O(Tm+1)

=
m−1∑

l=0

∂αLlu0(x)

(
m−1∑

k=l

T k+1

(k + 1)! (−1)k
(
k

l

)
∂βLk−lu0(x)

)
+ O(Tm+1)

=
m−2∑

l=0

∂αLlu0(x)

(
m−1∑

k=l

T k+1

(k + 1)! (−1)k
(
k

l

)
∂βLk−lu0(x)

)

+ Tm

m! (−1)m−1∂αLm−1u0(x)∂
βu0(x) + O(Tm+1). (3.28)

For each 0 ≤ l ≤ m − 2 in the summation, the matrix formed by the entry

Kl
αβ(x) := ∂αLlu0(x)

(
m−2∑

k=l

T k+1

(k + 1)! (−1)k
(
k

l

)
∂βLk−lu0(x)

)
(3.29)

is rank one; therefore, the summation of the terms 0 ≤ l ≤ m − 2 of (3.28) is at most
rank m − 1, then by Theorem VI.3.3 of [6],

λm(x) ≤ Tm

m! ‖M(x)‖ + O(Tm+1), (3.30)

where M(x) is the rank one matrix defined by Mαβ(x) := ∂αLm−1u0(x)∂βu0(x),
then the norm ‖M(x)‖ is bounded by

‖M(x)‖ ≤
⎛

⎝
n∑

|α|=0

|∂αu0(x)|2
⎞

⎠
1/2⎛

⎝
n∑

|α|=0

|∂αLm−1u0(x)|2
⎞

⎠
1/2

. (3.31)
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Combining above estimate with (3.27) and Cauchy-Schwartz inequality, we obtain

min
fα∈F ‖w‖2L2(�×[0,T ]) ≤ cTm

m! ‖Lm−1u0‖Wn,2(�)‖u0‖Wn,2(�) + O(Tm+1). (3.32)

Remark 3.9 In fact, one can show λk ≤ O(T k), 1 ≤ k ≤ m by following the similar
argument. Furthermore, from estimate (3.32), one can observe that Lm−1u0 plays a
role. Indeed, if Lm−1u0 = 0, then the solution is simply

u(x, t) =
m−1∑

l=0

(−1)l
t l

l!L
lu0(x) (3.33)

which means the matrix formed by Aα,k := ∂αu(x, tk), k = 1, 2, . . . ,m,

∂αu(x, tk) =
m−1∑

l=0

(−1)l
t lk
l! ∂

αLlu0(x) (3.34)

has a rank at most m − 1. Hence the identification is non-unique.

Now we show instability for high-frequency perturbations for elliptic operators.
For the sake of simplicity, in the following we let L = −∑n

α=0 pα(x)∂α be an
elliptic differential operator in 1D where pα(x) are constant functions. Consider the
perturbation L̃ = L − δeiq·x∂α′

, where q ∈ Z is some frequency and α′ is certain
index. Denote u and ũ the solutions to (1.1) with respect to the operators L and L̃,
respectively. Then we have

u(x, t) =
∑

k∈Z
φk(t)e

ik·x , (3.35)

where λk = −∑n
α=0 pα(ik)α , φk(t) = cke−λk t , and the constant ck is the Fourier

coefficient of u0. In the following, we study the instability of identification for large
|q| under the assumptions that 	λk ≥ C1 〈k〉n and |ck | ≤ C2 〈k〉−β , β > 1

2 , where
C1,C2 are two positive constants and 〈k〉 := (1 + k2)1/2. Using Fourier transform,
we may write the solution ũ in the form

ũ(x, t) =
∑

k∈Z
φ̃k(t)e

ik·x , (3.36)

where φ̃k(t) satisfies the coupled ODE,

d

dt
φ̃k(t) = −λk φ̃k(t) + δ(i(k − q))α

′
φ̃k−q(t). (3.37)
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The solution can be written as

φ̃k(t) = e−λk t
(
ck +

∫ t

0
eλk sδ(i(k − q))α

′
φ̃k−q(s)ds

)
, (3.38)

since ck = φ̃k(0). Therefore usingCauchy-Schwartz inequality, we obtain the estimate

∫ T

0
|k|2α′ |φ̃k(t)|2dt ≤ 2|ck |2

∫ T

0
|k|2α′

e−2	λk tdt + 2δ2|k|2α′
∫ T

0
e−2	λk t

×
∫ t

0
e2	λk sds

∫ t

0
|k − q|2α′ |φ̃k−q(s)|2dsdt

≤ |k|2α′

	λk
(C2)

2 〈k〉−2β + |k|2α′
δ2T

	λk

∫ T

0
|k − q|2α′ |φ̃k−q(s)|2ds.

(3.39)

Lemma 3.10 Suppose 0 ≤ α′ ≤ n
2 , β > 1

2 , and δ2T < γC1 for some γ ∈ (0, 1), then

∑

k∈Z

∫ T

0
|k|2α′ |φ̃k(t)|2dt ≤ (C2)

2

C1

1

1 − γ

∑

k∈Z
〈k〉2α′−2β−n . (3.40)

If kq ≤ 0, we would have

∫ T

0
|k|2α′ |φ̃k(t)|2dt ≤ 1

1 − γ
〈k〉2α′−2β−n . (3.41)

Proof The first inequality can be easily proved by summation of (3.39) on both sides
over k ∈ Z. For the second inequality, by iteratively using (3.39), we find that

∫ T

0
|k|2α′ |φ̃k(t)|2dt ≤ (C2)

2

C1

∞∑

l=0

γ l 〈k − lq〉2α′−2β−n . (3.42)

If kq ≤ 0, we would have |k − lq| ≥ |k| for all l ≥ 0, then

∞∑

l=0

γ l 〈k − lq〉2α′−2β−n ≤
∞∑

l=0

γ l 〈k〉2α′−2β−n = 〈k〉2α′−2β−n 1

1 − γ
. (3.43)

�

Theorem 3.11 Assuming the conditions of Lemma 3.10, the following inequality holds
for any q ∈ Z,
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‖u(x, t) − ũ(x, t)‖2L2(�×[0,T ])

≤ γ

2(1 − γ )

(
〈q〉−n (2n + (C2)

2

C1
)C3 + 〈q〉2α′−2β−n 2n+2β−2α′

C4

)
,

where C3 =∑k∈Z 〈k〉2α′−2β−n and C4 =∑k∈Z 〈k〉−n.

