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Abstract
Preservation of linear and quadratic invariants by numerical integrators has been well
studied. However, many systems have linear or quadratic observables that are not
invariant, but which satisfy evolution equations expressing important properties of the
system. For example, a time-evolution PDE may have an observable that satisfies a
local conservation law, such as the multisymplectic conservation law for Hamiltonian
PDEs.We introduce the concept of functional equivariance, a natural sense in which a
numerical integrator may preserve the dynamics satisfied by certain classes of observ-
ables, whether or not they are invariant. After developing the general framework, we
use it to obtain results on methods preserving local conservation laws in PDEs. In
particular, integrators preserving quadratic invariants also preserve local conservation
laws for quadratic observables, and symplectic integrators are multisymplectic.

Keywords Geometric numerical integration · Conservation laws ·
Structure-preserving methods · Symplectic integrators · Multisymplectic methods

Mathematics Subject Classification 37M15

Communicated by Arieh Iserles.

B Ari Stern
stern@wustl.edu

Robert I. McLachlan
r.mclachlan@massey.ac.nz

1 School of Fundamental Sciences, Massey University, Palmerston North, New Zealand

2 Department of Mathematics and Statistics, Washington University in St. Louis, St. Louis, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10208-022-09590-8&domain=pdf


150 Foundations of Computational Mathematics (2024) 24:149–177

1 Introduction

In numerical ordinary differential equations (ODEs), it is known that all B-series
methods (including Runge–Kutta methods) preserve linear invariants, while only cer-
tain ones preserve quadratic invariants. Linear invariants arising in physical systems
include mass, charge, and linear momentum; quadratic invariants include angular
momentum and other momentum maps, as well as the canonical symplectic form for
Hamiltonian systems. See Hairer, Lubich, and Wanner [15] and references therein.

However, for partial differential equations (PDEs) describing time evolution, it is
desirable for a numerical integrator to preserve not only global invariants but also
local conservation laws. For instance, the evolution may preserve total mass (a global
invariant), but the mass in a particular region may change by flowing through the
boundary of the region (a local conservation law). Another example is the canon-
ical multisymplectic conservation law for Hamiltonian PDEs, which is a quadratic
local conservation law for the variational equation. Focusing only on global invariants
overlooks this more granular, local form of conservativity.

This paper develops a new framework for the preservation of such properties by
numerical integrators. We do so by answering a much more general question: When
does a numerical integrator preserve the evolution of certain classes of observables
(e.g., linear, quadratic), even when those observables are not invariants? This includes
not only global invariants, as previously studied, but also local conservation laws
and other balance laws encountered in both conservative and dissipative dynamical
systems.

Themain idea of our approach is summarized as follows. Suppose y = y(t) evolves
in a (finite- or infinite-dimensional) Banach space Y according to ẏ = f (y). Given
a functional F ∈ C1(Y ), the chain rule implies that z = F(y) evolves according to
ż = F ′(y) f (y). Now, if � is a numerical integrator, let � f : y0 �→ y1 denote its
application to the original system ẏ = f (y), and let �g : (y0, z0) �→ (y1, z1) denote
its application to the augmented system

ẏ = f (y), ż = F ′(y) f (y), (1)

corresponding to the vector field g(y, z) = (
f (y), F ′(y) f (y)

)
. We say that

� is F-functionally equivariant if �g preserves the relation z = F(y), i.e.,
�g : (

y0, F(y0)
) �→ (

y1, F(y1)
)
, for all vector fields f on Y . In other words, the

following diagram commutes:

y0 y1

(y0, z0) (y1, z1) .

� f

(id,F) (id,F)
�g

This is weaker than equivariance in the usual sense, since the diagram need only com-
mute for (1), not arbitrary (id, F)-related vector fields. Preserving invariants becomes
the special case where the augmented equation reads ż = 0 and the integrator leaves
z constant.
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We develop a theory of functional equivariance and show that it provides a useful
tool kit for understanding the behavior of (especially affine and quadratic) observables,
including local conservation laws and multisymplecticity. The paper is organized as
follows:

• Section 2 characterizes the functional equivariance of a large class of numerical
integrators, including B-series methods, and explores some consequences for both
conservative and non-conservative dynamical systems. The main result, Theo-
rem 2.9, shows that a method is functionally equivariant for a class of observables
if and only if it preserves invariants in that class. In particular, all B-series methods
are affine functionally equivariant, and those preserving quadratic invariants are
quadratic functionally equivariant.

• Section 3 applies this framework to local conservation laws for PDEs and spa-
tially semidiscretized PDEs. In particular, affine/quadratic functionally equivariant
numerical integrators are seen to preserve discrete-time local conservation laws
for affine/quadratic observables.

• Section 4 applies this framework to the multisymplectic conservation law for
canonical Hamiltonian PDEs and spatially semidiscretized PDEs. We show that
multisymplectic semidiscretization in space, followed by a symplectic integrator
in time, yields a multisymplectic method in spacetime. We also show that hybrid
finite elements may be used for multisymplectic semidiscretization, generalizing
the results of McLachlan and Stern [22] to time-evolution problems.

• Finally, Sect. 5 extends the results from the class of methods considered in Sect. 2
to additive and partitioned methods, including additive/partitioned Runge–Kutta
methods and splitting/composition methods.

We remark that many of the results, particularly in Sects. 2 and 5, are obtained using
only the equivariance properties of methods with respect to affine maps, rather than
representing them in terms of trees or Runge–Kutta tableaux. In particular, Theorem
2.12 gives a new, tree-free proof that B-seriesmethods are closed under differentiation,
while Theorem 5.20 generalizes this to additive and partitioned methods.

2 Functional Equivariance

2.1 Basic Definitions and Results

Let� be a one-step numerical integrator, whose application to a vector field f ∈ X(Y )

with time-step size�t gives a map��t, f : Y → Y , y0 �→ y1. All the methods we will
consider have ��t, f = �1,�t f , so it suffices to consider integrator maps � f :=�1, f
with unit time step. When we refer to a numerical integrator, we mean the entire
collection of maps � = {

� f : f ∈ X(Y ), Y a Banach space
}
.1

Remark 2.1 While this definition covers a large class of numerical integrators, includ-
ing B-series methods, other classes of methods require additional data besides f in

1 For some methods, such as implicit Runge–Kutta methods, ��t, f (y) might only be defined for suffi-
ciently small�t . Including such integrators requires only the minor modification of viewing� f as a partial
function.
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order to define an integrator map, e.g., an additive decomposition of f or a partitioning
of Y . In Sect. 5, we will discuss how the results of this section generalize to such meth-
ods, including additive/partitioned Runge–Kutta methods and splitting/composition
methods.

The main class of numerical integrators of this type that we will consider are B-
series methods, which McLachlan, Modin, Munthe-Kaas, and Verdier [18] proved are
completely characterized by the following property of affine equivariance.

Definition 2.2 Given an affine map A : Y → U , a pair of vector fields f ∈ X(Y )

and g ∈ X(U ) is A-related if A′ ◦ f = g ◦ A. A numerical integrator � is affine
equivariant if A ◦ � f = �g ◦ A for all A-related f and g, all affine maps A, and all
Banach spaces Y and U .

Remark 2.3 This is consistent with the definition of affine equivariance in [18]. We
distinguish it from the weaker definition in Munthe-Kaas and Verdier [23], where the
condition above is required only for affine isomorphisms rather than all affine maps.

Definition 2.4 Given a Gâteaux differentiable map F : Y → Z and f ∈ X(Y ), define
g ∈ X(Y × Z) by g(y, z) = (

f (y), F ′(y) f (y)
)
. We say that a numerical integrator�

is F-functionally equivariant if (id, F) ◦ � f = �g ◦ (id, F) for all f ∈ X(Y ). That
is, if � f : y0 �→ y1, then �g : (

y0, F(y0)
) �→ (

y1, F(y1)
)
. Given a class of maps F ,

we say that � is F-functionally equivariant if this holds for all F ∈ F(Y , Z) and all
Banach spaces Y and Z .

This is a slight generalization of the situation considered in the introduction: Z
may now be any Banach space rather than R, and F is only required to be Gâteaux
differentiable rather than C1. Note that g ∈ X(Y × Z) is precisely the vector field
corresponding to the augmented system (1).

Example 2.5 (Runge–Kutta methods) An s-stage Runge–Kutta method has the form

Yi = y0 + �t
s∑

j=1

ai j f (Y j ), i = 1, . . . , s,

y1 = y0 + �t
s∑

i=1

bi f (Yi ),

where ai j and bi are given coefficients defining the method. When this method is
applied to the augmented system (1), we augment the method by

z1 = z0 + �t
s∑

i=1

bi F
′(Yi ) f (Yi ).