Proof Let wk = φk(t) − φ̃k(t), then

wk(t) = e−λk tδ(i(k − q))α
′
∫ t

0
eλk s φ̃k−q(s)ds (3.44)

and note that δ2T ≤ γC1,

‖u(x, t) − ũ(x, t)‖2L2(�×[0,T ]) =
∑

k∈Z

∫ T

0
|wk(t)|2dt

≤
∑

k∈Z

γC1

2	λk
|k − q|2α′

∫ T

0
|φ̃k−q(s)|2ds

≤
∑

k∈Z

γ

2 〈k + q〉n |k|2α′
∫ T

0
|φ̃k(s)|2ds

=
∑

kq≤0

γ

2 〈k + q〉n |k|2α′
∫ T

0
|φ̃k(s)|2ds

+
∑

kq>0

γ

2 〈k + q〉n |k|2α′
∫ T

0
|φ̃k(s)|2ds

≤ γ

(1 − γ )

∑

kq≤0

1

2 〈k + q〉n 〈k〉2α′−2β−n + γ

2 〈q〉n
∑

k∈Z
|k|2α′

∫ T

0
|φ̃k(s)|2ds

≤ γ

(1 − γ )

∑

kq≤0

1

2 〈k + q〉n 〈k〉2α′−2β−n + (C2)
2

C1

γ

2(1 − γ ) 〈q〉n
∑

k∈Z
〈k〉2α′−2β−n

≤ γ

2(1 − γ )

(
2n 〈q〉−n C3 + 2n+2β−2α′ 〈q〉2α′−2β−n C4 + 〈q〉−n (C2)

2C3/C1

)
.

(3.45)

The last inequality uses the fact that |k + q| ≤ |q|
2 implies |k| ≥ |q|

2 when kq ≤ 0 and
vice versa, therefore

∑

kq≤0,|k+q|≤|q|/2

1

〈k + q〉n 〈k〉2α′−2β−n ≤
∑

k∈Z

1

〈k + q〉n
〈q
2

〉2α′−2β−n
,

∑

kq≤0,|k+q|>|q|/2

1

〈k + q〉n 〈k〉2α′−2β−n ≤
∑

k∈Z

〈q
2

〉−n 〈k〉2α′−2β−n .

(3.46)

�
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Remark 3.12 From the assumption in the above theorem, one can view γ = O(δ2).
The result shows that the high-frequency component of perturbationwill have a limited
impact on the solution. In particular, both the order of the differential operator and the
smoothness of the initial data affect the instability estimate. The above analysis can
also possibly be extended to high-dimensional and smooth coefficient cases.

4 Local Regression and Global Consistency Enforced PDE
IdentificationMethod

For PDE identification in practice, the first and most important task is to robustly
identify the PDE type using a combination of the fewest possible candidates from a
(relatively large) dictionary with minimal data, e.g., a single trajectory (corresponding
to unknown and uncontrollable initial data) with local (in space and time) measure-
ments. When the PDE has variable coefficients, this amounts to different regression
problems at different measurement locations. Since a variable coefficient may be
degenerate or small at certain locations, e.g., certain components of a velocity field,
independent local regressions may render different types of PDEs at different loca-
tions. The key idea is to enforce consistency and sparsity across local regressions to
enhance both robustness and accuracy. Here we propose a local regression and global
consistency enforced strategy, the Consistent and Sparse Local Regression (CaSLR)
method, which enforces global consistency of the differential operator and involves
as few terms as possible from the dictionary while having the flexibility to fit local
measurements as well as possible. Numerical tests show that CaSLR can identify PDE
successfully even with a small amount of local data.

4.1 Proposed PDE IdentificationMethod

Suppose the solution data can be observed/measured by local sensors in a neighbor-
hood at different locations, i.e., local patches, that can be used to approximate the
solution derivatives and their functions corresponding to those terms in the dictionary.
Once the measured/computed solution and its derivatives are available at certain loca-
tions we propose the following local regression and global consistency-enforced PDE
identification method.

Assume that the unknown PDE takes the following form:

ut (x, t) =
K∑

k=1

ck(x, t) fk(x, t), (4.1)

where F = { fk : � × [0, T ] → R}Kk=1 is a dictionary of features that contains par-
tial derivatives of u with respect to the space (e.g., ux , uxxx , etc.), functions of these
terms (e.g., uux and u2, sin(u) etc.); and ck : � × [0, T ] → R, k = 1, 2, . . . , K
are the respective coefficients. We assume that the dictionary is rich enough that it
is over-complete, i.e., the underlying PDE is expressed as (4.1) when at least one
of the feature’s coefficients is null. One also has to assume the measurements can
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resolve local variation of the coefficients, i.e., one can approximate the PDE coeffi-
cients by constants in each small patch neighborhood (in space and time) centered
at (x j , t j ), j = 1, 2, . . . , J . Otherwise, the measurement data are not enough to
identify the PDE. Denote � j to be the local neighborhood centered at (x j , t j ) and

ĉ j = (ĉ j1 , . . . , ĉ
j
K )), we define the local regression error in each patch as

E j
loc(ĉ j ) =

∑

(x j,m ,t j,m )∈� j

(
ut (x j,m, t j,m) −

K∑

k=1

ĉ jk fk(x j,m, t j,m)

)2

. (4.2)

Define the global regression error as

E (̂c) =
J∑

j=1

E j
loc(ĉ j ), ĉ = [ĉ1, . . . , ĉJ ]. (4.3)