Note that the internal stages Z1, . . . , Zs are not needed, since the augmented vector
field depends only on y. Hence, for a Runge–Kutta method, F-functional equivariance
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says that

F(y1) = F(y0) + �t
s∑

i=1

bi F
′(Yi ) f (Yi ).

In particular, if F is an invariant of f , so that F ′(y) f (y) = 0 for all y ∈ Y , then the
terms of this sum vanish, and we get F(y1) = F(y0).

Proposition 2.6 Every affine equivariant method is affine functionally equivariant.

Proof If F : Y → Z is an affine map, then so is (id, F) : Y → Y × Z . Since the vector
fields f and g in Definition 2.4 are (id, F)-related, the conclusion follows by affine
equivariance. ��
Remark 2.7 The converse is generally not true. For instance, the map y0 �→ y0 +
( f div f )(y0), which is defined for finite-dimensional Y , is seen to be affine function-
ally equivariant but is not affine equivariant except in the weaker sense mentioned
in Remark 2.3. This is an example of an “aromatic” series that is not a B-series, cf.
Munthe-Kaas and Verdier [23].

Since we are concerned for the time being with affine equivariant numerical inte-
grators, it is natural to make the following assumptions on F . This includes cases
whereF contains not only affine maps but also quadratic or higher-degree polynomial
maps.

Assumption 2.8 The class of maps F satisfies the following:

• F(Y ,Y ) contains the identity map for all Y ;
• F(Y , Z) is a vector space for all Y and Z ;
• F is invariant under composition with affine maps, in the following sense: If

A : Y → U and B : V → Z are affine and F ∈ F(U , V ), then B ◦ F ◦ A ∈
F(Y , Z).

As noted in the introduction, preservation of invariants may be seen as a special
case of functional equivariance, so one might expect the latter property to be strictly
stronger than the former. Perhaps surprisingly, our first main result shows that they
are equivalent.

Theorem 2.9 Let F satisfy Assumption 2.8. A numerical integrator � preserves F-
invariants if and only if it is F-functionally equivariant.

Proof (⇒) Suppose � preserves F-invariants. Given F ∈ F(Y , Z), it follows
from Assumption 2.8 that G(y, z) = F(y) − z is in F(Y × Z , Z). This is
an invariant of the augmented vector field g(y, z) = (

f (y), F ′(y) f (y)
)
, since

G ′(y, z)g(y, z) = F ′(y) f (y) − F ′(y) f (y) = 0. Hence, preservation of F-invariants
implies �g : (y0, z0) �→ (y1, z1) satisfies G(y1, z1) = G(y0, z0), i.e., F(y1) − z1 =
F(y0) − z0. In particular, z0 = F(y0) implies z1 = F(y1).

(⇐) Conversely, suppose � is F-functionally equivariant. If F ∈ F(Y , Z) is an
invariant of f ∈ X(Y ), then the augmented vector field is g = ( f , 0), andF-functional
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equivariance implies �g : (
y0, F(y0)

) �→ (
y1, F(y1)

)
. However, any constant func-

tional y �→ c ∈ Z is also in F(Y , Z) and has the same augmented vector field g, so
�g : (y0, c) �→ (y1, c) for all c ∈ Z . Hence, F(y1) = F(y0). ��
Corollary 2.10 For B-series methods, the following statements hold:

(a) Every B-series method is affine functionally equivariant.
(b) B-series methods preserving quadratic invariants (e.g., Gauss–Legendre colloca-

tion methods) are quadratic functionally equivariant.
(c) No B-series method is cubic functionally equivariant.

Proof This follows since B-series methods are affine equivariant and none preserves
arbitrary cubic invariants (Chartier and Murua [9], Iserles, Quispel, and Tse [16]). ��

2.2 Strong Equivariance vs. Functional Equivariance

There is a stronger notion of F-equivariance, based on a straightforward generalization
of Definition 2.2 to nonlinear maps F : Y → U . Two vector fields f ∈ X(Y ) and
g ∈ X(U ) are F-related if F ′(y) f (y) = (g ◦ F)(y) for all y ∈ Y , and � is F-
equivariant if F ◦ � f = �g ◦ F whenever this is the case.

To illustrate the distinction with functional equivariance, we now show that the
implicit midpoint method is not quadratic equivariant in this stronger sense, although
Corollary 2.10(b) tells us that it is quadratic functionally equivariant. Let F : R →
R, y �→ y2, and observe that the vector fields

f (y) = −y, g(u) = −2u,

are F-related. Applying the implicit midpoint method with time step size �t = 1
gives

y1 = 1

3
y0, u1 = 0.

Since u1 �= (y1)2 for y0 �= 0, the method is not F-equivariant. On the other hand,
applying the method to the augmented equation ż = F ′(y) f (y) = −2y2 with z0 =
(y0)2 gives

z1 = (y0)
2 − 2

(
y0 + y1

2

)2

= (y0)
2 − 2

(
y0 + 1

3 y0
2

)2

= 1

9
(y0)

2 = (y1)
2,

which illustrates that the method is F-functionally equivariant.
Essentially, functional equivariance requires only that � commute with particular

pairs of related vector fields, while strong equivariance requires that it commute with
all such pairs.

2.3 Affine Equivariance and Closure under Differentiation

In addition to invariants and observables that depend on y itself, we are often interested
in those that depend on variations of y.We say that η is a variation of y if (y, η) ∈ Y×Y
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satisfy
ẏ = f (y), η̇ = f ′(y)η, (2)

whose flow is the derivative of the flow of f ∈ X(Y ). An especially important example
is the canonical symplectic form for Hamiltonian ODEs, which can be understood as
a quadratic invariant depending on two variations of y.

Definition 2.11 A numerical method � is said to be closed under differentiation if the
method applied to (2) is the derivative of � f , i.e., (y1, η1) = (

� f (y0),�′
f (y0)η0

)
.

Bochev andScovel [5] showed thatRunge–Kuttamethods are closed under differen-
tiation, fromwhich it follows that those preserving quadratic invariants are symplectic
integrators. The same argument can be applied to B-series methods, where closure
under differentiation can be established by showing that it holds for all trees [15, The-
oremVI.7.1]. Here,we present a new, tree-free proof that uses only affine equivariance,
and which will readily generalize to additive and partitioned methods in Sect. 5.

Theorem 2.12 Affine equivariant numerical integrators are closed under differentia-
tion.

Proof Given f ∈ X(Y ), consider the system

ẋ = f (x), ẏ = f (y),

corresponding to f × f ∈ X(Y ×Y ). Since f × f is A-related to f , where A is either
of the projections (x, y) �→ x or (x, y) �→ y, it follows that� f× f = � f ×� f . Now,
let ε > 0 and take z = F(x, y) = (x − y)/ε, giving the augmented system

ẋ = f (x), ẏ = f (y), ż = f (x) − f (y)

ε
.

By Proposition 2.6, applying � to this system yields

x1 = � f (x0), y1 = � f (y0), z1 = � f (x0) − � f (y0)

ε
.

Finally, let x0 = y0 + εη0 and take the limit as ε → 0. ��
Corollary 2.13 Let � be an affine equivariant numerical integrator preserving F-
invariants. Given F ∈ F(Y × Y , Z), define g ∈ X(Y × Y × Z) by

g(y, η, z) =
(
f (y), f ′(y)η, F ′(y, η)

(
f (y), f ′(y)η

))
.

Then �g
(
y0, η0, F(y0, η0)

) = (
y1, η1, F(y1, η1)

)
, where y1 = � f (y0) and η1 =

�′
f (y0)η0.

Proof Apply Theorems 2.9 and 2.12. ��
Remark 2.14 It is trivial to extend Corollary 2.13 to the case where F depends on two
or more variations of y, e.g., F = F(y, ξ, η) where ξ̇ = f ′(y)ξ and η̇ = f ′(y)η.
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2.4 Examples

Before discussing applications to conservation laws for PDEs,whichwill be the subject
of Sect. 3, we first illustrate some examples of functional equivariance for numerical
ODEs.

2.4.1 Hamiltonian Systems

SupposeY is equippedwith aPoisson bracket {·, ·}. Given H : Y → R, the correspond-
ing Hamiltonian vector field f ∈ X(Y ) is determined by the condition Ḟ = {F, H}
for F : Y → R. That is, the augmented system (1) can be written

ẏ = f (y), ż = {F, H}(y).
Hence, if � is F-functionally equivariant, then applying � to this system gives a
“discrete version” of Ḟ = {F, H} for F ∈ F(Y ,R). For a Runge–Kutta method, this
has the form

F(y1) = F(y0) + �t
s∑

i=1

bi {F, H}(Yi ).

This holds for any Poisson bracket, not just the canonical bracket or those for which
the Poisson tensor is constant. Preservation of F-invariants is the special case where
{F, H} = 0.

2.4.2 Canonical Hamiltonian Systems with Damping/Forcing

Let Y = R
2n with canonical coordinates y = (q, p). Consider the system

q̇ = ∇pH(q, p), ṗ = −∇q H(q, p) − cp, (3)

where H is a Hamiltonian and c ≥ 0 a constant parameter. If H has the special form
H(q, p) = 1

2 p
T M−1 p + V (q), where M is a positive definite mass matrix and V

is a potential energy function, then energy is dissipated according to d
dt H(q, p) =

−cpT M−1 p, and the parameter c dictates the rate of dissipation.
If V is also quadratic, then so is H , and hence any quadratic functionally equivariant

method � yields a discrete version of this dissipation law. If � is a Runge–Kutta
method preserving quadratic invariants, then this has the form

H(q1, p1) = H(q0, p0) − �t
s∑

i=1

bi cP
T
i M−1Pi .

There is no reason to restrict to linear damping: if we replace the damping term −cp
in (3) by an arbitrary forcing term φ(q, p), then we obtain

H(q1, p1) = H(q0, p0) + �t
s∑

i=1

bi P
T
i M−1φ(Qi , Pi ), (4)
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where the sum on the right-hand side approximates the work done by φ. When V is
not quadratic, the identities above generally do not hold. However, since the kinetic
energy functional 1

2 p
T M−1 p is quadratic, we still get the weaker identity

1

2
pT1 M

−1 p1 = 1

2
pT0 M

−1 p0 + �t
s∑

i=1

bi P
T
i M−1[−∇V (Qi ) + φ(Qi , Pi )

]
,

where the sum approximates work done by both conservative and non-conservative
forces.

2.4.3 Monotone Observables

Suppose F ∈ F(Y ,R) is such that F ′(y) f (y) ≤ 0, so F(y) is monotone decreasing.
If � is an F-functionally equivariant Runge–Kutta method with bi ≥ 0, then

F(y1) = F(y0) + �t
s∑

i=1

bi F
′(Yi ) f (Yi ) ≤ F(y0),

so F is also monotone decreasing along the numerical solution. Conversely, any
method with this monotonicity property also preserves F-invariants, and is thus
F-functionally equivariant, since F is an invariant when ±F are both monotone
decreasing.

Remark 2.15 For Runge–Kutta methods, the additional condition bi ≥ 0 is needed to
get monotonicity. Functional equivariance alone is not sufficient. We are not aware of
a more general version of this condition for arbitrary B-series methods.

An immediate consequence is the known B-stability of Runge–Kutta methods pre-
serving quadratic invariants with bi ≥ 0. If Y is a Hilbert space with inner product
〈·, ·〉, consider

ẋ = f (x), ẏ = f (y),

on Y ×Y , and let F(x, y) = 1
2‖x− y‖2. Then F ′(x, y)

(
f (x), f (y)

) = 〈
x− y, f (x)−

f (y)
〉 ≤ 0 implies F(x1, y1) ≤ F(x0, y0), i.e., ‖x1−y1‖ ≤ ‖x0−y0‖. This is precisely

the condition for B-stability, cf. Butcher [8] , Burrage and Butcher [7].
Another immediate application is to the dissipative systems in Sect. 2.4.2, when H

is quadratic. If φ is a dissipative force, in the sense that pT M−1φ(q, p) ≤ 0 for all
(q, p) ∈ R

2n , then (4) implies H(q1, p1) ≤ H(q0, p0), i.e., the quadratic energy is
monotone decreasing along the numerical solution.

2.4.4 Symplectic and Conformal Symplectic Systems

Suppose that ω is a continuous bilinear form on Y . Let ξ and η each be variations of
y, so that (y, ξ, η) ∈ Y × Y × Y satisfy

ẏ = f (y), ξ̇ = f ′(y)ξ, η̇ = f ′(y)η.
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Then ω(ξ, η) is a quadratic functional of this augmented system, evolving according
to

d

dt
ω(ξ, η) = ω

(
f ′(y)ξ, η

) + ω
(
ξ, f ′(y)η

) = (L f ω)y(ξ, η),

where (L f ω)y is the Lie derivative along f of ω at y [1, Theorem 6.4.1].
If � preserves quadratic invariants, then we may apply quadratic functional equiv-

ariance to describe the numerical evolution of ω. Taking g ∈ X(Y × Y × Y × R) to
be

g(y, ξ, η, z) = (
f (y), f ′(y)ξ, f ′(y)η, (L f ω)y(ξ, η)

)
,

it follows from Corollary 2.13 and Remark 2.14 that

�g(y0, ξ0, η0, ω(ξ0, η0)
) = (

y1, ξ1, η1, ω(ξ1, η1)
)
, (5)

where y1 = � f (y0), ξ1 = �′
f (y0)ξ0, and η1 = �′

f (y0)η0. Furthermore, this implies

ω(ξ1, η1) = ω
(
�′

f (y0)ξ0,�
′
f (y0)η0

) = (�∗
f ω)y0(ξ0, η0),

where (�∗
f ω)y0 is the pullback ofω by� f at y0. For aRunge–Kuttamethod preserving

quadratic invariants, (5) takes the form

ω(ξ1, η1) = ω(ξ0, η0) + �t
s∑

i=1

bi (L f ω)Yi (	i ,Hi ), (6)

and the sum on the right-hand side expresses the difference between �∗
�t f ω and ω

at y0.
In particular, suppose that ω is antisymmetric and nondegenerate, so that (Y , ω) is

a symplectic vector space. If f is a symplectic vector field, satisfying L f ω = 0, then
we recover the result of Bochev and Scovel [5] that if� preserves quadratic invariants,
then �∗

f ω = ω, i.e., � is a symplectic integrator. An interesting generalization is the
case of conformal symplectic vector fields, satisfying L f ω = −cω for some constant
c, of which (3) is a canonical example; see McLachlan and Perlmutter [17]. In this
case, (6) becomes

ω(ξ1, η1) = ω(ξ0, η0) − �t
s∑

i=1

bi cω(	i ,Hi ),

which can be seen as an approximate conformal symplecticity relation. However,
�∗

�t f ω generally does not equal e−c�tω exactly unless c = 0; see McLachlan and
Quispel [19, Example 7] for a counterexamplewhen� is the implicitmidpointmethod.

Remark 2.16 The arguments above apply without modification if ω is a vector-valued
bilinear form, i.e., a continuous bilinear map Y × Y → Z for some Banach space Z .
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3 Application to Conservation Laws in PDEs

In this section, we apply the general results of Sect. 2 to local conservation laws in
time-evolution PDEs.We also consider discrete conservation laws in numerical PDEs,
when semidiscretization in space is combined with numerical integration in time.

3.1 General Approach and Examples

Let ẏ = f (y) correspond to a time-dependent system of PDEs on a domain 
, where
the Banach space Y is a function space (or product of function spaces) on 
. Suppose
that solutions satisfy a local conservation law, in the form

ρ̇ = − div J , (7)

where ρ and J depend on y. The notation is deliberately suggestive of Maxwell’s
equations, where ρ is charge density, J is current density, and (7) is local conservation
of charge.

From Theorem 2.9 and Corollary 2.10, we immediately obtain a powerful general
statement about preservation of local conservation laws under numerical integration.
If ρ = F(y), where F ∈ F(Y , Z) and Z is an appropriate space of densities, then
F ′(y) f (y) = − div J (y), and thus an F-functionally equivariant integrator satisfies
a discrete-time version of (7). For instance, a Runge–Kutta method preserving F-
invariants satisfies

ρ1 = ρ0 − �t
s∑

i=1

bi div J (Yi ).

We note that, while ρ is required to be related to y by a functional in F (e.g., ρ is
affine or quadratic in y), no such restriction is placed on J . In particular, all B-series
methods preserve affine local conservation laws, while those preserving quadratic
invariants also preserve quadratic local conservation laws. In the case of symplectic
Runge–Kutta methods, Frasca-Caccia and Hydon [12, Section 3.1] recently proved
this by a direct computation, whereas here it is seen as a particular instance of quadratic
functional equivariance.