For each l = 1, 2, . . . , K , we search for l terms from the dictionaryF whose linear
combination using ĉ j minimizes the global fitting error. In particular, we optimize

ĉl = argmin
ĉ

E (̂c)

subject to: ‖̂c‖Group−�0 = l
(4.4)

using the Group Subspace Pursuit (G-SP) algorithm proposed in [18]. As a general-
ization of the well-known subspace pursuit [9], G-SP sequentially chooses K groups
of variables from the pool of candidates that best fit the residual obtained from the
previous iteration. Here the group sparsity is defined by

‖̂c‖Group−�0 = ‖(‖c̃1‖1, . . . , ‖c̃K ‖1)‖0,

where c̃k = (̂c1k , . . . , ĉ
J
k ) ∈ R

J , k = 1, 2, . . . , K . As we increase the sparsity level l,
E (̂cl) decreases. Setting ĉ0 = [0, . . . , 0], we employ the model score

Sl = E (̂cl) + ρ
l

K
(4.5)

for l = 1, 2, . . . , K − 1, where ρ > 0 is a penalty parameter for using more terms
from the dictionary. We decide that the candidate with l∗ features is the optimal if
Sl

∗ = minl=1,...,K−1 Sl . The metric Sk in (4.5) evaluates a candidate model with l
features by considering two factors: the fitting error and the model complexity penalty
controlled by the parameter ρ. In this work, we fix ρ to be the mean of {E (̂ck)}Kk=1
so that the two components of (4.5) are balanced. We find it applicable for both clean
and noisy data.

Once the PDEoperator type is identified, onemay use various regression techniques
to each patch locally to refine the recovery of those coefficients. In case there are
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sufficiently many sensors densely distributed in the space, one may employ different
types of regularizations to further improve the reconstruction, e.g., TV-norm.We leave
such explorations to future works and focus on situations where few sensors are used.

4.2 Identification Guarantee by Local Regression

In this section,we show that local patch regression using operatorswith constant coeffi-
cients approximation indeed can identify the underlyingPDEwith variable coefficients
under these conditions: 1) The variable coefficients are bounded away from zero and
vary slowly on the patch, 2) the solution data contain diverse information content,
on the patch. The first condition basically requires the mathematical problem to be
well-posed, and the second condition says the local regression system determined by
the solution data is well-conditioned.

First, we define the admissible set for the coefficients Cε ⊂ R by

Cε := (−∞, ε) ∪ {0} ∪ (ε,∞), ε > 0, (4.6)

which means the nonzero coefficients in the unknown PDE should be above a certain
threshold ε on a local patch. The local regression-based identification problem is to
find what terms in the PDE operator those nonzero coefficients correspond to. We
also introduce the condition constant of the solution data corresponding to the set of
candidates in the dictionary F = { fk}Kk=1 in a neighborhood B ⊂ �,

KF
B :=

inf‖ĉ‖∞=1

∥∥∥
∑K

k=1 ĉk fk(y, τ )

∥∥∥
L∞(B)

sup‖ĉ‖∞=1

∥∥∥
∑K

k=1 ĉk fk(y, τ )

∥∥∥
L∞(B)

, (4.7)

where ĉ = (ĉk) ∈ R
K , k = 1, 2, . . . , K . We say a vector ĉ ∈ Cε if each element of ĉ

is in Cε .

Theorem 4.1 Suppose the coefficients ck(x, t) in (4.1) are admissible at some point
(x0, t0) and take B as a neighborhood of (x0, t0). Let A = {k | ck �= 0} be the
index set for nonzero coefficients at (x0, t0). Let {c∗

k}Kk=1 be an optimal set of constant
coefficients such that

{c∗
k}Kk=1 = argmin

ck∈Cε

∥∥∥∥∥

K∑

k=1

(ck − ck(y, τ )) fk(y, τ )

∥∥∥∥∥
L∞(B)

, (4.8)

If we denoteA∗ = {k | c∗
k �= 0}, thenA = A∗ if the patch size R = diam(B) satisfies

KF
B >

2LR

ε
, (4.9)

where L is the Lipschitz constant for all ck(x, t).

123



Foundations of Computational Mathematics

Proof We prove this by contradiction. Let c̃k = ck(x0, t0) for k ∈ A and c̃k = 0 for
k ∈ A�, then

∥∥∥∥∥

K∑

k=1

(
c∗
k − ck(y, τ )

)
fk(y, τ )

∥∥∥∥∥
L∞(B)

=
∥∥∥∥∥

K∑

k=1

(
c∗
k − c̃k + c̃k − ck(y, τ )

)
fk(y, τ )

∥∥∥∥∥
L∞(B)

≥
∥∥∥∥∥

K∑

k=1

(c∗
k − c̃k) fk(y, τ )

∥∥∥∥∥
L∞(B)

−
∥∥∥∥∥
∑

k∈A
(c̃k − ck(y, τ )) fk(y, τ )

∥∥∥∥∥
L∞(B)

≥
∥∥∥∥∥

K∑

k=1

(c∗
k − c̃k) fk(y, τ )

∥∥∥∥∥
L∞(B)

− LR sup
‖ĉ‖∞=1

∥∥∥∥∥
∑

k∈A
ĉk fk(y, τ )

∥∥∥∥∥
L∞(B)

.