In addition to the differential form of the conservation law (7), wemay also integrate
over a compact subdomain K ⊂ 
 and apply the divergence theorem to get

d

dt

∫

K
ρ = −

∫

∂K
J · n̂, (8)

where n̂ denotes the outer unit normal to K . This may be seen as an integral form of
the conservation law (7). In this case, if

∫
K ρ = F(y) with F ∈ F(Y ,R), then an

F-functionally equivariant method satisfies a discrete-time version of (8). In the case
of a Runge–Kutta method preserving F-invariants, this has the form

∫

K
ρ1 =

∫

K
ρ0 − �t

s∑

i=1

bi

∫

∂K
J (Yi ) · n̂.
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Example 3.1 Maxwell’s equations in R
3 consist of the vector evolution equations

Ḃ = − curl E, Ḋ = curl H − J ,

along with the scalar constraint equations

div B = 0, div D = ρ,

and the constitutive relations D = εE and B = μH . Here, E and H are the electric
and magnetic fields, D and B are the electric and magnetic flux densities, ε and μ are
the electric permittivity and magnetic permeability tensors, and ρ and J are charge
and current density.

Taking the divergence of the first evolution equation, we see that div B is a local
invariant, so the constraint div B = 0 is preserved by the evolution. Next, interpreting
the constraint div D = ρ to define ρ as a function of D, we see that taking the
divergence of the second evolution equation gives the local conservation law ρ̇ =
− div J . Since div B and div D are both linear in y = (B, D), anyB-seriesmethodwill
preserve the constraint div B = 0, together with a discrete version of the conservation
law relating ρ and J .

Example 3.2 Consider the nonlinear Schrödinger (NLS) equation,

i u̇ + �u = φ
(|u|2)u.

A direct computation shows that solutions satisfy

∂

∂t

1

2
|u|2 = �(ū i u̇) = �(−ū�u) = �(− div(ū grad u)

) = − div�(ū grad u),

which is a local conservation law for the quadratic functional F(u) = 1
2 |u|2. Since

the implicit midpoint method is quadratic functionally equivariant, it follows that this
conservation law is preserved, in the sense that

1

2
|u1|2 = 1

2
|u0|2 − �t div�

(
ū0 + ū1

2
grad

u0 + u1
2

)
.

More generally, for any quadratic functionally equivariant Runge–Kutta method,

1

2
|u1|2 = 1

2
|u0|2 − �t

s∑

i=1

bi div�(Ūi gradUi ).

Example 3.3 Consider the wave equation ü = �u, written as the first-order system

u̇ = p, ṗ = �u.
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If y = (u, p) is a solution, then

∂

∂t

1

2

(
p2+|grad u|2) = p ṗ+grad u ·grad u̇ = p�u+grad u ·grad p = div(p grad u),

which is a local conservation law for the quadratic functional F(u, p) = 1
2

(
p2 +

|grad u|2). Hence, applying any quadratic functionally equivariant Runge–Kutta
method gives

1

2

(
(p1)

2 + |grad u1|2
) = 1

2

(
(p0)

2 + |grad u0|2
) + �t

s∑

i=1

bi div(Pi gradUi ).

3.2 Discrete Conservation Laws in Numerical PDEs

In practice, of course, we will not be applying numerical integrators to infinite-
dimensional function spaces. Rather, we typically first semidiscretize in space (e.g.,
using a finite difference, finite volume, or finite-element scheme), yielding a system
ẏh = fh(yh) on a finite-dimensional vector space Yh to which we can apply a numer-
ical integrator.

Suppose the spatial discretization scheme is such that it preserves a semidis-
crete conservation law ρ̇h = − divh Jh , where divh is some “discrete divergence”
operator. Then it follows from the previous section that, if ρh = Fh(yh) for some
Fh = F(Yh, Zh), then applying an F-functionally equivariant numerical integrator
yields a fully discrete conservation law corresponding to (7). We illustrate this with a
few examples, which are semidiscretized versions of those considered in the previous
section.

Example 3.4 Nédélec [24] introduced a finite-element semidiscretization ofMaxwell’s
equations, in which E and B are approximated by piecewise-polynomial vector fields
Eh ∈ H(curl;
) and Bh ∈ H(div;
). This method may be written as

Ḃh = − curl Eh,

∫




Ḋh · vh =
∫




(Hh · curl vh − Jh · vh),

where Dh = εEh , Hh = μ−1Bh , and vh is any vector field from the same space as
Eh .

Taking the divergence of the first equation gives div Ḃh = 0, so the constraint
div Bh = 0 is preserved by the evolution. For the second, when vh = − grad φh for a
piecewise-polynomial scalar field φh , we get

−
∫




Ḋh · grad φh =
∫




Jh · grad φh,

which we may write as divh Ḋh = − divh Jh . Thus, taking ρh = divh Dh implies the
semidiscrete charge conservation law ρ̇h = − divh Jh . (See Berchenko-Kogan and
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Stern [4] for a hybridization of Nédélec’s method that preserves a stronger form of
this conservation law, using div rather than divh .) Since div Bh and divh Dh are linear
in yh = (Bh, Dh), any B-series method will preserve div Bh = 0 exactly and give a
discrete-time version of the charge conservation law relating ρh and Jh .

Example 3.5 For the one-dimensional NLS equation, the finite-difference semidis-
cretization

i u̇k + uk+1 − 2uk + uk−1

h2
= φ

(|uk |2
)
uk

satisfies the semidiscrete local conservation law

d

dt

1

2
|uk |2 = − 1

h

[
�
((

ūk + ūk+1

2

)(
uk+1 − uk

h

))
− �

((
ūk−1 + ūk

2

)(
uk − uk−1

h

))]
,

where the right-hand side is a difference of midpoint approximations to �(ū ∂xu).
Hence, a discrete-time version of this conservation law is preserved by any B-series
method that preserves quadratic invariants.

Example 3.6 For the one-dimensional wave equation, consider the finite-difference
semidiscretization

u̇k = pk, ṗk = uk+1 − 2uk + uk−1

h2
.

If we define

ρk = 1

2
p2k + 1

4

(
uk+1 − uk

h

)2

+ 1

4

(
uk − uk−1

h

)2

,

which is a finite-difference approximation to 1
2

(
p2 + (∂xu)2

)
, then a short calculation

gives the semidiscrete conservation law

ρ̇k = 1

h

[(
pk + pk+1

2

)(
uk+1 − uk

h

)
−

(
pk−1 + pk

2

)(
uk − uk−1

h

)]
,

where the right-hand side is a difference of midpoint approximations to p ∂xu. As
in the previous example, a discrete-time version of this conservation law is therefore
preserved by any B-series method that preserves quadratic invariants.

3.3 Remarks on Quadratic Conservation Laws Arising from Point Symmetries

Conservation laws with quadratic densities are common in partial differential and
differential-difference equations because of their association with linear symmetries
of Hamiltonian PDEs. (See, e.g., Olver [25].) However, not all such symmetries are
easily preserved under semidiscretization. We focus here on affine point symmetries,
those arising from actions on the field variables.

For example, the one-dimensional NLS equation may be written in the form

i u̇ = δ

δū

∫




(
|∂xu|2 + V

(|u|2)
)
,
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where V ′ = φ and δ/δū is the variational derivative with respect to ū. The integrand
H = |∂xu|2 + V

(|u|2) is called the Hamiltonian density. Observe that H is invariant
under the diagonal U (1) action (u, ∂xu) �→ (eiαu, eiα∂xu), where α ∈ R ∼= u(1).
This point symmetry leads to the local conservation law for ρ = 1

2 |u|2 in Example
3.2. More generally, any Hamiltonian density of the formH = H

(|u|2, |∂xu|2, ū ∂xu
)

has the same point symmetry, and hence i u̇ = δ
δū

∫


H has a local conservation law

for ρ = 1
2 |u|2.

Similarly, the one-dimensional semidiscretized NLS equation in Example 3.6 can
be written

i u̇k = ∂

∂ ūk

∑

�

(∣∣∣
u�+1 − u�

h

∣∣∣
2 + V

(|u�|2
) + V

(|u�+1|2
)

2

)
,

where the summand can be viewed as a discrete Hamiltonian densityHh . The invari-
ance of Hh under the point symmetry u� �→ eiαu�, u�+1 �→ eiαu�+1, yields the
semidiscrete local conservation law for ρk = 1

2 |uk |2 obtained in Example 3.6. More
generally, we get such a local conservation law whenever the discrete Hamiltonian
density has the formHh = Hh

(|u�|2, |u�+1|2, ū�u�+1
)
.

A related example involves orthogonal (rather than unitary) point symmetry. Sup-
pose u(t, x) and its conjugate momentum p(t, x) both take values in R

3, and let
A ∈ O(3) act by z = (u, p, ∂xu, ∂x p) �→ (Au, Ap, A∂xu, A∂x p). Then any Hamil-
tonian density that depends only on the 10 invariants zi · z j , 1 ≤ i ≤ j ≤ 4, is
O(3) invariant and thus has a local conservation law for ρ = u × p. Like the U (1)
point symmetry discussed above, this O(3) point symmetry is preserved under a wide
class of lattice semidiscretizations, which have corresponding semidiscrete quadratic
conservation laws.

By contrast with point symmetries, symmetries that involve spatial translations
are typically broken by semidiscretization. However, special semidiscretizations can
be constructed that preserve versions of the associated conservation laws, although
these are generally not symplectic. An example is provided by the Korteweg–de Vries
equation

∂t u = ∂x (αu
2) + ν∂3x u,

which has a local conservation law with ρ = u2. The semidiscretization

u̇k = α

2h

[
θ(u2k+1−u2k−1)+2(1−θ)uk(uk+1−uk−1)

]+ ν

2h3
(uk+2−2uk+1+2uk−1−uk−2)

has a semidiscrete conservation law with density ρk = u2k only for the parameter
θ = 2/3 (Ascher and McLachlan [3]).

Frasca-Caccia and Hydon [12] give general techniques for constructing finite-
difference semidiscretizations preserving several local conservation laws—linear,
quadratic, or otherwise—with many examples. When such methods are used in con-
junction with B-series methods for time integration, it follows from Theorem 2.9 and
Corollary 2.10 that affine local conservation laws are always preserved in a discrete
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sense, while quadratic local conservation laws are preserved by any B-series method
that preserves quadratic invariants.

4 Multisymplectic Integrators

In this section, we apply the foregoing theory to the multisymplectic conservation
law for canonical Hamiltonian PDEs and its preservation by numerical integrators.
Since this is a quadratic local conservation law depending on variations of solu-
tions, it follows that B-series methods preserving quadratic invariants also preserve
a discrete-time version of the multisymplectic conservation law. Furthermore, we
discuss techniques for spatial semidiscretization that preserve a semidiscrete mul-
tisymplectic conservation law, reviewing some known results for finite-difference
semidiscretization and introducing new results for finite-element semidiscretization.
Consequently, when such methods are used in conjunction with B-series methods
preserving quadratic invariants, the resulting method will satisfy a fully discrete mul-
tisymplectic conservation law.

4.1 Canonical Hamiltonian PDEs

Before discussing the canonical Hamiltonian formalism for time-evolution PDEs, we
first quickly recall the stationary (time-independent) case, following the treatment in
McLachlan and Stern [22].

Given a spatial domain 
 ⊂ R
m with coordinates x = (x1, . . . , xm), let u : 
 →

R
n and σ : 
 → R

mn be unknown fields. The de Donder–Weyl equations [11, 30] for
a Hamiltonian H : 
 × R

n × R
mn → R, H = H(x, u, σ ), are

∂μu
i = ∂H

∂σ
μ
i

, −∂μσ
μ
i = ∂H

∂ui
, (9)

whereμ = 1, . . . ,m and i = 1, . . . , n. Here and henceforth, we use the Einstein index
convention of summing over repeated indices; for instance, ∂μσ

μ
i has an implied sum

over μ and therefore corresponds to the divergence of the vector field σi .
Now, for time-dependent problems, we let u = ui (t, x) and σ = σ

μ
i (t, x) depend

on t ∈ (t0, t1), and we introduce an additional unknown field p = pi (t, x). The
deDonder–Weyl equations for H : (t0, t1)×
×R

n×R
n×R

mn , H = H(t, x, u, p, σ ),
are then given by

u̇i = ∂H

∂ pi
, ∂μu

i = ∂H

∂σ
μ
i

, −( ṗi + ∂μσ
μ
i ) = ∂H

∂ui
. (10)

Note that (10) is simply (9) in (m+1)-dimensional spacetime, where we have adopted
the special notation t = x0 and pi = σ 0

i . Moreover, the special case m = 0 recovers
canonical Hamiltonian mechanics on R

2n .
For m > 0, the de Donder–Weyl equations are not in the form ẏ = f (y), since we

have expressions for u̇ and ṗ but not σ̇ . To deal with this, we assume that the second
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equationof (10) definesσ as an implicit functionof t , x ,u, p, andgrad u. By the implicit
function theorem, this is true (at least locally) if the mn ×mn matrix ∂2H/(∂σ

μ
i ∂σ ν

j )

is nondegenerate. Therefore, we may eliminate the second equation and substitute this
expression for σ into the other two equations. Assuming the Hamiltonian does not
depend on t , this gives a system of the form ẏ = f (y) with y = (u, p).

Example 4.1 Let n = 1, so that u and p are scalar fields and σ is a vector field on 
,
and take H = 1

2

(
p2 − |σ |2). Then the de Donder–Weyl equations are

u̇ = p, grad u = −σ, −( ṗ + div σ) = 0.

Eliminating the second equation and substituting σ = − grad u into the third, we
obtain the first-order form of the wave equation with y = (u, p), as in Example 3.3.

4.2 TheMultisymplectic Conservation Law

For Hamiltonian ODEs, the symplectic conservation law is a statement about vari-
ations of solutions to Hamilton’s equations. Similarly, for Hamiltonian PDEs, the
multisymplectic conservation law is a statement about variations of solutions to the
de Donder–Weyl equations.

Definition 4.2 Let (u, p, σ ) be a solution to (10). A (first) variation of (u, p, σ ) is a
solution (v, r , τ ) to the linearized problem

v̇i = ∂2H

∂ pi∂u j
v j + ∂2H

∂ pi∂ p j
r j + ∂2H

∂ pi∂σ ν
j
τ ν
j ,

∂μvi = ∂2H

∂σ
μ
i ∂u j

v j + ∂2H

∂σ
μ
i ∂ p j

r j + ∂2H

∂σ
μ
i ∂σ ν

j

τ ν
j ,

−(ṙi + ∂μτ
μ
i ) = ∂2H

∂ui∂u j
v j + ∂2H

∂ui∂ p j
r j + ∂2H

∂ui∂σ ν
j
τ ν
j ,

where the Hessians on the right-hand side are evaluated at (t, x, u, p, σ ).

On the space Rn × R
n × R

mn � (u, p, σ ), we now define the canonical 2-forms
ω0 = dui ∧ dpi and ωμ = dui ∧ dσμ

i for μ = 1, . . . ,m. The multisymplectic
conservation law states that, for any pair of variations (v, r , τ ) and (v′, r ′, τ ′), we
have

∂t

(
ω0((v, r , τ ), (v′, r ′, τ ′)

)) = −∂μ

(
ωμ

(
(v, r , τ ), (v′, r ′, τ ′)

))
,

that is,
∂t (v

i r ′
i − v′i ri ) = −∂μ(viτ

′μ
i − v′iτμ

i ).

The proof is simply a calculation, using the symmetry of the Hessian. We abbreviate
the multisymplectic conservation law as

ω̇0 = −∂μωμ, (11)
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with the understanding that both sides are evaluated on variations of solutions to (10).
In the special case m = 0, we recover the usual symplectic conservation law for
Hamiltonian ODEs. As with the conservation laws in Sect. 3.1, we may also integrate
(11) over a compact subdomain K ⊂ 
 and apply the divergence theorem to get

∫

K
ω̇0 dmx = −

∫

∂K
ωμ dm−1xμ, (12)

which is an integral form of the multisymplectic conservation law. Here, dmx :=dx1 ∧
· · · ∧ dxm is the standard Euclidean volume form on R

m and dm−1xμ:=ιeμ dmx is
its interior product with the μth standard basis vector. Again, we interpret (12) to
mean that the equality holds when both sides are evaluated on arbitrary variations of
solutions.

Remark 4.3 If
 is compact, and boundary conditions are chosen so thatωμ dm−1xμ =
0 on ∂
, then taking K = 
 in (12) gives

∫



ω̇0 dmx = 0. This may be interpreted as
invariance of the symplectic form ω = ∫



ω0 dmx on the infinite-dimensional phase

space Y .

4.3 Discrete-TimeMultisymplectic Conservation Laws for Numerical Integrators

As before, assume that the Hamiltonian does not depend on t and that σ is an implicit
function of the remaining variables, so that (10) can be reduced to ẏ = f (y) with
y = (u, p). It follows that variations evolve according to η̇ = f ′(y)η with η = (v, r),
where τ = σ ′(y)η. Hence, (11) may be seen as a quadratic conservation law involving
variations of y, and the results of Sect. 2 immediately apply to give the following.

Theorem 4.4 Suppose that (10) can be written as ẏ = f (y) with y = (u, p), where
σ is an implicit function of the other variables. Let ξ = (v, r) and η = (v′, r ′), with
τ = σ ′(y)ξ and τ ′ = σ ′(y)η, and define the augmented vector field

g(y, ξ, η, z) =
(
f (y), f ′(y)ξ, f ′(y)η,−∂μ

(
ωμ

(
(v, r , τ ), (v′, r ′, τ ′)

)))
.