(4.10)

On the other hand, if the conclusion does not hold, then there exists an index k′ such
that |c∗

k′ − c̃k′ | ≥ ε and

∥∥∥∥∥

K∑

k=1

(c∗
k − c̃k) fk(y, τ )

∥∥∥∥∥
L∞(B)

≥ inf
‖ĉ‖∞=ε

∥∥∥∥∥

K∑

k=1

ĉk fk(y, τ )

∥∥∥∥∥
L∞(B)

. (4.11)

Note the linear scaling,

inf
‖ĉ‖∞=ε

∥∥∥∥∥

K∑

k=1

ĉk fk(y, τ )

∥∥∥∥∥
L∞(B)

= ε inf
‖ĉ‖∞=1

∥∥∥∥∥

K∑

k=1

ĉk fk(y, τ )

∥∥∥∥∥
L∞(B)

. (4.12)

Therefore, if

εKF
B > 2LR, (4.13)

we would obtain that

∥∥∥∥∥

K∑

k=1

(
c∗
k − ck(y, τ )

)
fk(y, τ )

∥∥∥∥∥
L∞(B)

>

∥∥∥∥∥∥

n∑

|α|=0

(c̃k − ck(y, τ )) fk(y, τ )

∥∥∥∥∥∥
L∞(B)

(4.14)

which is a contradiction with the optimal choice of c∗
k . �

From the above result, we can immediately see the following.
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Corollary 4.2 For a differential operator,Lwith constant coefficients, local regression
on a neighborhood B can identify the PDE exactly if KF

B > 0.

Lemma 4.3 For a linear differential operator L with constant coefficients, if the solu-
tion u contains enough Fourier modes, we have KF

B > 0 for B = � × (t0, t1).

Proof SupposeKF
B = 0 on B = �× (t0, t1). It implies that

∑K
k=1 ĉk fk(y, τ ) = 0 for

any (y, τ ) ∈ B and some ĉ = (ĉk) ∈ R
K , ‖ĉ‖∞ = 1. Therefore, we must have

K∑

k=1

ĉk fk(y, τ ) = 0 (4.15)

for all y ∈ � and τ ∈ (t0, t1). Expanding the solution in terms of the Fourier series

u(y, τ ) =
∑

v∈Zd

dv(τ )eiv·y, (4.16)

Since each fk is a partial derivative, fk(eiv·y) = Pk(iv)eiv·y for certain polynomial
Pk , we have dv(τ )

∑K
k=1 ĉk Pk(iv) = 0. Each dv(τ ) satisfies an autonomous ODE

d
′
v = (

∑K
k=1 ck Pk(iv))dv from (4.1), which means either dk(τ ) ≡ 0 on (t0, t1) or

K∑

k=1

ĉk Pk(iv) = 0. (4.17)

Since the above algebraic equation only permits finitely many solutions of v, we prove
the result. �
The above lemma indicates that if L is a linear differential operator with constant
coefficients and the solution has sufficiently many Fourier modes, then we can always
find a local patch B ⊂ � × (t0, t1) such that KF

B > 0. Combined with Corollary 4.2,
we have the following Corollary.

Theorem 4.4 A linear differential operator L with constant coefficients can be iden-
tified exactly by local regression if the solution u contains sufficiently many Fourier
modes.

Remark 4.5 The numerator in the definition of KF
B measures the minimal support of

the set S(B) := {( f1(y, τ ), . . . , fK (y, τ )) ∈ R
K , (y, τ ) ∈ B} on the unit �∞ sphere.

The denominator can be relaxed to max(y,τ )∈B
∑

k∈A | fk(y, τ )|.
If the solution varies little on B, e.g., R is small, the set S(B) is close to a constant

vector in R
K ; hence, KF

B is small. On the other hand, the coefficients need to vary
slowly on B so that LR is small. So some scale separation between the coefficients
and the solution is needed on B.

In general, the larger K is, the smaller KF
B will be. In other words, the larger the

dictionary, the harder the identification of the underlying PDE.
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Remark 4.6 For robust identification of PDE with variable coefficients using local
patch data, it is desirable to have local sensors that support local patches whose patch
size R is small enough to resolve the variation of the coefficients, while the measure-
ment resolution h is fine enough so that R

h is large enough and hence can detect a good
bandwidth of modes in the solution. At the same time, one needs to select patch data
that contain as many modes as possible that can be resolved by patch resolution.

4.3 Data-Driven and Data-Adaptive Measurement Selection

In practice, using the solution data indiscriminately for PDE identification may not be
a good strategy.

On each patch, the local regression is approximated by a PDE with constant coef-
ficients as studied. For a stable local identification, the solution should contain some
variation as shown in the previous section. On the other hand, the data on those patches
whosemeasurement resolution cannot resolve the rapid variation of the solution lead to
significant error, e.g., truncation error in numerical differentiation, and hence should
not be used either. To improve CaSLR’s robustness and accuracy, we propose the
following process to select patches containing reliable and accurate information.

First, we propose to use the following numerical estimate of the local Sobolev
semi-norm to filter out those patches in which the solution may be singular or oscillate
rapidly,

β(x j , t j ) =

√√√√√ 1

m j

m j∑

m=1

Pmax∑

p=1

(∂
p
x u(x j,m, t j,m))2 (4.18)

where Pmax is the maximal order of partial derivatives in the dictionary. We remove
those local regressions at (x j , t j ) in (4.2) if β(x j , t j ) < β or β(x j , t j ) > β̄ for some

thresholds β, β̄ > 0. In this work, we fix β to be the 1st percentile and β̄ the 99th
percentile of all the collected local Sobolev semi-norms.

However, when the measurement data contain noise, the constant solution may not
be detected using numerical approximation of (4.18). Here we design the following
criterion to detect whether the solution is almost constant in a neighborhood. For an
arbitrary (x, t) ∈ �×[0, Tmax], consider a neighborhood centered at (x, t) denoted by
B(x,t) =∏d

i=1[xi − ri , xi + ri ] × [t − r , t + r ] with radius in each dimension ri > 0,
i = 1, 2, . . . , d, r > 0. Suppose we observe a discrete set of data (including (x, t))

with noise in this neighborhood: B̂(x,t) = {̂u(y, s) := u(y, s) + ε(y, s) : ε(y, s)
i.i.d.∼

N (0, σ 2), (y, s) ∈ B(x,t)}. Furthermore, we assume that u is locally Lipschitz con-
tinuous in B((x, t)) with constant L > 0. Let |B̂(x,t)| be the cardinality of B̂(x,t) and
R = max{r1, . . . , rd , r}. We note that