If � is an affine equivariant method preserving quadratic invariants, then

�g

(
y0, ξ0, η0, ω

0((v0, r0, τ0), (v
′
0, r

′
0, τ

′
0)

)) =
(
y1, ξ1, η1, ω

0((v1, r1, τ1), (v
′
1, r

′
1, τ

′
1)

))
,

where y1 = � f (y0), ξ1 = �′
f (y0)ξ0, and η1 = �′

f (y0)η0.

Proof The key observation is that ω0
(
(v, r , τ ), (v′, r ′, τ ′)

) = vi r ′
i − v′i ri is quadratic

in ξ and η alone, so it is not affected by the (possibly nonlinear) dependence of σ and
its variations on the other variables. Hence, the result follows from (5) and Remark
2.16. ��
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Corollary 4.5 For a Runge–Kutta method preserving quadratic invariants, we have

ω0((v1, r1, τ1), (v′
1, r

′
1, τ

′
1)

)

= ω0((v0, r0, τ0), (v′
0, r

′
0, τ

′
0)

) − �t
s∑

i=1

bi∂μ

(
ωμ

(
(Vi , Ri , Ti ), (V

′
i , R

′
i , T

′
i )

))
.

This may be written equivalently as

(du1)
j ∧ (dp1) j = (du0)

j ∧ (dp0) j − �t
s∑

i=1

bi∂μ

(
(dUi )

j ∧ (d�i )
μ
j

)
.

4.4 Multisymplectic Semidiscretization on Rectangular Grids

If 
 is a Cartesian product of intervals, equipped with a rectangular finite-difference
grid, there is a substantial literature on spatial semidiscretization such that a semidis-
crete multisymplectic conservation law holds. We refer the reader in particular to
the following (non-exhaustive) list of references: Reich [26], Bridges and Reich [6],
Ryland andMcLachlan [27],McLachlan, Ryland, and Sun [21]. These semidiscretiza-
tion schemes generally apply a symplectic Runge–Kutta or partitioned Runge–Kutta
method in each of the spatial directions. In light of Sect. 2, the semidiscrete multi-
symplectic conservation law may be seen as resulting from m applications of (6) or
its generalization to partitioned methods in Sect. 5.

In one dimension of space, Sun and Xing [29] have recently investigated multisym-
plectic semidiscretization using discontinuous Galerkin finite-element methods.

4.5 Multisymplectic Semidiscretization with Hybrid Finite Element Methods

In McLachlan and Stern [22], we developed a framework for multisymplectic dis-
cretization of time-independent Hamiltonian PDEs by hybrid finite element methods,
including hybridizable discontinuous Galerkin methods (cf. Cockburn, Gopalakrish-
nan, and Lazarov [10]). In this section, we show that those same methods may be used
for semidiscretization of time-dependent Hamiltonian PDEs, and that a semidiscrete
multisymplectic conservation law holds. Consequently, when combined with a sym-
plectic numerical integrator for time discretization, the resulting method satisfies a
fully discrete multisymplectic conservation law in spacetime. Unlike the methods dis-
cussed in the previous section, these methods may be applied to unstructured meshes
on non-rectangular domains.

Suppose that
 ⊂ R
m is polyhedral, and let Th be a simplicial triangulation of
 by

m-simplices K ∈ Th , where Eh = ⋃
K∈Th ∂K denotes the set of (m − 1)-dimensional

facets. We specify finite-element spaces

V (K ) ⊂ [
H2(K )

]n
, V :=

∏

K∈Th
V (K ),
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�(K ) ⊂ [
H1(K )

]mn
, �:=

∏

K∈Th
�(K ),

along with spaces of approximate boundary traces on Eh ,

V̂ ⊂ [
L2(Eh)

]n
, V̂0:=

{
v̂ ∈ V̂ : v̂|∂
 = 0

}
.

The de Donder–Weyl equations (10) are then approximated by the weak problem:
Find

(
u(t), σ (t), p(t), û(t)

) ∈ V × � × V ∗ × V̂ satisfying

∫

K
u̇i ri d

mx =
∫

K

∂H

∂ pi
ri d

mx, ∀r ∈ V ∗(K ), (13a)

0 =
∫

K

(
ui∂μτ

μ
i + ∂H

∂σ
μ
i

τ
μ
i

)
dmx −

∫

∂K
ûiτμ

i dm−1xμ, ∀τ ∈ �(K ),

(13b)
∫

K
ṗiv

i dmx =
∫

K

(
σ

μ
i ∂μvi − ∂H

∂ui
vi

)
dmx −

∫

∂K
σ̂

μ
i vi dm−1xμ, ∀v ∈ V (K ),

(13c)

for all K ∈ Th , together with the conservativity condition

0 =
∑

K∈Th

∫

∂K
σ̂

μ
i v̂i dm−1xμ, ∀v̂ ∈ V̂0. (13d)

Here, σ̂ is determined by u, σ, û through a specified numerical flux function; see Cock-
burn, Gopalakrishnan, and Lazarov [10], McLachlan and Stern [22] for further details.
The Eqs. (13a)–(13c) are derived by multiplying (10) by test functions, integrating by
parts over K , and replacing the boundary traces of u and σ by the approximate traces û
and σ̂ . Under appropriate nondegeneracy assumptions, the Eqs. (13a) and (13c) define
the dynamics of yh = (u, p) on Yh :=V ×V ∗, where σ , û, and σ̂ are implicit functions
of yh .

We may then consider variations of solutions to (13), along with a corresponding
semidiscretemultisymplectic conservation law in the integral form (12). The following
is a straightforward generalization of Lemma 2 in [22].

Theorem 4.6 If (13a)–(13c) hold on K ∈ Th, then
∫

K
∂t (du

i ∧ dpi ) d
mx = −

∫

∂K
(dûi ∧ dσ̂ μ

i ) dm−1xμ

+
∫

∂K

(
d(̂ui − ui ) ∧ d(̂σμ

i − σ
μ
i )

)
dm−1xμ.

Consequently, the semidiscrete multisymplectic conservation law

∫

K
∂t (du

i ∧ dpi ) d
mx = −

∫

∂K
(dûi ∧ dσ̂ μ

i ) dm−1xμ (14)

123



Foundations of Computational Mathematics (2024) 24:149–177 169

holds on K ∈ Th if and only if
∫
∂K

(
d(̂ui − ui ) ∧ d(̂σμ

i − σ
μ
i )

)
dm−1xμ = 0.

Proof We may rewrite (13a)–(13c) as

∫

K
u̇i dpi d

mx =
∫

K

∂H

∂ pi
dpi d

mx,

0 =
∫

K

(
ui d(∂μσ

μ
i ) + ∂H

∂σ
μ
i

dσμ
i

)
dmx −

∫

∂K
ûi dσμ

i dm−1xμ,

∫

K
ṗi du

i dmx =
∫

K

(
σ

μ
i d(∂μu

i ) − ∂H

∂ui
dui

)
dmx −

∫

∂K
σ̂

μ
i dui dm−1xμ.

Adding the first two equations, subtracting the third, and taking the exterior derivative
on both sides, we get

∫

K
∂t (du

i ∧ dpi ) d
mx

=
∫

K

(
∂μ(dui ∧ dσμ

i ) + ddH
)
dmx −

∫

∂K
(dûi ∧ dσμ

i + dui ∧ dσ̂ μ
i ) dm−1xμ

=
∫

∂K
(dui ∧ dσμ

i − dûi ∧ dσμ
i − dui ∧ dσ̂ μ

i ) dm−1xμ

= −
∫

∂K
(dûi ∧ dσ̂ μ

i ) dm−1xμ +
∫

∂K

(
d(̂ui − ui ) ∧ d(̂σμ

i − σ
μ
i )

)
dm−1xμ,

where the second equality uses ddH = 0 and the divergence theorem. ��
In Section 4 of [22], it is proved that several families of hybrid finite-element

methods, including hybridized mixed methods (RT-H and BDM-H), nonconforming
methods (NC-H), discontinuous Galerkin methods (LDG-H and IP-H), and contin-
uous Galerkin methods (CG-H) satisfy the condition

∫
∂K

(
d(̂ui − ui ) ∧ d(̂σμ

i −
σ

μ
i )

)
dm−1xμ = 0 of Theorem 4.6. Therefore, when these methods are applied to

(13), they satisfy the semidiscrete multisymplectic conservation law (14) on each
K ∈ Th .

If the numerical flux satisfies the so-called strong conservativity condition �σ̂ � = 0,
which is stronger than (13d), then the multisymplectic conservation law (14) may also
be strengthened so that it holds for arbitrary unions of simplices. This holds for all of
the methods mentioned in the previous paragraph except CG-H. The following is a
straightforward generalization of Theorem 3 in [22].