û(x, t) − û B̂ ∼ N (μ(x,t), (1 − |B̂(x,t)|−1)σ 2)
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whereμ(x,t) = u(x, t)−u B̂ , u B̂ and û B̂ is the average of u and û over B̂, respectively.
By the assumption of Lipschitz continuity of u, |μ(x,t)| ≤ √

DLR, where D := d+1.
Hence, to estimate σ 2, we consider a collection of points {(x1, t1), . . . , (xN , tN )} ⊂

� × [0, Tmax] with non-intersecting boxes B(xn ,tn), n = 1, 2, . . . , N centered at each
of them, respectively. Within each B(xn ,tn), we observe noisy data over a finite discrete
subset B̂(xn ,tn) ⊂ B(xn ,tn) having cardinality B > 0. Denote ζn = û(xn, tn) − û B̂(xn ,tn )

,
then by the computations detailed in Appendix A,

σ̂ 2 = B
∑N

m=1(ζm − 1
N

∑
n ζn)

2

(N − 1)(B − 1)
(4.19)

is a biased estimator for σ 2 with

|E[̂σ 2 − σ 2]| ≤ DNBL2R2

(N − 1)(B − 1)
(4.20)

and

Var σ̂ 2 ≤ 2σ 4

N − 1
+ N Bσ 2γ

(N − 1)2(B − 1)
, (4.21)

where γ := 4DL2R2. From the results above,we observe that to reduce the estimator’s
bias, we should use small patches, i.e., small R, and to control the estimator’s variance,
we need to use more patches, i.e., larger N . Notice that the upper bound of the bias
in (4.19) is closely related to the magnitude of u’s local variation in B(x, t) expressed
as γ . This implies that when u has mild variation in B(x, t), estimator (4.19) becomes
approximately unbiased. This was expected since the statistical characteristics of the
additive noise become more identifiable if the underlying function does not introduce
extra variations.We note that the upper bound of variance (4.21) consists of two terms.
The first term reflects the fact that when sufficiently many samples are provided, the
estimator becomes more stable, while the second term also shows the influence of the
magnitude of u’s variation.

Now for any twodistinct points (x, t), (y, s) ∈ �×[0, Tmax], we know that û(x, t)−
û(y, s) ∼ N (u(x, t) − u(y, s), 2σ 2); hence, under the hypothesis H0 : u(x, t) =
u(y, s), we would have

P

( |̂u(x, t) − û(y, s)|√
2σ

> α0.90 | H0

)
< 0.1 , (4.22)

where α0.90 = 1.644853. By estimation (4.19), if

|̂u(x, t) − û(y, s)| >
√
2α0.90σ̂ , (4.23)

we rejectH0; otherwise, we acceptH0. In case of PDE systems of multiple unknown
functions {u j }Jj=1, we consider the hypothesis H0 : u j (x, t) = u j (y, s) at least for
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one j = 1, . . . , J , and reject H0 if min j=1,...,J {|̂u j (x, t) − û j (y, t)|} >
√
2α0.90σ̂ ;

otherwise, we accept H0.
Statistical test (4.23) provides guidance on determining if the underlying function

restricted to a patch shows variation when the collected data are contaminated by
Gaussian noise. Specifically, for each pair of sampled points in a patch, we conduct
comparison (4.23): If any of them yields a rejection of H0, we keep the patch; oth-
erwise, we discard the data collected in the patch. Due to multiple tests [4, 45], the
proposed approach does not imply that the type-I error of concluding a patch con-
tains only noise is controlled by 0.1. To appropriately address this issue, we need
to adjust the p-value for each test while considering strong correlations due to the
function’s continuity, which can be complicated. We thus take this heuristic criterion
guided by (4.23), and numerical experiments show that such a procedure is practically
effective.

4.4 Numerical Experiments

In this section, we present numerical examples to demonstrate our local regression
and global consistency-enforced PDE identification method. In some of the numerical
examples, we use the following transition function in time with slope s ∈ R and
critical point tc ∈ R as

τ(t; s, tc) = 0.5 + 0.5 tanh(s(t − tc))), t ∈ R, (4.24)

which models a smooth emergence (when s > 0) or a smooth decaying (when s < 0)
behavior; when |s| increases, the transition becomes sharper. The critical point tc
signifies the boundary point between two phases. Moreover, we use the Jaccard score
[20]

J (S0, S1) = |S0 ∩ S1|
|S0 ∪ S1| (4.25)

as a metric for identification accuracy. Here S0 and S1 denote two sets and the Jaccard
scoremeasures the similarity between them. In our case, S0 represents the set of indices
of the true features in a given dictionary and S1 denotes the set of indices of features
in an identified PDE model. We note that J (S0, S1) ∈ [0, 1], and J (S0, S1) = 1 if
and only if S0 = S1. A higher Jaccard score indicates that the sets to be compared are
more similar.

In the following, we consider a general setup for PDE identifications using a col-
lection of local sensors. For each experiment, we put sensors randomly in space, and
each of them collects data at some fixed intervals in time. Each sensor collects data
in a cubic neighborhood in space and time whose side length is 2r + 1 in each spatial
dimension and 2rt + 1 in time. Here r > 0 and rt > 0 are referred to as the sensing
radius and time duration, respectively.

Example 1 Transport equation.
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Fig. 5 Identification of transport equation (4.26) with space-time-varying speed

First, we examine a transport equation with a periodic boundary condition whose
speed varies both in space and time:

ut (x, t) = (1 + 0.5 sin(πx)τ (t;−10, 0.5))ux (x, t), (x, t) ∈ [−1, 1) × (0, 1],
u(x, 0) = sin(4π(x + 0.1)) + sin(6πx) + cos(2π(x − 0.5)) + sin(2π(x + 0.1)).

(4.26)

We solved it numerically over a grid with 100 points in space and 5000 points in time,
and Fig. 5a shows the solution.