Theorem 4.7 If a strongly conservative method satisfies (14), then for all K ⊂ Th,
∫

⋃K
∂t (du

i ∧ dpi ) d
mx = −

∫

∂(
⋃

K )

(dûi ∧ dσ̂ μ
i ) dm−1xμ.

Proof Sum (14) over K ∈ K, using �σ̂ � = 0 to cancel the contributions of internal
facets. ��
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Remark 4.8 In the situation considered in Remark 4.3, taking K = Th implies con-
servation of the symplectic form

∫


dui ∧ dpi dmx on Yh . This generalizes a result of

Sánchez et al. [28], which states that semidiscretization of the acoustic wave equation
by LDG-H is symplectic.

5 Generalization to Additive and PartitionedMethods

In the preceding sections, we have developed a theory of functional equivariance
for a class of numerical integrators, including B-series methods, and applied it to
local conservation laws for PDEs. This section extends the functional equivariance
theory from Sect. 2 to two larger classes of numerical integrators: additive methods
and partitioned methods. It follows that, when these methods are applied to PDEs
satisfying local conservation laws, the results of Sects. 3 and 4 may also be extended
to these classes of methods.

5.1 Additive Methods

We now consider integrators applied to a vector field f ∈ X(Y ) after it has been
additively decomposed as f = f [1] + · · · + f [N ]. Specifically, we have in mind
additive Runge–Kutta and NB-series methods (cf. Aráujo, Murua, and Sanz-Serna
[2]), as well as splitting and composition methods (cf. McLachlan and Quispel [20]).

Denote the application of amethod� to a decomposed vector field f = f [1]+· · ·+
f [N ] by� f [1],..., f [N ] . By an additive numerical integrator,wemean the entire collection
of maps � = {

� f [1],..., f [N ] : f [1], . . . , f [N ] ∈ X(Y ), Y a Banach space
}
. We begin

by extending the definitions of affine equivariance and functional equivariance to such
methods.

Definition 5.1 An additive numerical integrator � is N -affine equivariant if
A ◦ � f [1],..., f [N ] = �g[1],...,g[N ] ◦ A whenever f [ν] ∈ X(Y ) and g[ν] ∈ X(U ) are
A-related for all ν = 1, . . . , N , all affine maps A : Y → U , and all Banach spaces Y
and U .

Definition 5.2 Given a Gâteaux differentiable map F : Y → Z and f [1], . . . , f [N ] ∈
X(Y ), define g[1], . . . , g[N ] ∈ X(Y × Z) by g[ν](y, z) = (

f [ν](y), F ′(y) f [ν](y)
)

for ν = 1, . . . , N . We say that an additive numerical integrator � is F-functionally
equivariant if (id, F) ◦ � f [1],..., f [N ] = �g[1],...,g[N ] ◦ (id, F) for all f [1], . . . , f [N ] ∈
X(Y ) andF-functionally equivariant if this holds for all F ∈ F(Y , Z) and all Banach
spaces Y and Z .

Proposition 5.3 Every N-affine equivariant method is affine functionally equivariant.

Proof The proof is essentially identical to that for Proposition 2.6. If F is affine, then so
is (id, F), and the vector fields f [ν] and g[ν] are (id, F)-related for all ν = 1, . . . , N .

��
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Example 5.4 (additive Runge–Kutta methods) An s-stage additive Runge–Kutta
(ARK) method has the form

Yi = y0 + �t
N∑

ν=1

s∑

j=1

a[ν]
i j f [ν](Y j ), i = 1, . . . , s,

y1 = y0 + �t
N∑

ν=1

s∑

i=1

b[ν]
i f [ν](Yi ),

and F-functional equivariance is the condition

F(y1) = F(y0) + �t
N∑

ν=1

s∑

i=1

b[ν]
i F ′(Yi ) f [ν](Yi ).

If F is an invariant, then we have F ′(Yi ) f (Yi ) = 0 but generally F ′(Yi ) f [ν](Yi ) �= 0
for N > 1, so the sum on the right-hand side need not vanish. However, if b[ν]

i = bi is
independent of ν, then it does vanish, andwe obtain F(y1) = F(y0) as in Example 2.5.
This illustrates that an ARK method may be functionally equivariant but not invariant
preserving (even for affine maps) unless some additional condition is satisfied.

Proposition 5.5 Additive Runge–Kutta methods are N-affine equivariant. Further-
more, an ARK method preserves affine invariants if b[ν]

i = bi is independent of ν.

Proof Suppose f [ν] and g[ν] are A-related for ν = 1, . . . , N . Then

A(Yi ) = A(y0) + A′(Yi − y0)

= A(y0) + �t
N∑

ν=1

s∑

j=1

a[ν]
i j (A′ ◦ f [ν])(Y j )

= A(y0) + �t
N∑

ν=1

s∑

j=1

a[ν]
i j g

[ν](A(Y j )
)
,

for i = 1, . . . , s, and similarly,

A(y1) = A(y0) + �t
N∑

ν=1

s∑

i=1

b[ν]
i g[ν](A(Yi )

)
.

This shows that A(y1) = (A ◦� f )(y0) = (�g ◦ A)(y0), so � is N -affine equivariant.

Finally, if b[ν]
i = bi is independent of ν, then Proposition 5.3 and Example 5.4 show

that � preserves affine invariants. ��
Remark 5.6 It is straightforward to show that, in fact, all NB-series methods are N -
affine equivariant. (This includes, e.g., generalized additive Runge–Kutta methods,
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whose symplecticity conditions were recently investigated by Günther, Sandu, and
Zanna [13].) The proof is, essentially, to repeatedly differentiate the A-relatedness
condition A′◦ f [ν] = g[ν]◦A, obtaining a relation between the elementary differentials.

Theorem 5.7 Let F satisfy Assumption 2.8. An additive numerical integrator � pre-
serves F-invariants if and only if it isF-functionally equivariant and preserves affine
invariants.

Proof (⇒)Suppose� preservesF-invariants. The proof ofF-functional equivariance
is essentially identical to that in Theorem 2.9, and preservation of affine invariants
follows from the fact that F contains affine maps by Assumption 2.8.

(⇐) Conversely, suppose that � is F-functionally equivariant and preserves
affine invariants. If F ∈ F(Y , Z) is an invariant of f ∈ X(Y ), then g[ν](y, z) =(
f [ν](y), F ′(y) f [ν](y)

)
is the corresponding decomposition of g = ( f , 0). By F-

functional equivariance, we have �g[1],...,g[N ] : (
y0, F(y0)

) �→ (
y1, F(y1)

)
. Finally,

since G(y, z) = z is an affine invariant of g, it is preserved by �g[1],...,g[N ] , and thus
F(y0) = F(y1). ��

Example 5.8 LetF be the class of quadratic maps. It follows that an additive numerical
integrator preserves quadratic invariants if and only if it is quadratic functionally
equivariant and preserves affine invariants. For ARK methods, a sufficient condition
is that b[ν]

i = bi be independent of ν and b[ν]
i a[μ]

i j + b[μ]
j a[ν]

j i = b[ν]
i b[μ]

j for all i , j , μ,
ν. The proof is identical to that for symplecticity of ARKmethods, cf. Aráujo, Murua,
and Sanz-Serna [2, Theorem 7].

Splitting methods take � f [1],··· , f [N ] to be a composition of exact flows ϕτ f [ν] , i.e.,

� f [1],..., f [N ] = ϕτs f [νs ] ◦ · · · ◦ ϕτ1 f [ν1] ,

where consistency requires
∑

νi=ν τi = 1 for all ν = 1, . . . , N . For N = 2, the two
most elementary splitting methods are the Lie–Trotter splitting ϕ f [1] ◦ ϕ f [2] and the
Strang splitting ϕ 1

2 f [2] ◦ϕ f [1] ◦ϕ 1
2 f [2] , where ϕ denotes the exact time-1 flow. Since the

exact flow is equivariant (and hence functionally equivariant) with respect to all maps
F , the chain rule implies that this is also true of splitting methods. As a consequence
of Theorem 5.7, we get the following negative result for splitting methods.

Corollary 5.9 Any splitting method that preserves affine invariants equals the exact
flow.