Based on local patch data and using a dictionary of size 59 including up to 4-th-
order partial derivatives of the solution and products of them up to 3 terms, plus sin(u),
cos(u), sin(ux ), and cos(ux ), we employed the proposed patch selection scheme
described in Sect. 4.3 and applied CaSLR to identify the PDE type as well as to
reconstruct the associated local coefficients. For a series of combinations of different
numbers of sensors and sensing radii, we conducted 20 independent experiments and
recorded the mean values of identification accuracy, shown in (b), and reconstruction
error, shown in (c). A set of sensor distributions is shown in (a) as red markers. We
observe that the identification of a transport equation is highly reliable even with a
single sensor whose patch size is small. This considerable robustness is closely related
to the fact that the solution data contain diverse Fourier modes over the time-space
domain. As we will see in Sect. 4.4.2, our data-driven patch selection helps to preserve
such performances even when the solution has compact support at all snapshots.

Example 2 KdV-type equation.
Next, we test on the KdV-type equation with space-time-varying coefficients and a
periodic boundary condition in the following form

ut (x, t) = (3 + 200t sin(πx))u(x, t)ux (x, t)

+ 5 + sin( 400π t3 )

100
uxxx (x, t), (x, t) ∈ [−1, 1) × (0, 1.5 × 10−2],

u(x, 0) = sin(4π(x + 0.1)) + 2 sin(5πx) + cos(2π(x − 0.5))

+ sin(3πx) + cos(6πx). (4.27)

Figure 6a shows its numerical solution with a set of exemplary sensors indicated
by red markers. Using a dictionary of size 59 as specified in the previous example,
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Fig. 6 Identification of KdV-type equation (4.27) with space-time-varying coefficients

the identification and reconstruction results of CaSLR are reported in (b) and (c),
respectively. As there are more terms and of different orders in the PDE, more Fourier
modes, in particular, relatively low-frequency modes for lower-order terms in the
PDE, need to be included in each local patch measurement for accurate and robust
identification. That is why patches of size larger than that in the transport equation
example are needed.

Example 3 Schrödinger equation.
We perform a test on the Schrödinger equation

iψt = 1

2
ψxx − Vψ

with a space-time-dependent potential function V = −10− 2 sin(40π t) cos(πx) and
periodic boundary condition. Let ψ = u + iv, then we obtain the following system.

{
ut (x, t) = 1

2vxx (x, t) − V (x, t)v(x, t) ,

vt (x, t) = − 1
2uxx (x, t) + V (x, t)u(x, t)

(4.28)

for (x, t) ∈ [−1, 1) × (0, 0.05] and we take u(x, 0) = 5 + f1(x) and v(x, 0) =
3 + f2(x), x ∈ [−1, 1), for the initial conditions, where f1 and f2 are random func-
tions (2.40) with 4 modes. We solved the system numerically over a grid with 800
space points and 10000 time points and then downsampled the data to a grid of size
200×5000. Figure7a shows the solutions with a set of sensors selected by our filtering
scheme. Notice that these sensors concentrate near the regions where both u and v

have significant variations. For this example, considering the computational cost, we
consider a dictionary of size 44, where the partial derivatives of orders up to 3 and
products of up to 2 terms are included. For the same reason, as discussed in Exam-
ple 2 above, when a relatively large patch size is used, our method is successful in
identifying the correct systemwith an accurate reconstruction of the local coefficients.

Example 4 2D circular flow.
Consider a 2D circular flow characterized by the PDE with spatially dependent coef-
ficients:

ut (x, y, t) = −yux (x, y, t) + xuy(x, y, t), (x, y, t) ∈ R
2 × (0, 2π ]

u(x, y, 0) = f (x, y), (x, y) ∈ R
2

(4.29)
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Fig. 7 Identification of Schrödinger equation (4.28) with a time-space-dependent potential. The solution
data for a u and b v with a set of sensors selected by the proposed scheme. c The identification accuracy.
d The reconstruction error. For each radius, 20 experiments were conducted and the average values were
reported

for some initial condition f . We note that (4.29) can be transformed into a transport
equation with a constant angular speed in the polar coordinate, and it admits an exact
solution u(x, y, t) = f (

√
x2 + y2 cos(arctan(y/x)−t),

√
x2 + y2 sin(arctan(y/x)−

t)). In this example, we take

f (x, y) = cos(4
√
x2 + y2) cos(2 arctan(y/x))

and the initial data over a uniform grid of size 64 × 64 are shown in Fig. 8a. The
dictionary consists of 27 features, where partial derivatives up to order 2 and products
up to 2 terms are included. For a range of values of R > 0, we randomly locate
5 sensors with a sensing radius of r (r = 3, 5, 7) on a circle of radius R centered
at the origin and repeat the experiments 20 times. Figure8b, c shows the average
identification accuracy and the reconstruction errors as the radius of the circles R
increases from 3 to 30 grid points. Observe that when the sensors are located close to
the origin, the PDE type is hard to identify since the coefficients are all close to zero
and the solution is almost constant 1. The misleading low reconstruction error means
that all recovered coefficients including those for wrong features are close to zeros.
When the sensors are located far away from the origin because the solution changes
very slowly and those low-frequency Fourier modes cannot be detected when the local
patch is too small. We see that both PDE identification and coefficient approximations
are improved when the patch size becomes larger. When the sensors are located away
from the origin at a moderate distance, the PDE identification is most successful for
each patch size.
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Fig. 8 Identification of a 2D circular flow. a The solution data at t = 0 and 5 randomly distributed sensors.
b Identification accuracy of 5 sensors with different sensing radii randomly located on a concentric circle
whose radius varies from 1 to 30 grid points. c Reconstruction errors. For each radius, 20 experiments were
conducted and the average values were reported

4.4.1 Identification with Random Initial Conditions

In this set of experiments, we demonstrate identification accuracy with respect to
different random initial conditions. We consider four different PDEs:

I. transport equation with constant speed: ut (x, t) = 2ux (x, t);
II. transport equation with variable speed: ut = (2 + sin(2π t))ux (x, t);
III. heat equation with constant coefficient: ut (x, t) = 0.5uxx (x, t);
IV. heat equationwith variable coefficient: ut (x, t) = (0.5+0.25 sin(2π t))uxx (x, t).

All cases are over the domain (x, t) ∈ [−1, 1) × (0, 0.5]. Here we take a grid of
200 × 5000 points. For each equation in the above, we set random function (2.40) as
the initial conditions for a range of mode numbers. For I., we also consider exact data
and exact features, i.e., exact partial derivatives of u. We randomly select 5 spatially
located sensors and each of them can collect data at 10 uniformly distributed time
points; the sensing range has a size of 7 points in space and 31 points in time. Then we
conduct 20 experiments using the corresponding random initial conditions. Figure9a,
b records the average identification accuracy and reconstruction error for the transport
equations, and (c) and (d) record those for the heat equations. We observe that, in
all cases, the identification accuracy immediately becomes correct once the initial
condition has at least 2 different modes since there is only one term in the PDE. For
transport equations, as we can see, when the initial data contain high-frequency modes
that cannot be resolved by the grid, significant numerical errors will degrade the result,
which is further justified by the fact that there is no such issue when using exact data
(including derivatives). This is not so obvious for diffusion equations since the solution
is smoothed out in time quickly. We also note that the reconstruction errors for the
equation with variable coefficient are greater than that with constant coefficient in
general. This is due to the approximation of PDE on each local patch by a PDE with
constant coefficients.

This set of experiments emphasizes the importance of the variability, i.e., diver-
sity of Fourier modes, in solution data. On one hand, if the solution data do not have
enough diverse modes or variation, the identification can fail even for PDE identifi-
cation with constant coefficients. On the other hand, if the solution’s rapid variation
cannot be resolved by the measurement/computation resolution, the identification is
compromised due to significant numerical errors in the feature approximations.
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Fig. 9 Identification accuracy and reconstruction errors when the initial conditions are random functions
with varying numbers of modes. a The identification accuracy and b the reconstruction errors for transport
equations. c The identification accuracy and d the reconstruction errors for heat equations

4.4.2 Effects of the Proposed Data-Driven Patch Filtering

In this set of experiments, we demonstrate the effects of our data-driven patch filtering
proposed in Sect. 4.3 specifically when the data contain noises. In Fig. 10a–c, we show
solution data over the domain [−1, 1] of
I. transport equation with variable speed ut (x, t) = 1000t sin(4π t/0.03)ux (x, t)

for t ∈ [0, 0.03];
II. heat equation ut (x, t) = 0.5uxx (x, t) for t ∈ [0, 0.03];
III. inviscid Burgers’ equation ut = 1.1u(x, t)ux (x, t) for t ∈ [0, 0.6].
All cases have periodic boundary conditions and take the bump function as the initial
conditions. Upon the solution data u, we also add the noise with intensity p% of the
standard deviation of u. For (a), we added 5%; for (b) and (c), we added 0.5%. No
denoising process was applied.

For all cases, we randomly select 10 spatially located sensors and each of them
can collect data within a rectangle (7 neighboring points in each space dimension and
11 neighboring points in time) centered at 10 points uniformly distributed over the
observation duration. They are marked as white dots in Fig. 10.

The red circled dots show the centers of patches selected by our data-driven
approach, and based on these limited data, CaSLR correctly identified the PDE types
in all cases. Noticeably, the selected patches avoid those regions where the solution
is close to a constant. For example, in (a), the selected patches meander along with
the compactly supported solution; in (b), these patches are located near transitioning
area between the nonzero solution data and the flat region, where the derivative val-
ues are non-trivial; in (c), similarly to (b), the selected patches are located near the

123



Foundations of Computational Mathematics

Fig. 10 Data-driven patch selection with noisy data

Table 1 Comparison of average
identification accuracy between
CaSLR with patch trimming and
without

Transport Heat Burgers

With trim 0.85 0.85 0.45

Without trim 0.80 0.80 0.20

transitioning area. Under the criterion that the collected data should be numerically
stable, we note that the patch centered at the singularity of the solution is not chosen.
We also emphasize that, if we were to use all the patches in (a), then the PDE type
may be wrongly identified. In Table 1, we record the average identification accuracy
of the proposed method applied to the equations above when the sensors are randomly
located, and we observe that with the patch trimming, the accuracy is improved in all
cases. Under the influence of noise, the true dynamics can be submerged by random
variations. These examples show that our proposed data-drive patch selection scheme
provides robustness to some extent against the noise for PDE identification.

5 Conclusion

We have studied a few basic questions for PDE learning from observed solution data.
Using various types of linear evolution PDEs, we have shown 1) how the approximate
dimension (richness) of the data space spanned by all snapshots along a solution
trajectory depends on the differential operator and initial data and 2) the identifiability
of a differential operator from its solution data. Moreover, we propose a Consistent
and Sparse Local Regression (CaSLR) method, which enforces global consistency
and involves as few terms as possible from the dictionary using local measurement
data from a single solution trajectory, for general PDE identification.

Acknowledgements H. Zhao’s research is partially supported by NSF Grant DMS-2012860 and DMS-
2309551. Y. Zhong’s research is partially supported by NSF Grant DMS-2309530.

Appendix A. Proof of (4.20) and (4.21)

In the following, we assume N > 1. Recalling that the variance of a random variable
X can be expressed as E[X2] − (E[X ])2, we get
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N∑

m=1

E

[
(ζm − 1

N

N∑

n=1

ζn)
2

]
=

N∑

m=1

E

[
ζ 2
m

]
− 1

N
E

[
(

N∑

n=1

ζn)
2

]

= N (B − 1)

B
σ 2 +

N∑

m=1

μ2
m − B − 1

B
σ 2 − 1

N

(
N∑

n=1

μn

)2

= (N − 1)(B − 1)

B
σ 2 +

N∑

m=1

μ2
m − 1

N

(
N∑

n=1

μn

)2

.