Proof Since splitting methods are equivariant with respect to all maps, Theorem 5.7
implies that any splitting method preserving affine invariants preserves all invariants.
To see that this must be the exact flow, consider the vector field ( f , 1) ∈ X(Y × R),
which augments ẏ = f (y) by the equation ṫ = 1. The exact solution is y(t) = ϕt f (y0),
so F(y, t) = y−ϕt f (y0) is an invariant of ( f , 1). Therefore, F(y1, 1) = F(y0, 0) = 0,
which says that y1 = ϕ f (y0). ��
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5.2 PartitionedMethods

Wefinally consider partitionedmethods, which are based on a partitioning Y = Y [1]⊕
· · · ⊕ Y [N ]. In particular, we have in mind partitioned Runge–Kutta and P-series
methods (cf. Hairer [14]). These are closely related to the methods in the previous
section, except the vector field decomposition f = f [1] + · · · + f [N ] is uniquely
specified by the partitioning of Y , i.e., f [ν](y) ∈ Y [ν] for all y ∈ Y and ν = 1, . . . , N .
For this reason, we write the flow of such a method as � f rather than � f [1],..., f [N ] . By
a partitioned numerical integrator, we mean the entire collection of maps � = {

� f :
f ∈ X(Y ), Y = ⊕N

ν=1 Y
[ν] a partitioned Banach space

}
.

Definition 5.10 Given partitioned spaces Y = ⊕N
ν=1 Y

[ν] and U = ⊕N
ν=1U

[ν], we
say that A : Y → U is a P-affine map if it decomposes as A = ⊕N

ν=1 A
[ν], where

each A[ν] : Y [ν] → U [ν] is affine. A partitioned numerical integrator � is P-affine
equivariant if A ◦ � f = �g ◦ A whenever f [ν] and g[ν] are A-related for all ν =
1, . . . , N , all P-affine maps A, all partitionings, and all Banach spaces Y and U .

Example 5.11 If we partition U = R into U [μ] = R and U [ν] = {0} for ν �= μ,
then the P-affine functionals are those depending only on Y [μ]. Affine functionals
depending on more than one component Y [ν] cannot be P-affine for any partitioning
of R. In particular, if we take Y = R

2 = (
R × {0}) ⊕ ({0} × R

)
, then:

• (q, p) �→ q is P-affine for the partitioning U = R ⊕ {0};
• (q, p) �→ p is P-affine for the partitioning U = {0} ⊕ R;
• (q, p) �→ q + p is never P-affine.

Proposition 5.12 If an additive numerical integrator � is N-affine equivariant, then
the partitioned numerical integrator � defined by � f = � f [1],..., f [N ] is P-affine
equivariant.

Proof This follows immediately from the definitions, since P-affine maps are affine.
��

Example 5.13 (partitioned Runge–Kutta methods) An s-stage partitioned Runge–
Kutta method (PRK) is just the application of an ARK method to a partitioned space,
as in Proposition 5.12, where � is the PRK method and � is the ARK method. As an
immediate corollary of this proposition, all PRK methods are P-affine equivariant.

The definition of F- andF-functional equivariance is the same as in Definition 2.4,
where givenY = ⊕N

ν=1 Y
[ν] and Z = ⊕N

ν=1 Z
[ν], we partitionY×Z = ⊕N

ν=1(Y
[ν]×

Z [ν]). However, the methods being considered are not necessarily equivariant with
respect to all affine maps, so Assumption 2.8 is too restrictive on F . We therefore
replace it with the following, which just replaces “affine” by “P-affine” for specified
partitions.

Assumption 5.14 Assume that:

• F(Y ,Y ) contains the identity map for all Y = ⊕N
ν=1 Y

[ν];
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• F(Y , Z) is a vector space for all Y = ⊕N
ν=1 Y

[ν] and Z = ⊕N
ν=1 Z

[ν];
• F is invariant under composition with P-affine maps, in the following sense: If

A : Y → U and B : V → Z are P-affine and F ∈ F(U , V ), then B ◦ F ◦
A ∈ F(Y , Z), for all Y = ⊕N

ν=1 Y
[ν], Z = ⊕N

ν=1 Z
[ν], U = ⊕N

ν=1U
[ν], and

V = ⊕N
ν=1 V

[ν].

Theorem 5.15 Let F satisfy Assumption 5.14. A partitioned numerical integrator �

preserves F-invariants if and only if it is F-functionally equivariant.

Proof The proof is formally identical to that for Theorem 2.9. ��
Example 5.16 LetF be the class of P-affinemaps. It follows that all P-affine equivariant
methods preserve P-affine invariants. In particular, by Example 5.11, affine invariants
F : Y → R depending only on a single component Y [μ] are preserved.

Example 5.17 Let F be the class of all affine maps, irrespective of partitioning. It
follows that P-affine equivariant methods preserve affine invariants if and only if they
are affine functionally equivariant. For PRKmethods, as for ARKmethods, this holds
if b[ν]

i = bi is independent of ν. (See Example 5.4 and Proposition 5.5.)

Example 5.18 Let F be the class of quadratic maps that are at most bilinear with
respect to the partition. i.e., terms may be bilinear in y[μ] and y[ν] forμ �= ν. For PRK
methods, a sufficient condition forF-invariant preservation, and thus forF-functional
equivariance, is that b[ν]

i = bi be independent of ν and b[ν]
i a[μ]

i j + b[μ]
j a[ν]

j i = b[ν]
i b[μ]

j
for all i , j , and μ �= ν. This is a straightforward generalization of the N = 2 case, cf.
Hairer, Lubich, and Wanner [15, Theorem IV.2.4].

Example 5.19 Let F be the class of all quadratic maps, irrespective of partitioning.
For PRK methods, as for ARK methods, a sufficient condition for quadratic invariant
preservation, and thus for quadratic functional equivariance, is that b[ν]

i = bi be

independent of ν and b[ν]
i a[μ]

i j + b[μ]
j a[ν]

j i = b[ν]
i b[μ]

j for all i , j , μ, ν. (See Example
5.8.)

5.3 Closure under Differentiation and (Multi)Symplecticity

Finally, we generalize Theorem 2.12, which allows the functional equivariance results
for N -affine and P-affine equivariant methods to be applied to observables depending
on variations.

Theorem 5.20 N-affine and P-affine equivariant methods are closed under differen-
tiation.

Proof The proof is basically the same as Theorem 2.12, although we need to specify
how � is applied to the augmented system

ẋ = f (x), ẏ = f (y), ż = f (x) − f (y)

ε
.
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We simply use the same decomposition or partition for each of the three parts. Specif-
ically, if � is N -affine equivariant, then we decompose

f (x) =
N∑

ν=1

f [ν](x),

f (y) =
N∑

ν=1

f [ν](y),

f (x) − f (y)

ε
=

N∑

ν=1

f [ν](x) − f [ν](y)
ε

,

while if� is P-affine equivariant, we partition Y ×Y ×Y = ⊕N
ν=1(Y

[ν]×Y [ν]×Y [ν]).
The proof then proceeds as in Theorem 2.12. ��

Therefore, the results on symplecticity and multisymplecticity of affine equivariant
methods preserving quadratic invariants also hold for N -affine and P-affine equivariant
methods preserving quadratic invariants. Moreover, since the canonical symplectic
form ω = dqi ∧ dpi and multisymplectic form ω0 = dui ∧ dpi are bilinear on
Y = V × V ∗, it suffices for an N = 2 partitioned method to preserve only bilinear
invariants, as in Example 5.18. This includes widely used symplectic PRK methods
such as Störmer/Verlet and the Lobatto IIIA–IIIB pair (Hairer, Lubich, and Wanner
[15, Sections IV.2 and VI.4]), as well as compositions of these methods.

6 Concluding Remarks

We conclude by posing a natural question for future investigation: Which numerical
integrators are affine functionally equivariant? Here is a summary of some related
results that have been mentioned throughout this paper:

• B-series methods are precisely the affine equivariant methods [18], so by Propo-
sition 2.6, they are included among the affine functionally equivariant methods.

• Aromatic B-seriesmethods are precisely the affine isomorphism equivariantmeth-
ods [23]. Since only isomorphsims are considered, the series coefficients may vary
depending on dim Y . If the series coefficients are constant across dimensions,
then the method is affine functionally equivariant, as in Remark 2.7. Conversely,
variable-coefficient methods cannot be affine functionally equivariant, since y
would then evolve differently between the original and augmented systems.

• As shown in Example 5.17, partitioned methods may also be affine functionally
equivariant, e.g., a PRK method with b[ν]

i = bi independent of ν. However, such

methods are generally not affine isomorphismequivariant, e.g., ifa[ν]
i j varieswith ν,

so affine functional equivariance need not imply affine isomorphism equivariance.

Figure 1 depicts these relationships among the different classes of “equivariant” meth-
ods.
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Affine isomorphism equivariant methods

Affine
equivariant
methods

Affine functionally equivariant methods

≡ B-series
≡ constant-coefficient
aromatic B-series

Example: PRK method with b
[ν]
i = bi

≡ variable-coefficient
aromatic B-series

Fig. 1 The landscape of equivariant methods
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