Hence by defining the estimator:

σ̂ 2 =
B
∑N

m=1

(
ζm − 1

N

∑N
n=1 ζn

)2

(N − 1)(B − 1)

and noting the Lipschitz assumption, we have

E[̂σ 2 − σ 2] =
B
(∑N

m=1 μ2
m − 1

N (
∑N

n=1 μn)
2
)

(N − 1)(B − 1)

≤ B
∑N

m=1 μ2
m

(N − 1)(B − 1)
≤ DNBL2R2

(N − 1)(B − 1)
.

As for the variance of the estimator, we notice that since ζn , n = 1, . . . , N are

independent Gaussian random variables, if we denote S :=
√

B−1
B σ ,

∑N
n=1 ζ 2

n /S2

has a non-central Chi-squared distribution whose mean is N + ∑N
n=1 μ2

n/S
2, and

variance is 2(N + 2
∑N

n=1 μ2
n/S

2); and (
∑N

n=1 ζn)
2/(NS2) also has a non-central

Chi-squared distribution whose mean is 1 + (
∑N

n=1 μn)
2/(NS2), and variance is

2(1 + 2(
∑N

n=1 μn)
2/(NS2)). First, we compute the covariance

Cov

⎛

⎝
N∑

n=1

ζ 2
n ,

(
N∑

n=1

ζn

)2⎞

⎠ = E

[
N∑

n=1

ζ 2
n (

N∑

m=1

ζm)2

]
− E

[
N∑

n=1

ζ 2
n

]
E

⎡

⎣
(

N∑

n=1

ζn

)2⎤

⎦

= E

⎡

⎣
N∑

n=1

ζ 2
n

(
N∑

m=1

ζm

)2⎤

⎦−
(
NS2 +

N∑

n=1

μ2
n

)⎛

⎝NS2 +
(

N∑

n=1

μn

)2⎞

⎠ .

Focusing on the first term, we have

E

⎡

⎣
N∑

n=1

ζ 2
n

(
N∑

m=1

ζm

)2⎤

⎦ =
N∑

n=1

E

[
ζ 2
n

N∑

m=1

ζ 2
m

]
+

N∑

n=1

E

⎡

⎣ζ 2
n

∑

i �= j

ζiζ j

⎤

⎦
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=
N∑

n=1

E[ζ 4
n ] +

N∑

n=1

⎛

⎝E[ζ 2
n ]

N∑

m=1,m �=n

E[ζ 2
m]
⎞

⎠+ 2
N∑

n=1

⎛

⎝E[ζ 3
n ]

N∑

m=1,m �=n

E[ζm]
⎞

⎠

+
N∑

n=1

⎛

⎝E[ζ 2
n ]

∑

i �=n, j �=n,i �= j

E[ζi ]E[ζ j ]
⎞

⎠

=
N∑

n=1

(μ4
n + 6μ2

n S
2 + 3S4) +

N∑

n=1

⎛

⎝(μ2
n + S2)

N∑

m=1,m �=n

(μ2
m + S2)

⎞

⎠

+ 2
N∑

n=1

⎛

⎝(μ3
n + 3μn S

2)

N∑

m=1,m �=n

μm

⎞

⎠+
N∑

n=1

⎛

⎝(μ2
n + S2)

∑

i �=n, j �=n,i �= j

μiμ j

⎞

⎠

=
N∑

n=1

μ2
n

(
N∑

n=1

μn

)2

+
(
2(N − 1)

N∑

n=1

μ2
n

+6

(
N∑

n=1

μn

)2

+ (N − 2)
∑

n �=m

μnμm

⎞

⎠ S2 + N (N + 2)S4.

Hence, we have

Cov

⎛

⎝
N∑

n=1

ζ 2
n ,

(
N∑

n=1

ζn

)2⎞

⎠

=
⎛

⎝(N − 2)
N∑

n=1

μ2
n + (6 − N )

(
N∑

n=1

μn

)2

+ (N − 2)
∑

n �=m

μnμm

⎞

⎠ S2 + 2NS4

= 4

(
N∑

n=1

μn

)2

S2 + 2NS4.

Now we note that

Var

⎡

⎣
N∑

m=1

(
ζm − 1

N

N∑

n=1

ζn

)2⎤

⎦

= Var

[
N∑

m=1

ζ 2
m

]
+ 1

N 2 Var

[
(

N∑

n=1

ζn)
2

]

− 2

N
Cov

⎛

⎝
N∑

m=1

ζ 2
m,

(
N∑

m=1

ζm

)2⎞

⎠
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= 2

(
NS4 + 2

N∑

n=1

μ2
n S

2

)
+ 2S4

⎛

⎝1 + 2

(
N∑

n=1

μn

)2

/(NS2)

⎞

⎠

− 8

N

(
N∑

n=1

μn

)2

S2 − 4S4.

After simplification, we get

Var

⎡

⎣
N∑

m=1

(
ζm − 1

N

N∑

n=1

ζn

)2⎤

⎦

= 2(N − 1)S4 + 4

⎛

⎜⎝
N∑

n=1

μ2
n −

(∑N
n=1 μn

)2

N

⎞

⎟⎠ S2.

Considering the Lipschitz assumption, we obtain

Var

⎡

⎣
N∑

m=1

(
ζm − 1

N

N∑

n=1

ζn

)2⎤

⎦ ≤ 2(N − 1)S4 + 4NDL2R2S2.

Therefore, denoting γ = 4DL2R2, then we get

Var[̂σ 2] ≤ 2(N − 1)(B − 1)2σ 4 + γ N B(B − 1)σ 2

(N − 1)2(B − 1)2

= 2σ 4

N − 1
+ N Bσ 2γ

(N − 1)2(B − 1)
.
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